SlideShare ist ein Scribd-Unternehmen logo
1 von 44
Downloaden Sie, um offline zu lesen
Jeff Smith, Matt Rylander, Huijuan Li
EPRI
EPRI Smart Inverter Workshop, Santa Clara, CA
5/7/2014
Determining Recommended Settings
for Smart Inverters
2© 2014 Electric Power Research Institute, Inc. All rights reserved.
Overview
Objective Determine recommended settings for field site
demonstration
Evaluate the effectiveness of various smart inverter
functions and settings for improving feeder voltage
performance as load and PV vary over time
Approach Time-series simulations in OpenDSS comparing feeder
performance with and without smart inverter functions
Sites Three different feeders, each with unique characteristics and
overall objectives for use of smart inverters
3© 2014 Electric Power Research Institute, Inc. All rights reserved.
Which Smart Inverter Setting is Most Appropriate for My
Situation?
0 5 10 15 20 25
1.024
1.026
1.028
1.03
1.032
1.034
1.036
1.038
1.04
1.042
1.044
Hour
Voltage(pu) Voltages with different voltvar settings
---- Voltvar
---- No PV
---- PV base
115 unique volt/var control settings
4© 2014 Electric Power Research Institute, Inc. All rights reserved.
Site Characteristics
Site kWdc
(Panel
size)
kWac
(inverter
rating
Short-
circuit
MVA @
POI
X/R @ POI
J1 1900 1700 30-36* 1.8-2.6
E1 605 566 38 1.8
H1 1000 1000 71 1.7
*multiple POI
5© 2014 Electric Power Research Institute, Inc. All rights reserved.
Overall Approach
• Solar variability conditions
– Clear day
– Overcast day
– Highly variable day
• Load variability conditions
– Peak load day
– Minimum load day
• Smart inverter settings
– Volt-var
– Volt-watt
– Off-unity power factor 0
2
4
6
8
10
12
1 3 5 7 9 11 13 15 17 19 21 23 25
Power (MW)
Local Time (Hour)
Offpeak
Peak
Sandia’s variability index (VI) and
clearness index (CI) to classify days
Consideration for Different Feeder Load Profiles
6© 2014 Electric Power Research Institute, Inc. All rights reserved.
Smart Inverter Settings
Power Factor Settings (inductive)
0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9
Sample volt/var curves shown: see Video for complete set of curves
Similar range of curves used for volt/watt control
7© 2014 Electric Power Research Institute, Inc. All rights reserved.
Feeder Model Validation
0.98
0.985
0.99
0.995
1
1.005
1.01
1.015
1.02
0
100
200
300
400
500
600
1
14
27
40
53
66
79
92
105
118
131
144
157
170
183
196
209
222
235
248
261
274
287
300
313
326
339
352
365
378
391
404
417
430
443
456
469
482
495
per‐unit voltage
P (kW)
P (kW)
V_model (pu)
V_measure (pu)
E1
J1 H1
0.98
0.985
0.99
0.995
1
1.005
1.01
1.015
1.02
0
200
400
600
800
1000
1200
1
16
31
46
61
76
91
106
121
136
151
166
181
196
211
226
241
256
271
286
301
316
331
346
361
376
391
406
421
436
451
466
481
496
per‐unit voltage
P (kW)
P (kW)
V_measure (pu)
V_model(pu)
0
50
100
150
200
250
1.02
1.03
1.04
1.05
1.06
1.07
0 50 100 150 200 250 300
PV (kW)
Voltage (Vpu)
Time (sec)
Measured
Simulated
PV (kW)
8© 2014 Electric Power Research Institute, Inc. All rights reserved.
Smart Inverter Model Validation
OpenDSS Simulations
260
265
270
275
280
285
290
295
Voltage (Vln)
Time (s)
Measured
Simulated
‐400
‐300
‐200
‐100
0
100
200
300
400
Reactive Power (kvar)
Time (s)
Measured
Simulated
9© 2014 Electric Power Research Institute, Inc. All rights reserved.
Selecting the “Best” Smart Inverter Settings
• Objectives
– Each feeder analysis has unique set of objectives
– Voltage
– Efficiency
– Control
• Metrics
– Approximately 20 conditions are monitored for each feeder
– Only daylight impact is analyzed
– Mean voltage at the point of common coupling (PCC)
– Voltage variability index at the PCC
– Tap operations
– Losses
• Rank objective impact based on the metrics for each scenario
– Solar
– Load
6 combinations all weighted equally (for now…)
10© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site J1: Objectives & Metrics
Objective Metric Weight
1. Avoid overvoltage 
conditions
100
2. Improve customer 
efficiency
100
3. Reduce line regulator 
tap changes
100
4. Combined 1, 2, and 3 33/33/33
11© 2014 Electric Power Research Institute, Inc. All rights reserved.
Sample Plots
Clear Day Overcast day
Highly variable day
PCCvoltage
hour
PCCvoltage
hour
PCCvoltage
hour
0 5 10 15 20 25 30
1.02
1.025
1.03
1.035
1.04
1.045
1.05
0 5 10 15 20 25 30
1.02
1.025
1.03
1.035
1.04
1.045
1.05
0 5 10 15 20 25 30
1.01
1.02
1.03
1.04
1.05
1.06
1.07
12© 2014 Electric Power Research Institute, Inc. All rights reserved.
Circuit Performance Characterization
13© 2014 Electric Power Research Institute, Inc. All rights reserved.
Volt/Var Results
Demo Site J1
Lesson Learned
“best” settings can
be difficult to identify
1.01
1.015
1.02
1.025
1.03
1.035
1.04
1.045
1.05
1
9
17
25
33
41
49
57
65
73
81
89
97
105
113
Feeder Head Voltage
Max Feeder Head
Voltage (pu)
Min Feeder Head
Voltage (pu)
0
100
200
300
400
500
600
700
800
900
1
7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
115
Reg/LTC Tap Operations
Tap Operations
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
1
8
15
22
29
36
43
50
57
64
71
78
85
92
99
106
113
Cap Operations
Cap Operations
1400
1450
1500
1550
1600
1650
1700
1
9
17
25
33
41
49
57
65
73
81
89
97
105
113
Feeder Losses (kWh)
Feeder Losses (kWh)
0.99
1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1
9
17
25
33
41
49
57
65
73
81
89
97
105
113
PCC Voltage
Max PCC Voltage (pu)
Min PCC Voltage (pu)
0
2
4
6
8
10
12
14
16
18
1
7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
115
VI at PCC
VI at PCC
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1
8
15
22
29
36
43
50
57
64
71
78
85
92
99
106
113
Feeder End Voltage
Max Feeder End
Voltage (pu)
Min Feeder End
Voltage (pu)
0
1000
2000
3000
4000
5000
6000
7000
1
9
17
25
33
41
49
57
65
73
81
89
97
105
113Time Above ANSI (sec)
Time Above ANSI (sec)
0.9
0.92
0.94
0.96
0.98
1
1.02
1.04
1.06
1.08
1
7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
Overall Feeder Min/Max Voltage
Max Feeder Voltage
(pu)
Min Feeder Voltage
(pu)
Peak load day
14© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site J1
Combined Objective 4 Best Settings
• Objective
– Avoids overvoltage
– Improves efficiency
– Reduces tap operations
• Metrics
– Lower mean voltage
– Flatter voltage profile
– Less tap operations
General trends in rank are due to
rolling through different setting
characteristics
Lesson Learned
Overall best settings
have similar curves
15© 2014 Electric Power Research Institute, Inc. All rights reserved.
Sample Results – Volt/var control
Demo Site J1
‐1.2
‐1
‐0.8
‐0.6
‐0.4
‐0.2
0
0.95 0.97 0.99 1.01 1.03 1.05
% Avail vars
per‐unit voltage
1.01
1.02
1.03
1.04
1.05
1.06
1.07
0 5 10 15 20 25 30
per‐unit voltage
Hour
no_PV
PV base
voltvar
‐100
0
100
200
300
400
500
600
700
800
900
0 5 10 15 20 25 30
tap operations
hour
Tap_noPV
Tap_Pvbase
Tap_voltvar
‐1.5
‐1
‐0.5
0
0.5
1
1.5
0.95 0.97 0.99 1.01 1.03 1.05 1.07 1.09
Negative impact on voltage and line regulator operations
Positive impact on voltage and line regulator operations
1.01
1.02
1.03
1.04
1.05
1.06
1.07
0 5 10 15 20 25 30
per‐unit voltage
hour
no_PV
PV_base
Voltvar
Volt/var curve
Daily voltage profile
Regulator tap operations
Volt/var curve
Daily voltage profile
Regulator tap operations
0
100
200
300
400
500
600
700
800
0 5 10 15 20 25 30
tap operations
Tap_noPV
Tap_Pvbase
Tap_voltvar
Lesson Learned
Slight variation in
settings can yield
significantly
different responses
16© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site J1
Trends in Volt/var Characteristics
Best curves begin absorbing
reactive power at 1.02 Vpu
Best curves have a steep volt-var
slope
Lesson Learned
Initial results
indicate trends can
be seen
17© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site J1
Best Setting Impact for Objective 4
• Each smart inverter function has one “Best” setting
• Totalized metric for each “Best” setting in Objective 4 is
shown
• The Volt-var function and setting has the best impact for
each metric
PV volt/var volt/watt
power
factor
PCC Mean
Voltage (pu)
1.031 1.027 1.031 1.031
PCC VVI 18.88 8.39 15.56 8.41
Tap
Operations
675 418 603 523
18© 2014 Electric Power Research Institute, Inc. All rights reserved.
Metric Improvement Based on Objective
PV volt/var volt/watt
power
factor
PCC Mean Voltage 1.031 1.027 1.031 1.031
PCC VVI 18.88 8.39 15.56 8.41
Tap Operations 675 418 603 523
PCC Mean Voltage 1.031 1.025 1.031 1.031
PCC VVI 18.88 30.21 15.56 14.18
Tap Operations 675 1727 603 485
PCC Mean Voltage 1.031 1.033 1.032 1.031
PCC VVI 18.88 6.02 9.92 8.41
Tap Operations 675 437 533 523
PCC Mean Voltage 1.031 1.034 1.032 1.032
PCC VVI 18.88 6.60 9.92 9.599
Tap Operations 675 401 533 485
Obj 4
Overall
Obj 1
Reduce
Overvoltage
Obj 2
Improve
Efficiency
Obj 3
Reduce
Taps
19© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site J1 Best Curves
• Best volt/var and volt/watt curves
shown for each objective
• Each objective optimized with
different curve characteristics
Objective 1
Objective 2
Objective 3
Objective 4
