SlideShare ist ein Scribd-Unternehmen logo
Verkehrstheorie
Wartesysteme (Übung)
     Kapitel 4.4

     Netze und Protokolle
Dipl.-Wirtsch.-Ing. Kim Bartke




  Institut für Kommunikationstechnik
          www.ikt.uni-hannover.de
Verlustsysteme / Wartesysteme (1)

Nachrichtensysteme können in Verlustsysteme und
Wartesysteme unterteilt werden.
Erläutern Sie die Begriffe und geben Sie Beispiele!




                             (2)
Verlustsysteme / Wartesysteme (2)

Verlustsystem
   ein einfallender Belegungswunsch wird sofort bearbeitet, wenn
   die Ressourcen dafür zur Verfügung stehen. Sind alle
   Ressourcen belegt, wird der Belegungswunsch abgewiesen, er
   geht zu Verlust.
   Beispiel: Fernsprechnetz
Wartesystem
   ein einfallender Bearbeitungswunsch wird in eine Warteschlange
   geschrieben und bearbeitet, sobald freie Ressourcen dafür zur
   Verfügung stehen. Ein Verlust tritt auf, wenn alle Warteplätze in
   der Warteschlange belegt sind und ein weiterer
   Bearbeitungswunsch eintrifft.
   Beispiel: Daten-Endgeräte (paketorientiert), Hotline eines Call-
   Centers mit Warteplätzen



                                  (3)
Charakteristische Qualitätsparameter (1)

Was sind die typischen Qualitätsparameter für ein
Verlustsystem bzw. ein Wartesystem?




                            (4)
Charakteristische Qualitätsparameter (2)

Verlustsystem
   Verlust (Blockierungswahrscheinlichkeit), d.h. der
   Anteil der Anforderungen, der nicht vom System bearbeitet werden kann


Wartesystem
   theoretisches (reines) Wartesystem
       Wahrscheinlichkeit für eine Wartezeit > T
       mittlere Wartezeit
   realen Wartesystems (Warte-Verlust-System)
       wie theoretisches Wartesystem
       Verlustwahrscheinlichkeit (Paketverlust)




                                        (5)
Markov-Ketten (1)

Welcher Verteilung folgen die Aufenthaltsdauern in einem
Zustand in einer Markov-Kette?
   Die Aufenthaltsdauern folgen einer Exponentialverteilung.


Welche besondere Eigenschaft hat der Markov-Prozess?
   Der Markov-Prozess zeichnet sich durch seine
   Gedächtnislosigkeit aus.

Was sind Geburts- und Sterbeprozesse und in welcher
Beziehung stehen sie zu Markov-Prozessen?
   Der Zustand k kann nur von seinem Vorgänger k-1 oder
   Nachfolger k+1 erreicht werden.
   Der Zustand k kann nur zu seinem Vorgänger k-1 oder
   Nachfolger k+1 verlassen werden.


                                 (6)
Markov-Ketten (2)

Die Übergangswahrscheinlichkeiten können zustandsabhängig
sein
Geburts- und Sterbeprozesse sind Spezialfälle von Markov-
Prozessen.



                  Pk −1, k               Pk , k +1

            k-1                k                     k+1


                   Pk , k −1             Pk +1, k




                                   (7)
Little’s Law

Nennen und erläutern Sie Little‘s Law!
Little’s Law lautet
                                                Die mittlere Einfallrate von
                                                Bedienwünschen

                  k = λ ⋅ Tv
Der mittlere                                 Die mittlere
Füllgrad einer                               Verweildauer in der
Warteschlange                                Warteschlange


      !!!Wichtig!!!   Alle Werte sind Durchschnittswerte    !!!Wichtig!!!

    Der Satz von Little gilt für beliebige Ankunfts- und Bedienprozesse!




                                       (8)
M/M/1-Systeme

Pakete der mittleren Länge 1500 Byte kommen im Mittel
alle 0.2 Sekunden in der Warteschlange eines Routers an.
Wie hoch ist die Ankunftsrate?
   Ankunftsrate λ = 5 Pakete / Sekunde

Wie hoch ist die Auslastung bei einer Bedienrate von
36 Kbps?
   Auslastung (ρ) = Ankunftsrate (λ) / Bedienrate (µ)
   µ = 3 Pakete / Sekunde
   ρ = 5 [Pakete/Sek] / 3 [Pakete/Sek] = 1.67

Was für Folgen hat diese Auslastung für das System?
   Die Länge der Warteschlange steigt ins Unendliche.
   Das System wird instabil.



