SlideShare ist ein Scribd-Unternehmen logo
1 von 47
Downloaden Sie, um offline zu lesen
Vorwort
                                                                                                                                 Seite 3
Sehr geehrte Leserinnen und Leser,                                                          Inhalt
   n Ihren Händen halten Sie die erste Sonderausgabe    INFORMATIONEN ZUR NAA . . . . . . . . . . . . . . . . . . . . . . . . . .2
I  des Regiomontanusboten, der Vereinszeitschrift der
Nürnberger Astronomischen Arbeitsgemeinschaft e.V.
                                                        VORWORT UND INHALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Sie wurde anläßlich des BZ-Kurses „Astronomie“          GESCHICHTE DER ASTRONOMIE I
                                                        - ANTIKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
erstellt, welcher 1997 erstmals von der NAA mit
Erfolg abgehalten wurde.                                GESCHICHTE DER ASTRONOMIE II
Des weiteren wurde in dieser Sonderausgabe, eben-       - NEUZEIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
falls zum ersten mal, ein neues Layout- und Druckver-
                                                        SONNENSYSTEM I
fahren benutzt, welches ab 1998 für alle Ausgaben des   - SONNE UND GRÖßERE PLANETEN . . . . . . . . . . . . . . . . . . . .17
Regiomontanusboten angewendet werden soll. Nicht
                                                        SONNENSYSTEM II
zuletzt deswegen bitten ich Sie Kritik zu äußern, was
                                                        - KOMETEN, METEORITE, ASTEROIDE . . . . . . . . . . . . . . . . .22
Ihnen gefallen hat und was nicht, was man besser
machen kann oder was man weglassen sollte.              DAS UNIVERSUM
Die Autoren der acht Kapitel sind jeweils auch die      - VON DER ERDE ZU DEN QUASAREN . . . . . . . . . . . . . . . . . .29

Referenten der Themen während des Kurses, mit der       STERNENTWICKLUNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Ausnahme der „Veränderlichen Sterne“.
Ich hoffe, daß Sie viel Freude an dieser Sonderausga-   VERÄNDERLICHE STERNE . . . . . . . . . . . . . . . . . . . . . . . . . .40
be haben und auch nach dem Kurs noch des öfteren        PRAKTISCHE ASTRONOMIE
darin lesen werden.                                     - TELESKOPE UND BEOBACHTUNG . . . . . . . . . . . . . . . . . . . .44

                                                        LITERATURHINWEIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

                                                        IMPRESSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49



Matthias Gräter




Zum Titelbild:
Fotografie von Knut Schäffner der Sommermilch-
straße, zu sehen ist der Nordamerikanebel, der Peli-
kannebel und die γ Cygni Region. Aufgenommen mit
Normalobjektiv 2.8/50 und Deep-Sky-Filter auf
Scotchcrom 400. Belichtungszeit 30 min

Zur Umschlagseite 3:
Fotografie von Knut Schäffner, zu sehen ist der Pfer-
dekopfnebel und NGC 2024. Aufgenommen mit
Celestron 8 f/5 und Deep-Sky-Filter auf Kodak Ektar
pro Gold 400. Belichtungszeit 60 min.
Astronomische Geschichte I
    Seite 4


                               Astronomische Geschichte I
                                        Antike
                                                Pierre Leich
              Praktische Bedürfnisse                    gung einschlägiger Grabanlagen bedarf keiner weite-
                                                        ren Erläuterung.
   m fünften Jahrtausend v.Z. haben sich in einigen
I  Stromtälern Reiche mit hochentwickeltem städti-
schen Leben herausgebildet. Die Frühformen von
                                                                              Phasen

Wissenschaft verlieren sich zwar in der Vorgeschich-                         Neolithikum
te, doch wir kennen einige Charakteristika.                Die ersten Steintempel der Welt entstanden aller-
Als Motive tauchen immer wieder praktische Fragen       dings nicht in Ägypten, sondern auf dem winzigen
auf, etwa wenn es galt, bestimmte gerade anstehende     maltesischen Archipel im Zentrum des Mittelmeers.
Lebensprobleme zu bewältigen oder sich neue             Fast gleichzeitig treten ebenso sorgfältig konstruierte
Lebensbereiche zu erschließen.                          Kragkuppelgräber an der Bretonischen Küste auf, die
                                                        den Kretischen um weit mehr als 1000 Jahre voraus-
             Landwirtschaft, Ackerbau                   gehen. In Südengland wird aus mächtigen Steinen
   Schon für das nomadische Leben vor dem Acker-        Stonehenge errichtet, wo eine präzise Beobachtung
bau ist eine zeitliche Orientierung dringend zu emp-    von Sonnen- und Mondzyklus erfolgte.
fehlen (Wintereintritt, Regenzeit). Mit der Landwirt-
schaft wird die Bestimmung fruchtbarer Perioden zur                           Ägypter
Notwendigkeit.                                             Von den Ägyptern sind wenig Beobachtungsberich-
Der heliakische Aufgang des Sirius diente den Ägyp-     te auf uns gekommen. Einige Aspekte wurden oben
tern als Ankündigung der Felderüberflutung durch den    bereits angesprochen.
Nil. Ihr nach diesem Ereignis bemessene Jahr wird
daher siderisches Jahr genannt (Vorübergang der Son-                        Babylonier
ne an einem bestimmten Fixstern). Alle anderen             Die Babylonische „Forschungsbürokratie“ brachte
Kalender orientieren sich an den Sonnenwenden und       umfangreiche Tabellen und Listen hervor. Durch alge-
rechnen mit tropischen Jahren (Durchgang der Sonne      braische Auswertung solcher Aufzeichnungen erken-
durch den Frühlingspunkt), die wegen der Präzession     nen die Kulturen des Zweistromlandes Morgen- und
(Fortschreiten der Erdachse) geringfügig kürzer sind.   Abendstern als ein Gestirn und die für Finsternisbe-
                                                        rechnung wichtigen Mondknoten (Durchgang des
                   Geometrie                            Mondes durch Erdbahnebene).
  Den Zusammenhang der erneuten Messung von
Landbesitz nach den Überflutungen des Nils betont                               Griechen
bereits Herodot:                                           Bei den Griechen bildet sich die Idee einer gesetz-
                                                        mäßigen Ordnung der Natur heraus. Beim Erfassen
„Mir scheint, daß daher die Geometrie entdeckt wor-     der Planetenläufe tritt räumliches Anschauungsvermö-
    den ist und dann nach Griechenland kam.“            gen an die Stelle von flächenhaftem Nebeneinander.
                                                        Das Formulieren von Prinzipien und die Entwicklung
                      Baukunst                          der geometrischen Methode ermöglichen es, nachvoll-
   Die Bedeutung der Volumenformel der Pyramide         ziehbar zu argumentieren und Beweise zu führen. Die
für die organisatorische und bautechnische Bewälti-     sokratischen Dialogen fordern Rechenschaftspflicht


                                                          Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte I
                                                                                                   Seite 5

für behauptende Rede.                                                       Gestirnsbahnen
Der Übergang von mythischer Vergewisserung zu               Unstrittig waren rasch die beobachtbaren Wege von
erklärender Naturphilosophie wird deutlich an der        Sonne, Mond und Gestirnen, die im Osten aufsteigen
zunehmenden Entsubjektivierung, Einheitlichkeit und      und sich in Parallelkreisen über einen Höchststand im
Vergleichbarkeit der Vorstellungen über den Kosmos.      Süden nach Westen bewegen. Der Lauf der Gestirne
Die Nilschwemme erklärt Thales von Milet (~623-547       jenseits der sichtbaren Bögen bleibt jedoch zunächst
v.Z.) durch einen Wasserstau infolge beständig           umstritten. Anaximenes von Milet (~575-525 v.Z.) ist
wehender Nordostwinde, anstatt das Wirken einer          der Ansicht,
Flußgottheit anzunehmen. Indem er Wasser als
Urgrund aller Dinge einführt, versucht er die Gestal-     daß die Gestirne sich nicht unter der Erde bewegen,
tungsfülle der Natur zu ordnen. Herodot schreibt ihm       […] sondern um die Erde herum, so wie wenn sich
die Vorhersage der Sonnenfinsternis vom 28. Mai 585       das Filzhütchen um unseren Kopf herum dreht. Die
v.Z. zu.                                                  Sonne werde nicht verdeckt, weil sie unter die Erde
                                                          gerate, sondern weil sie von den höheren Teilen der
                    Erdgestalt                            Erde überdeckt und weil ihr Abstand von uns größer
                                                                                 werde.
                       Horizont
   Obwohl sich bereits bei Aristoteles (384-322 v.Z.)    Heraklit von Ephesus (~540-476 v.Z.) schließt sich
die Erzählung von den am Horizont auftauchenden          dieser Auffassung an, wohingegen Xenophanes aus
Segeln findet, gibt es keine Kultur, die daraufhin für   Kolophon (~565-480 v.Z.) die Gestirne für glühende
die Kugelgestalt der Erde plädiert hätte. Auch Homer     Wolken hält, die sich in der Nacht wie Kohlen entzün-
gilt die Erdkreisscheibe mit dem umfassenden Okea-       den. Auch die Sonne entzünde sich jeden Tag im
nos als ausgemachte Sache. Zu viele optische Phä-        Osten neu und erlösche im Westen.
nomene der Brechung und Beugung waren unverstan-
den, einige Auswirkungen gleichwohl offenbar – wie                          Himmelskugel
im Fall der Sonnenstauchung am Horizont.                    Der Vergleich von Himmelsbeobachtungen ver-
                                                         schiedener geographischer Breiten bringt jedoch ein
                                                         schlagendes Argument, daß der Himmel eine Kugel
                                                         sei. Auf dem Weg zum Nordpol nimmt nämlich die
                                                         Zahl derjenigen Sterne stets zu, welche ihre Bögen
                                                         über dem Horizont ziehen. Die Sterne, die wir am
                                                         Nordpol wahrnehmen, kreisen schließlich alle schein-
                                                         bar um den Himmelsnordpol.
                                                         Alternative Entzündungstheorien stehen somit vor
                                                         dem Problem, daß dieselben Sterne für manche Beob-
                                                         achter entzündet werden müssen, während sie für
                                                         andere nie untergehen. Damit etabliert sich die Vor-
                                                         stellung einer Himmelskugel, die systematische
                                                         Betrachtungen erlaubt. Zuvor verbindet sich der Weg
                                                         zur Kugelgestalt der Erde mit zwei weiteren Traditio-
                                                         nen:

                                                                   Pythagoreischer Idealismus
              Die Bögen der Sonne                          Zum einen vertreten die Pythagoreer früh die Auf-

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte I
  Seite 6

fassung, daß zur Erklärung grundsätzlicher Fragen         Entscheidender dürften indes die astronomisch-geo-
über die Natur nur ideale Zahlenverhältnisse oder geo-    metrischen Argumente gewesen sein, die sich bei
metrische Formen herangezogen werden dürften. Als         einer N-S-Bewegung dreifach zeigen:
Erdform kommt nur die Kugel als vollkommenster               • Die Zenitsterne – die Sterne, die senkrecht über
Körper in Betracht. Pythagoras (~570-500 v.Z.) und           dem Beobachter kulminieren – wechseln.
Parmenides (~515-445 v.Z.) sollen als erste die              • Bei einer Reise in Richtung Süden erscheinen
Kugelgestalt der Erde behauptet haben. Die Erdzonen          Sterne, die in nördlich gelegenen Gebieten nicht zu
scheinen auf eine Projektion der Kreise am Himmels-          beobachten sind und gewohnte Sterne verschwin-
gewölbe auf die Erde zurückzugehen.                          den am nördlichen Horizont – und umgekehrt.
                                                             • Zirkumpolarsterne – Sterne, die im Norden stän-
             Aristotelischer Physikalismus                   dig oberhalb des Horizonts stehen – haben im
   Neben diesen spekulativen Schluß tritt eine eher          Süden Auf- und Untergänge.
physikalische Argumentation:                              Während die von Aristoteles zusammengefaßten
Die Vorstellung, Ruhelage mit Zentrumsposition zu         Argumente ins 5. vorchristliche Jahrhundert zurück
identifizieren, wird gestützt durch die von Aristoteles   reichen, erfolgten quantitative Berechnungen nicht vor
vollendete Elementenlehre, nach der sich alles Schwe-     dem 3. Jahrhundert v.Z. Sie umfassen immer einen
re zum Mittelpunkt bewegt, alles Leichte von ihm          astronomischen und einen vermessungstechnischen
weg. Er referiert die Vorschläge der ionischen Natur-     Teil.
philosophen:

„Unter den Alten gab Thales die gemeinverständlich-
 ste Antwort: Die Erde schwimme auf dem Weltmeer
wie ein Stück Holz. Leider vergaß er zu erklären wie
      das Wasser im Weltraum schweben kann.“

um anschließend, seine eigene Lehre vorzutragen:

  „Klar ist auch, daß die Masse überall gleichmäßig
   werden wird, wenn sich die Teile überall von den
 Enden her gleichmäßig zur Mitte hin bewegen. Denn
  wenn überall gleichviel zugefügt wird, so muß der
  Abstand der Grenze zur Mitte immer derselbe sein.
       Und dies ist eben die Gestalt der Kugel.“
Aristoteles findet darüber hinaus,                        Die Größe der Erdkugel - Methode des Era-
                                                          tosthenes (3. Jh. v.Z.)
„daß die Hypothese nicht allzu unwahrscheinlich ist,
   die die Gegend um die Säulen des Herakles [=                 Erdumfangsrechnung von Eratosthenes
 Gibraltar] mit derjenigen um Indien in Verbindung          Aus dem unterschiedlichen Sonnenstand in Syene
   bringt und dort ein einziges Meer annimmt. Als         und Alexandria zur Zeit des Sommersolstitiums (eine
Beweis führen sie etwa die Elefanten an, nämlich daß      größte Abweichung der scheinbaren Sonnenbahn vom
diese Tiere sich an jenen beiden äußersten Enden fin-     Himmelsäquator) errechnet Eratosthenes von Kyrene
 den, offenbar, weil jene äußersten Orte durch ihren      (~270-195 v.Z.) den Erdumfang. ϕ (also auch ϕ’) und
         Zusammenhang dazu geeignet sind.“                der Abstand von Syene zu Alexandria verhalten sich
                                                          wie der Vollkreis zum Wert des Erdumfangs.

                                                            Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte I
                                                                                                       Seite 7



Geschickt bringt Eratosthenes fünf Beobachtungen
und Annahmen in Zusammenhang:
  • Syene und Alexandria liegen etwa auf dem glei-
  chen Meridian (Nillauf). Damit werden die Folgen
  einer Zeitdifferenz der beiden Messungen mini-
  miert.
  • Der Abstand von Syene und Alexandria beträgt
  genähert 5000 Stadien.
  • Da die oberägyptische Stadt Syene – das heutige       Verhältnis von Mond- und Sonnenentfer-
  Assuan – auf dem Wendekreis liegt, befindet sich        nung - Methode von Aristarch (~ 310-230
                                                          v.Z.)
  die Sonne zur Mittagszeit am Tag der Sommerson-
                                                          In der einzig erhaltenen Schrift Über Größen und Ent-
  nenwende genau im Zenit.
                                                          fernungen von Sonne und Mond (um 265 v.Z.) ver-
  • In Alexandria wirft die Sonne einen Schatten von
                                                          schafft sich Aristarch Klarheit über die Verhältnisse in
  1 1/5 Hexekosta (7°,2) – ein Fünfzigstel des vollen
                                                          der näheren Erdumgebung.
  Kreisumfangs.
                                                          Bei Halbmond bilden Erde, Sonne und Mond geome-
  • Die Sonnenstrahlen erreichen die Erde parallel.
                                                          trisch notwendig ein rechtwinkliges Dreieck. Wer nun
                                                          den Winkel zwischen unserem Sichtstrahl zur Sonne
                Westweg nach Indien
                                                          und dem zum Mond kennt, kann unter Zuhilfenahme
   Der Westweg nach Indien ist bereits in der Antike
                                                          elementarer Geometrie das Abstandsverhältnis von
mehrfach geäußert worden und auch die Kugelgestalt
                                                          Erde-Mond zu Erde-Sonne bestimmen. Da Mond- und
der Erde ist nie in Vergessenheit geraten (Erdapfel).
                                                          Sonnenscheibe in etwa die gleiche Sehfläche einneh-
Eine Verwechslung der zugrunde gelegten Längenein-
                                                          men, gilt nach dem Strahlensatz das gefundene Ver-
heit führte jedoch noch im ausgehenden Mittelalter zu
                                                          hältnis von gerundet 1 : 19 auch für das Breitenver-
erheblichen Irrtümern. Auch Columbus nahm einen
                                                          hältnis von Mond und Sonne.
bedeutend zu kleinen Erdumfang an und mußte sich
                                                          Das Verhältnis Monddurchmesser zu Erddurchmesser
entsprechende Einwände gefallen lassen.
                                                          gewinnt Aristarch aus einem Vergleich der Mond-
                                                          scheibe zum Kernschatten der Erde bei einer Mond-
                   Weltmodelle
                                                          finsternis. Verknüpft man diese Ergebnisse, so stellt
                                                          sich heraus, daß die weit entfernte Sonne über sechs-
             Weltmodell der Pythagoreer
                                                          mal breiter ist als die Erde und ihr Volumen etwa das
   Das pythagoreische Planetenmodell dürfte von Phi-
                                                          300fache betragen muß. Ist es da nicht plausibler – so
lolaos (5. Jh. v.Z.) stammen. Es ist nur schwerlich als
                                                          mag Aristarch gedacht haben – anzunehmen, die klei-
astronomisch-mathematisches System zu verstehen,
                                                          ne Erde dreht sich um die Sonne, statt umgekehrt?
nimmt jedoch erstmals eine Bewegung der Erde an,
                                                          Der Winkel zwischen Sonne und Mond ist freilich
die mit der Sonne ein Zentralfeuer umkreist.
                                                          nahe dem rechten Winkel und die tatsächlichen Ver-
                                                          hältnisse stellen sich weitaus drastischer dar.
              Antiker Heliozentrismus
   Laut Archimedes (~287-212 v.Z.) im Sandrechner
                                                                             Geozentrismus
soll Aristarch (~310-230 v.Z.) die heliozentrische
                                                            Da das heliozentrische System keine befriedigende
These aufgestellt haben:
                                                          Erklärung geben konnte, warum weder die Wolken
 „Denn er nahm an, die Fixsterne und die Sonne blie-
                                                          zurückbleiben, noch sich eine Fixsternparallaxe zeigt,
 ben unbewegt stehen, doch die Erde werde im Kreis
                                                          hatten Aristarchs Überlegungen kaum Nachfolger.
               um die Sonne geführt.“

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte I
  Seite 8

Indem Aristoteles die Elementenlehre von Empedo-              der Sonne unter den festen Sternen von West nach
kles zu einer Bewegungslehre (Lehre der natürlichen           Ost im Lauf eines Jahres, der den Wandel der Jah-
Orte) ausbaute, liefert er auch eine „physikalische“          reszeiten und der Dauer von Tagen und Nächten
Begründung des Geozentrismus. Während sich aber               nach sich zieht,
auf der Erde die Körper auf einen Zustand hin bewe-         3. der sich beständig wiederholende und ebenfalls
gen, gilt im Himmel die unveränderliche Kreisbewe-            einigermaßen gleichmäßige Lauf des Mondes unter
gung als natürlich (Dualismus). In der Folge wird             den festen Sternen mit dem Wechsel der Lichtge-
auch zwischen einer mathematischen (kinematischen)            stalten während eines Monats,
und einer physikalischen (kosmologischen) Astrono-          4. der keineswegs gleichmäßige, sich aber doch in
mie unterschieden.                                            bestimmten Perioden wiederholende Lauf einiger
                                                              Wandelsterne, die sich gegenüber den Sternen mit
                 Planetenmodelle                              verschiedenen und ungleichförmiger Geschwindig-
                                                              keit in der Regel von West nach Ost bewegen,
            Die Rettung der Phänomene                         zuweilen aber umkehren in unterschiedlichen
   Platon (427-347 v.Z.) stellte laut Simplikios (6. Jh.)     Zeiträumen von wenigen Monaten bis zu mehreren
den Astronomen die Aufgabe, mit rein geometrischen            Jahrzehnten.
Mitteln Annahmen zu finden, um die Bewegungen der
Planeten zu erklären. Simplikios beruft sich dabei auf                           Anomalien
Sosigenes (2. Jh.), der wiederum Eudemos anführt,              Seit dem Ende des 4. Jahrhunderts sind Werke
daß Platon:                                                 erhalten, welche die Fixsternbewegungen im vorgege-
                                                            benen Rahmen beschreiben können. Besonders zwei
  „… den Fachastronomen dies als Aufgabe gestellt           unangenehme Abweichungen bleiben jedoch zunächst
 habe, durch welche hypothetisch zugrunde gelegten          erklärungsbedürftig.
 gleichmäßigen und geordneten Bewegungen die bei               • Schon den Babyloniern war die sog. erste Anoma-
 den Planetenbewegungen auftretenden Phänomene
           vollkommen gerettet würden.“

Unter dem Slogan „die Phänomene retten“ entfaltet
sich ein weitreichendes astronomisches Forschungs-
programm, das sich durch die Vorschrift rekonstru-
ieren läßt: Erkläre Gestirnsspuren durch die Annahme
gleichförmiger und kreisförmiger Bewegungen.
Es wird sinnvoll sein, sich kurz zu vergewissern, um
welche Phänomene es geht.

           Vier Erscheinungskomplexe
1. der gleichmäßige Umschwung des ganzen Him-
  mels mit Sonne, Mond und Sternen nach Westen im
  Lauf von 24 Stunden mit seinem Wechsel von Tag
  und Nacht (der Himmel selbst drehte mit einer Peri-
  ode von 23 Stunden und 56 Minuten),
2. der sich beständig wiederholende und in erster
  Näherung ebenfalls gleichmäßige, nur geringfügige
                                                            Unterschiedlich lange Jahreszeiten - Er-
  Schwankungen aufweisende jahreszeitliche Lauf
                                                            klärung durch Hipparch (~ 190-125 v.Z.)