Best Power Factor Setting
Objective 1 2 3 4
power
factor
0.90 0.97 0.94 0.97
20© 2014 Electric Power Research Institute, Inc. All rights reserved.
Impact of Load Level on Best Settings
Peak Load
Offpeak Load
21© 2014 Electric Power Research Institute, Inc. All rights reserved.
Sample Day – Comparing “Best” Setting
Responses
Offpeak day, highly variable solar
1.02
1.025
1.03
1.035
1.04
1.045
1.05
0 5 10 15 20
per‐unit voltage
hour
PCC Voltage
0
10
20
30
40
50
60
70
80
0 5 10 15 20
#
hour
Tap Operations
Lesson Learned
Power factor and
proper volt/var
settings can be
effective
22© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site E1: Objectives & Metrics
Objective Metric Weight
1. Reduce voltage
flicker/voltage variations
100
2. Reduce losses 100
3. Combined 1 and 2 50/50
23© 2014 Electric Power Research Institute, Inc. All rights reserved.
Sample Plots
0 5 10 15 20 25 30
0.975
0.98
0.985
0.99
0.995
1
1.005
1.01
1.015
0 5 10 15 20 25 30
0.985
0.99
0.995
1
1.005
1.01
1.015
0 5 10 15 20 25 30
0.975
0.98
0.985
0.99
0.995
1
1.005
1.01
1.015
Clear Day Overcast day
Highly variable day
PCCvoltage
hour
PCCvoltage
hour
PCCvoltage
hour
24© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site E1 Best Curves
• 3 best volt/var and volt/watt
curves shown for each objective
• Each objective optimized with
different curve characteristics
Objective 1
Objective 2
Objective 3
Best Power Factor Setting
Objective 1 2 3
power factor 0.92 0.99 0.93
25© 2014 Electric Power Research Institute, Inc. All rights reserved.
Metric Improvement Based on Objective
PV volt/var volt/watt
power
factor
PCC VVI 9.1787 7.4029 8.9498 6.8539
Losses (kWh) 3079 3038 3078 3124
PCC VVI 9.1787 7.0951 8.9498 6.8480
Losses (kWh) 3079 3082 3078 3129
PCC VVI 9.1787 7.4029 8.9498 8.1283
Losses (kWh) 3079 3038 3078 3091
Obj 3
Obj 1
Obj 2
power factor does not reduce losses
26© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site H1: Objectives & Metrics
Objective Metric Weight
1. Flatter voltage and 
improved customer 
efficiency
50
50
2. Reduced LTC tap 
changes
100
3. Combined 1 and 2 25/25/50
27© 2014 Electric Power Research Institute, Inc. All rights reserved.
Demo Site H1: Best Curves
• 1 best volt/var and volt/watt
curves shown for each objective
• Each objective optimized with
different curve characteristics
Best Power Factor Setting
Objective 1 2 3
power factor 0.92 0.96 0.96
Objective 1
Objective 2
Objective 3
28© 2014 Electric Power Research Institute, Inc. All rights reserved.
Metric Improvement Based on Objective
PV volt/var volt/watt
power
factor
PCC Mean Voltage 1.008 1.008 1.008 1.007
PCC VVI 11.5798 10.7196 11.0827 8.0583
Tap Operations 54 53 54 55
PCC Mean Voltage 1.008 1.006 1.008 1.007
PCC VVI 11.5798 11.0533 11.0827 8.0391
Tap Operations 54 57 54 55
PCC Mean Voltage 1.008 1.009 1.008 1.007
PCC VVI 11.5798 9.4340 10.1347 8.0583
Tap Operations 54 50 53 55
Obj 3
Obj 1
Obj 2
29© 2014 Electric Power Research Institute, Inc. All rights reserved.
Summary
• Overall “best” setting depends
upon objective
– Improve voltage
– Increase efficiency
– Regulator operations
– Increase hosting
• Preliminary analysis indicates
trends in recommended settings
can be found
• Caution: Minor changes in settings
(volt/var) can have significantly
different impacts
• Less “aggressive” settings work
– Less risk, less potential benefit
(e.g., increasing hosting
capacity)
• Results shown today are based
upon site-specific conditions
• Future work for determining
recommended settings
– Other locations
– Other feeders
– Combined inverters
Jeff Smith, Huijuan Li
EPRI
EPRI Smart Inverter Workshop, Santa Clara, CA
5/7/2014
Potential Interaction Between Smart
Inverters
31© 2014 Electric Power Research Institute, Inc. All rights reserved.
Overview
Objective Approach
Evaluating potential inverter interaction
Investigate possible inverter
interaction resulting from smart
inverter control on multiple PV
systems
Time-domain analysis in
Matlab/Simulink to investigate possible
inverter interaction
32© 2014 Electric Power Research Institute, Inc. All rights reserved.
Studied System
PV1: 400 kW, 475 kVA
PV2: 1000 kW, 1235 kVA
20 s simulation widow
1.2 Mvar Cap is switched on at 10 s, which causes voltage rise
33© 2014 Electric Power Research Institute, Inc. All rights reserved.
Interactions Between the Two Inverters
Single PV providing vars Both PVs providing vars
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
V1
V2
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
V1
V2
Oscillations
Observed !
34© 2014 Electric Power Research Institute, Inc. All rights reserved.
What May Impact Var Control
Var control flow
VoltVar Curve
Inverter
Averaging
window
V
Reference Q
Average V
Q
PI
controller
(Kp Ki)
Switching
Command
Factors may impact var control:
• Volt-var curve parameters
• PI controller parameters: Kp and Ki
• Voltage average window length
35© 2014 Electric Power Research Institute, Inc. All rights reserved.
Impact of Volt-var Parameters
Volt/var 1 Volt/var 2
% AvailableVars
voltage (pu)
‐100
Capacitive
100
Inductive
0.95 1.05
% AvailableVars
voltage (pu)
‐100
Capacitive
100
Inductive
0.99 1.01
Controller parameters for both cases:
Kp Ki
0.3 3
36© 2014 Electric Power Research Institute, Inc. All rights reserved.
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
Volt/var 1
Voltages
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
V1 V1
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
V2 V2
Volt/var 2
High ratio may cause oscillations
37© 2014 Electric Power Research Institute, Inc. All rights reserved.
Volt/var 1
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time (s)
%ofAvailableVar
Actual var
Var reference
Vars
Var 1 Var 1
Var 2 Var 2
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual Var
Var reference
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual var
Var reference
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time (s)
%AvailableVars
Actula var
Var reference
Volt/var 2
38© 2014 Electric Power Research Institute, Inc. All rights reserved.
Impact of Controller Parameters
Volt/var 2 Volt/var 2: slower response
% AvailableVars
voltage (pu)
‐100
Capacitive
100
Inductive
0.99 1.01
Controller parameters for case 1:
Kp Ki
0.3 3 % AvailableVars
voltage (pu)
‐100
Capacitive
100
Inductive
0.99 1.01
Kp Ki
0.1 1
Controller parameters for case 2:
39© 2014 Electric Power Research Institute, Inc. All rights reserved.
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
Volt/var 2
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)Voltages
V1 V1
V2 V2
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
Volt/var 2: slower response
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
Smaller control parameters, which means
smaller adjustments at each step, reduce
the oscillations
40© 2014 Electric Power Research Institute, Inc. All rights reserved.
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual var
Var reference
Volt/var 2
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual Var
Var reference
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual var
Var reference
Vars
Var 1
Var 1
Var 2 Var 2
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual var
Var reference
Volt/var 2: slower response
41© 2014 Electric Power Research Institute, Inc. All rights reserved.
Impact of Window Length of Averaging
Voltage
Volt/var 2 Volt/var 2: larger avg window
% AvailableVars
voltage (pu)
‐100
Capacitive
100
Inductive
0.99 1.01
% AvailableVars
voltage (pu)
‐100
Capacitive
100
Inductive
0.99 1.01
Controller parameters for both cases:
Kp Ki
0.3 3
Length of average window= 0.05s Length of average window= 1 s
42© 2014 Electric Power Research Institute, Inc. All rights reserved.
Volt/var 2
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)Voltages
V1 V1
V2 V2
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
Volt/var 2: larger avg window
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
4 6 8 10 12 14 16 18 20
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04
1.05
Time(s)
Voltage(pu)
Longer voltage averaging window
increases oscillation magnitude, but
improved dampening occurs
43© 2014 Electric Power Research Institute, Inc. All rights reserved.
Volt/var 2
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual Var
Var reference
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual var
Var reference
Vars
Var 1 Var 1
Var 2 Var 2
Volt/var 2: slower avg window
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time(s)
%AvailableVars
Actual var
Var reference
4 6 8 10 12 14 16 18 20
-100
-80
-60
-40
-20
0
20
40
60
80
100
Actual var
Var reference
44© 2014 Electric Power Research Institute, Inc. All rights reserved.
Conclusions
• Interactions exist between the two close by inverters
• High ratio may cause oscillations
• Smaller adjustments at each step as a result of smaller
control parameters reduces oscillations
• Longer voltage averaging window increases magnitude of
oscillations, although dampening does occur