                                  (9)
M/M/1-Systeme

Wie groß muss die Bedienrate mindestens sein, um das
vorherige Problem zu umgehen?
    Die Auslastung muss < 1 sein, daher gilt:
    Bedienrate > Ankunftsrate   µ > 5 Pakete/Sek


Wie groß ist die Anzahl der Pakete in der Warteschlange
im Mittel bei einer Bedienrate von 66 kbps?
            ρ2
N Q = λW =
           1− ρ
    λ      5      5 10
ρ= =            =  =   ≈ 0.91
    μ    66000 5.5 11
       1500 * 8
         2
     ⎛ 10 ⎞
     ⎜⎟
NQ = ⎝ ⎠ =
            100
       11
                ≈ 9.09
         10  11
     1−
         11

                                (10)
M/M/1-Systeme

Zur Verringerung der Wartezeit soll in einem M/M/1-
System die Bedienrate eines Kanals, auf dem Datenpakete
der mittleren Größe von 1500 Byte übertragen werden, von
ursprünglich 66 kbps so verändert werden, dass die
mittlere Wartezeit um 20% reduziert wird. Ankommende
Pakete treten mit einem mittleren Abstand von 0.2s in das
Wartesystem ein.

Welche Bedienrate muss gewählt werden?




                            (11)
M/M/1-Systeme

Ausgangssituation
L = 1500 Byte
μ1 = 66000bps   μ2 = ?
W1 = ?          W2 = 0.8 *W1
ΔTAnk = 0.2s
Berechnung

     Pakete
λ =5
      Sek
    10
ρ1 = ≈ 0.91
    11
       ρ    20
W 1=      = ≈1.81s
      μ−λ 11
               16
W2 = 0.8*W 1 = ≈1.45s
               11

                               (12)
M/M/1-Systeme

Berechnung (Fortsetzung)
                                  2
                      ρ2
           80
N Q2 =λW2 = ≈ 7.27 =
                     1−ρ2
           11
ρ2 ≈ 0.89
      λ
μ 2 = ≈ 67350bps
     ρ2
Es muss folglich eine Erhöhung der Übertragungsrate um
1.35 Kbps durchgeführt werden.




                           (13)
M/M/m-Systeme

Was ist ein M/M/m-System?

   Bei einem M/M/m-System sind die Zwischenankunftszeiten und
   die Bearbeitungszeiten exponentialverteilt (M = Markov-Prozess).

   Das System besitzt m Bedieneinheiten.

   Das System besitzt unendlich viele Warteplätze.




                                (14)
M/M/m-Systeme

Zum Zeitpunkt t = 0 kommt ein Paket an einem M/M/4-
System Router an. Alle Ausgangsinterfaces sind belegt
und n = 19 weitere Pakete befinden sich im Wartesystem.
Die Übertragung der Pakete erfolgt entsprechend der
Ankunftsreihenfolge. Außerdem gilt, dass ab dem
Zeitpunkt t = 0 keine weiteren Pakete in das System
eintreten. Die Übertragungszeiten seien
exponentialverteilt mit µ = 2.5 Pakete/Sekunde.
   Bestimmen Sie die Zeit, die das letzte Paket wartet!
   Bestimmen Sie die erforderliche Zeit bis das System quot;leerquot; ist,
   ausgehend von t = 0!




                                 (15)
M/M/m-Systeme

Für den Fall, dass alle m Interfaces des Routers belegt
sind, gilt für die Zeit zwischen den
Abfertigungszeitpunkten:
      1    1     1
ts =    =      = s = 0.1s
     mμ 4 * 2.5 10
Das letzte Paket muss so lange warten, bis n+1
Abfertigungen erfolgt sind:
                  n + 1 19 + 1
WletztesPaket =        =       = 2s
                  mμ 4 * 2.5




                                      (16)
M/M/m-Systeme

Die Summe der Wartezeit des letzten Paketes und der
Bedienzeit sämtlicher Pakete bestimmt sich durch:
                        λτ                                      λτ
                                        λτ            λτ
         λτ


  0                1           2                m-1         m         m+1

          μτ                           (m-1)μτ
                        2μτ                                     mμτ
                                                      mμτ
λpn −1 = nμpn n < m
λpn −1 = mμpn n ≥ m

                 n +1 1            1 19 + 1     1       1       1      1
ΔTSystemleer =        +     + ... + =       +       +       +       +
                  mμ mμ            μ 4 * 2.5 4 * 2.5 3 * 2.5 2 * 2.5 1* 2.5
                 17
ΔTSystemleer   =    ≈ 2.83s
                  6


                                         (17)
Geschafft…

Gibt es noch Fragen?