                                                             Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte I
                                                                                                     Seite 9

  lie bekannt, die bei der Sonne durch die unter-         zwei kontinuierliche Kreisbewegungen zurückzu-
  schiedliche Länge der Jahreszeiten besonders auf-       führen. Die beiden Bewegungen können aber dann
  fällig ist.                                             nicht mehr das gleiche Zentrum besitzen (homozen-
  • Die zweite oder große Ungleichheit betrifft die       trisch sein).
  Rückläufigkeit, die Schleifen oder Spitzkehren der      Der Planet bewegt sich in der synodischen Periode um
  Planeten in der synodischen Periode (in bezug auf       einen kleineren Kreis, dem sogenannten Epizykel,
  die Sonne).                                             dessen Mittelpunkt in der siderischen Umlaufzeit (in
                                                          bezug auf die Fixsterne) auf einem größeren, dem
                       Exzenter                           sogenannten Trägerkreis oder Deferenten abrollt, in
Auch Hipparch (~190-125 v.Z.) bemerkt, daß die            dessen Mitte die Erde gedacht wird. Für das Epizy-
Winkelabstände zwischen den vier besonderen Bahn-         kelmodell spricht, daß es verständlich macht, warum
punkten (oben Sommeranfang, links Herbstanfang)           die scheinbare Helligkeiten der Planeten bei den
unterschiedlich groß werden. Er legt dar, daß die erste   Schleifen am größten ist.
Anomalie durch eine gleichförmige Kreisbewegung
erklärt werden kann, indem man die Erde neben den                           Ausgleichspunkt
Mittelpunkt des angenommenen jährlichen Sonnen-              Ptolemäus (85-160) faßt das Wissen seiner Zeit
kreises setzt. Da die Sonne mit konstanter Geschwin-      zusammen und präzisiert die astronomische Theorie.
digkeit kreisen soll, ergeben sich verschieden lange      Da er bemerkt, daß die Planetenbewegungen weder
Jahreszeiten.                                             von der Erde, noch vom Kreismittelpunkt gleichmäßig
                                                          erscheinen, führt er einen weiteren exzentrischen
                     Epizykel                             Punkt (Punctum aequans) ein, von dem aus die
   Für die zweite Anomalie wurden verschiedene            Gleichmäßigkeit (konstante Winkelgeschwindigkeit)
Lösungen vorgeschlagen. Einer Anregung von Apol-          gerettet werden kann.
lonius von Perga (260-190 v.Z.) verdankt sich der
Versuch, die diskontinuierliche Bewegung mit Still-                           Offene Fragen
stand und Umkehrpunkt auf eine Kombination von            Bereits aus Sicht der antiken Astronomie bleiben drei
                                                          rätselhafte Umstände:
                                                             • Warum entfernen sich die inneren Planeten nur im
                                                             Rahmen ihres Elongationswinkels? Für die inneren
                                                             Planeten fordert Ptolemäus, daß Erde, Epizykelmit-
                                                             telpunkt des Planeten und mittlere Sonne auf einer
                                                             Geraden liegen. Die Sonne sollte aber keine bevor-
                                                             zugte Rolle spielen.
                                                             • Warum muß bei den äußeren Planeten der Radius-
                                                             vektor Planet-Epizykelmittelpunkt parallel zur Ver-
                                                             bindungsgerade ErdeSonne sein? Damit kann ein
                                                             Planet zwar beliebige Winkelabstände zur Sonne
                                                             einnehmen, Rückläufigkeiten treten aber nur bei
                                                             Opposition auf wie von der Beobachtung verlangt.
                                                             Die Umlaufzeit eines Planeten auf seinem Epizykel
                                                             beträgt so ein Erdjahr, obwohl die Sonne keine
                                                             bevorzugte Rolle spielen sollte.
                                                             • Die Proportion Erde-Kreiszentrum-Ausgleichs-
Epizykelmodell - Bewegung eines inneren
                                                             punkt bleibt unbegründet.
Planeten nach Ptolemäus (2. Jh.)

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
  Seite 10


                               Astronomische Geschichte II
                                        Neuzeit
                                                 Pierre Leich
          Vorneuzeitliche Situation                             Außerwissenschaftliche Faktoren

      as Hochmittelalter bemüht sich in erster Linie       • Insbesondere die Hochseeschiffahrt stellt zuneh-
D     um logische Untersuchungen bestehender Theo-
rien, die in der Regel nur in arabischen Übersetzungen
                                                           mende Anforderungen an Kartographie und Geo-
                                                           graphie.
vorliegen. Verhaltene Kritik wird höchstens an hypo-       • Das Druckwesen entfaltet sich.
thetischen Annahmen sichtbar.                              • Ein wachsendes Selbstbewußtsein läßt den sich
                                                           anbahnenden gesellschaftlichen Umbruch absehen.
                  Nicole de Oresme                         • Zur Zeit des Copernicus hat sich der kalendari-
   Oresme (~1320-1382) erkennt die Ununterscheid-          sche Jahresanfang im julianischen Kalender
barkeit von täglicher Erdbewegung und Himmelsdre-          gegenüber dem astronomischen bereits um mehr als
hung, bleibt aber beim Geozentrismus. Er demon-            zehn Tage verspätet.
striert jedoch an verschiedenen Gedankenexperimen-         • Neue Beobachtungsinstrumente – wie die gerade
ten, daß Bewegung ein relativer Vorgang ist (etwas         erfundene Uhr – lassen genauere Beobachtungen
bewegt sich in bezug auf etwas).                           zu.
Oresme stellt erstmals Intensitäten (wie Geschwindig-      • Zunächst in Italien, dann überall in Europa entste-
keit) durch Linien dar. Anhand eines v-t-Diagramms         hen wissenschaftliche Gesellschaften, die begierig
gibt er dem Begriff ‘Durchschnittsgeschwindigkeit’         neue Erkenntnisse diskutieren.
(Merton-Regel = Mittelwertsatz) einen klaren Sinn
und eröffnet damit eine Diskussion über die Interpre-                 Nicolaus Copernicus
tation zusammengesetzter geometrischer Größen (wie
der Fläche v·t).                                                          Anlaß und Wirkung
                                                            Nicolaus Copernicus (1473-1543) gilt als Erneuerer
                    Regiomontanus                        in Sachen Weltbild schlechthin. Sein Beweggrund lag
   Regiomontanus (1436-76) ahnt, daß eine Verbesse-      jedoch eher in einer Wiederherstellung des astronomi-
rung sowohl bei der Datenbasis als auch bei der astro-   schen Forschungsprogrammes der Antike. Er war so
nomischen Theorie ansetzen muß. Er äußert vorsichti-     „fundamentalistisch“ orientiert, daß in seinen Augen
ge Zweifel an der Auffassung, die Sonne kreise um        selbst Ptolemäus zu lax mit den Grundsätzen der anti-
die Erde.                                                ken Astronomie umging. Insbesondere die Ad-hoc-
Seine Wanderjahre führen ihn nach Nürnberg, wo er        Hypothese des Ausgleichspunktes sucht er durch das
in der Vorderen Kartäusergasse eine Druckerei            für ihn einzig zulässige Mittel der Epizykeltheorie zu
betreibt und wissenschaftliche Instrumente sammelt.      ersetzen.
Er berechnet für die Jahre 1475-1506 ausführliche        Die ptolemäische Ausgleichsbewegung auf dem
Tabellen, die den täglichen Stand der Planeten ange-     Exzenter zur Darstellung der ersten Anomalie
ben (Ephemeriden) und von Columbus benutzt wer-          während der siderischen Periode wird durch eine dop-
den. 1475 wird Regiomontanus von Sixtus IV. nach         pelepizyklische Bewegung auf einem Konzenter
Rom zur überfälligen Kalenderreform berufen und          ersetzt. Damit muß aber für die bisherige Epizykelbe-
stirbt kurz darauf.                                      wegung zur Darstellung der Schleifen in der synodi-
                                                         schen Periode – der zweiten Anomalie – eine andere


                                                           Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
                                                                                                     Seite 11

Lösung gesucht werden. Copernicus findet sie, indem      die Sonne. Immer dann, wenn ein Planet die Erde
er jene beiden Vorschläge verwirklicht, die bisher nur   innen überholt oder sie ihrerseits an einem äußeren
zögernd angedeutet, aber nicht konsequent auf ihre       Planeten vorbeizieht, erscheinen am Erdhimmel
Brauchbarkeit hin durchdacht wurden. Was gewinnt         Schleifen, die folglich in der synodischen Periode auf-
man – so wird er sich gefragt haben – wenn man unter     treten (wenn der Planet wieder den selben Winkel von
Wahrung der Prinzipien, aber im Widerspruch zu           der Sonne erlangt). Für die oberen Planeten ist damit
bestimmten Annahmen der aristotelischen Physik und       auch klar, warum die Schleifen in Opposition (Erde
im Widerspruch zur unmittelbaren Anschauung, die         zwischen Sonne und Planet auf einer Linie) sichtbar
tägliche Drehung des Himmels sowie den jährlichen        werden, während die inneren Planeten in unterer Kon-
Lauf der Sonne durch den Tierkreis und die analogen      junktion (Planet zwischen Sonne und Erde) stehen.
synodischen Bewegungen der Planeten mit ihren
Schleifen nur als scheinbare Phänomene auffaßt, als
nur perspektivisch zustande gekommenes Spiegelbild
der Bewegung der Erde, vorgetäuscht durch den Stan-
dort des irdischen Beobachters?
Neben der jährlichen Bewegung erhält die Erde noch
eine tägliche um die eigene Achse, da trotz Heliozen-
trik die Fixsternsphäre ja nicht um die Sonne kreist.
Leider ist die Copernicanische Theorie im Detail
wesentlich diffiziler: hinzu kommen neben Präzession
fünf weitere Kreisbewegungen. Die Epizykel behält
Copernicus nicht nur bei, er kann auch deren Anzahl
nicht verkleinern und benötigt in seiner Endfassung 48
Exzenter, Epizykel, Deferenten und Zykloiden (zur
Erklärung geradliniger Oszillationen), die die Voraus-
sagen oftmals sogar verschlechtern. Nicht einmal die
Sonne steht genau im Mittelpunkt und alle Planeten-
kreise haben verschiedene Mittelpunkte.
Der Grundgedanke ist jedoch so leicht zu simplifizie-
ren, daß der Name von Copernicus zur Parole einer
neuen naturwissenschaftlichen Weltsicht wurde. Da
an deren Durchsetzung Generationen von Forschern
arbeiteten, soll die Rechtfertigung der Copernicani-
schen Theorie in systematischer Form diskutiert wer-     Planetenschleifen als relativer Effekt - nach
den.                                                     Nicolaus Copernicus
                                                         Es wird verständlich, warum Sonne und Mond keine
             Argumente für Heliozentrik                  Schleifen aufweisen.
   Die Copernicanische Theorie ergänzt die Rolle der     Die an die Sonne gebundene Bewegung von Merkur
Sonne als Licht und Wärmespender. Zu diesen              und Venus ergibt sich unmittelbar.
unstofflichen Übertragungsvorgängen kommt nun            Die Umlaufperioden der Planeten wachsen mit ihrem
noch die Zentrumsposition, der später eine anziehende    Abstand zur Sonne. Damit verschwindet die riesige
Wirkung nachgesagt wird.                                 Geschwindigkeit der Fixsternsphäre, die beträchtliche
Die Schleifenbahnen der Planeten erweisen sich als       Zentrifugalkräfte an den Sternen erzeugen müßte.
relativer Effekt der jährlichen Bewegung der Erde um     Allerdings herrschen nach aristotelischer Lehre in der

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
  Seite 12

supralunaren Sphäre (über dem Mond) andere physi-         Doch diese Beweise sind ebensowenig wie Doppler-
kalische Gesetze als hier auf der Erde. Gegner des        verschiebung, Drehimpulserhaltung, Corioliskraft,
Heliozentrismus konnten das Argument jedoch für die       Vorlauf und Äquatorlauf Angelegenheiten des 16.
Erdoberfläche durchaus geltend machen.                    Jahrhunderts.
Da der Erdradius größenordnungsmäßig bekannt war,
ließ sich die Geschwindigkeit eines Punktes auf der                     Bedeutung von Copernicus
Erdoberfläche abschätzen. Heutige Werte ergeben für          Die Konsequenzen des neuzeitlichen Heliozentris-
Nürnberg mehr als 300m/s (1000km/h). Müßte bei            mus sind es, die den Niedergang der aristotelisch-pto-
solchen Geschwindigkeiten nicht alles in den Himmel       lemäischen Lehre „an allen Fronten“ auslösen. Diese
geschleudert werden?                                      Auswirkungen sind einerseits
Noch drastischer erschien die Lage beim freien Fall.         • das Entfernen von Beschränkungen und anderer-
Läßt man vom 55 Meter hohen schiefen Turm von                seits
Pisa eine Bleikugel fallen, so brauchte sie etwa 3,3         • das Auftreten neuer Fragen, die ultimativ nach
Sekunden, um am Boden aufzuschlagen. Während                 Aufklärung verlangen.
dieser Zeit hat sich der Fußpunkt des Turms aber mit      So wird die prinzipielle Zulässigkeit, der Erde zwei
der Erde um über tausend Meter westlich weiterbe-         Bewegungen zuzuschreiben, deutlich.
wegt.                                                     Konzentrische Äthersphären scheiden dagegen wegen
Wie soll man es rechtfertigen, daß das Zentrum der        Durchdringung aus. Wie erhalten aber nun die Plane-
Schwere und das Weltzentrum auseinander fallen?           ten ihre Antriebskraft?
Ein weiterer Einwand war die Verletzung der               Der Dualismus wird zweifelhaft: Wird die Erde zum
Sphärenharmonie. Die Mondsphäre müßte die Erds-           Himmelskörper, sind die Planeten (und Sterne) auch
phäre durchdringen und warum bleibt der Erde über-        Materiebrocken. Eine kategoriale Trennung von
haupt der Mondkreis erhalten?                             supra- und sublunarer Sphäre ist nicht mehr durchzu-
Auch daß beim besten Willen keine Fixsternparallaxe       halten.
nachzuweisen war, machte Copernicus nicht glaub-          Die Begrenzung des Universums durch die Fixsterns-
würdiger.                                                 phäre ist nicht mehr notwendig und die Frage nach der
                                                          Größe und Endlichkeit des Raums wieder offen (Tho-
                       Beweise                            mas Digges, Giordano Bruno).
   Die heliozentrische Weltsicht des Copernicus erfor-    Die Planetenschleifen zeigen, daß Ortsveränderung
derte die Erfindung einer völlig neuen Physik. Die        immer relativ ist.
erste halbwegs klare Formulierung selbst nur des          Die Annäherung von Mathematik und Physik wird zur
Beharrungssatzes findet sich erst 1632 bei Galilei, die   fruchtbaren Strategie.
völlig klare Formulierung des Trägheitssatzes durch       Da Weltmittelpunkt und Zentrum der Erdschwere aus-
Newton wurde erst 1687 veröffentlicht.                    einander fallen, erfordert das Rätsel der Schwere und
Beweise im modernen Sinn sind:                            der Zentrierung der Planeten auf den Weltmittelpunkt
   • die Entdeckung der Aberration von James Bradley      zunächst jeweils eigene Begründungen.
   (1728),                                                Resümierend läßt sich feststellen, daß die Neuzeit
   • die experimentelle Bestätigung der Erdabplattung     Copernicus wohl weniger die richtigen Antworten
   (Expeditionen 1735 in Peru und 1736-37 in Lapp-        verdankt, als die richtigen Fragen.
   land),
   • der Nachweis der Fixsternparallaxe (erstmals                           Tycho Brahe
   1838 publiziert von Friedrich Wilhelm Bessel),
   • die Bestätigung raumstarrer Pendelebenen durch         Der dänische Astronom Tycho Brahe (1546-1601)
   Foucault (1851).                                       wurde sich der Bedeutung genauer und lückenloser

                                                            Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
                                                                                                   Seite 13

Beobachtungsdaten für die Astronomie bewußt und         dem Namen Keplers formuliert worden, in dessen
hat das Material an astronomischen Beobachtung          Gesetzen sich eine fundamentale Neuorientierung
wesentlich vergrößert und präzisiert.                   zeigt, insofern erst Kepler mit den Aristotelischen
Beobachtungen                                           Grundsätzen der Kreisförmigkeit und der konstanten
   • 1572 entdeckt Brahe einen neuen Stern (Superno-    Winkelgeschwindigkeit bricht.
   va nordwestlich des Sternbilds Cassiopeia), der 18   In einer kühnen Verallgemeinerung des Archimedi-
   Monate beobachtbar bleibt und an dem Brahe keine     schen Hebelgesetzes deutet er den Abstand Planet-
   Parallaxe feststellen kann. Er war daher in die      Sonne als Hebelarm. Wenn sich ein Planet von der
   unveränderlich gehaltene „achte Sphäre“ zu setzen.   Sonne entfernt, verlängert sich der Hebelarm, wird
   • 1577 erblickt er am Westhimmel einen Kometen.      daher schwerer und nach dem peripatetischen Bewe-
   Die Messungen der schwach ausgeprägten Paralla-      gungsgesetz langsamer.
   xe beweisen, daß er nicht der sublunaren Sphäre      Ein Kreisstrom reißt die Planeten mit je nach Abstand
   angehört und einige Planetensphären kreuzt.          und Fähigkeit Kraftwirkung zu empfangen. Er löst
Da er trotz steigender Meßgenauigkeit keine Fixstern-   sich dadurch von der Selbstbewegungstheorie der Pla-
parallaxe feststellen kann, vertritt Brahe ein zum      neten und führt eine physikalisch wirkende Bewe-
copernicanischen kinematisch (unter Absehung der        gungsursache ein.
Massen und Kräfte) äquivalentes Planetenmodell, das
die Phänomene genauer liefert, die Erde aber im Mit-                       Der Flächensatz
telpunkt der Welt beläßt, um den sich Mond und Son-        Für Perihel und Aphel der Marsbahn stellt Kepler
ne drehen. Alle weiteren Planeten umkreisen die Son-    fest, daß die Bahngeschwindigkeit umgekehrt propor-
ne .                                                    tional zur Entfernung zur Sonne ist. Er verallgemei-
                                                        nert, daß Radius und Geschwindigkeit stets umgekehrt
               Johannes Kepler                          proportional sind (später erkennt er, daß dies nur für
                                                        die azimutale Geschwindigkeitskomponente gilt). Der
                      Grundlagen                        Mangel an einem geeigneten Iterationsverfahren
   Als seine drei wichtigsten Grundlagen nennt Kepler   anstelle der langwierigen Summierung der Radien läßt
(1571-1630):                                            ihn bald der einfacheren Rechnung wegen den bis
   • die Astronomie des Copernicus,                     1605 in seinen Augen nur approximativen Flächensatz
   • die Beobachtungen Tycho Brahes,                    einsetzen.
   • die Magnetismustheorie von William Gilbert         In moderner Formulierung lautet dieses zweite Kep-
   (1544-1603).                                         lersche Gesetz: Die Planetenradien (auch Fahrstrahlen
Kepler war kurz Brahes Assistent. Nach dessen Tod       genannt) überstreichen in gleichen Zeiten gleiche
hat Kepler                                              Flächen. Die Abbildung veranschaulicht, wie nahe die
   1. Zugang zu den Beobachtungsprotokollen Brahes      Voraussagen des antiken Äquantenmodells bei denen
   und ist                                              Keplers liegen.
   2. nicht mehr an dessen Weltsystem gebunden.
   Bedeutung                                                                Ellipsensatz
Wissenschaftstheoretisch bedeutsam ist seine Forde-        Mit dem Flächensatz überprüft Kepler nun die Erd-
rung verstärkter Berücksichtigung der Beobachtungen.    bahn – von der aus ja alle Messungen erfolgen – und
Andererseits erkennt er die Rolle nichtempirischer      berechnet die Marsbahn neu. Dabei stellte er fest, daß
apriorischer Elemente, die der Erfahrung begriffliche   sie kein Kreis sein kann. Auf haarsträubenden
Strukturen unterstellt.                                 (Um–)Wegen gelangt er schließlich zur Einsicht der
Die auf eine Bemerkung Kants zurückgehende Rede         ellipsenförmigen Planentenbahnen, die als erstes Kep-
der ‘Copernicanischen Wende’ wäre wohl besser mit       lersches Gesetz bezeichnet wird.

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
  Seite 14

                                                            eine große Philosophenschule meint, sondern daß sie
                                                            ganz im Gegenteil voll von Unregelmäßigkeiten, voll
                                                           von Löchern und Erhebungen ist, genau wie die Ober-
                                                             fläche der Erde, die allenthalben durch hohe Berge
                                                                     und tiefe Täler unterschieden wird.“

                                                           Auch existieren wesentlich mehr Sterne als bisher
                                                           angenommen. Galilei demonstriert dies an einer Kon-
                                                           stellation im Gürtel und Schwert des Orion sowie an
                                                           den Plejaden. Die Milchstraße und viele Nebel (z.B.
                                                           Krippe) sind Ansammlungen von Sternen, die im übri-
                                                           gen enorm weit entfernt sein müssen.
                                                           1610 sichtet Galilei in Padua vier Jupitermonde. Dies
                                                           hat mehrere Konsequenzen:
      Keplerelipse und Äquantenmodell                         • Da nun auch um andere Körper Satelliten kreisen,
                                                              entfällt die Sonderstellung des Erdmondes.
            Das dritte Keplersche Gesetz                      • Die Erde kann nicht Zentrum aller Gestirnsbewe-
   Während bisher nur die Bewegung jeweils eines              gungen sein. Offensichtlich ist es möglich, daß
Planeten im Blick war, bildet sein drittes Gesetz einen       Körper andere Körper umkreisen, die selbst bereits
Zusammenhang verschiedener Bahnen (bezüglich                  umlaufen.
eines Gravitationszentrums). Es charakterisiert damit         • Undurchdringbare kristalline Sphären sind
die stabilen Bahnen und lautet in moderner Formulie-          unmöglich.
rung: Die Quadrate der Umlaufzeiten verhalten sich            • Die Siebenzahl der Wandelsterne ist unmaßgeb-
wie die Kuben der Abstände. Ein Planet in doppelter           lich.
Entfernung benötigt für seinen Umlauf auf dem (dop-           • Die Jupitersatelliten gehorchen dem 3. Kepler-
pelten) Umfang also mehr als die doppelte Zeit, da er         schen Gesetz (Galilei erkennt dies nur qualitativ, da
sich dort draußen langsamer bewegen muß, um eine              er von Keplers Schriften wenig Notiz nimmt).
Bahn um die Sonne zu erhalten.                             Im gleichen Jahr beobachtet Galilei die wechselnde
Das dritte Keplersche Gesetz ist nicht streng gültig, da   Sichelgestalt der Venus. Er folgert sofort, daß erstens
von den Massen abgesehen wird.                             alle Planeten keine selbstleuchtenden Himmelskörper
                                                           sind und zweitens, „daß notwendigerweise Venus wie
                  Galileo Galilei                          auch Merkur sich um die Sonne drehen.“


  Obwohl Galileis (1564-1642) herausragende Be-                                  Mechanik
deutung auf dem Gebiet der Mechanik liegt, konnte er          Für horizontale Flächen erkennt Galilei den Behar-
der Copernicanischen Theorie 1609 durch die Nach-          rungssatz.
konstruktion eines Fernrohrs wichtige Indizien liefern.    In seinem Begriffsrepertoire stellt er der gleichförmig
                                                           geradlinigen Bewegung die gleichmäßig beschleunig-
           Astronomische Entdeckungen                      te Bewegung an die Seite und findet im Zusammen-
  Seine Mondbeobachtungen führen ihn zu der                hang seiner Experimente an der schiefen Ebene das
Erkenntnis, daß                                            Fallgesetz.
                                                           Beim schrägen Wurf (Parabelbahn) stößt er auf die
  „die Oberfläche des Mondes nicht völlig glatt, frei      Superposition von Bewegungen (deren ungestörte
  von Unebenheiten und genau kugelförmig sei, wie          Überlagerung).