Weitere ähnliche Inhalte

Was ist angesagt?

Optimal Capacitor Placement for IEEE 14 bus system using Genetic Algorithm
Optimal Capacitor Placement for IEEE 14 bus system using Genetic AlgorithmOptimal Capacitor Placement for IEEE 14 bus system using Genetic Algorithm
Optimal Capacitor Placement for IEEE 14 bus system using Genetic Algorithm
AM Publications
 

Was ist angesagt? (20)

Optimal Capacitor Placement for IEEE 14 bus system using Genetic Algorithm
Optimal Capacitor Placement for IEEE 14 bus system using Genetic AlgorithmOptimal Capacitor Placement for IEEE 14 bus system using Genetic Algorithm
Optimal Capacitor Placement for IEEE 14 bus system using Genetic Algorithm
 
Test Operation Procedures for Electrical & Electronic Parameters of Solar Pho...
Test Operation Procedures for Electrical & Electronic Parameters of Solar Pho...Test Operation Procedures for Electrical & Electronic Parameters of Solar Pho...
Test Operation Procedures for Electrical & Electronic Parameters of Solar Pho...
 
10 ai impacts&settings_pvss2016_rylander_
10 ai impacts&settings_pvss2016_rylander_10 ai impacts&settings_pvss2016_rylander_
10 ai impacts&settings_pvss2016_rylander_
 
Design and implementation of active power filter for harmonic elimination and...
Design and implementation of active power filter for harmonic elimination and...Design and implementation of active power filter for harmonic elimination and...
Design and implementation of active power filter for harmonic elimination and...
 
15 michael mc carty pv geographic smoothing effect - epri-sandia symposium - ...
15 michael mc carty pv geographic smoothing effect - epri-sandia symposium - ...15 michael mc carty pv geographic smoothing effect - epri-sandia symposium - ...
15 michael mc carty pv geographic smoothing effect - epri-sandia symposium - ...
 
