Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Analysis and Visualization of Real-Time Twitter Data

13.440 Aufrufe

Veröffentlicht am

Presentation of masterthesis, Graz University of Technology, November 2015

Veröffentlicht in: Soziale Medien, Bildung
  • Loggen Sie sich ein, um Kommentare anzuzeigen.

Analysis and Visualization of Real-Time Twitter Data

  1. 1 W I S S E N  T E C H N I K  L E I D E N S C H A F T  www.tugraz.at Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead Harmandic
  2. 22 Motivation • Social Network and Networking • Micro-Blogging • Twitter • Launched in 2006 • Active users per month • ~ 316 Milions (August) • ~ 320 Milions (current) • Tweets per day ~ 500 Milions Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  3. 33 Problem and Research Objective • Problems with Twitter • Event based data • Detail event information • Collection of information • Research Objective • What kind or sort of information are we capable of providing during and after Twitter event? Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  4. 44 State of the Art I Analyse Twitter as a form of electronic word-of-mouth in correlation to brands and the influence of the service on various brands. [Jansen et al., 2009] • Brands • H&M, Honda, Exxon, Dell, Lenovo, Amazon, etc. • Opinion (sentiment) • None; Wretched ; Bad; So-So; Swell; Great Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  5. 55 State of the Art II Using Twitter and (classified) real-time data in order to notify the public about the eathquake. [Sakaki et al., 2010] • Test region: Japan • Large ammount of Twitter users • High rate of earthquakes per year • Twitter user  sensor • Tweet  sensor information (social sensor) • Toretter („we have taken it“) since 2010 • Faster then Japan Meteorogical Agency Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  6. 66 Available Tools • TweetTracker • Pros: Geo. Maps; Translation of Non-English; Keyword comparison • Cons: Visualizing up to 7500 Tweets • TweetArchivist • Pros: Top Users; Top Hashtags; Language • Cons: No storage or APIs, Paid service • twExplorer • Pros: Top Users; Top Hashtags • Cons: No archiv or APIs, Maximum of 500 Tweets Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  7. 77 TwitterSuitcase • Why Suitcase • Identification • Objective • TU Graz Twitter Applications • TweetCollector (raw Twitter data) • TwitterWall (event representation) • TwitterStat (analysis of keyword, hashtag or person) • TweetGraph (scope of tweets) • TwitterSuitcase Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  8. 88 TwitterSuitcase - Concept Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  9. 99 TwitterSuitcase – Overview Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  10. 1010 TwitterSuitcase – Categories I Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Users
  11. 1111 TwitterSuitcase – Categories II Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Links
  12. 1212 TwitterSuitcase – Categories III Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Most Popular Retweets
  13. 1313 TwitterSuitcase – Categories IV Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Timeline
  14. 1414 TwitterSuitcase – Categories V Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Words
  15. 1515 TwitterSuitcase – Categories VI Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Software
  16. 1616 TwitterSuitcase – Categories VII Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Most Popular Hashtags
  17. 1717 TwitterSuitcase – Categories VIII Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Top Screenshots
  18. 1818 TwitterSuitcase – Categories IX Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC • Wikipedia Article(s)
  19. 1919 TwitterSuitcase – Use Case I • European Massive Open Online Courses • #emoocs2014 • Total of 4450 Tweets Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  20. 2020 TwitterSuitcase – Use Case II • Most Popular Hashtags Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  21. 2121 TwitterSuitcase – Use Case III • Top Users • moocf(185), Agora Sup(141), fuscia info(134), pabloachard(124), mooc24(120), tkoscielniak(103), bobreuter(85), OpenEduEU(84), yveszieba(81), redasadki(81) ~ 25% • Top Link(s) • http://bit.ly/1la3yJX (32)  HTML Page „eLearning Papers Issue 37“ • Top Words • RT(2567), moocs(802), mooc(639), learning(339) and openedueu(319). The rest of the words belong mostly to prepositions or articles. • Used Software • Web(1574 or 35.4%), Apple devices(1253 or 28.5%), TweetDeck(564 or 12.7%), Android devices(288 or 6.5%) Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  22. 2222 Conclusion • TwitterSuitcase • Research objective  What kind or sort of information are we capable of providing during and after Twitter event? • TwitterSuitcase extensions • Visualizing Tweets on Geographical Maps; Region-Tweet-Search • MentionMaps • ReTweets; HTTP Links; Data sources; etc. Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  23. 2323 Thank you for your attention. Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC
  24. 2424 Bibliography [Java et al., 2007] Java, A., Song, X., Finin, T., and Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages 56– 65. [Jansen et al., 2009] Jansen, B. J., Zhang, M., Sobel, K., and Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American society for information science and technology, page 2169–2188. [Sakaki et al., 2010] Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). Earthquake shakes twitter users: real-time event detection by social sensors. Proceedings of the 19th international conference on World wide web, pages 851–860. Analysis and Visualization of Real-Time Twitter Data 19.11.2015 Sead HARMANDIC

×