SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 10ǁ October. 2013 ǁ PP.01-17

K-Even Edge-Graceful Labeling of Some Cycle Related Graphs
1

Dr. B. Gayathri, 2S. Kousalya Devi

1,2

M.Sc., M.Phil., Ph.D., Pgdca., M.C.A., Associate Professor And Research Advisor Post Graduate & Research
Department Of Mathematics Periyar E.V.R.College (Autonomous)
Tiruchirappalli-620 023. Tamilnadu. India.

ABSTRACT: In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced
the even edge-graceful graphs. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edgegraceful graphs.We introduced k-even edge-graceful graphs. In this paper, we investigate the k-even edgegracefulness of some cycle related graphs.

KEYWORDS: k-even edge-graceful labeling, k-even edge-graceful graphs. AMS MOS) subject classification:
05C78.

I. INTRODUCTION
All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense
of Harary[5]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. The cardinality
of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G
denoted by q. A graph with p vertices and q edges is called a (p, q) graph.
In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the
even edge-graceful graphs and further studied in. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang
introduced the k-edge-graceful graphs. We have introduced k-even edge- graceful graphs.
Definition 1.1:
k-even edge-graceful labeling (k-EEGL) of a (p, q) graph G(V, E) is an injection f from E to {2k – 1, 2k,




2k + 1, ..., 2k + 2q – 2} such that the induced mapping f defined on V by f ( x) = (f(xy)) (mod 2s) taken
over all edges xy are distinct and even where s = max{p, q} and k is an integer greater than or equal to 1. A
graph G that admits k-even edge-graceful labeling is called a k-even edge-graceful graph (K-EEGG).
Remark 1.2:
1-even edge-graceful labeling is an even edge-graceful labeling.
The definition of k-edge-graceful and k-even edge-graceful are equivalent to one another in the case of
trees.
The edge-gracefulness and even edge-gracefulness of odd order trees are still open. The theory of 1-even
edge-graceful is completely different from that of k- even edge-graceful. For example, tree of order 4 is 2-even
edge-graceful but not 1-even edge-graceful. In this paper we investigate the k-even edge-gracefulness of some
cycle related graphs. Throughout this paper, we assume that k is a positive integer greater than or equal to 1.
2. Prior Results:
1.Theorem : If a (p, q) graph G is k-even edge-graceful with all edges labeled with even numbers and p  q
then G is k-edge-graceful.
2.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and
p  q then q(q  2k  1) 

Further q(q + 2k – 1) 

p( p  1)
(mod p) .
2

0(mod p) if p is odd

p
 2 (mod p) if p is even

www.ijesi.org

1 | Page
K-Even Edge-Graceful Labeling Of…
3.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and p
 q then p  0, 1 or 3 (mod 4).
4.Theorem : If a (p, q) graph G is a k-even edge-graceful tree of odd order then

p
(l – 1) + 1
2

k=

where l is any odd positive integer and hence k  1(mod p).
5. Observation : We observe that any tree of odd order p has the sum of the labels congruent to 0 (mod p).
6. Theorem :

If a (p, q) graph G is a k-even edge-graceful tree of even order with

p  0 (mod 4) then k =

k

Further

p
(2l – 1) + 1 where l is any positive integer.
4

p4
 4 (mod p) if l is odd


 3 p  4 (mod p) if l is even
 4


2. MAIN RESULTS
Definition 2.1
Let Cn denote the cycle of length n. Then the join of {e} with any one vertex of Cn is denoted by Cn 
{e}. In this graph, p = q = n + 1.
Theorem 2.2
The
kz

graph

Cn



{e}

p
p

 mod  , where 0  z   1 ,
2
2


of

even

order

is

for

all

n  1 (mod 4) and n  1.

Proof
Let {v1, v2, ..., vn, v} be the vertices of Cn  {e}, the edges ei =
and en+1 =

k-even-edge-graceful

 v2 , v  (see Figure 1).
vn-1

 vi , vi1  for 1  i  n – 1; e =  vn , v1 
n

vn
en-1
en

...

v1

..

e1

.
e2
v3

en+1
v2

v

Figure 1: Cn  {e} with ordinary labeling
First, we label the edges as follows:
For k  1, 1  i  n and i is odd,

f  ei 

= 2k + i – 2.

When i is even, we label the edges as follows:
For

p2
p

,
k  z  mod  , 0  z 
4
2

www.ijesi.org

2 | Page
K-Even Edge-Graceful Labeling Of…

For

For

For

n  4z  7

2k  n  i  2 for 1  i 

2
f  ei  = 
n  4z  7
 2k  n  i
for
 i  n.

