SlideShare ist ein Scribd-Unternehmen logo
1 von 21
RECURRENCE
RELATIONS
(MATHEMATICS T.A. EC-IV SEMESTER)
SUBJECT TEACHER: PROF. A.A. BASOLE
GROUP MEMBERS
1. YASHWANT HAMPIHOLI (74)
2. YUVRAJ GUPTA (75)
3. PARTHO GHOSH (76)
4. ADARSH THAKUR (77)
5. AKSHAY PURWAR (78)
6. LUCKY THAKUR (79)
7. SHUBHAM SRIVASTAVA (80)
WHAT IS RECURRENCE RELATION?
The concept of recurrence relations deals with recursive definitions
of mathematical functions or sequences. Solving a recurrence
relation involves, in finding "closed formβ€œ solution of the function.
Recurrence relations are a fundamental mathematical tool since
they can be used to represent mathematical functions/sequences
that cannot be easily represented non-recursively. An example, is
the Fibonacci sequence. Recurrence relations are largely employed
in the design and analysis of algorithms.
RECURRENCE FORMULAE FOR BESSEL’S FUNCTION
𝑱 𝒏 𝒙
1.
𝒅 𝒙 𝒏 𝑱 𝒏(𝒙)
𝒅𝒙
= 𝒙 𝒏
𝑱 π’βˆ’πŸ(𝒙)
2.
𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’
𝑱 𝒏+𝟏(𝒙)
3. 𝑱 𝒏 𝒙 =
𝒙
πŸπ’
𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙)
4. 𝑱 𝒏
β€²
𝒙 =
𝟏
𝟐
𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
5. 𝑱 𝒏
β€²
𝒙 =
𝒏
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
6. 𝑱 𝒏+𝟏 𝒙 =
πŸπ’
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙)
PROOF FOR FIRST RECURRENCE RELATION OF
𝑱 𝒏 𝒙
𝒅 𝒙 𝒏 𝑱 𝒏(𝒙)
𝒅𝒙
= 𝒙 𝒏
𝑱 π’βˆ’πŸ(𝒙)
Proof: Since,
𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓
𝒙
𝟐
𝒏+πŸπ’“ 𝟏
𝒓! πšͺ 𝐧 + 𝐫 + 𝟏
βˆ’ (𝟏)
Multiplying equation (1) by π‘₯ 𝑛, we have
𝒙 𝒏
𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+𝒓
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
βˆ’ (𝟐)
CONTINUED…
Differentiating equation (2) with respect to β€˜x’ on both sides
∴
𝒅 𝒙 𝒏 𝑱 𝒏 𝒙
𝒅𝒙
=
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝟐 𝒏 + 𝒓 𝒙 𝟐 𝒏+𝒓 βˆ’πŸ
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
= 𝒙 𝒏
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝒙 𝟐 π’βˆ’πŸ+πŸπ’“
𝒓! πšͺ 𝒏 βˆ’ 𝟏 + 𝒓 + 𝟏
= 𝒙 𝒏 𝑱 π’βˆ’πŸ 𝒙
PROOF FOR SECOND RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝒅 π’™βˆ’π’
𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’
𝑱 𝒏+𝟏(𝒙)
Proof: Since,
𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓
𝒙
𝟐
𝒏+πŸπ’“ 𝟏
𝒓! πšͺ 𝐧 + 𝐫 + 𝟏
βˆ’ (𝟏)
Multiplying equation (1) by π‘₯βˆ’π‘›, we have
π’™βˆ’π’ 𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝒙 πŸπ’“
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
βˆ’ 𝟐
CONTINUED…
Differentiating equation (2) with respect to β€˜x’ on both sides
∴
𝒅 π’™βˆ’π’ 𝑱 𝒏 𝒙
𝒅𝒙
=
𝒓=𝟎
∞
βˆ’πŸ 𝒓 πŸπ’“ 𝒙 πŸπ’“βˆ’πŸ
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
= βˆ’π’™βˆ’π’
𝒓=𝟏
∞
βˆ’πŸ π’“βˆ’πŸ 𝒙 𝒏+𝟏+𝟐 π’“βˆ’πŸ
𝟐 𝒏+𝟏+𝟐 π’“βˆ’πŸ 𝒓 βˆ’ 𝟏 ! πšͺ 𝒏 + 𝒓 + 𝟏
= βˆ’π’™βˆ’π’
π’Œ=𝟎
∞
βˆ’πŸ π’Œ
𝒙 𝟐 𝒏+𝟏+πŸπ’Œ
π’Œ! πšͺ 𝒏 + 𝟏 + π’Œ + 𝟏
= βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 , π’˜π’‰π’†π’“π’† π’Œ = 𝒓 βˆ’ 𝟏
PROOF FOR THIRD RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏 𝒙 =
𝒙
πŸπ’
𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙)
Proof: Since,
𝒅 π’™βˆ’π’
𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 … (πŸ’)
On differentiating both sides of equation (1) with respect to β€˜x’:
𝒙 𝒏
𝑱 𝒏
β€²
𝒙 + 𝒏𝒙 π’βˆ’πŸ
𝑱 𝒏 𝒙 = 𝒙 𝒏
𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
CONTINUED…
On dividing equation (2) by π‘₯ 𝑛
:
𝑱 𝒏
β€²
𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (πŸ‘)
Since,
𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’
𝑱 𝒏+𝟏 𝒙 … (πŸ’)
On differentiating both sides of equation (4) with respect to β€˜x’:
βˆ’π‘± 𝒏
β€² 𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … πŸ“
CONTINUED…
πŸπ’
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (πŸ”)
i.e.,
𝑱 𝒏 𝒙 =
𝒙
πŸπ’
𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) … (πŸ•)
PROOF FOR FOURTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏
β€²
𝒙 =
𝟏
𝟐
𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
Proof: Since we know that
βˆ’π‘± 𝒏
β€² 𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏
And
𝑱 𝒏
β€² 𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
CONTINUED…
So on subtracting equation (1) from (2), we get
πŸπ‘± 𝒏
β€² 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙 … πŸ‘
i.e. ,
𝑱 𝒏
β€² 𝒙 =
𝟏
𝟐
𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) … (πŸ—)
PROOF FOR FIFTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏
β€²
𝒙 =
𝒏
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
Proof: Since we know that
βˆ’π‘± 𝒏
β€²
𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏
The equation (1) can also be represented as:
𝑱 𝒏
β€² 𝒙 =
𝒏
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙
PROOF FOR SIXTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏+𝟏 𝒙 =
πŸπ’
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙)
Proof: Since we know that
πŸπ’
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (𝟏)
The equation (1) can also be represented as:
πŸπ’
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙
RECURRENCE FORMULAE FOR 𝑷 𝒏 𝒙
1. 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙)
2. 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
3. πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
4. 𝑷 𝒏
β€²
𝒙 = 𝒙𝑷 π’βˆ’πŸ
β€²
𝒙 + 𝒏𝑷 π’βˆ’πŸ(𝒙)
5. 𝟏 βˆ’ 𝒙 𝟐
𝑷 𝒏
β€²
𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
PROOF FOR FIRST RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙)
Proof: We know that
(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
)βˆ’ 𝟏 𝟐
=
𝒏=𝟎
∞
𝑷 𝒏 𝒙 𝒕 𝒏
… (𝟏)
Differentiating (1) partially w.r.t. t, we get
βˆ’
𝟏
𝟐
𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
βˆ’πŸπ’™ + πŸπ’• = 𝒏𝑷 𝒏 (𝒙)𝒕 π’βˆ’πŸ
Or 𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
= (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
) 𝒏𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ
Or 𝒙 βˆ’ 𝒕 𝑷 𝒏 𝒙 𝒕 𝒏
= (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
) 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ
Equating coefficients of 𝑑 𝑛
from both sides, we get
𝒙𝑷 𝒏 𝒙 βˆ’ 𝑷 π’βˆ’πŸ 𝒙 = 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 βˆ’ πŸπ’π’™π‘· 𝒏 𝒙 + (𝒏 βˆ’ 𝟏)𝑷 π’βˆ’πŸ(𝒙)
PROOF FOR SECOND RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
Proof: We know that
(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
)βˆ’ 𝟏 𝟐
=
𝒏=𝟎
∞
𝑷 𝒏 𝒙 𝒕 𝒏
… (𝟏)
Differentiating (1) partially w.r.t. x, we get
βˆ’
𝟏
𝟐
𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
. πŸπ’• = 𝑷 𝒏′(𝒙)𝒕 𝒏
i.e., 𝒕(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
)βˆ’ πŸ‘ 𝟐
= 𝑷 𝒏
β€²
𝒙 𝒕 𝒏
…(2)
Again differentiating (1) partially w.r.t. t, we have
𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
= 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ
…(3)
Dividing (3) by (2), we get
𝒙 βˆ’ 𝒕
𝒕
=
𝒏 𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ
𝑷 𝒏
β€²(𝒙)𝒕 𝒏
i.e. 𝒏𝑷 𝒏 𝒙 𝒕 𝒏
= (𝒙 βˆ’ 𝒕) 𝑷 𝒏′ 𝒙 𝒕 𝒏
…(4)
Equating coefficient of 𝑑 𝑛
from both sides of equation (4) we get:
𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
PROOF FOR THIRD RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
Proof: Since we know that:
𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ 𝒙 … (𝟏)
Differentiating (1) w.r.t. x, we get
𝒏 + 𝟏 𝑷 𝒏+𝟏
β€²
𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ
β€²
𝒙 … 𝟐
Substituting for nπ‘₯𝑃𝑛
β€²
π‘₯ π‘“π‘Ÿπ‘œπ‘š π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Ÿπ‘’π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘π‘’ π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑛 (2), we obtain
𝒏 + 𝟏 𝑷 𝒏+𝟏
β€²
𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 + 𝑷 π’βˆ’πŸ
β€²
𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸβ€²(𝒙)
Or 𝟐𝐧 + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+πŸβ€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸβ€²(𝒙)
PROOF FOR FOURTH RECURRENCE RELATION
OF 𝑷 𝒏(𝒙)
𝑷 𝒏
β€²
𝒙 = 𝒙𝑷 π’βˆ’πŸ
β€²
𝒙 + 𝒏𝑷 π’βˆ’πŸ 𝒙
Proof: Since we know that:
𝒏 + 𝟏 𝑷 𝒏+𝟏
β€²
𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏
β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ
β€²
𝒙 … (𝟏)
Rewriting (1) as:
𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏
,
𝒙 + 𝒏 𝒙𝑷 𝒏
,
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
,
𝒙
= πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏
,
𝒙 + 𝒏 𝟐 𝑷 𝒏(𝒙)
= 𝒏 + 𝟏 𝒙𝑷 𝒏
,
𝒙 + 𝒏 𝟐 + πŸπ’ + 𝟏 𝑷 𝒏 𝒙
Or 𝑷 𝒏+𝟏
β€²
𝒙 = 𝒙𝑷 𝒏
β€² 𝒙 + (𝒏 + 𝟏)𝑷 𝒙 …(2)
Replacing n by (n-1) in equation (2), we get the required equation
PROOF FOR FIFTH RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
𝟏 βˆ’ 𝒙 𝟐
𝑷 𝒏
β€²
𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
Proof: Rewriting second and fourth recurrence relation of 𝑃𝑛 π‘₯ as:
𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
𝒙 = 𝒏𝑷 𝒏 𝒙 …(1)
and 𝑷 𝒏
β€² 𝒙 βˆ’ 𝒙𝑷 π’βˆ’πŸ
β€²
𝒙 = 𝒏𝑷 π’βˆ’πŸ 𝒙 …(2)
Multiplying (1) by x and subtracting from (2), we get
𝟏 βˆ’ 𝒙 𝟐
𝑷 𝒏
β€²
𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
Recurrence relation of Bessel's and Legendre's function