17 mohit epri-sandia symposium_v1
17 mohit epri-sandia symposium_v117 mohit epri-sandia symposium_v1
17 mohit epri-sandia symposium_v1
 
Utility current compensation by PV-APF system using fuzzy logic controller
Utility current compensation by PV-APF system using fuzzy logic controllerUtility current compensation by PV-APF system using fuzzy logic controller
Utility current compensation by PV-APF system using fuzzy logic controller
 
DigSILENT PF - 00 stability fundamentals
DigSILENT PF - 00 stability fundamentalsDigSILENT PF - 00 stability fundamentals
DigSILENT PF - 00 stability fundamentals
 
Maximum power point tracking system for photovoltaic systems
Maximum power point tracking system for photovoltaic systemsMaximum power point tracking system for photovoltaic systems
Maximum power point tracking system for photovoltaic systems
 
07 adhikari aps spp - epri-sandia pv symp - 05102016
07 adhikari aps spp - epri-sandia pv symp - 0510201607 adhikari aps spp - epri-sandia pv symp - 05102016
07 adhikari aps spp - epri-sandia pv symp - 05102016
 
11 reno sandia_dgi_reno_sand2016-4701 pe
11 reno sandia_dgi_reno_sand2016-4701 pe11 reno sandia_dgi_reno_sand2016-4701 pe
11 reno sandia_dgi_reno_sand2016-4701 pe
 
Application and Comparison Between the Conventional Methods and PSO Method fo...
Application and Comparison Between the Conventional Methods and PSO Method fo...Application and Comparison Between the Conventional Methods and PSO Method fo...
Application and Comparison Between the Conventional Methods and PSO Method fo...
 
A Novel Approach for Power Quality Improvement in Distributed Generation
A Novel Approach for Power Quality Improvement in Distributed GenerationA Novel Approach for Power Quality Improvement in Distributed Generation
A Novel Approach for Power Quality Improvement in Distributed Generation
 
Adaptive Neuro-Fuzzy Inference System-based Improvement of Perturb and Observ...
Adaptive Neuro-Fuzzy Inference System-based Improvement of Perturb and Observ...Adaptive Neuro-Fuzzy Inference System-based Improvement of Perturb and Observ...
Adaptive Neuro-Fuzzy Inference System-based Improvement of Perturb and Observ...
 
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
 
Reliability analysis of pmu using hidden markov model
Reliability analysis of pmu using hidden markov modelReliability analysis of pmu using hidden markov model
Reliability analysis of pmu using hidden markov model
 
Perturb and observe maximum power point tracking for photovoltaic cell
Perturb and observe maximum power point tracking for photovoltaic cellPerturb and observe maximum power point tracking for photovoltaic cell
Perturb and observe maximum power point tracking for photovoltaic cell
 
A Neural Network Based MPPT Technique Controller for Photovoltaic Pumping System
A Neural Network Based MPPT Technique Controller for Photovoltaic Pumping SystemA Neural Network Based MPPT Technique Controller for Photovoltaic Pumping System
A Neural Network Based MPPT Technique Controller for Photovoltaic Pumping System
 
Maximum power point tracking algorithms for solar(pv) systems
Maximum power point tracking algorithms for solar(pv) systemsMaximum power point tracking algorithms for solar(pv) systems
Maximum power point tracking algorithms for solar(pv) systems
 
01 russel pv-symposium_pge-tom_russell__10-may-2016
01 russel pv-symposium_pge-tom_russell__10-may-201601 russel pv-symposium_pge-tom_russell__10-may-2016
01 russel pv-symposium_pge-tom_russell__10-may-2016
 

Andere mochten auch

Presentation by A. K. Bohra on Issues & Challenges in Net Metering
Presentation by A. K. Bohra on Issues & Challenges in Net MeteringPresentation by A. K. Bohra on Issues & Challenges in Net Metering
Presentation by A. K. Bohra on Issues & Challenges in Net Metering
Anil Kumar Bohra
 

Andere mochten auch (20)

11 r.kopecek isc-ok
11   r.kopecek   isc-ok11   r.kopecek   isc-ok
11 r.kopecek isc-ok
 
13 tansy ssa grid int @ epri_sandia 2016
13 tansy ssa grid int @ epri_sandia 201613 tansy ssa grid int @ epri_sandia 2016
13 tansy ssa grid int @ epri_sandia 2016
 
2014 PV Distribution System Modeling Workshop: CA Rule 21 Update: Tom Bialek,...
2014 PV Distribution System Modeling Workshop: CA Rule 21 Update: Tom Bialek,...2014 PV Distribution System Modeling Workshop: CA Rule 21 Update: Tom Bialek,...
2014 PV Distribution System Modeling Workshop: CA Rule 21 Update: Tom Bialek,...
 
2014 PV Distribution System Modeling Workshop: Capabilities of Advanced Inver...
2014 PV Distribution System Modeling Workshop: Capabilities of Advanced Inver...2014 PV Distribution System Modeling Workshop: Capabilities of Advanced Inver...
2014 PV Distribution System Modeling Workshop: Capabilities of Advanced Inver...
 
Open-E DSS V7 Active-Active Load Balanced iSCSI HA Cluster (without bonding)
Open-E DSS V7 Active-Active Load Balanced iSCSI HA Cluster (without bonding)Open-E DSS V7 Active-Active Load Balanced iSCSI HA Cluster (without bonding)
Open-E DSS V7 Active-Active Load Balanced iSCSI HA Cluster (without bonding)
 
2014 PV Distribution System Modeling Workshop: Modeling as a Community with M...
2014 PV Distribution System Modeling Workshop: Modeling as a Community with M...2014 PV Distribution System Modeling Workshop: Modeling as a Community with M...
2014 PV Distribution System Modeling Workshop: Modeling as a Community with M...
 
5.1_Empowering Clean Energy_Nasle_EPRI/SNL Microgrid
5.1_Empowering Clean Energy_Nasle_EPRI/SNL Microgrid5.1_Empowering Clean Energy_Nasle_EPRI/SNL Microgrid
5.1_Empowering Clean Energy_Nasle_EPRI/SNL Microgrid
 
2014 PV Distribution System Modeling Workshop: Interaction and Coordination w...
2014 PV Distribution System Modeling Workshop: Interaction and Coordination w...2014 PV Distribution System Modeling Workshop: Interaction and Coordination w...
2014 PV Distribution System Modeling Workshop: Interaction and Coordination w...
 
Dishant ppt
Dishant pptDishant ppt
Dishant ppt
 
2014 PV Distribution System Modeling Workshop: Modeling Effective Grounding f...
2014 PV Distribution System Modeling Workshop: Modeling Effective Grounding f...2014 PV Distribution System Modeling Workshop: Modeling Effective Grounding f...
2014 PV Distribution System Modeling Workshop: Modeling Effective Grounding f...
 
4.2_Microgrid Design Toolkit_Eddy_EPRI/SNL Microgrid
4.2_Microgrid Design Toolkit_Eddy_EPRI/SNL Microgrid4.2_Microgrid Design Toolkit_Eddy_EPRI/SNL Microgrid
4.2_Microgrid Design Toolkit_Eddy_EPRI/SNL Microgrid
 
4.4_Micro Grid Design_Bello_EPRI/SNL Microgrid
4.4_Micro Grid Design_Bello_EPRI/SNL Microgrid4.4_Micro Grid Design_Bello_EPRI/SNL Microgrid
4.4_Micro Grid Design_Bello_EPRI/SNL Microgrid
 
2014 PV Distribution System Modeling Workshop: DG Screening Tool: Jean-Sebast...
2014 PV Distribution System Modeling Workshop: DG Screening Tool: Jean-Sebast...2014 PV Distribution System Modeling Workshop: DG Screening Tool: Jean-Sebast...
2014 PV Distribution System Modeling Workshop: DG Screening Tool: Jean-Sebast...
 