2

p2
p
k
 mod  ,
4 
2
f  ei  = 2k + n + i.
k

p6
p
 mod  ,
4 
2
f  ei  = 2k + n + i – 2.

p  p  10
p

k  z  mod  ,
 z   1,
2
4
2

3n  4 z  9

2k  n  i  2 for 1  i 

2
f  ei  = 
3n  4 z  9
 2k  n  i
for
 i  n.

2

 2k
when k  0  mod p 
f  en1  = 
2k  2n  2 z  2 when k  z  mod p  and 1 z  p  1.

Then the induced vertex labels are as follows:

p2
p

 mod  , 0  z 
4
2

n  4z  7

n  4 z  2i  5 for 1  i 

2
f   vi  = 
 4 z  n  2i  5 for n  4 z  7  i  n.

2

p+2
p
Case 2: k 
 mod 
4 
2

f  v1  = 2n
f   vi  = 2i – 2
;
Case 1: k  z

Case 3:

k

f   vi 
Case 4:

for 2  i  n.

p+6
p
 mod 
4 
2
= 2i

for 1  i  n.

p  p  10
p

k  z  mod  ,
 z  1
2
4
2


www.ijesi.org

3 | Page
K-Even Edge-Graceful Labeling Of…

3n  4 z  9

4 z  n  2i  7 for 1  i <

2
f   vi  = 
4 z  3n  2i  7 for 3n  4 z  9  i  n.

2

p
p

For k  z  mod  , 0  z 
 1,
2
2

f   vn1  = 0.
Therefore,
labels
Cn



0z

are
{e}

of

f  V 

= {0, 2, 4, ..., 2s – 2}, where s = max{p, q} = n + 1. So, it follows that the vertex

all
even

distinct
order

is

and

even.

k-even-edge-graceful

for

Hence,
all

k

the

graph



p

 mod  ,
2


where

z

p
 1 , n  1 (mod 4) and n  1. 
2
For example, consider the graph C13  {e}. Here n = 13;

s = max {p, q} = 14; 2s = 28. The 21-EEGL of C13  {e} is given in Figure 2.

51
65

67
6

4

49

53

8

2

10

41

26

56

12

61

0

55

24

14

47

22

16
20

59

43

18

57
45
Figure 2: 21-EEGL of C13  {e}

For example, consider the graph C17  {e}. Here n = 17;
s = max {p, q} = 18; 2s = 36. The 5-EEGL of C17  {e} is given in Figure 3.
23

41
21

28

26

30

43
32

25

24

39

34

22
19

9
20

2

36

37

0

29

18
4
17

16
35

6
14
15

8

12

10
33

11

31

13

Figure 3: 5-EEGL of C17  {e}

www.ijesi.org

4 | Page
K-Even Edge-Graceful Labeling Of…
Definition 2.3 [8]
For p  4, a cycle (of order p) with one chord is a simple graph obtained from a p-cycle by adding a
chord. Let the p-cycle be v1v2 ... vpv1. Without loss of generality, we assume that the chord joins v1 with any one vi,
where 3  i  p – 1. This graph is denoted by Cp(i). For example
cycle
by
q = p + 1.

adding

a

chord

between

the

C p  5

vertices

means a graph obtained from a p-

v1

and

v5.

In

this

graph,

Theorem 2.4
The graph Cn(i), (n > 4), 3  i  n – 1, cycle with one chord of odd order is k-even-edge-graceful for all
kz

q
q

 mod  , where 0  z   1 .
2
2


Proof
Let

ei =

 vi , vi1 

{v1,

v2,

v3,

...,

vi,

for 1  i  n – 1; en =

vi+1,

 vn , v1 

...,

vn}

and en+1 =

be

the

vertices

of

Cn(i),

the

edges

 v1 , vi  , 3  i  n – 1 (see Figure 4). The chord

connecting the vertex v1 with vi, (i  3) is shown in Figure 4. For this graph, p = n and q = n + 1.
v1
vn

en

e1

v2

en-1

e2
v3

vn-1

e3

en-2
en+1

vn-2

v4
e4

vi+2

..

.

.

..
ei+2
ei+1

ei
vi+1

vi

Figure 4: Cn(i) with ordinary labeling
First, we label the edges as follows:
For k  1 and 1  i  n,

f  ei 

=

f  en1 

=

when i is odd
 2k  i  2

2k  n  i  2 when i is even.

 2k
when k  0  mod q 

2k  2n  2 z  2 when k  z  mod q  , 1  z  q  1.

Then the induced vertex labels are as follows:
Case I: n  1 (mod 4) and n  1

q+2
q

 mod  , 0  z 
4
2

n  4z  7

 4 z  n  2i  5 for 1  i 

2
f   vi  = 
4 z  n  2i  7 for n  4 z  7  i  n.