Weitere Γ€hnliche Inhalte

Was ist angesagt?

Legendre functions
Legendre functionsLegendre functions
Legendre functionsSolo Hermelin
Β 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
Β 
Complex function
Complex functionComplex function
Complex functionShrey Patel
Β 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
Β 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
Β 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
Β 
Group Theory
Group TheoryGroup Theory
Group Theoryshinojmadhu
Β 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
Β 
Laplace transform
Laplace transformLaplace transform
Laplace transformNaveen Sihag
Β 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptxUmme habiba
Β 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsK. M.
Β 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laserLahiru Da Silva
Β 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
Β 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
Β 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
Β 
Fourier series
Fourier seriesFourier series
Fourier serieskishor pokar
Β 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationAbhishek Choksi
Β 

Was ist angesagt? (20)

Legendre functions
Legendre functionsLegendre functions
Legendre functions
Β 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
Β 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
Β 
Complex function
Complex functionComplex function
Complex function
Β 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
Β 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
Β 
Laplace transform
Laplace transformLaplace transform
Laplace transform
Β 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
Β 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Β 
Group Theory
Group TheoryGroup Theory
Group Theory
Β 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
Β 
Laplace transform
Laplace transformLaplace transform
Laplace transform
Β 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
Β 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanics
Β 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laser
Β 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
Β 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
Β 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
Β 
Fourier series
Fourier seriesFourier series
Fourier series
Β 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
Β 

Γ„hnlich wie Recurrence relation of Bessel's and Legendre's function

06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx62AniketVishwakarma
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...IJMER
Β 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULESNumanUsama
Β 
Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)Eugenio Souza
Β 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein PolynomialsIOSR Journals
Β 
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingJordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingIOSR Journals
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
Β 
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Vitthal Jadhav
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Alona Hall
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
Β 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy NumbersIOSR Journals
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
Β 

Γ„hnlich wie Recurrence relation of Bessel's and Legendre's function (20)

06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
Β 
1. Probability.pdf
1. Probability.pdf1. Probability.pdf
1. Probability.pdf
Β 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
Β 
Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)
Β 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
Β 
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingJordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Β 
C0560913
C0560913C0560913
C0560913
Β 
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
B0560508
B0560508B0560508
B0560508
Β 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)
Β 
Integration
IntegrationIntegration
Integration
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Β 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy Numbers
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Β 

KΓΌrzlich hochgeladen

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
Β 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
Β 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
Β 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
Β 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
Β 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
Β 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
Β 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
Β 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
Β 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
Β 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
Β 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
Β 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
Β 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
Β 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
Β 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
Β 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
Β 

KΓΌrzlich hochgeladen (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
Β 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Β 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Β 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
Β 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
Β 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
Β 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
Β 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
Β 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
Β 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
Β 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
Β 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
Β 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
Β 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
Β 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
Β 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
Β 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
Β 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
Β 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
Β 