                                                             Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
                                                                                                     Seite 15

Schließlich verdankt das Relativitätsprinzip Galilei                Das quadratische Abstandsgesetz
wichtige Impulse.                                            Weitere Beträge stammen von John Wallis (1616-
                                                          1703), Christopher Wren (1632-1723), Robert Hooke
                   Wegbereiter                            (1635-1703) und Edmond Halley (1656-1742). Unter
                                                          ihnen war bereits unstrittig, daß die Kraft der Anzie-
Die Vollständigkeit, mit der Newton (1643-1727) das       hung zur Sonne dem Quadrat ihrer Entfernung rezi-
Gebäude der Klassischen Mechanik errichtet, über-         prok ist. Das quadratische Abstandsgesetz entspricht
strahlt wichtige Ergebnisse seiner Vorgänger.             der Bedingung, daß jedes betroffene Raumstück einen
                                                          proportionalen Teil der gesamten Gravitationswirkung
                    Rene Descartes                        empfängt.
Bei Descartes (1596-1650) bedeutet Naturerklärung,
mechanische Modelle für die Phänomene anzugeben,                            Isaac Newton
bei denen alles Geschehen als Korpuskularbewegung
gedeutet wird. Die primären Qualitäten der Gegen-                               Mechanik
stände der Natur sind Ausdehnung und Undurchdring-           In seinem epochalen Werk Philosophiae naturalis
lichkeit, sie sind mit den Begriffen Form, Größe und      principia mathematica – der Titel ist Programm –
Bewegung zu beschreiben.                                  macht Newton Kräfte – die er gemeinsam mit den
Descartes verwirft Zweckursachen, stellt den Träg-        Massen einführt – für die Abweichung von Trägheits-
heitssatz auf und fordert, die Physik auf wenige einfa-   bahnen verantwortlich. Solange keine Kräfte auf einen
che Prinzipien zu gründen. Mehrere Stoßgesetze wer-       Körper einwirken, verharrt dieser „in seinem Zustande
den von ihm aufgefunden.                                  der Ruhe oder der gleichförmigen geradlinigen Bewe-
Als erster spricht Descartes den Gedanken aus, daß        gung“. Damit wird Bewegung zu einem Zustand und
ein Planet, um eine geschlossene Bahn um die Sonne        von nun an ist eine Änderung der Bewegung zu
zu beschreiben, ständig auf die Sonne hin fallen muß,     erklären, nicht mehr die Bewegung selbst.
so daß seine geradlinige Trägheitsbewegung in eine        Man möchte nun natürlich wissen, wie sich die Kräfte
Kurve verwandelt wird. Den Begriff einer Fernkraft        zu den Abweichungen von dieser nichterklärungsbe-
vermeidet er und versucht, die Schwere durch geeig-       dürftigen Bewegungsrichtung verhalten. Dieser
nete Wirbelbewegungen von Ätherteilchen zu                Zusammenhang wird im Beschleunigungs- oder Kraft-
erklären.                                                 gesetz ausgedrückt:

                 Christiaan Huygens                       „Die Änderung der Bewegung ist der Einwirkung der
   Um 1666 schuf Huygens (1629-1695) als erster            bewegenden Kraft proportional und geschieht nach
eine dynamische Theorie der gleichförmigen Kreisbe-       der Richtung derjenigen geraden Linie, nach welcher
wegung, indem er zeigt, daß dieser eine zentripetale                       jene Kraft wirkt.“
Beschleunigung von v2/r entspricht. Damit war nach-
gewiesen, daß eine kreisförmige Bewegung eben nicht       Seit Leonhard Eulers (1707-1783) Reformulierung der
ohne Einwirkung äußerer Kräfte verlaufen kann. Eine       Mechanik auf der Grundlage von Differentialglei-
Anziehung hält er noch 1689 für absurd, benutzte aber     chungen wurde es üblich, statt dessen unmittelbar
bereits die Proportionalität von Kraft und Beschleuni-    F = m · a zu notieren.
gung.
Unter Huygens wurde die Mechanik eine exakte                             Gravitationstheorie
mathematische Fachwissenschaft, die sich der                Newtons Meisterstück war, zu zeigen, daß
gewöhnlichen Sprache entzog und auch den Philoso-           • die Anziehungskraft der Erde auf den Mond und
phen nicht mehr ganz verständlich war.                      die Zentrifugalkraft des Mondes die beobachtete

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Astronomische Geschichte II
  Seite 16

   Bahn des Mondes hervorbringen,                        Alle Massen im Weltall ziehen sich gegenseitig an,
   • die Bahn, die durch eine im Quadrat der Entfer-     und zwar mit einer Kraft, die dem Produkt der beiden
   nung abnehmende Anziehungskraft hervorgeht,           beteiligten Massen proportional und dem Quadrat
   eine Keplersche Ellipse ist, in deren einem Brenn-    ihres gegenseitigen Abstands umgekehrt proportional
   punkt die Sonne steht,                                ist.
   • eine elliptische Bahn eine Anziehungskraft erfor-
   dert, die im Quadrat der Entfernung abnimmt,                                 Ausblick
   • für jede Zentralbewegung das Flächengesetz gilt,       Newton (oder zumindest die Newtonianer) hielten
   • Kometen sich auf stark exzentrischen Ellipsen       die Gravitationshypothese für bewiesen, weil die
   oder Parabeln bewegen,                                Ableitung der Keplerschen Gesetze aus der Bewe-
   • die Wirkung einer Kugel im Außenraum gleich         gungsgleichung allein mit Gravitationstermen gelang.
   der Wirkung ist, wenn die Masse im Mittelpunkt        Trotz dieses Fehlschlusses war mit Newtons Gesetz
   vereinigt ist (Punktmasse).                           der Weg offen zu einer äußerst genauen Behandlung
Das erste Ergebnis sei kurz erläutert: Die Mondbewe-     der Bewegungen der Körper unseres Sonnensystems,
gung setzt sich aus der Trägheitsbewegung auf der        die ungeachtet der Problematik des sog. Drei-Körper-
Tangente und dem Fall in Richtung Erde zusammen.         Problems – für das keine allgemeinen analytischen
Da die Abweichung des Mondes von seiner Bahntan-         Lösungen bestehen – in der Berechnung des Planeten
gente im Verlauf eines bestimmten kleinen Zeitab-        Neptun durch U.V. Leverrier und J.C. Adams einen
schnittes der Zentripetalkraft, die den Mond an die      Höhepunkt fand. Das moderne KAM-Theorem (1962
Erde zieht, proportional ist, vergleicht Newton diese    bewiesen) hat unsere Einsicht in die Dynamik stabiler
Abweichung mit der Entfernung, die ein auf der Erde      Bahnen weiter vertieft.
fallender Körper im gleichen Zeitabstand zurücklegt.     Die Newtonsche Gravitationstheorie stieß erst an ihre
Newton erhält bei seinen Berechnungen für die Zentri-    Grenzen, als deutlich wurde, daß im Rahmen der klas-
petalkraft, des Mondes eine um 3600 mal kleinere         sischen Physik eine Übertragung der alltäglichen
Größe als für die Schwerkraft auf der Erdoberfläche.     Ideen über Raum und Materie auf die kosmische
Da die Entfernung vom Erdzentrum zum Mond mit 60         Größenordnung kein befriedigendes Modell liefert.
Erdradien bekannt war, ergab sich, daß die Anziehung     Insbesondere die Annahme, Gravitation sei eine aktive
des Mondes zur Erde als die zum Mond ausgedehnte         Kraft in einer passiven Raumzeit, konnte sich nur für
Schwerkraft betrachtet werden kann.                      kleine Geschwindigkeiten und Gravitationsfelder als
                                                         Näherung moderner Theorien behaupten.
 „Bis jetzt haben wir jene Kraft, welche die Himmels-
   körper in ihren Bahnen erhält, Centripetalkraft
  genannt. Daß sie mit der Schwere identisch sei, ist
ausgemacht, und wir wollen sie daher künftig Schwere
                       nennen.“

Da sich die Himmelskörper gegenseitig anziehen, ver-
wandelt sich der Ausdruck für die zentripetale
Beschleunigung nach Einbeziehung der Massen in den
Ausdruck des Gesetzes der universalen Wechselwir-
kung der Gravitation:

                    F = k•M•m/r2



                                                          Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem I
                                                                                                            Seite 17


                                      Sonnensystem I
                                 Sonne und größere Planeten
                                                     Ronald C. Stoyan
              1. Sonnensystem allgemein                             • die äußeren Planeten Jupiter bis Neptun, mit deut-
                                                                    lich anderen Parametern
           1.1. Aufbau des Sonnensystems                         in keine dieser Klassen fällt Pluto, dessen Natur als
     as Sonnensystem ist unsere engste kosmische                 einwandfreier großer Planet auch umstritten ist.
D    Umgebung, in der die Erde eingebettet ist. Es
besteht aus einer Vielzahl von Körpern, die sich alle
                                                                 Will man sich die Dimension des Sonnensystems vor
                                                                 Augen führen, ist folgende Aufstellung sehr auf-
auf Keplerbahnen um die Sonne, den Mittelpunkt und               schlußreich:
die Dominante des Systems, bewegen. Im einzelnen
sind dies:                                                       Minimale Entfernung von der Erde in Lichtzeit:
Körper         Anzahl             Dimension
Sonne          1                  1 400 000 km                   Mond      Sonne   Venus      Mars   Jupiter Pluto
Planeten       9                  71 000 - 1000 km               1,3 sec   8,4 min 2,5 min 4,2 min 34,9 min 5,3h
Monde          61                 2600 - 10 km
Planetoiden    15000              1000 - 1 km                    Eine noch bessere Veranschaulichung liefert ein
Kometen        130 (100000)       40 - 1 km                      Modell      des   Sonnensystems     im   Maßstab
Meteoroide     ∞                  1 m - 1 nm                     1: 1 000 000 000, das heißt 1 000 000 000 km ent-
                                                                 spricht 1 km im Modell.
        1.2. Dimensionen des Sonnensystems                       1 AE (Astronomische Einheit, also die Entfernung
  Wenn man die Sonne und die großen Planeten                     Erde Sonne = 150 000 000 km) entspricht also 0,15
betrachtet, und ihre wichtigsten Größen in Relation zu           km = 150 m
der der Erde setzt - wie das die nächste Tabelle zeigt -
dann stellt man drei unterschiedliche Gruppen fest:              Im Modell:
  • die Sonne, ein Stern                                         Planet     Größe             Abstand Sonne-Planet
  • die inneren Planeten Merkur bis Mars, alle mit der           Sonne      140 cm            -
  Erde recht ähnlichen Werten                                    Merkur     2 mm              60 m

Planet         Entfernung [AE]     Radius [rE]               Monde                    Masse [ME]
Sonne          -                   109                       -                        333000

Merkur         0,4                 0,4                       -                        0,05
Venus          0,7                 0,9                       -                        0,81
Erde           1                   1                         1                        1
Mars           1,5                 0,5                       2                        0,19

Jupiter        5,2                 11,2                      16                       317,9
Saturn         9,6                 9,4                       18                       95,1
Uranus         19,3                4,1                       15                       14,6
Neptun         30,2                3,9                       8                        17,2

Pluto          39,4                0,2                       1                        0,001

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem I
  Seite 18

Venus         6 mm         105 m
Erde          6 mm         150 m
Mars          3 mm         225 m
Jupiter       7,1 cm       780 m
Saturn        6,0 cm       1,4 km
Uranus        2,5 cm       2,9 km
Neptun        2,4 cm       4,5 km
Pluto         1 mm         5,9 km

Sehr eindrücklich wird es, wenn man sich diese
Größenordnung in einem in der Natur aufgebauten
Modell selbst erfühlt und erläuft.
                                                                      Sonne mit Protuberanz

                1.3. Titius-Bode-Reihe
   Die Abstände der Planeten von der Sonne scheinen                      2.1. Grundparameter
nicht willkürlich gewählt zu sein. Tatsächlich gibt es    Radius           Masse      Dichte Alter
eine mathematische Reihe, die sogenannte Titius-          700000 km        2 ×107 t   1,4 g/cm³ ca.4 Mrd a
Bode-Reihe, die die Planetenabstände recht gut faßt:
D = 0,4 + 0,3 • 2n                                                              2.2. Aufbau
setzt man ein:                                               Die Sonne gliedert sich in mehrere konzentrische
                                                          Schalen, in denen bestimmte Prozesse ablaufen:
Planet                 n            D [AE]                   • Zentralgebiet, hier finden die energieliefernden
Merkur                 -            0,4                      Kernreaktionen statt
Venus                  0            0,7                      • Strahlungszone, die Energie wird durch Strahlung
Erde                   1            1                        nach außen weitergegeben
Mars                   2            1,6                      • Konvektionszone, die Materie „kocht“ auf und
Planetoiden            3            2,8                      transportiert so Energie nach außen
Jupiter                4            5,2                      • Photosphäre, die von der Erde aus sichtbare Son-
Saturn                 5            10,0                     nen „Oberfläche“
Uranus                 6            19,6                     • Chromosphäre, die knapp über der Photosphäre
Neptun                 7            38,8                     liegt
Planet X               8            77,2                     • Korona, die heiße Gasatmosphäre der Sonne
                                                          Man kann diese Schichtung sehr gut nachvollziehen,
Man erkennt: Zwischen den Planeten Mars und jupiter       wenn man Dichte und Temperatur gegen den Abstand
ist eine Lücke in der Reihe, hier fehlt etwas. tatsäch-   vom Sonnenzentrum aufträgt. Die Dichte nimmt nach
lich wird diese Lücke von den Planetoiden aufgefüllt;     außen hin ab, hat an der Stelle der Photosphäre einen
es gibt die Hypothese, daß diese Kleinplaneten aus        sehr großen Abfall, die Korona hat nur noch eine sehr
einem großen zerbrochenen Körper entstanden sind.         geringe Dichte. Die Temperatur erreicht im Sonnenze-
                                                          trum ein Maximum, nimmt bis zur Photosphäre auf
                                                          ca. 5500° ab, um in der Korona wieder auf einige Mil-
                       2. Sonne                           lionen Grad anzusteigen.
   Die Sonne ist der Zentralkörper unseres Sonnensy-
stems, sie ist ein Stern. Über 99% der gesamten Masse                  2.3. Energieerzeugung
des Sonnensystems sind in ihr konzentriert.                 Die Energiequelle der Sonne und somit auch die


                                                           Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem I
                                                                                                      Seite 19

Energiequelle allen Lebens auf der Erde ist die Kern-       • Oberfläche kraterübersät, mondähnlich
fusion im Sonneninneren. Hier werden aus Wasser-            • keine Atmosphäre
stoffatomen über zahlreiche Prozesse Helium- bis            • extreme Temperaturunterschiede
Eisenatome gebildet, wobei Energie frei wird.             im Amateurfernrohr: Phasen

            2.4. Photosphärenstrukturen                                         3.3. Venus
   Betrachtet man in einem Fernrohr mit Weißlichtfil-       • Oberfläche durch Tektonik geformt: Spalten, Vul-
ter die Sonne, so fallen Einzelheiten auf:                  kane, Lavaflüsse,...
   • Sonnenflecken; dunkle Gebiete mit geringerer           • sehr dichte Atmosphäre, v.a. CO2, S-Verbindun-
   Temperatur                                               gen: Treibhauseffekt
   • Fackeln, helle Gebiete                               im Amateurfernrohr: Phasen, Atmosphärenstrukturen
   • Granulation: brodelnde Gasblasen der Konvekti-
   onszone                                                                    3.4. Mond
                                                            • Oberfläche: Unterscheidung in Terrae (kraterrei-
                2.5. Aktivität der Sonne                    che Hochländer) und Mare (lavaüberflutete Ebe-
   Die Sonne wird stark von ihrem deutlich ausge-           nen)
prägten Magnetfeld beherrscht. Etwa alle 22 Jahre           • keine Atmosphäre
wechselt das Sonnenmagnetfeld seine Polung. Daraus        im Amateurfernrohr: detaillierte Mondtopographie
resultiert ein 11-jähriger Zyklus der sichtbaren Struk-
turen, zum Beispiel der Sonnenflecken. Beobachtet                              3.5. Mars
man diese und zählt die Anzahl der Flecken mit einer        • Oberfläche: verkratert, Anzeichen vergangener
Sonnenflecken-Relativzahl, dann kann man die Länge          vulkanischer und hydrischer Aktivität
und Stärke der Zyklen bestimmen. Derzeit befinden           • dünne Atmosphäre, Wassereiswolken, CO2-Pol-
wir uns in einem Minimum der Sonnenaktivität, das           kappen
nächste Maximum wird im Jahr 2000 erwartet.                 • zwei Monde: Phobos und Deimos, eingefangene
                                                            Planetoiden
              3. Innere Planeten:                         im Amateurfernrohr: Albedostrukturen, meteorolog.
         Merkur, Venus, Erde/Mond, Mars                   Erscheinungen
Planet       r [km]        Umlauf       Rotation      Achsneig.   Albedo     Dichte [g/cm3]
Merkur       2440          87,9 d       58 d          0°          0,06       5,42
Venus        6052          224,7d       243 d (ret)   2°          0,79       5,25
Erde         6378          356,3 d      24 h          23°         0,4        5,52
Mond         1738          27 d         27 d          1,5°        0,07       3,34
Mars         3396          686 d        24 h 37 m     23°         0,15       3,94

   Die inneren Planeten geben ein sehr erdähnliches
Bild ab: Sie haben eine feste Oberfläche, nur zum Teil                 4. Äußere Planeten:
dünne Atmosphären, sind in der Größe zwischen der
Erde und dem Mond angeordnet. Man erkennt auf                  Jupiter, Saturn, Uranus, Neptun (, Pluto)
einigen Spuren von tektonischer Aktivität. Sie werden
deshalb auch als terrestrische Planeten bezeichnet.         Die äußeren Planeten unterscheiden sich grundle-
                                                          gend von den inneren. Sie sind wesentlich größer,
                3.1. Grundparameter                       haben tiefe Gasatmosphären aus Wasserstoff, Helium
                     3.2. Merkur                          und einigen Kohlenstoffverbindungen. Gemein ist

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem I
 Seite 20




                       Mars                                                   Jupiter

ihnen außerdem ein Ringsystem und eine große                km, Dicke 10 km)
Anzahl von Monden.                                          • 18 Monde, davon Titan (Radius 2575 km) größter
                                                            des Sonnensystems mit Atmosphäre

Planet       r [km]      Umlauf       Rotation     Achsneig.     Albedo     Dichte [g/cm3]
Jupiter      71492       11,8 a       9,9h         3°             0,52      1,33
Saturn       60268       29,4 a       10,2h        26°            0,47      0,70
Uranus       25559       83,7 a       15 h         98°            0,51      1,30
Neptun       24764       163,7 a      17 h         30°            0,41      1,76

Pluto        1151        248,0 a      6,4 d        118°           0,3       1,1

                 4.1. Grundparameter                      im Amateurfernrohr: Ring mit Teilungen, Bänder und
                      4.2. Jupiter                        Zonen, Monde
   • Tiefe Gasatmosphäre (v.a. H, He, C-Verbindun-
   gen), kein fester Kern
   • komplexes Muster aus Hoch- und Tiefdruckzonen
   sehr feiner, schwacher Ring
   • 16 Monde, davon 4 in Planetengröße: Io, Europa,
   Ganymed, Kallisto
   • Io mit rezenter Vulkanaktivität
im Amateurfernrohr: Bänder (dunkel) und Zonen
(hell); Strömungszonen; Einzelobjekte; Monderschei-
nungen

                     4.3. Saturn
  • Atmosphäre wie Jupiter, weniger turbulent
  • deutlicher, markanter Ring (Durchmesser 100000                             Saturn


                                                           Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem I
                                                                                              Seite 21

                    4.4. Uranus
  • Atmosphäre wie Jupiter, nahezu ohne Einzelhei-
  ten
  • schwacher Ring
  • 17 Monde
im Amateurfernrohr: Planetenscheibchen, Monde

                    4.5. Neptun
   • Atmosphäre wie Jupiter, dunkle und helle Wol-
   kensysteme
   • schwacher Ring
   • 8 Monde, darunter Triton mit rezenter Aktivität
im Amateurfernrohr: Planetenscheibchen, Mond Tri-
ton

                      4.6. Pluto
  • keiner der großen Gasplaneten, sondern eher
                                                        Der Pathfinder-Rover „Sojourner“ auf dem
  kleinplanetenähnlich oder wie Triton                  Mars
  • Doppelsystem zusammen mit nur halb so großem
  Mond Charon
  • einziger Planet ohne Raumsondenbesuch
im Amateurfernrohr: Planet als schwacher Stern          Anhang:
                                                        Erforschung des Sonnensystems durch Raumsonden

Sonde               Ziel        Start      Ankunft     Ergebnisse
Mariner 4           Mars                   1965        erste Nahaufnahmen
Mariner 9           Mars                   1971        Kartierung
Pioneer 10          Jupiter     1972       1973        erste Bilder
Pioneer 11          Jupiter     1973       1974        erste detaillierte Bilder
                    Saturn                 1979        erste Bilder
Mariner 10          Merkur      1973       1974        erste Bilder, Teilkartierung
Venera 9,10         Venus                              1975         Landung
Viking 1,2          Mars        1975       1976        Landung + Orbiter
Voyager 1           Jupiter     1977       1979        umfangreiche Daten
                    Saturn                 1980
Voyager 2           Jupiter     1977       1979        umfangreiche Daten
                    Saturn                 1981
                    Uranus                 1986
                    Neptun                 1989
Ulysses             Sonne       1990       1992        Sonnen-Magnetfeld-Messungen
Magellan            Venus                  1996        Kartierung
Galileo             Jupiter                1997        Sonde + Atmosphär.probe
Pathfinder          Mars        1996       1997        Landung
Mars Global SurveyorMars        1996       1997        Kartierung

