Mathematik für Informatiker C          Serie 12Fynn Holst, Henrik Dubaschny & Christian Schielke                    Gruppe...
Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C                                     23. Jan...
Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C                                            ...
Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C                                            ...
Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C                                          23...
Nächste SlideShare
Wird geladen in …5
×

Serie12

139 Aufrufe

Veröffentlicht am

Veröffentlicht in: Bildung
0 Kommentare
0 Gefällt mir
Statistik
Notizen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Keine Downloads
Aufrufe
Aufrufe insgesamt
139
Auf SlideShare
0
Aus Einbettungen
0
Anzahl an Einbettungen
4
Aktionen
Geteilt
0
Downloads
0
Kommentare
0
Gefällt mir
0
Einbettungen 0
Keine Einbettungen

Keine Notizen für die Folie

Serie12

  1. 1. Mathematik für Informatiker C Serie 12Fynn Holst, Henrik Dubaschny & Christian Schielke Gruppe B 23. Januar 2012
  2. 2. Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C 23. Januar 2012Aufgabe 12.1Gesucht ist der Gradient für f : R∗ × R × R+ → R mit f (x, y, z) = sin(x) cos(y) − log(z)Wir berechnen zunächst die partiellen Ableitungen für die 3 Komponenten x, y, z ∂f (x, y, z) = cos(x) cos(y) ∂x ∂f (x, y, z) = − sin(x) sin(y) ∂y ∂f 1 (x, y, z) = − ∂z zEs gilt für x = (x1 , ..., xn ) ∈ D ⊂ Rn , f : D → R allgemein: ∂f ∂f f (x) = ∂x1 (x) ... ∂xn (x)Für die o.g. Funktion gilt also: 1 f (x, y, z) = cos(x) cos(y) − sin(x) sin(y) − zDamit ist die Richtung der maximalen Steigung von f im Punkt (π, π, 1) f (π, π, 1) = cos(π) cos(π) − sin(π) sin(π) −1 = cos2 (π) − sin2 (π) 1 = 1 0 1 1
  3. 3. Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C 23. Januar 2012Aufgabe 12.2 f : R2 → R, f (x, y) = y x2 + y 2 1 1.0 0 0.5 1 1.0 0.0 0.5 0.0 0.5 0.5 1.0 1.0 Abbildung 1: f (x, y) im Intervall [−1, 1] × [−1, 1]Zunächst bestimmen wir die partielle von Ableitung der Funktion nach der x-Komponente mit der Produktregel. ∂f (x, y) = ∂x y x2 + y 2 ∂x = ∂x (y) x2 + y 2 + y ∂ x x2 + y 2 =0 √Wir wenden die Kettenregel an. Setze g(x, y) := x2 + y 2 , f (u) = u. df 1 1 ∂g f (u) = (u) = √ = f (g(x, y)) = (x, y) = 2x du 2 u 2 x2 + y2 ∂x ∂f xy (x, y) = ∂x x2 + y 2 ∂g x f (g(x, y)) (x, y) = ∂x x2 + y 2Um die partielle Ableitung nach der y-Komponente zu bestimmen formen wirzunächst die Funktion um. f (x, y) = y x2 + y 2 = y 2 x2 + y 2 = y 2 x2 + y 4 √Setze g(x, y) := y 2 x2 + y 4 und f (u) := u. Dann lautet die partielle Ableitungder Funktion nach der y-Komponente: ∂g (x, y) = 2yx2 + 4y 3 = 2y(x2 + 2y 2 ) ∂y df 1 1 1 f (u) = (u) = √ = f (g(x, y)) = = du 2 u 2 y 2 x2 + y 4 2y x2 + y 2 2 2 2 2 ∂g 2y(x + 2y ) x + 2yf (g(x, y)) (x, y) = = ∂y 2y x 2 + y2 x2 + y 2Die Funktion ist also partiell differenzierbar für (x, y) = (0, 0). 2