Recurrence relation of Bessel's and Legendre's function

  • 1. RECURRENCE RELATIONS (MATHEMATICS T.A. EC-IV SEMESTER) SUBJECT TEACHER: PROF. A.A. BASOLE GROUP MEMBERS 1. YASHWANT HAMPIHOLI (74) 2. YUVRAJ GUPTA (75) 3. PARTHO GHOSH (76) 4. ADARSH THAKUR (77) 5. AKSHAY PURWAR (78) 6. LUCKY THAKUR (79) 7. SHUBHAM SRIVASTAVA (80)
  • 2. WHAT IS RECURRENCE RELATION? The concept of recurrence relations deals with recursive definitions of mathematical functions or sequences. Solving a recurrence relation involves, in finding "closed formβ€œ solution of the function. Recurrence relations are a fundamental mathematical tool since they can be used to represent mathematical functions/sequences that cannot be easily represented non-recursively. An example, is the Fibonacci sequence. Recurrence relations are largely employed in the design and analysis of algorithms.
  • 3. RECURRENCE FORMULAE FOR BESSEL’S FUNCTION 𝑱 𝒏 𝒙 1. 𝒅 𝒙 𝒏 𝑱 𝒏(𝒙) 𝒅𝒙 = 𝒙 𝒏 𝑱 π’βˆ’πŸ(𝒙) 2. 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏(𝒙) 3. 𝑱 𝒏 𝒙 = 𝒙 πŸπ’ 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) 4. 𝑱 𝒏 β€² 𝒙 = 𝟏 𝟐 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) 5. 𝑱 𝒏 β€² 𝒙 = 𝒏 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) 6. 𝑱 𝒏+𝟏 𝒙 = πŸπ’ 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙)
  • 4. PROOF FOR FIRST RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝒅 𝒙 𝒏 𝑱 𝒏(𝒙) 𝒅𝒙 = 𝒙 𝒏 𝑱 π’βˆ’πŸ(𝒙) Proof: Since, 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+πŸπ’“ 𝟏 𝒓! πšͺ 𝐧 + 𝐫 + 𝟏 βˆ’ (𝟏) Multiplying equation (1) by π‘₯ 𝑛, we have 𝒙 𝒏 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+𝒓 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 βˆ’ (𝟐)
  • 5. CONTINUED… Differentiating equation (2) with respect to β€˜x’ on both sides ∴ 𝒅 𝒙 𝒏 𝑱 𝒏 𝒙 𝒅𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝟐 𝒏 + 𝒓 𝒙 𝟐 𝒏+𝒓 βˆ’πŸ 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 = 𝒙 𝒏 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 π’βˆ’πŸ+πŸπ’“ 𝒓! πšͺ 𝒏 βˆ’ 𝟏 + 𝒓 + 𝟏 = 𝒙 𝒏 𝑱 π’βˆ’πŸ 𝒙
  • 6. PROOF FOR SECOND RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏(𝒙) Proof: Since, 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+πŸπ’“ 𝟏 𝒓! πšͺ 𝐧 + 𝐫 + 𝟏 βˆ’ (𝟏) Multiplying equation (1) by π‘₯βˆ’π‘›, we have π’™βˆ’π’ 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 πŸπ’“ 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 βˆ’ 𝟐
  • 7. CONTINUED… Differentiating equation (2) with respect to β€˜x’ on both sides ∴ 𝒅 π’™βˆ’π’ 𝑱 𝒏 𝒙 𝒅𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 πŸπ’“ 𝒙 πŸπ’“βˆ’πŸ 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 = βˆ’π’™βˆ’π’ 𝒓=𝟏 ∞ βˆ’πŸ π’“βˆ’πŸ 𝒙 𝒏+𝟏+𝟐 π’“βˆ’πŸ 𝟐 𝒏+𝟏+𝟐 π’“βˆ’πŸ 𝒓 βˆ’ 𝟏 ! πšͺ 𝒏 + 𝒓 + 𝟏 = βˆ’π’™βˆ’π’ π’Œ=𝟎 ∞ βˆ’πŸ π’Œ 𝒙 𝟐 𝒏+𝟏+πŸπ’Œ π’Œ! πšͺ 𝒏 + 𝟏 + π’Œ + 𝟏 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 , π’˜π’‰π’†π’“π’† π’Œ = 𝒓 βˆ’ 𝟏
  • 8. PROOF FOR THIRD RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝒙 πŸπ’ 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) Proof: Since, 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 … (πŸ’) On differentiating both sides of equation (1) with respect to β€˜x’: 𝒙 𝒏 𝑱 𝒏 β€² 𝒙 + 𝒏𝒙 π’βˆ’πŸ 𝑱 𝒏 𝒙 = 𝒙 𝒏 𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
  • 9. CONTINUED… On dividing equation (2) by π‘₯ 𝑛 : 𝑱 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (πŸ‘) Since, 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 … (πŸ’) On differentiating both sides of equation (4) with respect to β€˜x’: βˆ’π‘± 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … πŸ“
  • 10. CONTINUED… πŸπ’ 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (πŸ”) i.e., 𝑱 𝒏 𝒙 = 𝒙 πŸπ’ 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) … (πŸ•)
  • 11. PROOF FOR FOURTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏 β€² 𝒙 = 𝟏 𝟐 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) Proof: Since we know that βˆ’π‘± 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏 And 𝑱 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
  • 12. CONTINUED… So on subtracting equation (1) from (2), we get πŸπ‘± 𝒏 β€² 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙 … πŸ‘ i.e. , 𝑱 𝒏 β€² 𝒙 = 𝟏 𝟐 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) … (πŸ—)