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem II
  Seite 22


                                   Sonnensystem II
                              Kometen, Meteorite, Asteroide
                                                  Ralph Puchta
                    1. Kometen                               • 1668 in Danzig erscheint die Cometographia von
                                                             Johannes Hevelius
 1.1 Allgemeine Informationen zu Kometen                     • 1680 Dörffel und Isaak Newton zeigen, daß sich
          1.1.1 Kometen gestern und heute                    Kometen auf einer parabelförmigen Bahn um die
          1.1.1.1 Kometen in der Geschichte                  Sonne bewegt
Kometen (griech.: Haarstern):                                • 1705 Halley weist nach, daß es sich bei den
  • eine der auffälligsten Himmelserscheinungen              Kometen von 1531, 1607 und 1682 um ein und
  • erscheinen nicht so „regelmäßig“ wie Planeten am         denselben Kometen handelt. Damit wird den
  Himmel                                                     Kometen eine elliptische Bahn um die Sonne zuge-
  • teilweise sehr hell                                      ordnet.
                                                             • 1759 Die von Halley vorhergesagte Wiederkehr
Deutung durch europäische Astrologen                         seines Kometen wird ein Triumph für die Newton-
   Kometen als Vorboten einschneidender Ereignisse           sche Physik
B.: Halleyscher Komet soll bei seiner Erscheinung
1910 den 1. Weltkrieg angekündigt haben                        1.1.1.2 Was ist an Kometen heute interessant[2]
Ob Hyakutake (zu ihm haben die Astrologen keine               In Kometen vermutet man „tiefgefrorene Urmate-
Vorhersagen getätigt) die Ablösung des SPD OB Dr.          rie“, aus der unser Planetensystem vor Jahrmillionen
P. Schönlein durch Dr. L. Scholz (CSU) in Nürnberg         entstanden ist.
im Frühling 1996 oder der Komet Tabor das Amtsju-          Durch Unterkühlung und Fehlen der Schwerkraft soll-
biläum von Dr. H. Kohl im Herbst 1996 angekündigt          te sie keine Umwandlung mit gemacht haben. Ebenso
hat darf jeder selbst für sich entscheiden.                fehlt der Einfluß von Strahlung, da Kometen den
                                                           größten Teil ihres Lebens von der Sonne entfernt ver-
Kometen wurden nicht immer als Himmelskörper               bringen. Man sucht besonders nach Molekülen, die für
angesehen                                                  die chemische Evolution als Vorläufer der biologi-
  • Aristoteles sah in Kometen irdische Dämonen, die       schen Evolution verantwortlich sein könnten.
  in den Himmel emporgetragen wurden und damit
  atmosphärische Erscheinung. Bis in die beginnende                   1.1.2 Wieviel Kometen gibt es
  Neuzeit wurde die atmosphärische Theorie vertre-           • Kometenkatalog von 1989: 810 Kometen
  ten.                                                       • ca. 130 kurzperiodische Kometen
  • 1531 Peter Apian weist darauf hin, daß der Kome-         • jährlich werden etwa ein ein Dutzend neu ent-
  tenschweif immer von der Sonne weggerichtet ist            deckt
  • 1577 Tycho de Brahe (Däne) schloß aus der nicht
  vorhandenen täglichen Parallaxe auf die Bahn des         durchschnittlich sind von der Erde aus pro 100 Jahre
  Kometen und stellte fest, daß sie viel größer ist, als   5 - 6 eindrucksvolle Kometen sichtbar
  die des Mondes.
  ⇒ Kometen sind echte Himmelskörper UND Ende              durchschnittliche Masse des Kerns: 1015 - 1018 g
  des aristotelischen Weltbildes
  • 1618 Johannes Kepler weist den Kometen gerade                 1.1.3 Wie werden Kometen benannt
  Bahnen durch unser Sonnensystem zu                         Kometen werden bezeichnet nach dem Zeitraum
                                                           der Entdeckung z.B. erste Hälfte Januar 1995 mit

                                                            Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem II
                                                                                                      Seite 23

1995 A. Der erste Komet bekommt dann zusätzlich               (sonnenfernster Punkt) von 150 000 AE (1 AE =
noch eine 1, der 2 eine 2 ...                                 1,496 . 108 km = Abstand Erde - Sonne) noch der
Also z.B. der 2. Komet in der ersten Januarhälfte 1995        Schwerkraft der Sonne. (vgl. Erde - Pluto:∅40 AE)
wird als 1995 A2 bezeichnet.
Die Art des Umlaufs wird im 1. Buchstaben berück-                            1.1.5 Kometenheimat
sichtigt:                                                      Die „Heimat“ der langeperiodischen Kometen ist
P: periodischer Komet                                       die Oortsche Wolke (nach niederl. Astronom (1900 -
C: langperiodischer Komet                                   1992): Jan Hendrik Oort) mit 100 Milliarden Kome-
D: „verstorbener“ Komet                                     ten. Umgibt als kugelschaliges Reservoir unser Plane-
X: „unsicherer“ Komet                                       tensystem mit einem Durchmesser von ca. 100.000
A: Kleinplanet                                              AE bis zur halben Entfernung zum nächsten Stern..
                                                            Durch Wechselwirkung mit anderen stellaren Objek-
Zum einfachen Sprachgebrauch werden Kometen                 ten z.B. anderen Planetensystemen werden Kometen
noch zusätzlich nach ihren Entdeckern benannt:              ins innere unseres Sonnensystems geschickt und sind
                                                            dann ein „neuer“ Komet.
z.B.:                                                       Beweis für die kugelige Gestalt: langperiodische
Hyakutake (nach Yuji Hyakutake): C/1996 B2                  Kometen treten aus beliebigen Richtungen auf.
(2. Komet, der in der 2. Januar Hälfte (31. Januar)         In der Oortschen Wolke sind keine Objekte beobacht-
1996 entdeckt wurde mit einer langperiodischen              bar. (zu klein zu weit weg)
Umlaufzeit)                                                 Die kurz- und mittelperiodischen Kometen sind im
Hale-Bopp (nach Thomas Hale und Alan Bopp):                 Kuiper-Gürtel beheimatet (niederl.- amerik. Astronom
C/1995 O1                                                   Gerard Peter Kuiper (1905-1973)), der jenseits der
(1. Komet, der in der 2. Juli Hälfte (25. Juli) 1995 ent-   Neptunbahn liegt. Hier konnte auch 1992 das erste
deckt wurde mit einer langperiodischen Umlaufzeit)          Objekt entdeckt werden. Entfernung von der Sonne
                                                            etwa 30 - 100 AE.
           1.1.4 Einteilung von Kometen                     Begründung für die Gürtelgestalt: nur wenig gegen die
  3 Typen von Kometen:                                      Ekliptig geneigte Bahn der kurz- und mittelperiodi-
  • kurzperiodische Kometen (Umlaufzeit -10 Jahre)          schen Kometen.
  kürzeste Umlaufzeit:                                      Früher glaubte man, daß die kurz- und mittelperiodi-
  Encksche Komet: 3,3 Jahre Periode                         schen Kometen durch Schwerkrafteinflüsse o.ä. aus
  Entdeckung: 1786 Piere Méchain                            langperiodischen Kometen entstanden sind.[3,4]
  Bahnberechnung: Johann Franz Encke
  • mittelperiodische Kometen (Umlaufzeit 10 - 100                     1.1.6 „Start“ eines Kometen
  Jahre) :                                                  Durch Wechselwirkung mit den großen Planeten wer-
  Halleyscher Komet (Periode ca. 76 Jahre)                  den ab und zu Kometen in ihrer „Ruhelage“ gestört
  • langperiodische Kometen (Umlaufzeit 100 - 107           und machen sich auf um „richtige“ Kometen zu wer-
  Jahre)                                                    den.
  B.: Hyakutake (1996)
  (Schätzung der ESO: Umlaufzeit: 17.250 Jahre)             1.2 Aufbau und Entwicklung eines typischen
  Oft als nichtperiodische Kometen angesehen, da die                        Kometen
  Umlaufzeit zu groß für öfter Beobachtung ist. Heu-              1.2.1 Aufbau eines typischen Kometen
  te geht man davon aus, daß auch die Kometen mit             • 19. Jahrhundert bis ca. 1950: Schwarmtheorie:
  der längsten Umlaufzeit Mitglieder unseres Son-             Kometenkern besteht aus einer lockeren Ansamm-
  nensystems sind. Sie unterliegen trotz eines Aphels         lung von kleinen Partikeln

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem II
 Seite 24

  • heute Theorie von amerik. Astronom Fred Whip-
  ple: Komet als „schmutziger Schneeball“ (Wasse-
  reis mit anorganischem Staub (Silikate) und organi-
  schen Molekülen vermengt)

  1.2.2 Metamorphose eines typischen Kometen
         während seiner Bahn um die Sonne
  1. Annäherung an die Sonne
  ⇒ Verdampfung bzw. Sublimation der flüchtigen
  Gase, unter Mitnahme von Staubteilchen (geringe                      Aufbau eines Kometen
  Gravitation zum Kometen!)
                                                         1.2.3 Chemische Zusammensetzung eines Kometen
  • [Verdampfung nicht über ganze bestrahlte Fläche,
                                                           wichtigstes Instrumente:
  sondern nur in „aktiven“ Zonen sog. Jets (Strahl-
                                                           • Spektroskopie, besonders auch von organischen
  ströme) z. B. Hale-Bopp Frühling 97]
                                                           Molekülen Huggins und Secchi 1864/1868 1.
  ⇒ Komabildung (105 - 106 km)
                                                           Kometenspektroskopie
  • Beginn der Komabildung bei ca. 5 AE Sonnendi-
                                                           ⇒Kohlenstoff wurde nachgewiesen
  stanz zum Kometen.
                                                           • Absicherung der Messung:
  • Das Koma ist gasförmig!
                                                                    -Experiment
  2. weitere Annäherung an Sonne
                                                                    -quantenmechanische Berechnung
  ⇒ Bildung eines von der Sonne abgewandten
                                                         Im Weltall herrschen Bedingungen, die im Labor nur
  Schweifes
                                                         schwer nachzustellen sind, aber den für die quanten-
  • langgestreckter und schwach gekrümmter Ionen-
                                                         mechanischen Berechnung vorausgesetzten Bedingun-
  schweif
                                                         gen sehr gut entsprechen:
  • diffuser Staubschweif
                                                           • keine bzw. kaum Wechselwirkungen mit anderen
  • oft sind beide Schweife überlappt und nur
                                                           Molekülen
  schlecht getrennt beobachtbar
                                                           • Moleküle in der Gasphase
                                                         Es konnten zweifelsfrei bestimmt werden:
Ausnahmen:
                                                         neutrale Verbindungen:
Komet Elst-Pizarro (Entdeckung 8/1996):
                                                         H2O, HCN, CH3CN, CH4, CH2, NH3
  • ausgeprägter Schweif
                                                         Radikale (ein ungepaartes e-):
  • kein Koma
                                                         C2, C3, CH, CN, CS, OH, NH, NH2
  ⇒ Vermutung: Kleinplanet mit wenig Eis, der sich
                                                         Ionen (geladene „Atome“ oder Moleküle):
  zum Kometen verwandelt hat (Lit.: Regiomonta-
                                                         CO+, CO2+, CH+, CN+, C+, N2+, OH+, H2O+,
  nusbote 4/96)
                                                         Atome:
                                                         Na, Ca, Cr, Mn, Fe, Ni, Cu, K, H, C, O, S
Temperaturen im Kern von Hyakutake:
                                                         vermutete Moleküle: HNCO (Isocyansäure), HCO-
28.2.96 19K, 12.3.96 46K, 16.3.96 55±8K

Kometenteil      Zusammensetzung      Erscheinung                               Dimension [km]
Kern             Eis, Staub           unsichtbar                                max. 100
Koma             neutrale Moleküle,   sehr groß, in sonnenabgewandte Richtung   105 bis 107 gasförmig
                 Staub, Wasserstoff   verzerrt
Ionenschweif     ionisiertes Gas      nahezu gerade                             max.107
                 (z. B. CO+)
Staubschweif     Staubpartikel        gekrümmt                                  max.108

                                                           Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem II
                                                                                                  Seite 25

NH2 (Formamid), HC=NH (Methylenimin)                              1.3 Lebensdauer von Kometen
                                                          Kometen unterliegen starken Druck-, Temperatur-,
Wobei:                                                 Gravitations- und Strahlungsschwankungen während
X: Bereits zu Anfang unseres Jahrhundert bekannt [6]   ihres Umlaufs um die Sonne. Durch Gas- und Stau-
X: Bis zu Beginn der Raumfahrt bekannt [6]             bausstoß z.B. im Schweif, ist der Masseverlust für
                                                       jeden sichtbar. Oft zerbrechen Kometen unter dem
In Hyakutake wurde gefunden:                           Einfluß von Schwerkraft (vgl. Levi-Shoemaker 9
CO, HCN, H2CO, CH3OH HNC und CS wurden das             Sommer 1994). Auf ihrer Bahn hinterlassen Kometen
erste mal in einem Kometen gefunden                    einen Partikelstrom. Kreuzt die Erde so einen Partikel-
In Hale-Bopp wurde gefunden:                           strom, so kommt es bei uns zu Schauern von Meteori-
H2O (IR), OH (R, IR, UV), H2O+ (V), HDO (R), CO        ten, wir nennen diese Schauer im Volksmund Stern-
(IR, R, UV), CO2 (IR), CO+ (V, R), HCO+ (R), H2S       schnuppen. Die im Mai und Oktober auftretenden
(R), SO (R), SO2 (R), OCS (R), CS (R, UV), H2CS        Aquariden und Orioniden stammen z.B. vom Halley-
(R), CH3OH (R, IR), H2CO (R), HCOOH (R),               schen Kometen.
CH3OCHO (R), HCN (R, IR), CH3CN (R), HNC (R),
HC3N (R), HNCO (R), CN (V, R), NH3 (R), NH2            Literatur:
(V), NH (V), NH2CHO (R), DCN(R), CH4 (IR),             [1] R. Froböse, ChiuZ, 1982, 16, 94.
C2H2 (IR), C2H6 (IR), C3 (V), C2 (V),                  [2] E. Deissinger: P.M. 11/1985, S.134 ff.
Seltene Isotope: H13CN(R), HC15N(R), C34S(R)           [3] N.N., Sterne und Weltraum, 1997, 36, 210
Radiospektroskopie:        R                           [4] Internet: URL http://www.dkrz.de/mirror/tnp/
Infrarotspektroskopie:     IR                          kboc.html (Stand 01.11.1997)
Visuelle Spektroskopie: V                              [5] M. Mladenovic, S. Schmatz, P. Botschwina, J.
Ultravioletspektroskopie: UV                           Chem. Phys., 1994, 101, 5891.
(http://iram.fr/hale-bopp/comet.html)                  [6] M. Reichenstein: Kometen - kosmische Vagabun-
                                                       den, Urania Verlag, Leipzig Jena Berlin, 1985 S. 60ff
Absicherung am Beispiel von C3:[5]

C3: lineares Molekül, C-C Abstand: 1,29452 Å,
  • 1994 berechnet in Göttingen mit sehr großem
  Aufwand (ab initio-Berechnung)
  • Spektrum, Experiment und Berechnung stimmen
  überein
  • C3 von Interesse, da außer stellarem Objekt auch
  kleiner Kohlenstoffcluster
  • über das dazugehörige Spektrum wurde schon
  1882 von W. Huggins im Zusammenhang mit              Komet Hale Bopp mit ausgeprägtem Ionen -
                                                       und Staubschweif
  Kometenuntersuchungen berichtet.
                                                                         2. Meteoriten
Quelle für C3: Diazomethylenacetylen
                                                                         2.1 Definition:
Aus was besteht der „Staub“:                           Meteorit:
silikatische Stoffe mit Absorptionen von Eisen und     Von außen in die Erdatmosphäre eindringender Klein-
Kohlenstoff                                            körper
                                                       Meteor:

Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Sonnensystem II
  Seite 26

Früher: alle vom Himmel fallenden Objekte (auch                          Bevorzugter Sammelplatz: Antarktis (kaum
Regen, Graupel etc. ⇒ Meteorologie)                                      Umweltverschmutzung)[3]
Heute: Leuchterscheinung, die durch das Eindringen                       • große Meteoriten:
von Meteoriten in die Erdatmosphäre verursacht                           z. B. 30. Juni 1908 Tunguska/Sibirien ca. ∅ 40 m
wird.[1]                                                                 (Kollision ca. 1 mal im Jahrhundert)
Herkunft von Meteoriten:                                                 z. B. vor 65 Millionen Jahren ∅ 10 km (1 mal in
Meteoriten stammen von Kometen und Asteroiden                            100 Millionen Jahren)
oder bestehen aus - vermutlich wiederum durch
Meteoriteneinschlag - abgesprengten Teilen von ande-                                      2.2.4 Zusammensetzung
ren Planeten. Ihre chemische Zusammensetzung lie-                      Chondrite:
fert den entscheidenden Hinweis auf die Herkunft.                      Enthalten Chondren (ellipsoide und sphärische Silikat-
                                                                       gebilde), MgO, FeO, SiO2
            2.2 Einteilung von Meteoriten                              Die Entstehung ist noch nicht geklärt, besonders inter-
   2.2.1 Einteilung nach kosmischer Herkunft[1]                        essant, da Chondren auf der Erde nicht und auf dem
            2.2.2 Einteilung nach Bahnen                               Mond selten sind
                                                                                              Sie sind den nicht gasförmigen
Typus           Bahn                 Beschreibung                     Bemerkung
                                                                                              Anteile des solaren Urnebel ver-
Planetarische   Ellipsen,            zum Planetensystem zugehörige
                kurze Umlaufzeiten   kosmische Kleinkörper                                    mutlich am nächsten
Kometische      Ellipsen,            Kleinkörper aus dem Zerfall      z.B. Sternschnuppen
                kurze bis längere    von Kometen                      (Perseiden)
                                                                                              Achondrite:
                Umlaufzeiten                                                                  Enthalten eine Chondren (Name!)
Interstellare   Parabel- und         Kleinkörper des interstellaren   Existenz umstritten
                Hyperbelbahnen       Raums
                                                                                              ähnlich terrestrischen Basalten
                                                                                              (magmatisches Gestein), kalzium-
  • sporadische Meteoriten: regellos am Himmel ver-                    reich
  teilt                                                                Die Entstehung ist bisher nur spekulativ, da im Labor
  • Strommeteoriten: in Schwärmen auftretend, bei                      nicht ausreichend reproduziert, vermutlich aus ande-
  rückwärtiger Verlängerung der scheinbaren Bahnen                     ren größeren Himmelskörpern
  in einem Ausstrahlungspunkt (Radiant) am Himmel                      Stein-Eisenmeteorite
  ansiedelbar. (z. B. Perseiden im Perseus) [2]                        Sie enthalten hauptsächlich: SiO2, MgO, FeO
                                                                       Sie entstehen vermutlich aus anderen größeren Him-
              2.2.3 Größe der Meteoriten                               melskörpern
  Alles möglich zwischen Molekül und Planetoid.                        Eisenmeteorite:
  (sehr grob als Einteilung)                                           bestehen aus durchschnittlich: 91% Fe, 8% Ni, 0,6%
  • Sternschnuppen: kleine Staubteilchen, die beim                     Co und entstehen vermutlich aus anderen größeren
  Eintritt in die Erdatmosphäre verglühen                              Himmelskörpern
  • größere Brocken verglühen nicht mehr vollständig                   Die großen Unterschiede liegen jeweils in den Antei-
  ⇒ sehr interessant, falls sie gefunden werden um                     len, der einzelnen Bestandteile. Übergangsarten sind
  Untersuchungen durchzuführen. B.: 1994/1995                          ebenfalls bekannt.[2, 4]
  Wissenschaftler entdecken „Marsbakterien“ in
  einem Meteoriten, der vom Mars stammen soll.                        2.3 Gefährdung und Schutz der Erde im Hin-
  Nach Schätzungen erreichen pro Jahr mehr als 19                                blick auf Meteoriten
  000 Meteoriten mit einer Masse von über 100                           Beispiel einer Zeitungsmeldung vom Samstag, 12.
  Gramm die Erdoberfläche. Gefunden werden aller-                     April 1997:
  dings höchstens zehn von ihnen, da die meisten ins                              Meteorit zertrümmerte Auto
  Meer oder auf unbewohntes Gebiet stürzen.                           Chambery (dpa/eu) - Ein Meteorit hat in der südost-

                                                                        Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997
Rb spezial-bz-kurs-astronomie-1997

Weitere ähnliche Inhalte

Ähnlich wie Rb spezial-bz-kurs-astronomie-1997

Leich kosmische einsichten rb-1999-4
Leich kosmische einsichten rb-1999-4Leich kosmische einsichten rb-1999-4
Leich kosmische einsichten rb-1999-4plvisit
 
Leich copernicus rb-1998-3
Leich copernicus rb-1998-3Leich copernicus rb-1998-3
Leich copernicus rb-1998-3plvisit
 
Konstruktion von Sonnenuhren
Konstruktion von SonnenuhrenKonstruktion von Sonnenuhren
Konstruktion von SonnenuhrenJan Heye Buss
 
Mysteriöse Plätze in der Welt Gruppe7
Mysteriöse Plätze in der Welt Gruppe7Mysteriöse Plätze in der Welt Gruppe7
Mysteriöse Plätze in der Welt Gruppe7Erasmus+
 
Wunder des quran [german]
Wunder des quran [german]Wunder des quran [german]
Wunder des quran [german]obl97
 
Asteroiden.pdf
Asteroiden.pdfAsteroiden.pdf
Asteroiden.pdfKlaus Rohe
 
Leich fau-ps-copernicanische-wende-folien-03
Leich fau-ps-copernicanische-wende-folien-03Leich fau-ps-copernicanische-wende-folien-03
Leich fau-ps-copernicanische-wende-folien-03plvisit
 
Leich fau-ps-copernicanische-wende-handout-05
Leich fau-ps-copernicanische-wende-handout-05Leich fau-ps-copernicanische-wende-handout-05
Leich fau-ps-copernicanische-wende-handout-05plvisit
 
Muslime Heritage in our World
Muslime Heritage in our WorldMuslime Heritage in our World
Muslime Heritage in our WorldElmehdi Attabou
 
True earth-physics_Welt Der Schöpfung Teil 5 Erdexpansion
True earth-physics_Welt Der Schöpfung Teil 5 ErdexpansionTrue earth-physics_Welt Der Schöpfung Teil 5 Erdexpansion
True earth-physics_Welt Der Schöpfung Teil 5 Erdexpansionguestfd1fbf
 
pl-visit aktuell
pl-visit aktuellpl-visit aktuell
pl-visit aktuellplvisit
 
Vortrag Prospekt
Vortrag ProspektVortrag Prospekt
Vortrag Prospektplvisit
 
Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...
Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...
Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...Wolfgang Geiler
 
Simon marius, der fränkische galilei
Simon marius, der fränkische galileiSimon marius, der fränkische galilei
Simon marius, der fränkische galileiplvisit
 
Eimmart Konzept
Eimmart KonzeptEimmart Konzept
Eimmart Konzeptplvisit
 
Perspektive und Wahrnehmung von Zeit
Perspektive und Wahrnehmung von ZeitPerspektive und Wahrnehmung von Zeit
Perspektive und Wahrnehmung von ZeituxHH
 
Leich fau-ps-copernicanische-wende-folien-01
Leich fau-ps-copernicanische-wende-folien-01Leich fau-ps-copernicanische-wende-folien-01
Leich fau-ps-copernicanische-wende-folien-01plvisit
 
Erforschung und Nutzung der Welt- Energie 01.09.2014
Erforschung und Nutzung der Welt- Energie 01.09.2014Erforschung und Nutzung der Welt- Energie 01.09.2014
Erforschung und Nutzung der Welt- Energie 01.09.2014Gerold Szonn
 
Spatialconcepts Article 980
Spatialconcepts Article 980Spatialconcepts Article 980
Spatialconcepts Article 980Joerg Hartmann
 
Erfundenekalender
ErfundenekalenderErfundenekalender
ErfundenekalenderAxel Thiel
 

Ähnlich wie Rb spezial-bz-kurs-astronomie-1997 (20)

Leich kosmische einsichten rb-1999-4
Leich kosmische einsichten rb-1999-4Leich kosmische einsichten rb-1999-4
Leich kosmische einsichten rb-1999-4
 
Leich copernicus rb-1998-3
Leich copernicus rb-1998-3Leich copernicus rb-1998-3
Leich copernicus rb-1998-3
 
Konstruktion von Sonnenuhren
Konstruktion von SonnenuhrenKonstruktion von Sonnenuhren
Konstruktion von Sonnenuhren
 
Mysteriöse Plätze in der Welt Gruppe7
Mysteriöse Plätze in der Welt Gruppe7Mysteriöse Plätze in der Welt Gruppe7
Mysteriöse Plätze in der Welt Gruppe7
 
Wunder des quran [german]
Wunder des quran [german]Wunder des quran [german]
Wunder des quran [german]
 
Asteroiden.pdf
Asteroiden.pdfAsteroiden.pdf
Asteroiden.pdf
 
Leich fau-ps-copernicanische-wende-folien-03
Leich fau-ps-copernicanische-wende-folien-03Leich fau-ps-copernicanische-wende-folien-03
Leich fau-ps-copernicanische-wende-folien-03
 
Leich fau-ps-copernicanische-wende-handout-05
Leich fau-ps-copernicanische-wende-handout-05Leich fau-ps-copernicanische-wende-handout-05
Leich fau-ps-copernicanische-wende-handout-05
 
Muslime Heritage in our World
Muslime Heritage in our WorldMuslime Heritage in our World
Muslime Heritage in our World
 
True earth-physics_Welt Der Schöpfung Teil 5 Erdexpansion
True earth-physics_Welt Der Schöpfung Teil 5 ErdexpansionTrue earth-physics_Welt Der Schöpfung Teil 5 Erdexpansion
True earth-physics_Welt Der Schöpfung Teil 5 Erdexpansion
 
pl-visit aktuell
pl-visit aktuellpl-visit aktuell
pl-visit aktuell
 
Vortrag Prospekt
Vortrag ProspektVortrag Prospekt
Vortrag Prospekt
 
Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...
Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...
Astronomie, Einführung in die Astronomie Teil 1, Sonnensystem und innere Plan...
 