Power quality unit i ANNA UNIVERSITY SYALLABUS
Power quality unit i ANNA UNIVERSITY SYALLABUSPower quality unit i ANNA UNIVERSITY SYALLABUS
Power quality unit i ANNA UNIVERSITY SYALLABUS
 
4.1_Simulation & Analysis Tools for Microgrids_Weng and Cortes_EPRI/SNL Micro...
4.1_Simulation & Analysis Tools for Microgrids_Weng and Cortes_EPRI/SNL Micro...4.1_Simulation & Analysis Tools for Microgrids_Weng and Cortes_EPRI/SNL Micro...
4.1_Simulation & Analysis Tools for Microgrids_Weng and Cortes_EPRI/SNL Micro...
 
3.5_Microgrid Market Operations with Distribution System Operators_Shahidehpo...
3.5_Microgrid Market Operations with Distribution System Operators_Shahidehpo...3.5_Microgrid Market Operations with Distribution System Operators_Shahidehpo...
3.5_Microgrid Market Operations with Distribution System Operators_Shahidehpo...
 
Presentation by A. K. Bohra on Issues & Challenges in Net Metering
Presentation by A. K. Bohra on Issues & Challenges in Net MeteringPresentation by A. K. Bohra on Issues & Challenges in Net Metering
Presentation by A. K. Bohra on Issues & Challenges in Net Metering
 
2014 PV Reliability, Operations & Maintenance Workshop: Arizona Public Servic...
2014 PV Reliability, Operations & Maintenance Workshop: Arizona Public Servic...2014 PV Reliability, Operations & Maintenance Workshop: Arizona Public Servic...
2014 PV Reliability, Operations & Maintenance Workshop: Arizona Public Servic...
 
2014 PV Performance Modeling Workshop: Modeling Photovoltaic Inverter Perform...
2014 PV Performance Modeling Workshop: Modeling Photovoltaic Inverter Perform...2014 PV Performance Modeling Workshop: Modeling Photovoltaic Inverter Perform...
2014 PV Performance Modeling Workshop: Modeling Photovoltaic Inverter Perform...
 
Solar inverter
Solar inverterSolar inverter
Solar inverter
 

Ähnlich wie 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

EN0567 - Assignment C003 Powerlab 3-phase Induction.docx
 EN0567 - Assignment C003 Powerlab   3-phase Induction.docx EN0567 - Assignment C003 Powerlab   3-phase Induction.docx
EN0567 - Assignment C003 Powerlab 3-phase Induction.docx
aryan532920
 
UET Witness Test Report-Public Version
UET Witness Test Report-Public VersionUET Witness Test Report-Public Version
UET Witness Test Report-Public Version
Micaiah Ebel
 
STATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT
STATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENTSTATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT
STATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT
ecij
 
Powerstar Brochure
Powerstar BrochurePowerstar Brochure
Powerstar Brochure
Tracy Eaton
 

Ähnlich wie 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI (20)

2014 PV Distribution System Modeling Workshop: Increasing Hosting Capacity wi...
2014 PV Distribution System Modeling Workshop: Increasing Hosting Capacity wi...2014 PV Distribution System Modeling Workshop: Increasing Hosting Capacity wi...
2014 PV Distribution System Modeling Workshop: Increasing Hosting Capacity wi...
 
EN0567 - Assignment C003 Powerlab 3-phase Induction.docx
 EN0567 - Assignment C003 Powerlab   3-phase Induction.docx EN0567 - Assignment C003 Powerlab   3-phase Induction.docx
EN0567 - Assignment C003 Powerlab 3-phase Induction.docx
 
Power Shaver Energy Saving Systems
Power Shaver Energy Saving SystemsPower Shaver Energy Saving Systems
Power Shaver Energy Saving Systems
 
2015_EEMODS_SynRM_Presentation_Final_09142015
2015_EEMODS_SynRM_Presentation_Final_091420152015_EEMODS_SynRM_Presentation_Final_09142015
2015_EEMODS_SynRM_Presentation_Final_09142015
 
UET Witness Test Report-Public Version
UET Witness Test Report-Public VersionUET Witness Test Report-Public Version
UET Witness Test Report-Public Version
 
Mitigation of Voltage Sags & Swells in LV Distribution System Using Dynamic V...
Mitigation of Voltage Sags & Swells in LV Distribution System Using Dynamic V...Mitigation of Voltage Sags & Swells in LV Distribution System Using Dynamic V...
Mitigation of Voltage Sags & Swells in LV Distribution System Using Dynamic V...
 
IRJET- Arduino UNO Controlled DC Weaving Machine Powered by Solar Energy
IRJET- Arduino UNO Controlled DC Weaving Machine Powered by Solar EnergyIRJET- Arduino UNO Controlled DC Weaving Machine Powered by Solar Energy
IRJET- Arduino UNO Controlled DC Weaving Machine Powered by Solar Energy
 
IRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction MotorIRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction Motor
 
Motor Current Signature Analysis R K Gupta
Motor Current Signature Analysis R K GuptaMotor Current Signature Analysis R K Gupta
Motor Current Signature Analysis R K Gupta
 
BASICS+OF+ASM+WITH+VSD.ppt
BASICS+OF+ASM+WITH+VSD.pptBASICS+OF+ASM+WITH+VSD.ppt
BASICS+OF+ASM+WITH+VSD.ppt
 
8.2_IEEE 1547 and Microgrids_Key_EPRI/SNL Microgrid Symposium
8.2_IEEE 1547 and Microgrids_Key_EPRI/SNL Microgrid Symposium8.2_IEEE 1547 and Microgrids_Key_EPRI/SNL Microgrid Symposium
8.2_IEEE 1547 and Microgrids_Key_EPRI/SNL Microgrid Symposium
 
IRJET- Power Generation using GYM Equipment (Lat Pull Down)
IRJET- Power Generation using GYM Equipment (Lat Pull Down)IRJET- Power Generation using GYM Equipment (Lat Pull Down)
IRJET- Power Generation using GYM Equipment (Lat Pull Down)
 
DigSILENT PF - 01 pilot project palau
DigSILENT PF - 01 pilot project palauDigSILENT PF - 01 pilot project palau
DigSILENT PF - 01 pilot project palau
 
1.3
1.31.3
1.3
 
Study of the impact on the protection plan of a pv production integrated to t...
Study of the impact on the protection plan of a pv production integrated to t...Study of the impact on the protection plan of a pv production integrated to t...
Study of the impact on the protection plan of a pv production integrated to t...
 
Sme apfc panel catalogue
Sme apfc panel catalogueSme apfc panel catalogue
Sme apfc panel catalogue
 
IRJET- Battery Management System by using PWM Charge Controller
IRJET- Battery Management System by using PWM Charge ControllerIRJET- Battery Management System by using PWM Charge Controller
IRJET- Battery Management System by using PWM Charge Controller
 
STATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT
STATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENTSTATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT
STATE OF THE ART: DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT
 
Powerstar Brochure
Powerstar BrochurePowerstar Brochure
Powerstar Brochure
 
Product: Power Factor & Harmonics: StacoVAR: Let's Discuss Power Factor Corre...
Product: Power Factor & Harmonics: StacoVAR: Let's Discuss Power Factor Corre...Product: Power Factor & Harmonics: StacoVAR: Let's Discuss Power Factor Corre...
Product: Power Factor & Harmonics: StacoVAR: Let's Discuss Power Factor Corre...
 