                       (18)

Weitere ähnliche Inhalte

Andere mochten auch

Sacha Gamper
Sacha GamperSacha Gamper
Sacha Gamper
Lokalrundfunktage
 
Kleiner Exkurs: Deutsch fürs Büro. Teil 1.
Kleiner Exkurs: Deutsch fürs Büro. Teil 1.Kleiner Exkurs: Deutsch fürs Büro. Teil 1.
Kleiner Exkurs: Deutsch fürs Büro. Teil 1.
tbrueggemann
 
June Web
June WebJune Web
June Web
Billy Judson
 
Umgang mit Kritik in den sozialen Medien
Umgang mit Kritik in den sozialen MedienUmgang mit Kritik in den sozialen Medien
Umgang mit Kritik in den sozialen Medienblueintelligence
 
Nutrico Diet Präsentation
Nutrico Diet PräsentationNutrico Diet Präsentation
Nutrico Diet Präsentation
hrs-medical
 
Lokalrundfunktage - K Labs
 Lokalrundfunktage - K Labs Lokalrundfunktage - K Labs
Lokalrundfunktage - K Labs
Lokalrundfunktage
 
Calomat6 de
Calomat6 deCalomat6 de
Calomat6 de
Sonja Umbach
 
Audioguide me location based storytelling_#lrft14
Audioguide me location based storytelling_#lrft14Audioguide me location based storytelling_#lrft14
Audioguide me location based storytelling_#lrft14Lokalrundfunktage
 
20100423 vrt-parties online
20100423   vrt-parties online20100423   vrt-parties online
20100423 vrt-parties onlineaquarana
 
Bowlingcenter Schillerpark Werbeangebot
Bowlingcenter Schillerpark WerbeangebotBowlingcenter Schillerpark Werbeangebot
Bowlingcenter Schillerpark Werbeangebot
Bowlingcenter Schillerpark
 
Via 10 2015 hauterive
Via 10 2015 hauteriveVia 10 2015 hauterive
Via 10 2015 hauterive
Gaston Haas
 
Exposición TIC Dr. Dumont
Exposición TIC Dr. DumontExposición TIC Dr. Dumont
Exposición TIC Dr. Dumont
Jorge Diaz
 
Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014
Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014
Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014
Lokalrundfunktage
 
Die 7 besten Energizers
Die 7 besten EnergizersDie 7 besten Energizers
Die 7 besten Energizers
DerWorkshopLeader (DWL)
 
Anne Geburtstag
Anne GeburtstagAnne Geburtstag
Anne Geburtstagaquarana
 

Andere mochten auch (18)

Sacha Gamper
Sacha GamperSacha Gamper
Sacha Gamper
 
Kleiner Exkurs: Deutsch fürs Büro. Teil 1.
Kleiner Exkurs: Deutsch fürs Büro. Teil 1.Kleiner Exkurs: Deutsch fürs Büro. Teil 1.
Kleiner Exkurs: Deutsch fürs Büro. Teil 1.
 
June Web
June WebJune Web
June Web
 
Umgang mit Kritik in den sozialen Medien
Umgang mit Kritik in den sozialen MedienUmgang mit Kritik in den sozialen Medien
Umgang mit Kritik in den sozialen Medien
 
Dirk Ziems
Dirk ZiemsDirk Ziems
Dirk Ziems
 
Nutrico Diet Präsentation
Nutrico Diet PräsentationNutrico Diet Präsentation
Nutrico Diet Präsentation
 
Lokalrundfunktage - K Labs
 Lokalrundfunktage - K Labs Lokalrundfunktage - K Labs
Lokalrundfunktage - K Labs
 