Simon marius, der fränkische galilei
Simon marius, der fränkische galileiSimon marius, der fränkische galilei
Simon marius, der fränkische galilei
 
Eimmart Konzept
Eimmart KonzeptEimmart Konzept
Eimmart Konzept
 
Perspektive und Wahrnehmung von Zeit
Perspektive und Wahrnehmung von ZeitPerspektive und Wahrnehmung von Zeit
Perspektive und Wahrnehmung von Zeit
 
Leich fau-ps-copernicanische-wende-folien-01
Leich fau-ps-copernicanische-wende-folien-01Leich fau-ps-copernicanische-wende-folien-01
Leich fau-ps-copernicanische-wende-folien-01
 
Erforschung und Nutzung der Welt- Energie 01.09.2014
Erforschung und Nutzung der Welt- Energie 01.09.2014Erforschung und Nutzung der Welt- Energie 01.09.2014
Erforschung und Nutzung der Welt- Energie 01.09.2014
 
Spatialconcepts Article 980
Spatialconcepts Article 980Spatialconcepts Article 980
Spatialconcepts Article 980
 
Erfundenekalender
ErfundenekalenderErfundenekalender
Erfundenekalender
 

Mehr von plvisit

Leich vr-fuer-ki
Leich vr-fuer-kiLeich vr-fuer-ki
Leich vr-fuer-kiplvisit
 
Leich begruendung
Leich begruendungLeich begruendung
Leich begruendungplvisit
 
Stadtjubiläum er2002-dokumentation
Stadtjubiläum er2002-dokumentationStadtjubiläum er2002-dokumentation
Stadtjubiläum er2002-dokumentationplvisit
 
Iya collegium alexandrinum
Iya collegium alexandrinumIya collegium alexandrinum
Iya collegium alexandrinumplvisit
 
Nag bulletin rb-2012-3
Nag bulletin rb-2012-3Nag bulletin rb-2012-3
Nag bulletin rb-2012-3plvisit
 
Leich sponsoringvortrag-schlips
Leich sponsoringvortrag-schlipsLeich sponsoringvortrag-schlips
Leich sponsoringvortrag-schlipsplvisit
 
pl-links
pl-linkspl-links
pl-linksplvisit
 
Art ware news3-2002-april
Art ware news3-2002-aprilArt ware news3-2002-april
Art ware news3-2002-aprilplvisit
 
Art ware news2-2001-dezember
Art ware news2-2001-dezemberArt ware news2-2001-dezember
Art ware news2-2001-dezemberplvisit
 
Art ware news1-2001-september
Art ware news1-2001-septemberArt ware news1-2001-september
Art ware news1-2001-septemberplvisit
 
Leich fau-ps-copernicanische-wende-folien-15
Leich fau-ps-copernicanische-wende-folien-15Leich fau-ps-copernicanische-wende-folien-15
Leich fau-ps-copernicanische-wende-folien-15plvisit
 
Leich fau-ps-copernicanische-wende-handout-15
Leich fau-ps-copernicanische-wende-handout-15Leich fau-ps-copernicanische-wende-handout-15
Leich fau-ps-copernicanische-wende-handout-15plvisit
 
Leich fau-ps-copernicanische-wende-folien-14
Leich fau-ps-copernicanische-wende-folien-14Leich fau-ps-copernicanische-wende-folien-14
Leich fau-ps-copernicanische-wende-folien-14plvisit
 
Hielscher fau-ps-copernicanische-wende-atomismus+fernwirkung
Hielscher fau-ps-copernicanische-wende-atomismus+fernwirkungHielscher fau-ps-copernicanische-wende-atomismus+fernwirkung
Hielscher fau-ps-copernicanische-wende-atomismus+fernwirkungplvisit
 
Leich fau-ps-copernicanische-wende-handout-14
Leich fau-ps-copernicanische-wende-handout-14Leich fau-ps-copernicanische-wende-handout-14
Leich fau-ps-copernicanische-wende-handout-14plvisit
 
Hielscher1 atomismus
Hielscher1 atomismusHielscher1 atomismus
Hielscher1 atomismusplvisit
 
Leich fau-ps-copernicanische-wende-folien-13
Leich fau-ps-copernicanische-wende-folien-13Leich fau-ps-copernicanische-wende-folien-13
Leich fau-ps-copernicanische-wende-folien-13plvisit
 
Leich fau-ps-copernicanische-wende-handout-13
Leich fau-ps-copernicanische-wende-handout-13Leich fau-ps-copernicanische-wende-handout-13
Leich fau-ps-copernicanische-wende-handout-13plvisit
 
Leich fau-ps-copernicanische-wende-folien-12
Leich fau-ps-copernicanische-wende-folien-12Leich fau-ps-copernicanische-wende-folien-12
Leich fau-ps-copernicanische-wende-folien-12plvisit
 
Leich fau-ps-copernicanische-wende-handout-11
Leich fau-ps-copernicanische-wende-handout-11Leich fau-ps-copernicanische-wende-handout-11
Leich fau-ps-copernicanische-wende-handout-11plvisit
 

Mehr von plvisit (20)

Leich vr-fuer-ki
Leich vr-fuer-kiLeich vr-fuer-ki
Leich vr-fuer-ki
 
Leich begruendung
Leich begruendungLeich begruendung
Leich begruendung
 
Stadtjubiläum er2002-dokumentation
Stadtjubiläum er2002-dokumentationStadtjubiläum er2002-dokumentation
Stadtjubiläum er2002-dokumentation
 
Iya collegium alexandrinum
Iya collegium alexandrinumIya collegium alexandrinum
Iya collegium alexandrinum
 
Nag bulletin rb-2012-3
Nag bulletin rb-2012-3Nag bulletin rb-2012-3
Nag bulletin rb-2012-3
 
Leich sponsoringvortrag-schlips
Leich sponsoringvortrag-schlipsLeich sponsoringvortrag-schlips
Leich sponsoringvortrag-schlips
 
pl-links
pl-linkspl-links
pl-links
 
Art ware news3-2002-april
Art ware news3-2002-aprilArt ware news3-2002-april
Art ware news3-2002-april
 
Art ware news2-2001-dezember
Art ware news2-2001-dezemberArt ware news2-2001-dezember
Art ware news2-2001-dezember
 
Art ware news1-2001-september
Art ware news1-2001-septemberArt ware news1-2001-september
Art ware news1-2001-september
 
Leich fau-ps-copernicanische-wende-folien-15
Leich fau-ps-copernicanische-wende-folien-15Leich fau-ps-copernicanische-wende-folien-15
Leich fau-ps-copernicanische-wende-folien-15
 
Leich fau-ps-copernicanische-wende-handout-15
Leich fau-ps-copernicanische-wende-handout-15Leich fau-ps-copernicanische-wende-handout-15
Leich fau-ps-copernicanische-wende-handout-15
 
Leich fau-ps-copernicanische-wende-folien-14
Leich fau-ps-copernicanische-wende-folien-14Leich fau-ps-copernicanische-wende-folien-14
Leich fau-ps-copernicanische-wende-folien-14
 
Hielscher fau-ps-copernicanische-wende-atomismus+fernwirkung
Hielscher fau-ps-copernicanische-wende-atomismus+fernwirkungHielscher fau-ps-copernicanische-wende-atomismus+fernwirkung
Hielscher fau-ps-copernicanische-wende-atomismus+fernwirkung
 
Leich fau-ps-copernicanische-wende-handout-14
Leich fau-ps-copernicanische-wende-handout-14Leich fau-ps-copernicanische-wende-handout-14
Leich fau-ps-copernicanische-wende-handout-14
 
Hielscher1 atomismus
Hielscher1 atomismusHielscher1 atomismus
Hielscher1 atomismus
 
Leich fau-ps-copernicanische-wende-folien-13
Leich fau-ps-copernicanische-wende-folien-13Leich fau-ps-copernicanische-wende-folien-13
Leich fau-ps-copernicanische-wende-folien-13
 
Leich fau-ps-copernicanische-wende-handout-13
Leich fau-ps-copernicanische-wende-handout-13Leich fau-ps-copernicanische-wende-handout-13
Leich fau-ps-copernicanische-wende-handout-13
 
Leich fau-ps-copernicanische-wende-folien-12
Leich fau-ps-copernicanische-wende-folien-12Leich fau-ps-copernicanische-wende-folien-12
Leich fau-ps-copernicanische-wende-folien-12
 
Leich fau-ps-copernicanische-wende-handout-11
Leich fau-ps-copernicanische-wende-handout-11Leich fau-ps-copernicanische-wende-handout-11
Leich fau-ps-copernicanische-wende-handout-11
 