Mehr von Sandia National Laboratories: Energy & Climate: Renewables

Mehr von Sandia National Laboratories: Energy & Climate: Renewables (20)

M4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339r
M4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339rM4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339r
M4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339r
 
Sand2018 0581 o metadata for presentations 011918 lac
Sand2018 0581 o metadata for presentations 011918 lacSand2018 0581 o metadata for presentations 011918 lac
Sand2018 0581 o metadata for presentations 011918 lac
 
11 Testing Shear Strength and Deformation along Discontinuities in Salt
11 Testing Shear Strength and Deformation along Discontinuities in Salt11 Testing Shear Strength and Deformation along Discontinuities in Salt
11 Testing Shear Strength and Deformation along Discontinuities in Salt
 
10 Current status of research in the Joint Project WEIMOS
10 Current status of research in the Joint Project WEIMOS10 Current status of research in the Joint Project WEIMOS
10 Current status of research in the Joint Project WEIMOS
 
26 Current research on deep borehole disposal of nuclear spent fuel and high-...
26 Current research on deep borehole disposal of nuclear spent fuel and high-...26 Current research on deep borehole disposal of nuclear spent fuel and high-...
26 Current research on deep borehole disposal of nuclear spent fuel and high-...
 
25 Basin-Scale Density-Dependent Groundwater Flow Near a Salt Repository
25 Basin-Scale Density-Dependent  Groundwater Flow Near a Salt Repository25 Basin-Scale Density-Dependent  Groundwater Flow Near a Salt Repository
25 Basin-Scale Density-Dependent Groundwater Flow Near a Salt Repository
 
24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)
24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)
24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)
 
23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...
23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...
23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...
 
22 WIPP Future Advancements and Operational Safety
22 WIPP Future Advancements and Operational Safety22 WIPP Future Advancements and Operational Safety
22 WIPP Future Advancements and Operational Safety
 
21 WIPP recovery and Operational Safety
21 WIPP recovery and Operational Safety21 WIPP recovery and Operational Safety
21 WIPP recovery and Operational Safety
 
20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP
20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP
20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP
 
19 Repository designs in bedded salt, the KOSINA-Project
19 Repository designs in bedded salt, the KOSINA-Project19 Repository designs in bedded salt, the KOSINA-Project
19 Repository designs in bedded salt, the KOSINA-Project
 
18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)
18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)
18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)
 
17 Salt Reconsolidation
17 Salt Reconsolidation17 Salt Reconsolidation
17 Salt Reconsolidation
 
16 Reconsolidation of granular salt (DAEF report)
16 Reconsolidation of granular salt (DAEF report)16 Reconsolidation of granular salt (DAEF report)
16 Reconsolidation of granular salt (DAEF report)
 
15 Outcome of the Repoperm Project
15 Outcome of the Repoperm Project15 Outcome of the Repoperm Project
15 Outcome of the Repoperm Project
 
14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...
14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...
14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...
 
13 "New results of the KOSINA project - Generic geological models / Integrity...
13 "New results of the KOSINA project - Generic geological models / Integrity...13 "New results of the KOSINA project - Generic geological models / Integrity...
13 "New results of the KOSINA project - Generic geological models / Integrity...
 
12 Salt testing: Low deviatoric stress data
12 Salt testing: Low deviatoric stress data12 Salt testing: Low deviatoric stress data
12 Salt testing: Low deviatoric stress data
 
09 Invited Lecture: Salt Creep at Low Deviatoric Stress
09 Invited Lecture: Salt Creep at Low Deviatoric Stress09 Invited Lecture: Salt Creep at Low Deviatoric Stress
09 Invited Lecture: Salt Creep at Low Deviatoric Stress
 

Kürzlich hochgeladen

Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Sheetaleventcompany
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
dlhescort
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
dlhescort
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
amitlee9823
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
amitlee9823
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
amitlee9823
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
lizamodels9
 
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂EscortCall Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
dlhescort
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
dollysharma2066
 

Kürzlich hochgeladen (20)

Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
 
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 MonthsSEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024
 
Business Model Canvas (BMC)- A new venture concept
Business Model Canvas (BMC)-  A new venture conceptBusiness Model Canvas (BMC)-  A new venture concept
Business Model Canvas (BMC)- A new venture concept
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
 
Eluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Eluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceEluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Eluru Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
 
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLBAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation Final
 
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂EscortCall Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
Call Girls In Nangloi Rly Metro ꧂…….95996 … 13876 Enjoy ꧂Escort
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 