  4. 4. Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C 23. Januar 2012Aufgabe 12.3 2.0 10 1.5 1.0 1.0 1.0 5 0.5 0.5 0.5 0.0 0 1.0 0.0 1.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1Abbildung 2: f (x, y) = x2 + y 2 und g(x, y) = x2 +y 2 im Intervall [−1, 1] × [−1, 1] • f (x, y) = x2 + y 2 . In Polarkoordinatenform: F (r, θ) = (r cos θ)2 + (r sin θ)2 = r2 (cos2 θ + sin2 θ) =1 2 =r Diese Funktion ist also stetig partiell differenzierbar auf R2 , mit: ∂r F (r, θ) = 2r ∂θ F (r, θ) = 0 Die Steigung ist also unabhängig vom Winkel und linear zur Entfernung zum Ursprung da F das Quadrat des Abstandes zum Urspung liefert. 1 • g(x, y) = x2 +y 2 . In Polarkoordinatenform: 1 G(r, θ) = (r cos θ)2 + (r sin θ)2 1 = 2 r (cos θ + sin2 θ) 2 =1 −2 =r Die Funktion G ist also für r = 0 nicht definiert. g ist für R2 {(0,0)} definiert. Auf R∗ × R ist G partiell differenzierbar mit: ∂r G(r, θ) = −r−3 ∂θ G(r, θ) = 0 Die Steigung ist also wieder unabhängig vom Winkel. 3
  5. 5. Fynn Holst, Henrik Dubaschny & Christian SchielkeMathematik für Informatiker C 23. Januar 2012Aufgabe 12.4Gesucht ist die Jacobi-Matrix Jf für   r cos θ sin ϕ f : R3 → R3 , (r, θ, ϕ) →  r sin θ sin ϕ  r cos ϕDazu berechnen wir die Gradienten der Komponenten f1 (x), f2 (x), f3 (x) von fund tragen diese als Zeilen ein. Wir erhalten:   cos θ sin ϕ −r sin θ sin ϕ r cos θ cos ϕ Jf =  sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ  cos ϕ 0 −r sin ϕUm zu prüfen wann diese Matrix regulär ist berechnen wir det(Jf ). Es gilt Jfregulär gdw. det(Jf ) = 0. Um die Determinante zu berechnen wenden wir denLaplace’schen Enwicklungssatz nach der 3. Zeile an. −r sin θ sin ϕ r cos θ cos ϕ cos θ sin ϕ −r sin θ sin ϕdet (Jf ) = cos ϕ · − r sin ϕ · r cos θ sin ϕ r sin θ cos ϕ sin θ sin ϕ r cos θ sin ϕ = cos ϕ · ((−r sin θ sin ϕ)(r sin θ cos ϕ) − (r cos θ cos ϕ)(r cos θ sin ϕ)) − r sin ϕ · ((cos θ sin ϕ)(r cos θ sin ϕ) − (−r sin θ sin ϕ)(sin θ sin ϕ)) = cos ϕ · (−r2 sin2 θ sin ϕ cos ϕ − r2 cos2 θ cos ϕ sin ϕ) − r sin ϕ · (r cos2 θ sin2 ϕ + r sin2 θ sin2 ϕ) = cos ϕ · (− (sin2 θ + cos2 θ) r2 sin ϕ cos ϕ) − r sin ϕ · ((cos2 θ + sin2 θ) r sin2 ϕ) =1 =1 = cos ϕ · (−r2 sin ϕ cos ϕ) − r sin ϕ · (r sin2 ϕ) = − r2 cos2 ϕ sin ϕ − r2 sin3 ϕ = − (cos2 ϕ + sin2 ϕ) r2 sin ϕ =1 = − r2 sin ϕ ⇒det(Jf ) = 0 ⇔ r = 0 ∨ sin ϕ = 0Es gilt sin ϕ = 0 gdw. ϕ = zπ, z ∈ Z. Deshalb sind die Punkte, an denen Jfregulär ist: (r, θ, ϕ) r ∈ R{0} , θ ∈ R, ϕ ∈ R{zπ|z∈Z} 4

×