Rb spezial-bz-kurs-astronomie-1997

  • 1. Vorwort Seite 3 Sehr geehrte Leserinnen und Leser, Inhalt n Ihren Händen halten Sie die erste Sonderausgabe INFORMATIONEN ZUR NAA . . . . . . . . . . . . . . . . . . . . . . . . . .2 I des Regiomontanusboten, der Vereinszeitschrift der Nürnberger Astronomischen Arbeitsgemeinschaft e.V. VORWORT UND INHALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Sie wurde anläßlich des BZ-Kurses „Astronomie“ GESCHICHTE DER ASTRONOMIE I - ANTIKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 erstellt, welcher 1997 erstmals von der NAA mit Erfolg abgehalten wurde. GESCHICHTE DER ASTRONOMIE II Des weiteren wurde in dieser Sonderausgabe, eben- - NEUZEIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 falls zum ersten mal, ein neues Layout- und Druckver- SONNENSYSTEM I fahren benutzt, welches ab 1998 für alle Ausgaben des - SONNE UND GRÖßERE PLANETEN . . . . . . . . . . . . . . . . . . . .17 Regiomontanusboten angewendet werden soll. Nicht SONNENSYSTEM II zuletzt deswegen bitten ich Sie Kritik zu äußern, was - KOMETEN, METEORITE, ASTEROIDE . . . . . . . . . . . . . . . . .22 Ihnen gefallen hat und was nicht, was man besser machen kann oder was man weglassen sollte. DAS UNIVERSUM Die Autoren der acht Kapitel sind jeweils auch die - VON DER ERDE ZU DEN QUASAREN . . . . . . . . . . . . . . . . . .29 Referenten der Themen während des Kurses, mit der STERNENTWICKLUNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Ausnahme der „Veränderlichen Sterne“. Ich hoffe, daß Sie viel Freude an dieser Sonderausga- VERÄNDERLICHE STERNE . . . . . . . . . . . . . . . . . . . . . . . . . .40 be haben und auch nach dem Kurs noch des öfteren PRAKTISCHE ASTRONOMIE darin lesen werden. - TELESKOPE UND BEOBACHTUNG . . . . . . . . . . . . . . . . . . . .44 LITERATURHINWEIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 IMPRESSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Matthias Gräter Zum Titelbild: Fotografie von Knut Schäffner der Sommermilch- straße, zu sehen ist der Nordamerikanebel, der Peli- kannebel und die γ Cygni Region. Aufgenommen mit Normalobjektiv 2.8/50 und Deep-Sky-Filter auf Scotchcrom 400. Belichtungszeit 30 min Zur Umschlagseite 3: Fotografie von Knut Schäffner, zu sehen ist der Pfer- dekopfnebel und NGC 2024. Aufgenommen mit Celestron 8 f/5 und Deep-Sky-Filter auf Kodak Ektar pro Gold 400. Belichtungszeit 60 min.
  • 2. Astronomische Geschichte I Seite 4 Astronomische Geschichte I Antike Pierre Leich Praktische Bedürfnisse gung einschlägiger Grabanlagen bedarf keiner weite- ren Erläuterung. m fünften Jahrtausend v.Z. haben sich in einigen I Stromtälern Reiche mit hochentwickeltem städti- schen Leben herausgebildet. Die Frühformen von Phasen Wissenschaft verlieren sich zwar in der Vorgeschich- Neolithikum te, doch wir kennen einige Charakteristika. Die ersten Steintempel der Welt entstanden aller- Als Motive tauchen immer wieder praktische Fragen dings nicht in Ägypten, sondern auf dem winzigen auf, etwa wenn es galt, bestimmte gerade anstehende maltesischen Archipel im Zentrum des Mittelmeers. Lebensprobleme zu bewältigen oder sich neue Fast gleichzeitig treten ebenso sorgfältig konstruierte Lebensbereiche zu erschließen. Kragkuppelgräber an der Bretonischen Küste auf, die den Kretischen um weit mehr als 1000 Jahre voraus- Landwirtschaft, Ackerbau gehen. In Südengland wird aus mächtigen Steinen Schon für das nomadische Leben vor dem Acker- Stonehenge errichtet, wo eine präzise Beobachtung bau ist eine zeitliche Orientierung dringend zu emp- von Sonnen- und Mondzyklus erfolgte. fehlen (Wintereintritt, Regenzeit). Mit der Landwirt- schaft wird die Bestimmung fruchtbarer Perioden zur Ägypter Notwendigkeit. Von den Ägyptern sind wenig Beobachtungsberich- Der heliakische Aufgang des Sirius diente den Ägyp- te auf uns gekommen. Einige Aspekte wurden oben tern als Ankündigung der Felderüberflutung durch den bereits angesprochen. Nil. Ihr nach diesem Ereignis bemessene Jahr wird daher siderisches Jahr genannt (Vorübergang der Son- Babylonier ne an einem bestimmten Fixstern). Alle anderen Die Babylonische „Forschungsbürokratie“ brachte Kalender orientieren sich an den Sonnenwenden und umfangreiche Tabellen und Listen hervor. Durch alge- rechnen mit tropischen Jahren (Durchgang der Sonne braische Auswertung solcher Aufzeichnungen erken- durch den Frühlingspunkt), die wegen der Präzession nen die Kulturen des Zweistromlandes Morgen- und (Fortschreiten der Erdachse) geringfügig kürzer sind. Abendstern als ein Gestirn und die für Finsternisbe- rechnung wichtigen Mondknoten (Durchgang des Geometrie Mondes durch Erdbahnebene). Den Zusammenhang der erneuten Messung von Landbesitz nach den Überflutungen des Nils betont Griechen bereits Herodot: Bei den Griechen bildet sich die Idee einer gesetz- mäßigen Ordnung der Natur heraus. Beim Erfassen „Mir scheint, daß daher die Geometrie entdeckt wor- der Planetenläufe tritt räumliches Anschauungsvermö- den ist und dann nach Griechenland kam.“ gen an die Stelle von flächenhaftem Nebeneinander. Das Formulieren von Prinzipien und die Entwicklung Baukunst der geometrischen Methode ermöglichen es, nachvoll- Die Bedeutung der Volumenformel der Pyramide ziehbar zu argumentieren und Beweise zu führen. Die für die organisatorische und bautechnische Bewälti- sokratischen Dialogen fordern Rechenschaftspflicht Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 3. Astronomische Geschichte I Seite 5 für behauptende Rede. Gestirnsbahnen Der Übergang von mythischer Vergewisserung zu Unstrittig waren rasch die beobachtbaren Wege von erklärender Naturphilosophie wird deutlich an der Sonne, Mond und Gestirnen, die im Osten aufsteigen zunehmenden Entsubjektivierung, Einheitlichkeit und und sich in Parallelkreisen über einen Höchststand im Vergleichbarkeit der Vorstellungen über den Kosmos. Süden nach Westen bewegen. Der Lauf der Gestirne Die Nilschwemme erklärt Thales von Milet (~623-547 jenseits der sichtbaren Bögen bleibt jedoch zunächst v.Z.) durch einen Wasserstau infolge beständig umstritten. Anaximenes von Milet (~575-525 v.Z.) ist wehender Nordostwinde, anstatt das Wirken einer der Ansicht, Flußgottheit anzunehmen. Indem er Wasser als Urgrund aller Dinge einführt, versucht er die Gestal- daß die Gestirne sich nicht unter der Erde bewegen, tungsfülle der Natur zu ordnen. Herodot schreibt ihm […] sondern um die Erde herum, so wie wenn sich die Vorhersage der Sonnenfinsternis vom 28. Mai 585 das Filzhütchen um unseren Kopf herum dreht. Die v.Z. zu. Sonne werde nicht verdeckt, weil sie unter die Erde gerate, sondern weil sie von den höheren Teilen der Erdgestalt Erde überdeckt und weil ihr Abstand von uns größer werde. Horizont Obwohl sich bereits bei Aristoteles (384-322 v.Z.) Heraklit von Ephesus (~540-476 v.Z.) schließt sich die Erzählung von den am Horizont auftauchenden dieser Auffassung an, wohingegen Xenophanes aus Segeln findet, gibt es keine Kultur, die daraufhin für Kolophon (~565-480 v.Z.) die Gestirne für glühende die Kugelgestalt der Erde plädiert hätte. Auch Homer Wolken hält, die sich in der Nacht wie Kohlen entzün- gilt die Erdkreisscheibe mit dem umfassenden Okea- den. Auch die Sonne entzünde sich jeden Tag im nos als ausgemachte Sache. Zu viele optische Phä- Osten neu und erlösche im Westen. nomene der Brechung und Beugung waren unverstan- den, einige Auswirkungen gleichwohl offenbar – wie Himmelskugel im Fall der Sonnenstauchung am Horizont. Der Vergleich von Himmelsbeobachtungen ver- schiedener geographischer Breiten bringt jedoch ein schlagendes Argument, daß der Himmel eine Kugel sei. Auf dem Weg zum Nordpol nimmt nämlich die Zahl derjenigen Sterne stets zu, welche ihre Bögen über dem Horizont ziehen. Die Sterne, die wir am Nordpol wahrnehmen, kreisen schließlich alle schein- bar um den Himmelsnordpol. Alternative Entzündungstheorien stehen somit vor dem Problem, daß dieselben Sterne für manche Beob- achter entzündet werden müssen, während sie für andere nie untergehen. Damit etabliert sich die Vor- stellung einer Himmelskugel, die systematische Betrachtungen erlaubt. Zuvor verbindet sich der Weg zur Kugelgestalt der Erde mit zwei weiteren Traditio- nen: Pythagoreischer Idealismus Die Bögen der Sonne Zum einen vertreten die Pythagoreer früh die Auf- Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 4. Astronomische Geschichte I Seite 6 fassung, daß zur Erklärung grundsätzlicher Fragen Entscheidender dürften indes die astronomisch-geo- über die Natur nur ideale Zahlenverhältnisse oder geo- metrischen Argumente gewesen sein, die sich bei metrische Formen herangezogen werden dürften. Als einer N-S-Bewegung dreifach zeigen: Erdform kommt nur die Kugel als vollkommenster • Die Zenitsterne – die Sterne, die senkrecht über Körper in Betracht. Pythagoras (~570-500 v.Z.) und dem Beobachter kulminieren – wechseln. Parmenides (~515-445 v.Z.) sollen als erste die • Bei einer Reise in Richtung Süden erscheinen Kugelgestalt der Erde behauptet haben. Die Erdzonen Sterne, die in nördlich gelegenen Gebieten nicht zu scheinen auf eine Projektion der Kreise am Himmels- beobachten sind und gewohnte Sterne verschwin- gewölbe auf die Erde zurückzugehen. den am nördlichen Horizont – und umgekehrt. • Zirkumpolarsterne – Sterne, die im Norden stän- Aristotelischer Physikalismus dig oberhalb des Horizonts stehen – haben im Neben diesen spekulativen Schluß tritt eine eher Süden Auf- und Untergänge. physikalische Argumentation: Während die von Aristoteles zusammengefaßten Die Vorstellung, Ruhelage mit Zentrumsposition zu Argumente ins 5. vorchristliche Jahrhundert zurück identifizieren, wird gestützt durch die von Aristoteles reichen, erfolgten quantitative Berechnungen nicht vor vollendete Elementenlehre, nach der sich alles Schwe- dem 3. Jahrhundert v.Z. Sie umfassen immer einen re zum Mittelpunkt bewegt, alles Leichte von ihm astronomischen und einen vermessungstechnischen weg. Er referiert die Vorschläge der ionischen Natur- Teil. philosophen: „Unter den Alten gab Thales die gemeinverständlich- ste Antwort: Die Erde schwimme auf dem Weltmeer wie ein Stück Holz. Leider vergaß er zu erklären wie das Wasser im Weltraum schweben kann.“ um anschließend, seine eigene Lehre vorzutragen: „Klar ist auch, daß die Masse überall gleichmäßig werden wird, wenn sich die Teile überall von den Enden her gleichmäßig zur Mitte hin bewegen. Denn wenn überall gleichviel zugefügt wird, so muß der Abstand der Grenze zur Mitte immer derselbe sein. Und dies ist eben die Gestalt der Kugel.“ Aristoteles findet darüber hinaus, Die Größe der Erdkugel - Methode des Era- tosthenes (3. Jh. v.Z.) „daß die Hypothese nicht allzu unwahrscheinlich ist, die die Gegend um die Säulen des Herakles [= Erdumfangsrechnung von Eratosthenes Gibraltar] mit derjenigen um Indien in Verbindung Aus dem unterschiedlichen Sonnenstand in Syene bringt und dort ein einziges Meer annimmt. Als und Alexandria zur Zeit des Sommersolstitiums (eine Beweis führen sie etwa die Elefanten an, nämlich daß größte Abweichung der scheinbaren Sonnenbahn vom diese Tiere sich an jenen beiden äußersten Enden fin- Himmelsäquator) errechnet Eratosthenes von Kyrene den, offenbar, weil jene äußersten Orte durch ihren (~270-195 v.Z.) den Erdumfang. ϕ (also auch ϕ’) und Zusammenhang dazu geeignet sind.“ der Abstand von Syene zu Alexandria verhalten sich wie der Vollkreis zum Wert des Erdumfangs. Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 5. Astronomische Geschichte I Seite 7 Geschickt bringt Eratosthenes fünf Beobachtungen und Annahmen in Zusammenhang: • Syene und Alexandria liegen etwa auf dem glei- chen Meridian (Nillauf). Damit werden die Folgen einer Zeitdifferenz der beiden Messungen mini- miert. • Der Abstand von Syene und Alexandria beträgt genähert 5000 Stadien. • Da die oberägyptische Stadt Syene – das heutige Verhältnis von Mond- und Sonnenentfer- Assuan – auf dem Wendekreis liegt, befindet sich nung - Methode von Aristarch (~ 310-230 v.Z.) die Sonne zur Mittagszeit am Tag der Sommerson- In der einzig erhaltenen Schrift Über Größen und Ent- nenwende genau im Zenit. fernungen von Sonne und Mond (um 265 v.Z.) ver- • In Alexandria wirft die Sonne einen Schatten von schafft sich Aristarch Klarheit über die Verhältnisse in 1 1/5 Hexekosta (7°,2) – ein Fünfzigstel des vollen der näheren Erdumgebung. Kreisumfangs. Bei Halbmond bilden Erde, Sonne und Mond geome- • Die Sonnenstrahlen erreichen die Erde parallel. trisch notwendig ein rechtwinkliges Dreieck. Wer nun den Winkel zwischen unserem Sichtstrahl zur Sonne Westweg nach Indien und dem zum Mond kennt, kann unter Zuhilfenahme Der Westweg nach Indien ist bereits in der Antike elementarer Geometrie das Abstandsverhältnis von mehrfach geäußert worden und auch die Kugelgestalt Erde-Mond zu Erde-Sonne bestimmen. Da Mond- und der Erde ist nie in Vergessenheit geraten (Erdapfel). Sonnenscheibe in etwa die gleiche Sehfläche einneh- Eine Verwechslung der zugrunde gelegten Längenein- men, gilt nach dem Strahlensatz das gefundene Ver- heit führte jedoch noch im ausgehenden Mittelalter zu hältnis von gerundet 1 : 19 auch für das Breitenver- erheblichen Irrtümern. Auch Columbus nahm einen hältnis von Mond und Sonne. bedeutend zu kleinen Erdumfang an und mußte sich Das Verhältnis Monddurchmesser zu Erddurchmesser entsprechende Einwände gefallen lassen. gewinnt Aristarch aus einem Vergleich der Mond- scheibe zum Kernschatten der Erde bei einer Mond- Weltmodelle finsternis. Verknüpft man diese Ergebnisse, so stellt sich heraus, daß die weit entfernte Sonne über sechs- Weltmodell der Pythagoreer mal breiter ist als die Erde und ihr Volumen etwa das Das pythagoreische Planetenmodell dürfte von Phi- 300fache betragen muß. Ist es da nicht plausibler – so lolaos (5. Jh. v.Z.) stammen. Es ist nur schwerlich als mag Aristarch gedacht haben – anzunehmen, die klei- astronomisch-mathematisches System zu verstehen, ne Erde dreht sich um die Sonne, statt umgekehrt? nimmt jedoch erstmals eine Bewegung der Erde an, Der Winkel zwischen Sonne und Mond ist freilich die mit der Sonne ein Zentralfeuer umkreist. nahe dem rechten Winkel und die tatsächlichen Ver- hältnisse stellen sich weitaus drastischer dar. Antiker Heliozentrismus Laut Archimedes (~287-212 v.Z.) im Sandrechner Geozentrismus soll Aristarch (~310-230 v.Z.) die heliozentrische Da das heliozentrische System keine befriedigende These aufgestellt haben: Erklärung geben konnte, warum weder die Wolken „Denn er nahm an, die Fixsterne und die Sonne blie- zurückbleiben, noch sich eine Fixsternparallaxe zeigt, ben unbewegt stehen, doch die Erde werde im Kreis hatten Aristarchs Überlegungen kaum Nachfolger. um die Sonne geführt.“ Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 6. Astronomische Geschichte I Seite 8 Indem Aristoteles die Elementenlehre von Empedo- der Sonne unter den festen Sternen von West nach kles zu einer Bewegungslehre (Lehre der natürlichen Ost im Lauf eines Jahres, der den Wandel der Jah- Orte) ausbaute, liefert er auch eine „physikalische“ reszeiten und der Dauer von Tagen und Nächten Begründung des Geozentrismus. Während sich aber nach sich zieht, auf der Erde die Körper auf einen Zustand hin bewe- 3. der sich beständig wiederholende und ebenfalls gen, gilt im Himmel die unveränderliche Kreisbewe- einigermaßen gleichmäßige Lauf des Mondes unter gung als natürlich (Dualismus). In der Folge wird den festen Sternen mit dem Wechsel der Lichtge- auch zwischen einer mathematischen (kinematischen) stalten während eines Monats, und einer physikalischen (kosmologischen) Astrono- 4. der keineswegs gleichmäßige, sich aber doch in mie unterschieden. bestimmten Perioden wiederholende Lauf einiger Wandelsterne, die sich gegenüber den Sternen mit Planetenmodelle verschiedenen und ungleichförmiger Geschwindig- keit in der Regel von West nach Ost bewegen, Die Rettung der Phänomene zuweilen aber umkehren in unterschiedlichen Platon (427-347 v.Z.) stellte laut Simplikios (6. Jh.) Zeiträumen von wenigen Monaten bis zu mehreren den Astronomen die Aufgabe, mit rein geometrischen Jahrzehnten. Mitteln Annahmen zu finden, um die Bewegungen der Planeten zu erklären. Simplikios beruft sich dabei auf Anomalien Sosigenes (2. Jh.), der wiederum Eudemos anführt, Seit dem Ende des 4. Jahrhunderts sind Werke daß Platon: erhalten, welche die Fixsternbewegungen im vorgege- benen Rahmen beschreiben können. Besonders zwei „… den Fachastronomen dies als Aufgabe gestellt unangenehme Abweichungen bleiben jedoch zunächst habe, durch welche hypothetisch zugrunde gelegten erklärungsbedürftig. gleichmäßigen und geordneten Bewegungen die bei • Schon den Babyloniern war die sog. erste Anoma- den Planetenbewegungen auftretenden Phänomene vollkommen gerettet würden.“ Unter dem Slogan „die Phänomene retten“ entfaltet sich ein weitreichendes astronomisches Forschungs- programm, das sich durch die Vorschrift rekonstru- ieren läßt: Erkläre Gestirnsspuren durch die Annahme gleichförmiger und kreisförmiger Bewegungen. Es wird sinnvoll sein, sich kurz zu vergewissern, um welche Phänomene es geht. Vier Erscheinungskomplexe 1. der gleichmäßige Umschwung des ganzen Him- mels mit Sonne, Mond und Sternen nach Westen im Lauf von 24 Stunden mit seinem Wechsel von Tag und Nacht (der Himmel selbst drehte mit einer Peri- ode von 23 Stunden und 56 Minuten), 2. der sich beständig wiederholende und in erster Näherung ebenfalls gleichmäßige, nur geringfügige Unterschiedlich lange Jahreszeiten - Er- Schwankungen aufweisende jahreszeitliche Lauf klärung durch Hipparch (~ 190-125 v.Z.) Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 7. Astronomische Geschichte I Seite 9 lie bekannt, die bei der Sonne durch die unter- zwei kontinuierliche Kreisbewegungen zurückzu- schiedliche Länge der Jahreszeiten besonders auf- führen. Die beiden Bewegungen können aber dann fällig ist. nicht mehr das gleiche Zentrum besitzen (homozen- • Die zweite oder große Ungleichheit betrifft die trisch sein). Rückläufigkeit, die Schleifen oder Spitzkehren der Der Planet bewegt sich in der synodischen Periode um Planeten in der synodischen Periode (in bezug auf einen kleineren Kreis, dem sogenannten Epizykel, die Sonne). dessen Mittelpunkt in der siderischen Umlaufzeit (in bezug auf die Fixsterne) auf einem größeren, dem Exzenter sogenannten Trägerkreis oder Deferenten abrollt, in Auch Hipparch (~190-125 v.Z.) bemerkt, daß die dessen Mitte die Erde gedacht wird. Für das Epizy- Winkelabstände zwischen den vier besonderen Bahn- kelmodell spricht, daß es verständlich macht, warum punkten (oben Sommeranfang, links Herbstanfang) die scheinbare Helligkeiten der Planeten bei den unterschiedlich groß werden. Er legt dar, daß die erste Schleifen am größten ist. Anomalie durch eine gleichförmige Kreisbewegung erklärt werden kann, indem man die Erde neben den Ausgleichspunkt Mittelpunkt des angenommenen jährlichen Sonnen- Ptolemäus (85-160) faßt das Wissen seiner Zeit kreises setzt. Da die Sonne mit konstanter Geschwin- zusammen und präzisiert die astronomische Theorie. digkeit kreisen soll, ergeben sich verschieden lange Da er bemerkt, daß die Planetenbewegungen weder Jahreszeiten. von der Erde, noch vom Kreismittelpunkt gleichmäßig erscheinen, führt er einen weiteren exzentrischen Epizykel Punkt (Punctum aequans) ein, von dem aus die Für die zweite Anomalie wurden verschiedene Gleichmäßigkeit (konstante Winkelgeschwindigkeit) Lösungen vorgeschlagen. Einer Anregung von Apol- gerettet werden kann. lonius von Perga (260-190 v.Z.) verdankt sich der Versuch, die diskontinuierliche Bewegung mit Still- Offene Fragen stand und Umkehrpunkt auf eine Kombination von Bereits aus Sicht der antiken Astronomie bleiben drei rätselhafte Umstände: • Warum entfernen sich die inneren Planeten nur im Rahmen ihres Elongationswinkels? Für die inneren Planeten fordert Ptolemäus, daß Erde, Epizykelmit- telpunkt des Planeten und mittlere Sonne auf einer Geraden liegen. Die Sonne sollte aber keine bevor- zugte Rolle spielen. • Warum muß bei den äußeren Planeten der Radius- vektor Planet-Epizykelmittelpunkt parallel zur Ver- bindungsgerade ErdeSonne sein? Damit kann ein Planet zwar beliebige Winkelabstände zur Sonne einnehmen, Rückläufigkeiten treten aber nur bei Opposition auf wie von der Beobachtung verlangt. Die Umlaufzeit eines Planeten auf seinem Epizykel beträgt so ein Erdjahr, obwohl die Sonne keine bevorzugte Rolle spielen sollte. • Die Proportion Erde-Kreiszentrum-Ausgleichs- Epizykelmodell - Bewegung eines inneren punkt bleibt unbegründet. Planeten nach Ptolemäus (2. Jh.) Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 8. Astronomische Geschichte II Seite 10 Astronomische Geschichte II Neuzeit Pierre Leich Vorneuzeitliche Situation Außerwissenschaftliche Faktoren as Hochmittelalter bemüht sich in erster Linie • Insbesondere die Hochseeschiffahrt stellt zuneh- D um logische Untersuchungen bestehender Theo- rien, die in der Regel nur in arabischen Übersetzungen mende Anforderungen an Kartographie und Geo- graphie. vorliegen. Verhaltene Kritik wird höchstens an hypo- • Das Druckwesen entfaltet sich. thetischen Annahmen sichtbar. • Ein wachsendes Selbstbewußtsein läßt den sich anbahnenden gesellschaftlichen Umbruch absehen. Nicole de Oresme • Zur Zeit des Copernicus hat sich der kalendari- Oresme (~1320-1382) erkennt die Ununterscheid- sche Jahresanfang im julianischen Kalender barkeit von täglicher Erdbewegung und Himmelsdre- gegenüber dem astronomischen bereits um mehr als hung, bleibt aber beim Geozentrismus. Er demon- zehn Tage verspätet. striert jedoch an verschiedenen Gedankenexperimen- • Neue Beobachtungsinstrumente – wie die gerade ten, daß Bewegung ein relativer Vorgang ist (etwas erfundene Uhr – lassen genauere Beobachtungen bewegt sich in bezug auf etwas). zu. Oresme stellt erstmals Intensitäten (wie Geschwindig- • Zunächst in Italien, dann überall in Europa entste- keit) durch Linien dar. Anhand eines v-t-Diagramms hen wissenschaftliche Gesellschaften, die begierig gibt er dem Begriff ‘Durchschnittsgeschwindigkeit’ neue Erkenntnisse diskutieren. (Merton-Regel = Mittelwertsatz) einen klaren Sinn und eröffnet damit eine Diskussion über die Interpre- Nicolaus Copernicus tation zusammengesetzter geometrischer Größen (wie der Fläche v·t). Anlaß und Wirkung Nicolaus Copernicus (1473-1543) gilt als Erneuerer Regiomontanus in Sachen Weltbild schlechthin. Sein Beweggrund lag Regiomontanus (1436-76) ahnt, daß eine Verbesse- jedoch eher in einer Wiederherstellung des astronomi- rung sowohl bei der Datenbasis als auch bei der astro- schen Forschungsprogrammes der Antike. Er war so nomischen Theorie ansetzen muß. Er äußert vorsichti- „fundamentalistisch“ orientiert, daß in seinen Augen ge Zweifel an der Auffassung, die Sonne kreise um selbst Ptolemäus zu lax mit den Grundsätzen der anti- die Erde. ken Astronomie umging. Insbesondere die Ad-hoc- Seine Wanderjahre führen ihn nach Nürnberg, wo er Hypothese des Ausgleichspunktes sucht er durch das in der Vorderen Kartäusergasse eine Druckerei für ihn einzig zulässige Mittel der Epizykeltheorie zu betreibt und wissenschaftliche Instrumente sammelt. ersetzen. Er berechnet für die Jahre 1475-1506 ausführliche Die ptolemäische Ausgleichsbewegung auf dem Tabellen, die den täglichen Stand der Planeten ange- Exzenter zur Darstellung der ersten Anomalie ben (Ephemeriden) und von Columbus benutzt wer- während der siderischen Periode wird durch eine dop- den. 1475 wird Regiomontanus von Sixtus IV. nach pelepizyklische Bewegung auf einem Konzenter Rom zur überfälligen Kalenderreform berufen und ersetzt. Damit muß aber für die bisherige Epizykelbe- stirbt kurz darauf. wegung zur Darstellung der Schleifen in der synodi- schen Periode – der zweiten Anomalie – eine andere Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 9. Astronomische Geschichte II Seite 11 Lösung gesucht werden. Copernicus findet sie, indem die Sonne. Immer dann, wenn ein Planet die Erde er jene beiden Vorschläge verwirklicht, die bisher nur innen überholt oder sie ihrerseits an einem äußeren zögernd angedeutet, aber nicht konsequent auf ihre Planeten vorbeizieht, erscheinen am Erdhimmel Brauchbarkeit hin durchdacht wurden. Was gewinnt Schleifen, die folglich in der synodischen Periode auf- man – so wird er sich gefragt haben – wenn man unter treten (wenn der Planet wieder den selben Winkel von Wahrung der Prinzipien, aber im Widerspruch zu der Sonne erlangt). Für die oberen Planeten ist damit bestimmten Annahmen der aristotelischen Physik und auch klar, warum die Schleifen in Opposition (Erde im Widerspruch zur unmittelbaren Anschauung, die zwischen Sonne und Planet auf einer Linie) sichtbar tägliche Drehung des Himmels sowie den jährlichen werden, während die inneren Planeten in unterer Kon- Lauf der Sonne durch den Tierkreis und die analogen junktion (Planet zwischen Sonne und Erde) stehen. synodischen Bewegungen der Planeten mit ihren Schleifen nur als scheinbare Phänomene auffaßt, als nur perspektivisch zustande gekommenes Spiegelbild der Bewegung der Erde, vorgetäuscht durch den Stan- dort des irdischen Beobachters? Neben der jährlichen Bewegung erhält die Erde noch eine tägliche um die eigene Achse, da trotz Heliozen- trik die Fixsternsphäre ja nicht um die Sonne kreist. Leider ist die Copernicanische Theorie im Detail wesentlich diffiziler: hinzu kommen neben Präzession fünf weitere Kreisbewegungen. Die Epizykel behält Copernicus nicht nur bei, er kann auch deren Anzahl nicht verkleinern und benötigt in seiner Endfassung 48 Exzenter, Epizykel, Deferenten und Zykloiden (zur Erklärung geradliniger Oszillationen), die die Voraus- sagen oftmals sogar verschlechtern. Nicht einmal die Sonne steht genau im Mittelpunkt und alle Planeten- kreise haben verschiedene Mittelpunkte. Der Grundgedanke ist jedoch so leicht zu simplifizie- ren, daß der Name von Copernicus zur Parole einer neuen naturwissenschaftlichen Weltsicht wurde. Da an deren Durchsetzung Generationen von Forschern arbeiteten, soll die Rechtfertigung der Copernicani- schen Theorie in systematischer Form diskutiert wer- Planetenschleifen als relativer Effekt - nach den. Nicolaus Copernicus Es wird verständlich, warum Sonne und Mond keine Argumente für Heliozentrik Schleifen aufweisen. Die Copernicanische Theorie ergänzt die Rolle der Die an die Sonne gebundene Bewegung von Merkur Sonne als Licht und Wärmespender. Zu diesen und Venus ergibt sich unmittelbar. unstofflichen Übertragungsvorgängen kommt nun Die Umlaufperioden der Planeten wachsen mit ihrem noch die Zentrumsposition, der später eine anziehende Abstand zur Sonne. Damit verschwindet die riesige Wirkung nachgesagt wird. Geschwindigkeit der Fixsternsphäre, die beträchtliche Die Schleifenbahnen der Planeten erweisen sich als Zentrifugalkräfte an den Sternen erzeugen müßte. relativer Effekt der jährlichen Bewegung der Erde um Allerdings herrschen nach aristotelischer Lehre in der Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 10. Astronomische Geschichte II Seite 12 supralunaren Sphäre (über dem Mond) andere physi- Doch diese Beweise sind ebensowenig wie Doppler- kalische Gesetze als hier auf der Erde. Gegner des verschiebung, Drehimpulserhaltung, Corioliskraft, Heliozentrismus konnten das Argument jedoch für die Vorlauf und Äquatorlauf Angelegenheiten des 16. Erdoberfläche durchaus geltend machen. Jahrhunderts. Da der Erdradius größenordnungsmäßig bekannt war, ließ sich die Geschwindigkeit eines Punktes auf der Bedeutung von Copernicus Erdoberfläche abschätzen. Heutige Werte ergeben für Die Konsequenzen des neuzeitlichen Heliozentris- Nürnberg mehr als 300m/s (1000km/h). Müßte bei mus sind es, die den Niedergang der aristotelisch-pto- solchen Geschwindigkeiten nicht alles in den Himmel lemäischen Lehre „an allen Fronten“ auslösen. Diese geschleudert werden? Auswirkungen sind einerseits Noch drastischer erschien die Lage beim freien Fall. • das Entfernen von Beschränkungen und anderer- Läßt man vom 55 Meter hohen schiefen Turm von seits Pisa eine Bleikugel fallen, so brauchte sie etwa 3,3 • das Auftreten neuer Fragen, die ultimativ nach Sekunden, um am Boden aufzuschlagen. Während Aufklärung verlangen. dieser Zeit hat sich der Fußpunkt des Turms aber mit So wird die prinzipielle Zulässigkeit, der Erde zwei der Erde um über tausend Meter westlich weiterbe- Bewegungen zuzuschreiben, deutlich. wegt. Konzentrische Äthersphären scheiden dagegen wegen Wie soll man es rechtfertigen, daß das Zentrum der Durchdringung aus. Wie erhalten aber nun die Plane- Schwere und das Weltzentrum auseinander fallen? ten ihre Antriebskraft? Ein weiterer Einwand war die Verletzung der Der Dualismus wird zweifelhaft: Wird die Erde zum Sphärenharmonie. Die Mondsphäre müßte die Erds- Himmelskörper, sind die Planeten (und Sterne) auch phäre durchdringen und warum bleibt der Erde über- Materiebrocken. Eine kategoriale Trennung von haupt der Mondkreis erhalten? supra- und sublunarer Sphäre ist nicht mehr durchzu- Auch daß beim besten Willen keine Fixsternparallaxe halten. nachzuweisen war, machte Copernicus nicht glaub- Die Begrenzung des Universums durch die Fixsterns- würdiger. phäre ist nicht mehr notwendig und die Frage nach der Größe und Endlichkeit des Raums wieder offen (Tho- Beweise mas Digges, Giordano Bruno). Die heliozentrische Weltsicht des Copernicus erfor- Die Planetenschleifen zeigen, daß Ortsveränderung derte die Erfindung einer völlig neuen Physik. Die immer relativ ist. erste halbwegs klare Formulierung selbst nur des Die Annäherung von Mathematik und Physik wird zur Beharrungssatzes findet sich erst 1632 bei Galilei, die fruchtbaren Strategie. völlig klare Formulierung des Trägheitssatzes durch Da Weltmittelpunkt und Zentrum der Erdschwere aus- Newton wurde erst 1687 veröffentlicht. einander fallen, erfordert das Rätsel der Schwere und Beweise im modernen Sinn sind: der Zentrierung der Planeten auf den Weltmittelpunkt • die Entdeckung der Aberration von James Bradley zunächst jeweils eigene Begründungen. (1728), Resümierend läßt sich feststellen, daß die Neuzeit • die experimentelle Bestätigung der Erdabplattung Copernicus wohl weniger die richtigen Antworten (Expeditionen 1735 in Peru und 1736-37 in Lapp- verdankt, als die richtigen Fragen. land), • der Nachweis der Fixsternparallaxe (erstmals Tycho Brahe 1838 publiziert von Friedrich Wilhelm Bessel), • die Bestätigung raumstarrer Pendelebenen durch Der dänische Astronom Tycho Brahe (1546-1601) Foucault (1851). wurde sich der Bedeutung genauer und lückenloser Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 11. Astronomische Geschichte II Seite 13 Beobachtungsdaten für die Astronomie bewußt und dem Namen Keplers formuliert worden, in dessen hat das Material an astronomischen Beobachtung Gesetzen sich eine fundamentale Neuorientierung wesentlich vergrößert und präzisiert. zeigt, insofern erst Kepler mit den Aristotelischen Beobachtungen Grundsätzen der Kreisförmigkeit und der konstanten • 1572 entdeckt Brahe einen neuen Stern (Superno- Winkelgeschwindigkeit bricht. va nordwestlich des Sternbilds Cassiopeia), der 18 In einer kühnen Verallgemeinerung des Archimedi- Monate beobachtbar bleibt und an dem Brahe keine schen Hebelgesetzes deutet er den Abstand Planet- Parallaxe feststellen kann. Er war daher in die Sonne als Hebelarm. Wenn sich ein Planet von der unveränderlich gehaltene „achte Sphäre“ zu setzen. Sonne entfernt, verlängert sich der Hebelarm, wird • 1577 erblickt er am Westhimmel einen Kometen. daher schwerer und nach dem peripatetischen Bewe- Die Messungen der schwach ausgeprägten Paralla- gungsgesetz langsamer. xe beweisen, daß er nicht der sublunaren Sphäre Ein Kreisstrom reißt die Planeten mit je nach Abstand angehört und einige Planetensphären kreuzt. und Fähigkeit Kraftwirkung zu empfangen. Er löst Da er trotz steigender Meßgenauigkeit keine Fixstern- sich dadurch von der Selbstbewegungstheorie der Pla- parallaxe feststellen kann, vertritt Brahe ein zum neten und führt eine physikalisch wirkende Bewe- copernicanischen kinematisch (unter Absehung der gungsursache ein. Massen und Kräfte) äquivalentes Planetenmodell, das die Phänomene genauer liefert, die Erde aber im Mit- Der Flächensatz telpunkt der Welt beläßt, um den sich Mond und Son- Für Perihel und Aphel der Marsbahn stellt Kepler ne drehen. Alle weiteren Planeten umkreisen die Son- fest, daß die Bahngeschwindigkeit umgekehrt propor- ne . tional zur Entfernung zur Sonne ist. Er verallgemei- nert, daß Radius und Geschwindigkeit stets umgekehrt Johannes Kepler proportional sind (später erkennt er, daß dies nur für die azimutale Geschwindigkeitskomponente gilt). Der Grundlagen Mangel an einem geeigneten Iterationsverfahren Als seine drei wichtigsten Grundlagen nennt Kepler anstelle der langwierigen Summierung der Radien läßt (1571-1630): ihn bald der einfacheren Rechnung wegen den bis • die Astronomie des Copernicus, 1605 in seinen Augen nur approximativen Flächensatz • die Beobachtungen Tycho Brahes, einsetzen. • die Magnetismustheorie von William Gilbert In moderner Formulierung lautet dieses zweite Kep- (1544-1603). lersche Gesetz: Die Planetenradien (auch Fahrstrahlen Kepler war kurz Brahes Assistent. Nach dessen Tod genannt) überstreichen in gleichen Zeiten gleiche hat Kepler Flächen. Die Abbildung veranschaulicht, wie nahe die 1. Zugang zu den Beobachtungsprotokollen Brahes Voraussagen des antiken Äquantenmodells bei denen und ist Keplers liegen. 2. nicht mehr an dessen Weltsystem gebunden. Bedeutung Ellipsensatz Wissenschaftstheoretisch bedeutsam ist seine Forde- Mit dem Flächensatz überprüft Kepler nun die Erd- rung verstärkter Berücksichtigung der Beobachtungen. bahn – von der aus ja alle Messungen erfolgen – und Andererseits erkennt er die Rolle nichtempirischer berechnet die Marsbahn neu. Dabei stellte er fest, daß apriorischer Elemente, die der Erfahrung begriffliche sie kein Kreis sein kann. Auf haarsträubenden Strukturen unterstellt. (Um–)Wegen gelangt er schließlich zur Einsicht der Die auf eine Bemerkung Kants zurückgehende Rede ellipsenförmigen Planentenbahnen, die als erstes Kep- der ‘Copernicanischen Wende’ wäre wohl besser mit lersches Gesetz bezeichnet wird. Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 12. Astronomische Geschichte II Seite 14 eine große Philosophenschule meint, sondern daß sie ganz im Gegenteil voll von Unregelmäßigkeiten, voll von Löchern und Erhebungen ist, genau wie die Ober- fläche der Erde, die allenthalben durch hohe Berge und tiefe Täler unterschieden wird.“ Auch existieren wesentlich mehr Sterne als bisher angenommen. Galilei demonstriert dies an einer Kon- stellation im Gürtel und Schwert des Orion sowie an den Plejaden. Die Milchstraße und viele Nebel (z.B. Krippe) sind Ansammlungen von Sternen, die im übri- gen enorm weit entfernt sein müssen. 1610 sichtet Galilei in Padua vier Jupitermonde. Dies hat mehrere Konsequenzen: Keplerelipse und Äquantenmodell • Da nun auch um andere Körper Satelliten kreisen, entfällt die Sonderstellung des Erdmondes. Das dritte Keplersche Gesetz • Die Erde kann nicht Zentrum aller Gestirnsbewe- Während bisher nur die Bewegung jeweils eines gungen sein. Offensichtlich ist es möglich, daß Planeten im Blick war, bildet sein drittes Gesetz einen Körper andere Körper umkreisen, die selbst bereits Zusammenhang verschiedener Bahnen (bezüglich umlaufen. eines Gravitationszentrums). Es charakterisiert damit • Undurchdringbare kristalline Sphären sind die stabilen Bahnen und lautet in moderner Formulie- unmöglich. rung: Die Quadrate der Umlaufzeiten verhalten sich • Die Siebenzahl der Wandelsterne ist unmaßgeb- wie die Kuben der Abstände. Ein Planet in doppelter lich. Entfernung benötigt für seinen Umlauf auf dem (dop- • Die Jupitersatelliten gehorchen dem 3. Kepler- pelten) Umfang also mehr als die doppelte Zeit, da er schen Gesetz (Galilei erkennt dies nur qualitativ, da sich dort draußen langsamer bewegen muß, um eine er von Keplers Schriften wenig Notiz nimmt). Bahn um die Sonne zu erhalten. Im gleichen Jahr beobachtet Galilei die wechselnde Das dritte Keplersche Gesetz ist nicht streng gültig, da Sichelgestalt der Venus. Er folgert sofort, daß erstens von den Massen abgesehen wird. alle Planeten keine selbstleuchtenden Himmelskörper sind und zweitens, „daß notwendigerweise Venus wie Galileo Galilei auch Merkur sich um die Sonne drehen.“ Obwohl Galileis (1564-1642) herausragende Be- Mechanik deutung auf dem Gebiet der Mechanik liegt, konnte er Für horizontale Flächen erkennt Galilei den Behar- der Copernicanischen Theorie 1609 durch die Nach- rungssatz. konstruktion eines Fernrohrs wichtige Indizien liefern. In seinem Begriffsrepertoire stellt er der gleichförmig geradlinigen Bewegung die gleichmäßig beschleunig- Astronomische Entdeckungen te Bewegung an die Seite und findet im Zusammen- Seine Mondbeobachtungen führen ihn zu der hang seiner Experimente an der schiefen Ebene das Erkenntnis, daß Fallgesetz. Beim schrägen Wurf (Parabelbahn) stößt er auf die „die Oberfläche des Mondes nicht völlig glatt, frei Superposition von Bewegungen (deren ungestörte von Unebenheiten und genau kugelförmig sei, wie Überlagerung). Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 13. Astronomische Geschichte II Seite 15 Schließlich verdankt das Relativitätsprinzip Galilei Das quadratische Abstandsgesetz wichtige Impulse. Weitere Beträge stammen von John Wallis (1616- 1703), Christopher Wren (1632-1723), Robert Hooke Wegbereiter (1635-1703) und Edmond Halley (1656-1742). Unter ihnen war bereits unstrittig, daß die Kraft der Anzie- Die Vollständigkeit, mit der Newton (1643-1727) das hung zur Sonne dem Quadrat ihrer Entfernung rezi- Gebäude der Klassischen Mechanik errichtet, über- prok ist. Das quadratische Abstandsgesetz entspricht strahlt wichtige Ergebnisse seiner Vorgänger. der Bedingung, daß jedes betroffene Raumstück einen proportionalen Teil der gesamten Gravitationswirkung Rene Descartes empfängt. Bei Descartes (1596-1650) bedeutet Naturerklärung, mechanische Modelle für die Phänomene anzugeben, Isaac Newton bei denen alles Geschehen als Korpuskularbewegung gedeutet wird. Die primären Qualitäten der Gegen- Mechanik stände der Natur sind Ausdehnung und Undurchdring- In seinem epochalen Werk Philosophiae naturalis lichkeit, sie sind mit den Begriffen Form, Größe und principia mathematica – der Titel ist Programm – Bewegung zu beschreiben. macht Newton Kräfte – die er gemeinsam mit den Descartes verwirft Zweckursachen, stellt den Träg- Massen einführt – für die Abweichung von Trägheits- heitssatz auf und fordert, die Physik auf wenige einfa- bahnen verantwortlich. Solange keine Kräfte auf einen che Prinzipien zu gründen. Mehrere Stoßgesetze wer- Körper einwirken, verharrt dieser „in seinem Zustande den von ihm aufgefunden. der Ruhe oder der gleichförmigen geradlinigen Bewe- Als erster spricht Descartes den Gedanken aus, daß gung“. Damit wird Bewegung zu einem Zustand und ein Planet, um eine geschlossene Bahn um die Sonne von nun an ist eine Änderung der Bewegung zu zu beschreiben, ständig auf die Sonne hin fallen muß, erklären, nicht mehr die Bewegung selbst. so daß seine geradlinige Trägheitsbewegung in eine Man möchte nun natürlich wissen, wie sich die Kräfte Kurve verwandelt wird. Den Begriff einer Fernkraft zu den Abweichungen von dieser nichterklärungsbe- vermeidet er und versucht, die Schwere durch geeig- dürftigen Bewegungsrichtung verhalten. Dieser nete Wirbelbewegungen von Ätherteilchen zu Zusammenhang wird im Beschleunigungs- oder Kraft- erklären. gesetz ausgedrückt: Christiaan Huygens „Die Änderung der Bewegung ist der Einwirkung der Um 1666 schuf Huygens (1629-1695) als erster bewegenden Kraft proportional und geschieht nach eine dynamische Theorie der gleichförmigen Kreisbe- der Richtung derjenigen geraden Linie, nach welcher wegung, indem er zeigt, daß dieser eine zentripetale jene Kraft wirkt.“ Beschleunigung von v2/r entspricht. Damit war nach- gewiesen, daß eine kreisförmige Bewegung eben nicht Seit Leonhard Eulers (1707-1783) Reformulierung der ohne Einwirkung äußerer Kräfte verlaufen kann. Eine Mechanik auf der Grundlage von Differentialglei- Anziehung hält er noch 1689 für absurd, benutzte aber chungen wurde es üblich, statt dessen unmittelbar bereits die Proportionalität von Kraft und Beschleuni- F = m · a zu notieren. gung. Unter Huygens wurde die Mechanik eine exakte Gravitationstheorie mathematische Fachwissenschaft, die sich der Newtons Meisterstück war, zu zeigen, daß gewöhnlichen Sprache entzog und auch den Philoso- • die Anziehungskraft der Erde auf den Mond und phen nicht mehr ganz verständlich war. die Zentrifugalkraft des Mondes die beobachtete Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 14. Astronomische Geschichte II Seite 16 Bahn des Mondes hervorbringen, Alle Massen im Weltall ziehen sich gegenseitig an, • die Bahn, die durch eine im Quadrat der Entfer- und zwar mit einer Kraft, die dem Produkt der beiden nung abnehmende Anziehungskraft hervorgeht, beteiligten Massen proportional und dem Quadrat eine Keplersche Ellipse ist, in deren einem Brenn- ihres gegenseitigen Abstands umgekehrt proportional punkt die Sonne steht, ist. • eine elliptische Bahn eine Anziehungskraft erfor- dert, die im Quadrat der Entfernung abnimmt, Ausblick • für jede Zentralbewegung das Flächengesetz gilt, Newton (oder zumindest die Newtonianer) hielten • Kometen sich auf stark exzentrischen Ellipsen die Gravitationshypothese für bewiesen, weil die oder Parabeln bewegen, Ableitung der Keplerschen Gesetze aus der Bewe- • die Wirkung einer Kugel im Außenraum gleich gungsgleichung allein mit Gravitationstermen gelang. der Wirkung ist, wenn die Masse im Mittelpunkt Trotz dieses Fehlschlusses war mit Newtons Gesetz vereinigt ist (Punktmasse). der Weg offen zu einer äußerst genauen Behandlung Das erste Ergebnis sei kurz erläutert: Die Mondbewe- der Bewegungen der Körper unseres Sonnensystems, gung setzt sich aus der Trägheitsbewegung auf der die ungeachtet der Problematik des sog. Drei-Körper- Tangente und dem Fall in Richtung Erde zusammen. Problems – für das keine allgemeinen analytischen Da die Abweichung des Mondes von seiner Bahntan- Lösungen bestehen – in der Berechnung des Planeten gente im Verlauf eines bestimmten kleinen Zeitab- Neptun durch U.V. Leverrier und J.C. Adams einen schnittes der Zentripetalkraft, die den Mond an die Höhepunkt fand. Das moderne KAM-Theorem (1962 Erde zieht, proportional ist, vergleicht Newton diese bewiesen) hat unsere Einsicht in die Dynamik stabiler Abweichung mit der Entfernung, die ein auf der Erde Bahnen weiter vertieft. fallender Körper im gleichen Zeitabstand zurücklegt. Die Newtonsche Gravitationstheorie stieß erst an ihre Newton erhält bei seinen Berechnungen für die Zentri- Grenzen, als deutlich wurde, daß im Rahmen der klas- petalkraft, des Mondes eine um 3600 mal kleinere sischen Physik eine Übertragung der alltäglichen Größe als für die Schwerkraft auf der Erdoberfläche. Ideen über Raum und Materie auf die kosmische Da die Entfernung vom Erdzentrum zum Mond mit 60 Größenordnung kein befriedigendes Modell liefert. Erdradien bekannt war, ergab sich, daß die Anziehung Insbesondere die Annahme, Gravitation sei eine aktive des Mondes zur Erde als die zum Mond ausgedehnte Kraft in einer passiven Raumzeit, konnte sich nur für Schwerkraft betrachtet werden kann. kleine Geschwindigkeiten und Gravitationsfelder als Näherung moderner Theorien behaupten. „Bis jetzt haben wir jene Kraft, welche die Himmels- körper in ihren Bahnen erhält, Centripetalkraft genannt. Daß sie mit der Schwere identisch sei, ist ausgemacht, und wir wollen sie daher künftig Schwere nennen.“ Da sich die Himmelskörper gegenseitig anziehen, ver- wandelt sich der Ausdruck für die zentripetale Beschleunigung nach Einbeziehung der Massen in den Ausdruck des Gesetzes der universalen Wechselwir- kung der Gravitation: F = k•M•m/r2 Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 15. Sonnensystem I Seite 17 Sonnensystem I Sonne und größere Planeten Ronald C. Stoyan 1. Sonnensystem allgemein • die äußeren Planeten Jupiter bis Neptun, mit deut- lich anderen Parametern 1.1. Aufbau des Sonnensystems in keine dieser Klassen fällt Pluto, dessen Natur als as Sonnensystem ist unsere engste kosmische einwandfreier großer Planet auch umstritten ist. D Umgebung, in der die Erde eingebettet ist. Es besteht aus einer Vielzahl von Körpern, die sich alle Will man sich die Dimension des Sonnensystems vor Augen führen, ist folgende Aufstellung sehr auf- auf Keplerbahnen um die Sonne, den Mittelpunkt und schlußreich: die Dominante des Systems, bewegen. Im einzelnen sind dies: Minimale Entfernung von der Erde in Lichtzeit: Körper Anzahl Dimension Sonne 1 1 400 000 km Mond Sonne Venus Mars Jupiter Pluto Planeten 9 71 000 - 1000 km 1,3 sec 8,4 min 2,5 min 4,2 min 34,9 min 5,3h Monde 61 2600 - 10 km Planetoiden 15000 1000 - 1 km Eine noch bessere Veranschaulichung liefert ein Kometen 130 (100000) 40 - 1 km Modell des Sonnensystems im Maßstab Meteoroide ∞ 1 m - 1 nm 1: 1 000 000 000, das heißt 1 000 000 000 km ent- spricht 1 km im Modell. 