2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

  • 1. Jeff Smith, Matt Rylander, Huijuan Li EPRI EPRI Smart Inverter Workshop, Santa Clara, CA 5/7/2014 Determining Recommended Settings for Smart Inverters
  • 2. 2© 2014 Electric Power Research Institute, Inc. All rights reserved. Overview Objective Determine recommended settings for field site demonstration Evaluate the effectiveness of various smart inverter functions and settings for improving feeder voltage performance as load and PV vary over time Approach Time-series simulations in OpenDSS comparing feeder performance with and without smart inverter functions Sites Three different feeders, each with unique characteristics and overall objectives for use of smart inverters
  • 3. 3© 2014 Electric Power Research Institute, Inc. All rights reserved. Which Smart Inverter Setting is Most Appropriate for My Situation? 0 5 10 15 20 25 1.024 1.026 1.028 1.03 1.032 1.034 1.036 1.038 1.04 1.042 1.044 Hour Voltage(pu) Voltages with different voltvar settings ---- Voltvar ---- No PV ---- PV base 115 unique volt/var control settings
  • 4. 4© 2014 Electric Power Research Institute, Inc. All rights reserved. Site Characteristics Site kWdc (Panel size) kWac (inverter rating Short- circuit MVA @ POI X/R @ POI J1 1900 1700 30-36* 1.8-2.6 E1 605 566 38 1.8 H1 1000 1000 71 1.7 *multiple POI
  • 5. 5© 2014 Electric Power Research Institute, Inc. All rights reserved. Overall Approach • Solar variability conditions – Clear day – Overcast day – Highly variable day • Load variability conditions – Peak load day – Minimum load day • Smart inverter settings – Volt-var – Volt-watt – Off-unity power factor 0 2 4 6 8 10 12 1 3 5 7 9 11 13 15 17 19 21 23 25 Power (MW) Local Time (Hour) Offpeak Peak Sandia’s variability index (VI) and clearness index (CI) to classify days Consideration for Different Feeder Load Profiles
  • 6. 6© 2014 Electric Power Research Institute, Inc. All rights reserved. Smart Inverter Settings Power Factor Settings (inductive) 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9 Sample volt/var curves shown: see Video for complete set of curves Similar range of curves used for volt/watt control
  • 7. 7© 2014 Electric Power Research Institute, Inc. All rights reserved. Feeder Model Validation 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 0 100 200 300 400 500 600 1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378 391 404 417 430 443 456 469 482 495 per‐unit voltage P (kW) P (kW) V_model (pu) V_measure (pu) E1 J1 H1 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 0 200 400 600 800 1000 1200 1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496 per‐unit voltage P (kW) P (kW) V_measure (pu) V_model(pu) 0 50 100 150 200 250 1.02 1.03 1.04 1.05 1.06 1.07 0 50 100 150 200 250 300 PV (kW) Voltage (Vpu) Time (sec) Measured Simulated PV (kW)
  • 8. 8© 2014 Electric Power Research Institute, Inc. All rights reserved. Smart Inverter Model Validation OpenDSS Simulations 260 265 270 275 280 285 290 295 Voltage (Vln) Time (s) Measured Simulated ‐400 ‐300 ‐200 ‐100 0 100 200 300 400 Reactive Power (kvar) Time (s) Measured Simulated
  • 9. 9© 2014 Electric Power Research Institute, Inc. All rights reserved. Selecting the “Best” Smart Inverter Settings • Objectives – Each feeder analysis has unique set of objectives – Voltage – Efficiency – Control • Metrics – Approximately 20 conditions are monitored for each feeder – Only daylight impact is analyzed – Mean voltage at the point of common coupling (PCC) – Voltage variability index at the PCC – Tap operations – Losses • Rank objective impact based on the metrics for each scenario – Solar – Load 6 combinations all weighted equally (for now…)
  • 10. 10© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site J1: Objectives & Metrics Objective Metric Weight 1. Avoid overvoltage  conditions 100 2. Improve customer  efficiency 100 3. Reduce line regulator  tap changes 100 4. Combined 1, 2, and 3 33/33/33
  • 11. 11© 2014 Electric Power Research Institute, Inc. All rights reserved. Sample Plots Clear Day Overcast day Highly variable day PCCvoltage hour PCCvoltage hour PCCvoltage hour 0 5 10 15 20 25 30 1.02 1.025 1.03 1.035 1.04 1.045 1.05 0 5 10 15 20 25 30 1.02 1.025 1.03 1.035 1.04 1.045 1.05 0 5 10 15 20 25 30 1.01 1.02 1.03 1.04 1.05 1.06 1.07
  • 12. 12© 2014 Electric Power Research Institute, Inc. All rights reserved. Circuit Performance Characterization
  • 13. 13© 2014 Electric Power Research Institute, Inc. All rights reserved. Volt/Var Results Demo Site J1 Lesson Learned “best” settings can be difficult to identify 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 Feeder Head Voltage Max Feeder Head Voltage (pu) Min Feeder Head Voltage (pu) 0 100 200 300 400 500 600 700 800 900 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 Reg/LTC Tap Operations Tap Operations 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 Cap Operations Cap Operations 1400 1450 1500 1550 1600 1650 1700 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 Feeder Losses (kWh) Feeder Losses (kWh) 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 PCC Voltage Max PCC Voltage (pu) Min PCC Voltage (pu) 0 2 4 6 8 10 12 14 16 18 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 VI at PCC VI at PCC 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 Feeder End Voltage Max Feeder End Voltage (pu) Min Feeder End Voltage (pu) 0 1000 2000 3000 4000 5000 6000 7000 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113Time Above ANSI (sec) Time Above ANSI (sec) 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 Overall Feeder Min/Max Voltage Max Feeder Voltage (pu) Min Feeder Voltage (pu) Peak load day
  • 14. 14© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site J1 Combined Objective 4 Best Settings • Objective – Avoids overvoltage – Improves efficiency – Reduces tap operations • Metrics – Lower mean voltage – Flatter voltage profile – Less tap operations General trends in rank are due to rolling through different setting characteristics Lesson Learned Overall best settings have similar curves
  • 15. 15© 2014 Electric Power Research Institute, Inc. All rights reserved. Sample Results – Volt/var control Demo Site J1 ‐1.2 ‐1 ‐0.8 ‐0.6 ‐0.4 ‐0.2 0 0.95 0.97 0.99 1.01 1.03 1.05 % Avail vars per‐unit voltage 1.01 1.02 1.03 1.04 1.05 1.06 1.07 0 5 10 15 20 25 30 per‐unit voltage Hour no_PV PV base voltvar ‐100 0 100 200 300 400 500 600 700 800 900 0 5 10 15 20 25 30 tap operations hour Tap_noPV Tap_Pvbase Tap_voltvar ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 0.95 0.97 0.99 1.01 1.03 1.05 1.07 1.09 Negative impact on voltage and line regulator operations Positive impact on voltage and line regulator operations 1.01 1.02 1.03 1.04 1.05 1.06 1.07 0 5 10 15 20 25 30 per‐unit voltage hour no_PV PV_base Voltvar Volt/var curve Daily voltage profile Regulator tap operations Volt/var curve Daily voltage profile Regulator tap operations 0 100 200 300 400 500 600 700 800 0 5 10 15 20 25 30 tap operations Tap_noPV Tap_Pvbase Tap_voltvar Lesson Learned Slight variation in settings can yield significantly different responses
  • 16. 16© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site J1 Trends in Volt/var Characteristics Best curves begin absorbing reactive power at 1.02 Vpu Best curves have a steep volt-var slope Lesson Learned Initial results indicate trends can be seen
  • 17. 17© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site J1 Best Setting Impact for Objective 4 • Each smart inverter function has one “Best” setting • Totalized metric for each “Best” setting in Objective 4 is shown • The Volt-var function and setting has the best impact for each metric PV volt/var volt/watt power factor PCC Mean Voltage (pu) 1.031 1.027 1.031 1.031 PCC VVI 18.88 8.39 15.56 8.41 Tap Operations 675 418 603 523
  • 18. 18© 2014 Electric Power Research Institute, Inc. All rights reserved. Metric Improvement Based on Objective PV volt/var volt/watt power factor PCC Mean Voltage 1.031 1.027 1.031 1.031 PCC VVI 18.88 8.39 15.56 8.41 Tap Operations 675 418 603 523 PCC Mean Voltage 1.031 1.025 1.031 1.031 PCC VVI 18.88 30.21 15.56 14.18 Tap Operations 675 1727 603 485 PCC Mean Voltage 1.031 1.033 1.032 1.031 PCC VVI 18.88 6.02 9.92 8.41 Tap Operations 675 437 533 523 PCC Mean Voltage 1.031 1.034 1.032 1.032 PCC VVI 18.88 6.60 9.92 9.599 Tap Operations 675 401 533 485 Obj 4 Overall Obj 1 Reduce Overvoltage Obj 2 Improve Efficiency Obj 3 Reduce Taps
  • 19. 19© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site J1 Best Curves • Best volt/var and volt/watt curves shown for each objective • Each objective optimized with different curve characteristics Objective 1 Objective 2 Objective 3 Objective 4 Best Power Factor Setting Objective 1 2 3 4 power factor 0.90 0.97 0.94 0.97
  • 20. 20© 2014 Electric Power Research Institute, Inc. All rights reserved. Impact of Load Level on Best Settings Peak Load Offpeak Load