  • 13. PROOF FOR FIFTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏 β€² 𝒙 = 𝒏 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) Proof: Since we know that βˆ’π‘± 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏 The equation (1) can also be represented as: 𝑱 𝒏 β€² 𝒙 = 𝒏 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙
  • 14. PROOF FOR SIXTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏+𝟏 𝒙 = πŸπ’ 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙) Proof: Since we know that πŸπ’ 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (𝟏) The equation (1) can also be represented as: πŸπ’ 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙
  • 15. RECURRENCE FORMULAE FOR 𝑷 𝒏 𝒙 1. 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙) 2. 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) 3. πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) 4. 𝑷 𝒏 β€² 𝒙 = 𝒙𝑷 π’βˆ’πŸ β€² 𝒙 + 𝒏𝑷 π’βˆ’πŸ(𝒙) 5. 𝟏 βˆ’ 𝒙 𝟐 𝑷 𝒏 β€² 𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
  • 16. PROOF FOR FIRST RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙) Proof: We know that (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 )βˆ’ 𝟏 𝟐 = 𝒏=𝟎 ∞ 𝑷 𝒏 𝒙 𝒕 𝒏 … (𝟏) Differentiating (1) partially w.r.t. t, we get βˆ’ 𝟏 𝟐 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 βˆ’πŸπ’™ + πŸπ’• = 𝒏𝑷 𝒏 (𝒙)𝒕 π’βˆ’πŸ Or 𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 = (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 ) 𝒏𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ Or 𝒙 βˆ’ 𝒕 𝑷 𝒏 𝒙 𝒕 𝒏 = (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 ) 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ Equating coefficients of 𝑑 𝑛 from both sides, we get 𝒙𝑷 𝒏 𝒙 βˆ’ 𝑷 π’βˆ’πŸ 𝒙 = 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 βˆ’ πŸπ’π’™π‘· 𝒏 𝒙 + (𝒏 βˆ’ 𝟏)𝑷 π’βˆ’πŸ(𝒙)
  • 17. PROOF FOR SECOND RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) Proof: We know that (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 )βˆ’ 𝟏 𝟐 = 𝒏=𝟎 ∞ 𝑷 𝒏 𝒙 𝒕 𝒏 … (𝟏) Differentiating (1) partially w.r.t. x, we get βˆ’ 𝟏 𝟐 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 . πŸπ’• = 𝑷 𝒏′(𝒙)𝒕 𝒏 i.e., 𝒕(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 )βˆ’ πŸ‘ 𝟐 = 𝑷 𝒏 β€² 𝒙 𝒕 𝒏 …(2) Again differentiating (1) partially w.r.t. t, we have 𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 = 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ …(3) Dividing (3) by (2), we get 𝒙 βˆ’ 𝒕 𝒕 = 𝒏 𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ 𝑷 𝒏 β€²(𝒙)𝒕 𝒏 i.e. 𝒏𝑷 𝒏 𝒙 𝒕 𝒏 = (𝒙 βˆ’ 𝒕) 𝑷 𝒏′ 𝒙 𝒕 𝒏 …(4) Equating coefficient of 𝑑 𝑛 from both sides of equation (4) we get: 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙)
  • 18. PROOF FOR THIRD RECURRENCE RELATION OF 𝑷 𝒏(𝒙) πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) Proof: Since we know that: 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ 𝒙 … (𝟏) Differentiating (1) w.r.t. x, we get 𝒏 + 𝟏 𝑷 𝒏+𝟏 β€² 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ β€² 𝒙 … 𝟐 Substituting for nπ‘₯𝑃𝑛 β€² π‘₯ π‘“π‘Ÿπ‘œπ‘š π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Ÿπ‘’π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘π‘’ π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑛 (2), we obtain 𝒏 + 𝟏 𝑷 𝒏+𝟏 β€² 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 + 𝑷 π’βˆ’πŸ β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸβ€²(𝒙) Or 𝟐𝐧 + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+πŸβ€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸβ€²(𝒙)
  • 19. PROOF FOR FOURTH RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝑷 𝒏 β€² 𝒙 = 𝒙𝑷 π’βˆ’πŸ β€² 𝒙 + 𝒏𝑷 π’βˆ’πŸ 𝒙 Proof: Since we know that: 𝒏 + 𝟏 𝑷 𝒏+𝟏 β€² 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ β€² 𝒙 … (𝟏) Rewriting (1) as: 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏 , 𝒙 + 𝒏 𝒙𝑷 𝒏 , 𝒙 βˆ’ 𝑷 π’βˆ’πŸ , 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏 , 𝒙 + 𝒏 𝟐 𝑷 𝒏(𝒙) = 𝒏 + 𝟏 𝒙𝑷 𝒏 , 𝒙 + 𝒏 𝟐 + πŸπ’ + 𝟏 𝑷 𝒏 𝒙 Or 𝑷 𝒏+𝟏 β€² 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 + (𝒏 + 𝟏)𝑷 𝒙 …(2) Replacing n by (n-1) in equation (2), we get the required equation
  • 20. PROOF FOR FIFTH RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝟏 βˆ’ 𝒙 𝟐 𝑷 𝒏 β€² 𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)] Proof: Rewriting second and fourth recurrence relation of 𝑃𝑛 π‘₯ as: 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² 𝒙 = 𝒏𝑷 𝒏 𝒙 …(1) and 𝑷 𝒏 β€² 𝒙 βˆ’ 𝒙𝑷 π’βˆ’πŸ β€² 𝒙 = 𝒏𝑷 π’βˆ’πŸ 𝒙 …(2) Multiplying (1) by x and subtracting from (2), we get 𝟏 βˆ’ 𝒙 𝟐 𝑷 𝒏 β€² 𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]