1.2. Dimensionen des Sonnensystems 1 AE (Astronomische Einheit, also die Entfernung Wenn man die Sonne und die großen Planeten Erde Sonne = 150 000 000 km) entspricht also 0,15 betrachtet, und ihre wichtigsten Größen in Relation zu km = 150 m der der Erde setzt - wie das die nächste Tabelle zeigt - dann stellt man drei unterschiedliche Gruppen fest: Im Modell: • die Sonne, ein Stern Planet Größe Abstand Sonne-Planet • die inneren Planeten Merkur bis Mars, alle mit der Sonne 140 cm - Erde recht ähnlichen Werten Merkur 2 mm 60 m Planet Entfernung [AE] Radius [rE] Monde Masse [ME] Sonne - 109 - 333000 Merkur 0,4 0,4 - 0,05 Venus 0,7 0,9 - 0,81 Erde 1 1 1 1 Mars 1,5 0,5 2 0,19 Jupiter 5,2 11,2 16 317,9 Saturn 9,6 9,4 18 95,1 Uranus 19,3 4,1 15 14,6 Neptun 30,2 3,9 8 17,2 Pluto 39,4 0,2 1 0,001 Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 16. Sonnensystem I Seite 18 Venus 6 mm 105 m Erde 6 mm 150 m Mars 3 mm 225 m Jupiter 7,1 cm 780 m Saturn 6,0 cm 1,4 km Uranus 2,5 cm 2,9 km Neptun 2,4 cm 4,5 km Pluto 1 mm 5,9 km Sehr eindrücklich wird es, wenn man sich diese Größenordnung in einem in der Natur aufgebauten Modell selbst erfühlt und erläuft. Sonne mit Protuberanz 1.3. Titius-Bode-Reihe Die Abstände der Planeten von der Sonne scheinen 2.1. Grundparameter nicht willkürlich gewählt zu sein. Tatsächlich gibt es Radius Masse Dichte Alter eine mathematische Reihe, die sogenannte Titius- 700000 km 2 ×107 t 1,4 g/cm³ ca.4 Mrd a Bode-Reihe, die die Planetenabstände recht gut faßt: D = 0,4 + 0,3 • 2n 2.2. Aufbau setzt man ein: Die Sonne gliedert sich in mehrere konzentrische Schalen, in denen bestimmte Prozesse ablaufen: Planet n D [AE] • Zentralgebiet, hier finden die energieliefernden Merkur - 0,4 Kernreaktionen statt Venus 0 0,7 • Strahlungszone, die Energie wird durch Strahlung Erde 1 1 nach außen weitergegeben Mars 2 1,6 • Konvektionszone, die Materie „kocht“ auf und Planetoiden 3 2,8 transportiert so Energie nach außen Jupiter 4 5,2 • Photosphäre, die von der Erde aus sichtbare Son- Saturn 5 10,0 nen „Oberfläche“ Uranus 6 19,6 • Chromosphäre, die knapp über der Photosphäre Neptun 7 38,8 liegt Planet X 8 77,2 • Korona, die heiße Gasatmosphäre der Sonne Man kann diese Schichtung sehr gut nachvollziehen, Man erkennt: Zwischen den Planeten Mars und jupiter wenn man Dichte und Temperatur gegen den Abstand ist eine Lücke in der Reihe, hier fehlt etwas. tatsäch- vom Sonnenzentrum aufträgt. Die Dichte nimmt nach lich wird diese Lücke von den Planetoiden aufgefüllt; außen hin ab, hat an der Stelle der Photosphäre einen es gibt die Hypothese, daß diese Kleinplaneten aus sehr großen Abfall, die Korona hat nur noch eine sehr einem großen zerbrochenen Körper entstanden sind. geringe Dichte. Die Temperatur erreicht im Sonnenze- trum ein Maximum, nimmt bis zur Photosphäre auf ca. 5500° ab, um in der Korona wieder auf einige Mil- 2. Sonne lionen Grad anzusteigen. Die Sonne ist der Zentralkörper unseres Sonnensy- stems, sie ist ein Stern. Über 99% der gesamten Masse 2.3. Energieerzeugung des Sonnensystems sind in ihr konzentriert. Die Energiequelle der Sonne und somit auch die Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 17. Sonnensystem I Seite 19 Energiequelle allen Lebens auf der Erde ist die Kern- • Oberfläche kraterübersät, mondähnlich fusion im Sonneninneren. Hier werden aus Wasser- • keine Atmosphäre stoffatomen über zahlreiche Prozesse Helium- bis • extreme Temperaturunterschiede Eisenatome gebildet, wobei Energie frei wird. im Amateurfernrohr: Phasen 2.4. Photosphärenstrukturen 3.3. Venus Betrachtet man in einem Fernrohr mit Weißlichtfil- • Oberfläche durch Tektonik geformt: Spalten, Vul- ter die Sonne, so fallen Einzelheiten auf: kane, Lavaflüsse,... • Sonnenflecken; dunkle Gebiete mit geringerer • sehr dichte Atmosphäre, v.a. CO2, S-Verbindun- Temperatur gen: Treibhauseffekt • Fackeln, helle Gebiete im Amateurfernrohr: Phasen, Atmosphärenstrukturen • Granulation: brodelnde Gasblasen der Konvekti- onszone 3.4. Mond • Oberfläche: Unterscheidung in Terrae (kraterrei- 2.5. Aktivität der Sonne che Hochländer) und Mare (lavaüberflutete Ebe- Die Sonne wird stark von ihrem deutlich ausge- nen) prägten Magnetfeld beherrscht. Etwa alle 22 Jahre • keine Atmosphäre wechselt das Sonnenmagnetfeld seine Polung. Daraus im Amateurfernrohr: detaillierte Mondtopographie resultiert ein 11-jähriger Zyklus der sichtbaren Struk- turen, zum Beispiel der Sonnenflecken. Beobachtet 3.5. Mars man diese und zählt die Anzahl der Flecken mit einer • Oberfläche: verkratert, Anzeichen vergangener Sonnenflecken-Relativzahl, dann kann man die Länge vulkanischer und hydrischer Aktivität und Stärke der Zyklen bestimmen. Derzeit befinden • dünne Atmosphäre, Wassereiswolken, CO2-Pol- wir uns in einem Minimum der Sonnenaktivität, das kappen nächste Maximum wird im Jahr 2000 erwartet. • zwei Monde: Phobos und Deimos, eingefangene Planetoiden 3. Innere Planeten: im Amateurfernrohr: Albedostrukturen, meteorolog. Merkur, Venus, Erde/Mond, Mars Erscheinungen Planet r [km] Umlauf Rotation Achsneig. Albedo Dichte [g/cm3] Merkur 2440 87,9 d 58 d 0° 0,06 5,42 Venus 6052 224,7d 243 d (ret) 2° 0,79 5,25 Erde 6378 356,3 d 24 h 23° 0,4 5,52 Mond 1738 27 d 27 d 1,5° 0,07 3,34 Mars 3396 686 d 24 h 37 m 23° 0,15 3,94 Die inneren Planeten geben ein sehr erdähnliches Bild ab: Sie haben eine feste Oberfläche, nur zum Teil 4. Äußere Planeten: dünne Atmosphären, sind in der Größe zwischen der Erde und dem Mond angeordnet. Man erkennt auf Jupiter, Saturn, Uranus, Neptun (, Pluto) einigen Spuren von tektonischer Aktivität. Sie werden deshalb auch als terrestrische Planeten bezeichnet. Die äußeren Planeten unterscheiden sich grundle- gend von den inneren. Sie sind wesentlich größer, 3.1. Grundparameter haben tiefe Gasatmosphären aus Wasserstoff, Helium 3.2. Merkur und einigen Kohlenstoffverbindungen. Gemein ist Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 18. Sonnensystem I Seite 20 Mars Jupiter ihnen außerdem ein Ringsystem und eine große km, Dicke 10 km) Anzahl von Monden. • 18 Monde, davon Titan (Radius 2575 km) größter des Sonnensystems mit Atmosphäre Planet r [km] Umlauf Rotation Achsneig. Albedo Dichte [g/cm3] Jupiter 71492 11,8 a 9,9h 3° 0,52 1,33 Saturn 60268 29,4 a 10,2h 26° 0,47 0,70 Uranus 25559 83,7 a 15 h 98° 0,51 1,30 Neptun 24764 163,7 a 17 h 30° 0,41 1,76 Pluto 1151 248,0 a 6,4 d 118° 0,3 1,1 4.1. Grundparameter im Amateurfernrohr: Ring mit Teilungen, Bänder und 4.2. Jupiter Zonen, Monde • Tiefe Gasatmosphäre (v.a. H, He, C-Verbindun- gen), kein fester Kern • komplexes Muster aus Hoch- und Tiefdruckzonen sehr feiner, schwacher Ring • 16 Monde, davon 4 in Planetengröße: Io, Europa, Ganymed, Kallisto • Io mit rezenter Vulkanaktivität im Amateurfernrohr: Bänder (dunkel) und Zonen (hell); Strömungszonen; Einzelobjekte; Monderschei- nungen 4.3. Saturn • Atmosphäre wie Jupiter, weniger turbulent • deutlicher, markanter Ring (Durchmesser 100000 Saturn Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 19. Sonnensystem I Seite 21 4.4. Uranus • Atmosphäre wie Jupiter, nahezu ohne Einzelhei- ten • schwacher Ring • 17 Monde im Amateurfernrohr: Planetenscheibchen, Monde 4.5. Neptun • Atmosphäre wie Jupiter, dunkle und helle Wol- kensysteme • schwacher Ring • 8 Monde, darunter Triton mit rezenter Aktivität im Amateurfernrohr: Planetenscheibchen, Mond Tri- ton 4.6. Pluto • keiner der großen Gasplaneten, sondern eher Der Pathfinder-Rover „Sojourner“ auf dem kleinplanetenähnlich oder wie Triton Mars • Doppelsystem zusammen mit nur halb so großem Mond Charon • einziger Planet ohne Raumsondenbesuch im Amateurfernrohr: Planet als schwacher Stern Anhang: Erforschung des Sonnensystems durch Raumsonden Sonde Ziel Start Ankunft Ergebnisse Mariner 4 Mars 1965 erste Nahaufnahmen Mariner 9 Mars 1971 Kartierung Pioneer 10 Jupiter 1972 1973 erste Bilder Pioneer 11 Jupiter 1973 1974 erste detaillierte Bilder Saturn 1979 erste Bilder Mariner 10 Merkur 1973 1974 erste Bilder, Teilkartierung Venera 9,10 Venus 1975 Landung Viking 1,2 Mars 1975 1976 Landung + Orbiter Voyager 1 Jupiter 1977 1979 umfangreiche Daten Saturn 1980 Voyager 2 Jupiter 1977 1979 umfangreiche Daten Saturn 1981 Uranus 1986 Neptun 1989 Ulysses Sonne 1990 1992 Sonnen-Magnetfeld-Messungen Magellan Venus 1996 Kartierung Galileo Jupiter 1997 Sonde + Atmosphär.probe Pathfinder Mars 1996 1997 Landung Mars Global SurveyorMars 1996 1997 Kartierung Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 20. Sonnensystem II Seite 22 Sonnensystem II Kometen, Meteorite, Asteroide Ralph Puchta 1. Kometen • 1668 in Danzig erscheint die Cometographia von Johannes Hevelius 1.1 Allgemeine Informationen zu Kometen • 1680 Dörffel und Isaak Newton zeigen, daß sich 1.1.1 Kometen gestern und heute Kometen auf einer parabelförmigen Bahn um die 1.1.1.1 Kometen in der Geschichte Sonne bewegt Kometen (griech.: Haarstern): • 1705 Halley weist nach, daß es sich bei den • eine der auffälligsten Himmelserscheinungen Kometen von 1531, 1607 und 1682 um ein und • erscheinen nicht so „regelmäßig“ wie Planeten am denselben Kometen handelt. Damit wird den Himmel Kometen eine elliptische Bahn um die Sonne zuge- • teilweise sehr hell ordnet. • 1759 Die von Halley vorhergesagte Wiederkehr Deutung durch europäische Astrologen seines Kometen wird ein Triumph für die Newton- Kometen als Vorboten einschneidender Ereignisse sche Physik B.: Halleyscher Komet soll bei seiner Erscheinung 1910 den 1. Weltkrieg angekündigt haben 1.1.1.2 Was ist an Kometen heute interessant[2] Ob Hyakutake (zu ihm haben die Astrologen keine In Kometen vermutet man „tiefgefrorene Urmate- Vorhersagen getätigt) die Ablösung des SPD OB Dr. rie“, aus der unser Planetensystem vor Jahrmillionen P. Schönlein durch Dr. L. Scholz (CSU) in Nürnberg entstanden ist. im Frühling 1996 oder der Komet Tabor das Amtsju- Durch Unterkühlung und Fehlen der Schwerkraft soll- biläum von Dr. H. Kohl im Herbst 1996 angekündigt te sie keine Umwandlung mit gemacht haben. Ebenso hat darf jeder selbst für sich entscheiden. fehlt der Einfluß von Strahlung, da Kometen den größten Teil ihres Lebens von der Sonne entfernt ver- Kometen wurden nicht immer als Himmelskörper bringen. Man sucht besonders nach Molekülen, die für angesehen die chemische Evolution als Vorläufer der biologi- • Aristoteles sah in Kometen irdische Dämonen, die schen Evolution verantwortlich sein könnten. in den Himmel emporgetragen wurden und damit atmosphärische Erscheinung. Bis in die beginnende 1.1.2 Wieviel Kometen gibt es Neuzeit wurde die atmosphärische Theorie vertre- • Kometenkatalog von 1989: 810 Kometen ten. • ca. 130 kurzperiodische Kometen • 1531 Peter Apian weist darauf hin, daß der Kome- • jährlich werden etwa ein ein Dutzend neu ent- tenschweif immer von der Sonne weggerichtet ist deckt • 1577 Tycho de Brahe (Däne) schloß aus der nicht vorhandenen täglichen Parallaxe auf die Bahn des durchschnittlich sind von der Erde aus pro 100 Jahre Kometen und stellte fest, daß sie viel größer ist, als 5 - 6 eindrucksvolle Kometen sichtbar die des Mondes. ⇒ Kometen sind echte Himmelskörper UND Ende durchschnittliche Masse des Kerns: 1015 - 1018 g des aristotelischen Weltbildes • 1618 Johannes Kepler weist den Kometen gerade 1.1.3 Wie werden Kometen benannt Bahnen durch unser Sonnensystem zu Kometen werden bezeichnet nach dem Zeitraum der Entdeckung z.B. erste Hälfte Januar 1995 mit Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 21. Sonnensystem II Seite 23 1995 A. Der erste Komet bekommt dann zusätzlich (sonnenfernster Punkt) von 150 000 AE (1 AE = noch eine 1, der 2 eine 2 ... 1,496 . 108 km = Abstand Erde - Sonne) noch der Also z.B. der 2. Komet in der ersten Januarhälfte 1995 Schwerkraft der Sonne. (vgl. Erde - Pluto:∅40 AE) wird als 1995 A2 bezeichnet. Die Art des Umlaufs wird im 1. Buchstaben berück- 1.1.5 Kometenheimat sichtigt: Die „Heimat“ der langeperiodischen Kometen ist P: periodischer Komet die Oortsche Wolke (nach niederl. Astronom (1900 - C: langperiodischer Komet 1992): Jan Hendrik Oort) mit 100 Milliarden Kome- D: „verstorbener“ Komet ten. Umgibt als kugelschaliges Reservoir unser Plane- X: „unsicherer“ Komet tensystem mit einem Durchmesser von ca. 100.000 A: Kleinplanet AE bis zur halben Entfernung zum nächsten Stern.. Durch Wechselwirkung mit anderen stellaren Objek- Zum einfachen Sprachgebrauch werden Kometen ten z.B. anderen Planetensystemen werden Kometen noch zusätzlich nach ihren Entdeckern benannt: ins innere unseres Sonnensystems geschickt und sind dann ein „neuer“ Komet. z.B.: Beweis für die kugelige Gestalt: langperiodische Hyakutake (nach Yuji Hyakutake): C/1996 B2 Kometen treten aus beliebigen Richtungen auf. (2. Komet, der in der 2. Januar Hälfte (31. Januar) In der Oortschen Wolke sind keine Objekte beobacht- 1996 entdeckt wurde mit einer langperiodischen bar. (zu klein zu weit weg) Umlaufzeit) Die kurz- und mittelperiodischen Kometen sind im Hale-Bopp (nach Thomas Hale und Alan Bopp): Kuiper-Gürtel beheimatet (niederl.- amerik. Astronom C/1995 O1 Gerard Peter Kuiper (1905-1973)), der jenseits der (1. Komet, der in der 2. Juli Hälfte (25. Juli) 1995 ent- Neptunbahn liegt. Hier konnte auch 1992 das erste deckt wurde mit einer langperiodischen Umlaufzeit) Objekt entdeckt werden. Entfernung von der Sonne etwa 30 - 100 AE. 1.1.4 Einteilung von Kometen Begründung für die Gürtelgestalt: nur wenig gegen die 3 Typen von Kometen: Ekliptig geneigte Bahn der kurz- und mittelperiodi- • kurzperiodische Kometen (Umlaufzeit -10 Jahre) schen Kometen. kürzeste Umlaufzeit: Früher glaubte man, daß die kurz- und mittelperiodi- Encksche Komet: 3,3 Jahre Periode schen Kometen durch Schwerkrafteinflüsse o.ä. aus Entdeckung: 1786 Piere Méchain langperiodischen Kometen entstanden sind.[3,4] Bahnberechnung: Johann Franz Encke • mittelperiodische Kometen (Umlaufzeit 10 - 100 1.1.6 „Start“ eines Kometen Jahre) : Durch Wechselwirkung mit den großen Planeten wer- Halleyscher Komet (Periode ca. 76 Jahre) den ab und zu Kometen in ihrer „Ruhelage“ gestört • langperiodische Kometen (Umlaufzeit 100 - 107 und machen sich auf um „richtige“ Kometen zu wer- Jahre) den. B.: Hyakutake (1996) (Schätzung der ESO: Umlaufzeit: 17.250 Jahre) 1.2 Aufbau und Entwicklung eines typischen Oft als nichtperiodische Kometen angesehen, da die Kometen Umlaufzeit zu groß für öfter Beobachtung ist. Heu- 1.2.1 Aufbau eines typischen Kometen te geht man davon aus, daß auch die Kometen mit • 19. Jahrhundert bis ca. 1950: Schwarmtheorie: der längsten Umlaufzeit Mitglieder unseres Son- Kometenkern besteht aus einer lockeren Ansamm- nensystems sind. Sie unterliegen trotz eines Aphels lung von kleinen Partikeln Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 22. Sonnensystem II Seite 24 • heute Theorie von amerik. Astronom Fred Whip- ple: Komet als „schmutziger Schneeball“ (Wasse- reis mit anorganischem Staub (Silikate) und organi- schen Molekülen vermengt) 1.2.2 Metamorphose eines typischen Kometen während seiner Bahn um die Sonne 1. Annäherung an die Sonne ⇒ Verdampfung bzw. Sublimation der flüchtigen Gase, unter Mitnahme von Staubteilchen (geringe Aufbau eines Kometen Gravitation zum Kometen!) 1.2.3 Chemische Zusammensetzung eines Kometen • [Verdampfung nicht über ganze bestrahlte Fläche, wichtigstes Instrumente: sondern nur in „aktiven“ Zonen sog. Jets (Strahl- • Spektroskopie, besonders auch von organischen ströme) z. B. Hale-Bopp Frühling 97] Molekülen Huggins und Secchi 1864/1868 1. ⇒ Komabildung (105 - 106 km) Kometenspektroskopie • Beginn der Komabildung bei ca. 5 AE Sonnendi- ⇒Kohlenstoff wurde nachgewiesen stanz zum Kometen. • Absicherung der Messung: • Das Koma ist gasförmig! -Experiment 2. weitere Annäherung an Sonne -quantenmechanische Berechnung ⇒ Bildung eines von der Sonne abgewandten Im Weltall herrschen Bedingungen, die im Labor nur Schweifes schwer nachzustellen sind, aber den für die quanten- • langgestreckter und schwach gekrümmter Ionen- mechanischen Berechnung vorausgesetzten Bedingun- schweif gen sehr gut entsprechen: • diffuser Staubschweif • keine bzw. kaum Wechselwirkungen mit anderen • oft sind beide Schweife überlappt und nur Molekülen schlecht getrennt beobachtbar • Moleküle in der Gasphase Es konnten zweifelsfrei bestimmt werden: Ausnahmen: neutrale Verbindungen: Komet Elst-Pizarro (Entdeckung 8/1996): H2O, HCN, CH3CN, CH4, CH2, NH3 • ausgeprägter Schweif Radikale (ein ungepaartes e-): • kein Koma C2, C3, CH, CN, CS, OH, NH, NH2 ⇒ Vermutung: Kleinplanet mit wenig Eis, der sich Ionen (geladene „Atome“ oder Moleküle): zum Kometen verwandelt hat (Lit.: Regiomonta- CO+, CO2+, CH+, CN+, C+, N2+, OH+, H2O+, nusbote 4/96) Atome: Na, Ca, Cr, Mn, Fe, Ni, Cu, K, H, C, O, S Temperaturen im Kern von Hyakutake: vermutete Moleküle: HNCO (Isocyansäure), HCO- 28.2.96 19K, 12.3.96 46K, 16.3.96 55±8K Kometenteil Zusammensetzung Erscheinung Dimension [km] Kern Eis, Staub unsichtbar max. 100 Koma neutrale Moleküle, sehr groß, in sonnenabgewandte Richtung 105 bis 107 gasförmig Staub, Wasserstoff verzerrt Ionenschweif ionisiertes Gas nahezu gerade max.107 (z. B. CO+) Staubschweif Staubpartikel gekrümmt max.108 Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 23. Sonnensystem II Seite 25 NH2 (Formamid), HC=NH (Methylenimin) 1.3 Lebensdauer von Kometen Kometen unterliegen starken Druck-, Temperatur-, Wobei: Gravitations- und Strahlungsschwankungen während X: Bereits zu Anfang unseres Jahrhundert bekannt [6] ihres Umlaufs um die Sonne. Durch Gas- und Stau- X: Bis zu Beginn der Raumfahrt bekannt [6] bausstoß z.B. im Schweif, ist der Masseverlust für jeden sichtbar. Oft zerbrechen Kometen unter dem In Hyakutake wurde gefunden: Einfluß von Schwerkraft (vgl. Levi-Shoemaker 9 CO, HCN, H2CO, CH3OH HNC und CS wurden das Sommer 1994). Auf ihrer Bahn hinterlassen Kometen erste mal in einem Kometen gefunden einen Partikelstrom. Kreuzt die Erde so einen Partikel- In Hale-Bopp wurde gefunden: strom, so kommt es bei uns zu Schauern von Meteori- H2O (IR), OH (R, IR, UV), H2O+ (V), HDO (R), CO ten, wir nennen diese Schauer im Volksmund Stern- (IR, R, UV), CO2 (IR), CO+ (V, R), HCO+ (R), H2S schnuppen. Die im Mai und Oktober auftretenden (R), SO (R), SO2 (R), OCS (R), CS (R, UV), H2CS Aquariden und Orioniden stammen z.B. vom Halley- (R), CH3OH (R, IR), H2CO (R), HCOOH (R), schen Kometen. CH3OCHO (R), HCN (R, IR), CH3CN (R), HNC (R), HC3N (R), HNCO (R), CN (V, R), NH3 (R), NH2 Literatur: (V), NH (V), NH2CHO (R), DCN(R), CH4 (IR), [1] R. Froböse, ChiuZ, 1982, 16, 94. C2H2 (IR), C2H6 (IR), C3 (V), C2 (V), [2] E. Deissinger: P.M. 11/1985, S.134 ff. Seltene Isotope: H13CN(R), HC15N(R), C34S(R) [3] N.N., Sterne und Weltraum, 1997, 36, 210 Radiospektroskopie: R [4] Internet: URL http://www.dkrz.de/mirror/tnp/ Infrarotspektroskopie: IR kboc.html (Stand 01.11.1997) Visuelle Spektroskopie: V [5] M. Mladenovic, S. Schmatz, P. Botschwina, J. Ultravioletspektroskopie: UV Chem. Phys., 1994, 101, 5891. (http://iram.fr/hale-bopp/comet.html) [6] M. Reichenstein: Kometen - kosmische Vagabun- den, Urania Verlag, Leipzig Jena Berlin, 1985 S. 60ff Absicherung am Beispiel von C3:[5] C3: lineares Molekül, C-C Abstand: 1,29452 Å, • 1994 berechnet in Göttingen mit sehr großem Aufwand (ab initio-Berechnung) • Spektrum, Experiment und Berechnung stimmen überein • C3 von Interesse, da außer stellarem Objekt auch kleiner Kohlenstoffcluster • über das dazugehörige Spektrum wurde schon 1882 von W. Huggins im Zusammenhang mit Komet Hale Bopp mit ausgeprägtem Ionen - und Staubschweif Kometenuntersuchungen berichtet. 2. Meteoriten Quelle für C3: Diazomethylenacetylen 2.1 Definition: Aus was besteht der „Staub“: Meteorit: silikatische Stoffe mit Absorptionen von Eisen und Von außen in die Erdatmosphäre eindringender Klein- Kohlenstoff körper Meteor: Regiomontanusbote · Sonderausgabe Nr. 1 · 1997
  • 24. Sonnensystem II Seite 26 Früher: alle vom Himmel fallenden Objekte (auch Bevorzugter Sammelplatz: Antarktis (kaum Regen, Graupel etc. ⇒ Meteorologie) Umweltverschmutzung)[3] Heute: Leuchterscheinung, die durch das Eindringen • große Meteoriten: von Meteoriten in die Erdatmosphäre verursacht z. B. 30. Juni 1908 Tunguska/Sibirien ca. ∅ 40 m wird.[1] (Kollision ca. 1 mal im Jahrhundert) Herkunft von Meteoriten: z. B. vor 65 Millionen Jahren ∅ 10 km (1 mal in Meteoriten stammen von Kometen und Asteroiden 100 Millionen Jahren) oder bestehen aus - vermutlich wiederum durch Meteoriteneinschlag - abgesprengten Teilen von ande- 2.2.4 Zusammensetzung ren Planeten. Ihre chemische Zusammensetzung lie- Chondrite: fert den entscheidenden Hinweis auf die Herkunft. Enthalten Chondren (ellipsoide und sphärische Silikat- gebilde), MgO, FeO, SiO2 2.2 Einteilung von Meteoriten Die Entstehung ist noch nicht geklärt, besonders inter- 2.2.1 Einteilung nach kosmischer Herkunft[1] essant, da Chondren auf der Erde nicht und auf dem 2.2.2 Einteilung nach Bahnen Mond selten sind Sie sind den nicht gasförmigen Typus Bahn Beschreibung Bemerkung Anteile des solaren Urnebel ver- Planetarische Ellipsen, zum Planetensystem zugehörige kurze Umlaufzeiten kosmische Kleinkörper mutlich am nächsten Kometische Ellipsen, Kleinkörper aus dem Zerfall z.B. Sternschnuppen kurze bis längere von Kometen (Perseiden) Achondrite: Umlaufzeiten Enthalten eine Chondren (Name!) Interstellare Parabel- und Kleinkörper des interstellaren Existenz umstritten Hyperbelbahnen Raums ähnlich terrestrischen Basalten (magmatisches Gestein), kalzium- • sporadische Meteoriten: regellos am Himmel ver- reich teilt Die Entstehung ist bisher nur spekulativ, da im Labor • Strommeteoriten: in Schwärmen auftretend, bei nicht ausreichend reproduziert, vermutlich aus ande- rückwärtiger Verlängerung der scheinbaren Bahnen ren größeren Himmelskörpern in einem Ausstrahlungspunkt (Radiant) am Himmel Stein-Eisenmeteorite ansiedelbar. (z. B. Perseiden im Perseus) [2] Sie enthalten hauptsächlich: SiO2, MgO, FeO Sie entstehen vermutlich aus anderen größeren Him- 2.2.3 Größe der Meteoriten melskörpern Alles möglich zwischen Molekül und Planetoid. Eisenmeteorite: (sehr grob als Einteilung) bestehen aus durchschnittlich: 91% Fe, 8% Ni, 0,6% • Sternschnuppen: kleine Staubteilchen, die beim Co und entstehen vermutlich aus anderen größeren Eintritt in die Erdatmosphäre verglühen Himmelskörpern • größere Brocken verglühen nicht mehr vollständig Die großen Unterschiede liegen jeweils in den Antei- ⇒ sehr interessant, falls sie gefunden werden um len, der einzelnen Bestandteile. Übergangsarten sind Untersuchungen durchzuführen. B.: 1994/1995 ebenfalls bekannt.[2, 4] Wissenschaftler entdecken „Marsbakterien“ in einem Meteoriten, der vom Mars stammen soll. 2.3 Gefährdung und Schutz der Erde im Hin- Nach Schätzungen erreichen pro Jahr mehr als 19 blick auf Meteoriten 000 Meteoriten mit einer Masse von über 100 Beispiel einer Zeitungsmeldung vom Samstag, 12. Gramm die Erdoberfläche. Gefunden werden aller- April 1997: dings höchstens zehn von ihnen, da die meisten ins Meteorit zertrümmerte Auto Meer oder auf unbewohntes Gebiet stürzen. Chambery (dpa/eu) - Ein Meteorit hat in der südost- Regiomontanusbote · Sonderausgabe Nr. 1 · 1997