Calomat6 de
Calomat6 deCalomat6 de
Calomat6 de
 
Audioguide me location based storytelling_#lrft14
Audioguide me location based storytelling_#lrft14Audioguide me location based storytelling_#lrft14
Audioguide me location based storytelling_#lrft14
 
20100423 vrt-parties online
20100423   vrt-parties online20100423   vrt-parties online
20100423 vrt-parties online
 
Arte ingles
Arte   inglesArte   ingles
Arte ingles
 
Bowlingcenter Schillerpark Werbeangebot
Bowlingcenter Schillerpark WerbeangebotBowlingcenter Schillerpark Werbeangebot
Bowlingcenter Schillerpark Werbeangebot
 
Via 10 2015 hauterive
Via 10 2015 hauteriveVia 10 2015 hauterive
Via 10 2015 hauterive
 
Exposición TIC Dr. Dumont
Exposición TIC Dr. DumontExposición TIC Dr. Dumont
Exposición TIC Dr. Dumont
 
Informatica y tecnologia
Informatica y tecnologiaInformatica y tecnologia
Informatica y tecnologia
 
Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014
Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014
Magine TV Deutschland, Friederike Behrends, Lokalrundfunktage 2014
 
Die 7 besten Energizers
Die 7 besten EnergizersDie 7 besten Energizers
Die 7 besten Energizers
 
Anne Geburtstag
Anne GeburtstagAnne Geburtstag
Anne Geburtstag
 

Mehr von Rafael Scudelari

[16] Nu P 09 1
[16] Nu P 09 1[16] Nu P 09 1
[16] Nu P 09 1
Rafael Scudelari
 
[13] Nup 07 5
[13] Nup 07 5[13] Nup 07 5
[13] Nup 07 5
Rafael Scudelari
 
[12] Nup 07 3
[12] Nup 07 3[12] Nup 07 3
[12] Nup 07 3
Rafael Scudelari
 
[11] Nu P 07 1
[11] Nu P 07 1[11] Nu P 07 1
[11] Nu P 07 1
Rafael Scudelari
 

Mehr von Rafael Scudelari (20)