  • 21. 21© 2014 Electric Power Research Institute, Inc. All rights reserved. Sample Day – Comparing “Best” Setting Responses Offpeak day, highly variable solar 1.02 1.025 1.03 1.035 1.04 1.045 1.05 0 5 10 15 20 per‐unit voltage hour PCC Voltage 0 10 20 30 40 50 60 70 80 0 5 10 15 20 # hour Tap Operations Lesson Learned Power factor and proper volt/var settings can be effective
  • 22. 22© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site E1: Objectives & Metrics Objective Metric Weight 1. Reduce voltage flicker/voltage variations 100 2. Reduce losses 100 3. Combined 1 and 2 50/50
  • 23. 23© 2014 Electric Power Research Institute, Inc. All rights reserved. Sample Plots 0 5 10 15 20 25 30 0.975 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 0 5 10 15 20 25 30 0.985 0.99 0.995 1 1.005 1.01 1.015 0 5 10 15 20 25 30 0.975 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 Clear Day Overcast day Highly variable day PCCvoltage hour PCCvoltage hour PCCvoltage hour
  • 24. 24© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site E1 Best Curves • 3 best volt/var and volt/watt curves shown for each objective • Each objective optimized with different curve characteristics Objective 1 Objective 2 Objective 3 Best Power Factor Setting Objective 1 2 3 power factor 0.92 0.99 0.93
  • 25. 25© 2014 Electric Power Research Institute, Inc. All rights reserved. Metric Improvement Based on Objective PV volt/var volt/watt power factor PCC VVI 9.1787 7.4029 8.9498 6.8539 Losses (kWh) 3079 3038 3078 3124 PCC VVI 9.1787 7.0951 8.9498 6.8480 Losses (kWh) 3079 3082 3078 3129 PCC VVI 9.1787 7.4029 8.9498 8.1283 Losses (kWh) 3079 3038 3078 3091 Obj 3 Obj 1 Obj 2 power factor does not reduce losses
  • 26. 26© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site H1: Objectives & Metrics Objective Metric Weight 1. Flatter voltage and  improved customer  efficiency 50 50 2. Reduced LTC tap  changes 100 3. Combined 1 and 2 25/25/50
  • 27. 27© 2014 Electric Power Research Institute, Inc. All rights reserved. Demo Site H1: Best Curves • 1 best volt/var and volt/watt curves shown for each objective • Each objective optimized with different curve characteristics Best Power Factor Setting Objective 1 2 3 power factor 0.92 0.96 0.96 Objective 1 Objective 2 Objective 3
  • 28. 28© 2014 Electric Power Research Institute, Inc. All rights reserved. Metric Improvement Based on Objective PV volt/var volt/watt power factor PCC Mean Voltage 1.008 1.008 1.008 1.007 PCC VVI 11.5798 10.7196 11.0827 8.0583 Tap Operations 54 53 54 55 PCC Mean Voltage 1.008 1.006 1.008 1.007 PCC VVI 11.5798 11.0533 11.0827 8.0391 Tap Operations 54 57 54 55 PCC Mean Voltage 1.008 1.009 1.008 1.007 PCC VVI 11.5798 9.4340 10.1347 8.0583 Tap Operations 54 50 53 55 Obj 3 Obj 1 Obj 2
  • 29. 29© 2014 Electric Power Research Institute, Inc. All rights reserved. Summary • Overall “best” setting depends upon objective – Improve voltage – Increase efficiency – Regulator operations – Increase hosting • Preliminary analysis indicates trends in recommended settings can be found • Caution: Minor changes in settings (volt/var) can have significantly different impacts • Less “aggressive” settings work – Less risk, less potential benefit (e.g., increasing hosting capacity) • Results shown today are based upon site-specific conditions • Future work for determining recommended settings – Other locations – Other feeders – Combined inverters
  • 30. Jeff Smith, Huijuan Li EPRI EPRI Smart Inverter Workshop, Santa Clara, CA 5/7/2014 Potential Interaction Between Smart Inverters
  • 31. 31© 2014 Electric Power Research Institute, Inc. All rights reserved. Overview Objective Approach Evaluating potential inverter interaction Investigate possible inverter interaction resulting from smart inverter control on multiple PV systems Time-domain analysis in Matlab/Simulink to investigate possible inverter interaction
  • 32. 32© 2014 Electric Power Research Institute, Inc. All rights reserved. Studied System PV1: 400 kW, 475 kVA PV2: 1000 kW, 1235 kVA 20 s simulation widow 1.2 Mvar Cap is switched on at 10 s, which causes voltage rise
  • 33. 33© 2014 Electric Power Research Institute, Inc. All rights reserved. Interactions Between the Two Inverters Single PV providing vars Both PVs providing vars 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) V1 V2 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) V1 V2 Oscillations Observed !
  • 34. 34© 2014 Electric Power Research Institute, Inc. All rights reserved. What May Impact Var Control Var control flow VoltVar Curve Inverter Averaging window V Reference Q Average V Q PI controller (Kp Ki) Switching Command Factors may impact var control: • Volt-var curve parameters • PI controller parameters: Kp and Ki • Voltage average window length
  • 35. 35© 2014 Electric Power Research Institute, Inc. All rights reserved. Impact of Volt-var Parameters Volt/var 1 Volt/var 2 % AvailableVars voltage (pu) ‐100 Capacitive 100 Inductive 0.95 1.05 % AvailableVars voltage (pu) ‐100 Capacitive 100 Inductive 0.99 1.01 Controller parameters for both cases: Kp Ki 0.3 3
  • 36. 36© 2014 Electric Power Research Institute, Inc. All rights reserved. 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) Volt/var 1 Voltages 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) V1 V1 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) V2 V2 Volt/var 2 High ratio may cause oscillations
  • 37. 37© 2014 Electric Power Research Institute, Inc. All rights reserved. Volt/var 1 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time (s) %ofAvailableVar Actual var Var reference Vars Var 1 Var 1 Var 2 Var 2 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual Var Var reference 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual var Var reference 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time (s) %AvailableVars Actula var Var reference Volt/var 2
  • 38. 38© 2014 Electric Power Research Institute, Inc. All rights reserved. Impact of Controller Parameters Volt/var 2 Volt/var 2: slower response % AvailableVars voltage (pu) ‐100 Capacitive 100 Inductive 0.99 1.01 Controller parameters for case 1: Kp Ki 0.3 3 % AvailableVars voltage (pu) ‐100 Capacitive 100 Inductive 0.99 1.01 Kp Ki 0.1 1 Controller parameters for case 2:
  • 39. 39© 2014 Electric Power Research Institute, Inc. All rights reserved. 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) Volt/var 2 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu)Voltages V1 V1 V2 V2 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) Volt/var 2: slower response 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) Smaller control parameters, which means smaller adjustments at each step, reduce the oscillations
  • 40. 40© 2014 Electric Power Research Institute, Inc. All rights reserved. 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual var Var reference Volt/var 2 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual Var Var reference 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual var Var reference Vars Var 1 Var 1 Var 2 Var 2 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual var Var reference Volt/var 2: slower response
  • 41. 41© 2014 Electric Power Research Institute, Inc. All rights reserved. Impact of Window Length of Averaging Voltage Volt/var 2 Volt/var 2: larger avg window % AvailableVars voltage (pu) ‐100 Capacitive 100 Inductive 0.99 1.01 % AvailableVars voltage (pu) ‐100 Capacitive 100 Inductive 0.99 1.01 Controller parameters for both cases: Kp Ki 0.3 3 Length of average window= 0.05s Length of average window= 1 s
  • 42. 42© 2014 Electric Power Research Institute, Inc. All rights reserved. Volt/var 2 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu)Voltages V1 V1 V2 V2 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) Volt/var 2: larger avg window 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) 4 6 8 10 12 14 16 18 20 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 Time(s) Voltage(pu) Longer voltage averaging window increases oscillation magnitude, but improved dampening occurs
  • 43. 43© 2014 Electric Power Research Institute, Inc. All rights reserved. Volt/var 2 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual Var Var reference 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual var Var reference Vars Var 1 Var 1 Var 2 Var 2 Volt/var 2: slower avg window 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time(s) %AvailableVars Actual var Var reference 4 6 8 10 12 14 16 18 20 -100 -80 -60 -40 -20 0 20 40 60 80 100 Actual var Var reference
  • 44. 44© 2014 Electric Power Research Institute, Inc. All rights reserved. Conclusions • Interactions exist between the two close by inverters • High ratio may cause oscillations • Smaller adjustments at each step as a result of smaller control parameters reduces oscillations • Longer voltage averaging window increases magnitude of oscillations, although dampening does occur