[18] Nu P 13 1
[18] Nu P 13 1[18] Nu P 13 1
[18] Nu P 13 1
 
[17] Nu P 11 1
[17] Nu P 11 1[17] Nu P 11 1
[17] Nu P 11 1
 
[16] Nu P 09 1
[16] Nu P 09 1[16] Nu P 09 1
[16] Nu P 09 1
 
[15] Nu P 08 1
[15] Nu P 08 1[15] Nu P 08 1
[15] Nu P 08 1
 
[14] Nu P 09 2
[14] Nu P 09 2[14] Nu P 09 2
[14] Nu P 09 2
 
[14] Nu P 09 2
[14] Nu P 09 2[14] Nu P 09 2
[14] Nu P 09 2
 
[14] Nu P 08 1
[14] Nu P 08 1[14] Nu P 08 1
[14] Nu P 08 1
 
[13] Nu P 08 2
[13] Nu P 08 2[13] Nu P 08 2
[13] Nu P 08 2
 
[13] Nup 07 5
[13] Nup 07 5[13] Nup 07 5
[13] Nup 07 5
 
[12] Nup 07 6
[12] Nup 07 6[12] Nup 07 6
[12] Nup 07 6
 
[12] Nup 07 3
[12] Nup 07 3[12] Nup 07 3
[12] Nup 07 3
 
[11] Nu P 07 1
[11] Nu P 07 1[11] Nu P 07 1
[11] Nu P 07 1
 
[11] Nu P 02 2
[11] Nu P 02 2[11] Nu P 02 2
[11] Nu P 02 2
 
[10] Nup 07 4
[10] Nup 07 4[10] Nup 07 4
[10] Nup 07 4
 
[10] Nu P 06 1
[10] Nu P 06 1[10] Nu P 06 1
[10] Nu P 06 1
 
[9] Nup 07 2
[9] Nup 07 2[9] Nup 07 2
[9] Nup 07 2
 
[9] Nu P 05 1
[9] Nu P 05 1[9] Nu P 05 1
[9] Nu P 05 1
 
[8] Nu P 06 2
[8] Nu P 06 2[8] Nu P 06 2
[8] Nu P 06 2
 
[8] Nu P 04 3
[8] Nu P 04 3[8] Nu P 04 3
[8] Nu P 04 3
 
[7] Nu P 05 2
[7] Nu P 05 2[7] Nu P 05 2
[7] Nu P 05 2
 

[6] Nu P 04 4

  • 1. Verkehrstheorie Wartesysteme (Übung) Kapitel 4.4 Netze und Protokolle Dipl.-Wirtsch.-Ing. Kim Bartke Institut für Kommunikationstechnik www.ikt.uni-hannover.de
  • 2. Verlustsysteme / Wartesysteme (1) Nachrichtensysteme können in Verlustsysteme und Wartesysteme unterteilt werden. Erläutern Sie die Begriffe und geben Sie Beispiele! (2)
  • 3. Verlustsysteme / Wartesysteme (2) Verlustsystem ein einfallender Belegungswunsch wird sofort bearbeitet, wenn die Ressourcen dafür zur Verfügung stehen. Sind alle Ressourcen belegt, wird der Belegungswunsch abgewiesen, er geht zu Verlust. Beispiel: Fernsprechnetz Wartesystem ein einfallender Bearbeitungswunsch wird in eine Warteschlange geschrieben und bearbeitet, sobald freie Ressourcen dafür zur Verfügung stehen. Ein Verlust tritt auf, wenn alle Warteplätze in der Warteschlange belegt sind und ein weiterer Bearbeitungswunsch eintrifft. Beispiel: Daten-Endgeräte (paketorientiert), Hotline eines Call- Centers mit Warteplätzen (3)
  • 4. Charakteristische Qualitätsparameter (1) Was sind die typischen Qualitätsparameter für ein Verlustsystem bzw. ein Wartesystem? (4)
  • 5. Charakteristische Qualitätsparameter (2) Verlustsystem Verlust (Blockierungswahrscheinlichkeit), d.h. der Anteil der Anforderungen, der nicht vom System bearbeitet werden kann Wartesystem theoretisches (reines) Wartesystem Wahrscheinlichkeit für eine Wartezeit > T mittlere Wartezeit realen Wartesystems (Warte-Verlust-System) wie theoretisches Wartesystem Verlustwahrscheinlichkeit (Paketverlust) (5)
  • 6. Markov-Ketten (1) Welcher Verteilung folgen die Aufenthaltsdauern in einem Zustand in einer Markov-Kette? Die Aufenthaltsdauern folgen einer Exponentialverteilung. Welche besondere Eigenschaft hat der Markov-Prozess? Der Markov-Prozess zeichnet sich durch seine Gedächtnislosigkeit aus. Was sind Geburts- und Sterbeprozesse und in welcher Beziehung stehen sie zu Markov-Prozessen? Der Zustand k kann nur von seinem Vorgänger k-1 oder Nachfolger k+1 erreicht werden. Der Zustand k kann nur zu seinem Vorgänger k-1 oder Nachfolger k+1 verlassen werden. (6)
  • 7. Markov-Ketten (2) Die Übergangswahrscheinlichkeiten können zustandsabhängig sein Geburts- und Sterbeprozesse sind Spezialfälle von Markov- Prozessen. Pk −1, k Pk , k +1 k-1 k k+1 Pk , k −1 Pk +1, k (7)
  • 8. Little’s Law Nennen und erläutern Sie Little‘s Law! Little’s Law lautet Die mittlere Einfallrate von Bedienwünschen k = λ ⋅ Tv Der mittlere Die mittlere Füllgrad einer Verweildauer in der Warteschlange Warteschlange !!!Wichtig!!! Alle Werte sind Durchschnittswerte !!!Wichtig!!! Der Satz von Little gilt für beliebige Ankunfts- und Bedienprozesse! (8)
  • 9. M/M/1-Systeme Pakete der mittleren Länge 1500 Byte kommen im Mittel alle 0.2 Sekunden in der Warteschlange eines Routers an. Wie hoch ist die Ankunftsrate? Ankunftsrate λ = 5 Pakete / Sekunde Wie hoch ist die Auslastung bei einer Bedienrate von 36 Kbps? Auslastung (ρ) = Ankunftsrate (λ) / Bedienrate (µ) µ = 3 Pakete / Sekunde ρ = 5 [Pakete/Sek] / 3 [Pakete/Sek] = 1.67 Was für Folgen hat diese Auslastung für das System? Die Länge der Warteschlange steigt ins Unendliche. Das System wird instabil. (9)
  • 10. M/M/1-Systeme Wie groß muss die Bedienrate mindestens sein, um das vorherige Problem zu umgehen? Die Auslastung muss < 1 sein, daher gilt: Bedienrate > Ankunftsrate µ > 5 Pakete/Sek Wie groß ist die Anzahl der Pakete in der Warteschlange im Mittel bei einer Bedienrate von 66 kbps? ρ2 N Q = λW = 1− ρ λ 5 5 10 ρ= = = = ≈ 0.91 μ 66000 5.5 11 1500 * 8 2 ⎛ 10 ⎞ ⎜⎟ NQ = ⎝ ⎠ = 100 11 ≈ 9.09 10 11 1− 11 (10)
  • 11. M/M/1-Systeme Zur Verringerung der Wartezeit soll in einem M/M/1- System die Bedienrate eines Kanals, auf dem Datenpakete der mittleren Größe von 1500 Byte übertragen werden, von ursprünglich 66 kbps so verändert werden, dass die mittlere Wartezeit um 20% reduziert wird. Ankommende Pakete treten mit einem mittleren Abstand von 0.2s in das Wartesystem ein. Welche Bedienrate muss gewählt werden? (11)
  • 12. M/M/1-Systeme Ausgangssituation L = 1500 Byte μ1 = 66000bps μ2 = ? W1 = ? W2 = 0.8 *W1 ΔTAnk = 0.2s Berechnung Pakete λ =5 Sek 10 ρ1 = ≈ 0.91 11 ρ 20 W 1= = ≈1.81s μ−λ 11 16 W2 = 0.8*W 1 = ≈1.45s 11 (12)
  • 13. M/M/1-Systeme Berechnung (Fortsetzung) 2 ρ2 80 N Q2 =λW2 = ≈ 7.27 = 1−ρ2 11 ρ2 ≈ 0.89 λ μ 2 = ≈ 67350bps ρ2 Es muss folglich eine Erhöhung der Übertragungsrate um 1.35 Kbps durchgeführt werden. (13)
  • 14. M/M/m-Systeme Was ist ein M/M/m-System? Bei einem M/M/m-System sind die Zwischenankunftszeiten und die Bearbeitungszeiten exponentialverteilt (M = Markov-Prozess). Das System besitzt m Bedieneinheiten. Das System besitzt unendlich viele Warteplätze. (14)
  • 15. M/M/m-Systeme Zum Zeitpunkt t = 0 kommt ein Paket an einem M/M/4- System Router an. Alle Ausgangsinterfaces sind belegt und n = 19 weitere Pakete befinden sich im Wartesystem. Die Übertragung der Pakete erfolgt entsprechend der Ankunftsreihenfolge. Außerdem gilt, dass ab dem Zeitpunkt t = 0 keine weiteren Pakete in das System eintreten. Die Übertragungszeiten seien exponentialverteilt mit µ = 2.5 Pakete/Sekunde. Bestimmen Sie die Zeit, die das letzte Paket wartet! Bestimmen Sie die erforderliche Zeit bis das System quot;leerquot; ist, ausgehend von t = 0! (15)
  • 16. M/M/m-Systeme Für den Fall, dass alle m Interfaces des Routers belegt sind, gilt für die Zeit zwischen den Abfertigungszeitpunkten: 1 1 1 ts = = = s = 0.1s mμ 4 * 2.5 10 Das letzte Paket muss so lange warten, bis n+1 Abfertigungen erfolgt sind: n + 1 19 + 1 WletztesPaket = = = 2s mμ 4 * 2.5 (16)
  • 17. M/M/m-Systeme Die Summe der Wartezeit des letzten Paketes und der Bedienzeit sämtlicher Pakete bestimmt sich durch: λτ λτ λτ λτ λτ 0 1 2 m-1 m m+1 μτ (m-1)μτ 2μτ mμτ mμτ λpn −1 = nμpn n < m λpn −1 = mμpn n ≥ m n +1 1 1 19 + 1 1 1 1 1 ΔTSystemleer = + + ... + = + + + + mμ mμ μ 4 * 2.5 4 * 2.5 3 * 2.5 2 * 2.5 1* 2.5 17 ΔTSystemleer = ≈ 2.83s 6 (17)