2


Case 1: k  z

www.ijesi.org

5 | Page
K-Even Edge-Graceful Labeling Of…

Case 2:

k

f   vi 

q6
q
 mod 
4 
2
= 2i

for 1  i  n.

q  q  10
q

k  z  mod  ,
 z  1
2
4
2

3n  4 z  9

4 z  n  2i  7 for 1  i 

2
f   vi  = 
4 z  3n  2i  9 for 3n  4 z  9  i  n.

2


Case 3:

Case II: n  3 (mod 4) and n  3

q
q

k  z  mod  , 0  z 
2
4

n  4z  7

 4 z  n  2i  5 for 1  i 

2
f   vi  = 
4 z  n  2i  7 for n  4 z  7  i  n.

2


Case 1:

Case 2:

k

f   vi 
Case 3:

q4
q
 mod 
4 
2
= 2i – 2 for 1  i  n.

q  q 8
q

k  z  mod  ,
 z  1
2 4
2


f   vi 

Therefore,

=

f  V 

3n  4 z  9

4 z  n  2i  7 for 1  i 


2

4 z  3n  2i  9 for 3n  4 z  9  i  n.

2

 {0, 2, 4, ..., 2s – 2}, where s = max {p, q} = n + 1. So, it follows that the vertex labels

are all distinct and even. Hence, the graph
Cn(i), (n > 4), 3  i  n – 1, cycle with one chord of odd order is k-even-edge-graceful for all k  z
0z

q
 1. 
2
For example, consider the graph

q

 mod  ,
2


C9  5 . Here n = 9; s = max {p, q} = 10; 2s = 20.

www.ijesi.org

6 | Page
K-Even Edge-Graceful Labeling Of…
The 15-even-edge-graceful labeling of

C9  5

is given in Figure 5.

6
29

37

2

8
39

45

10

0

40
31

35

12

18
41

43

33
14
16
Figure 5: 15-EEGL of C9(5)
For example, consider the graph C11(6). Here n = 11; s = max {p, q} = 12; 2s = 24. The 11-EEGL of C11(6) is given
in Figure 6.
0

4
31

21

6

41
22

33

29

8
24

20

23
39
18

10
35
27
16

12

25

37
14

Figure 6: 11-EEGL of C11(6)
Theorem 2.5
The graph
for all

Cn  i  , (n  4), 3  i  n – 1, cycle with one chord of even order is k-even-edge-graceful

k  z  mod q  , where 0  z  q – 1 and n  0  mod 4  .

Proof
Let the vertices and edges be defined as in Theorem 6.3.2.
First, we label the edges as follows:
For k  1,

f  e1 

= 2k + 1

f  ei 

f  e2  = 2k – 1

= 2k + 2i – 3

;

for

3i 

n
 3.
2

n
 3  i  n,
2
2k  2i  1 when i is odd
f  ei  = 
2k  2i  3 when i is even.

For k  1 and

www.ijesi.org

7 | Page
K-Even Edge-Graceful Labeling Of…

f  en1 

=

 2k
when k  0  mod q 

2k  2n  2 z  2 when k  z  mod q  , 1  z  q  1.

Then the induced vertex labels are as follows:
Case 1: k  0 (mod q)

f   v1 

f   v3 

= 2n – 2

;

f   v2 

= 0.

= 2.

n

4i  8
for 4  i   3


2
f   vi  = 
4i  2n  6 for n  3  i  n.

2

q 1
Case 2: k  z (mod q), 1  z 
2

when i = 1, 2.
f  vi  = 4z + 4i – 8
For k  z (mod q), 1 

f   v3 

z

q 3
,
2

= 4z + 2

For 4  i  n,

f   vi 

For

=


4 z  4i  8

4 z  4i  2n  10



4 z  4i  2n  6

4 z  4i  4n  8


n
z3
2
n
n
for  z  3  i   3
2
2
n
for  3  i  n  z  2
2
for n  z  2  i  n.
for 4  i 

q 1
 mod q  ,
2
f   v3  = 0

k

n

4i  10
for 4  i   3


2
f   vi  = 
4i  2n  8 for n  3  i  n.

2

q +1
Case 3: k 
 mod q 
2
f   v1  = 2n
f   v2  = 2.
;
f   v3 

= 4.

www.ijesi.org

8 | Page
K-Even Edge-Graceful Labeling Of…

f   vi 

Case 4:


4i  6

= 0



4i  2n  4


k  z  mod q  ,

f   vi 

f   v3 

q+3
 z  q 1
2

= 4z + 4i – 2n – 10 when i = 1, 2.
= 4z – 2n.

For k  z (mod q),

f   vi 

n
2
2
n
when i   2
2
n
for
 3  i  n.
2

for 4  i <

q3
 z  q2,
2

4 z  4i  2n  10

4 z  4i  4n  12
= 


4 z  4i  4n  8

4 z  4i  6n  10



for 4  i  n  z  3
n
for n  z  3  i   3
2
n
3n
for  3  i 
z3
2
2
3n
for
 z  3  i  n.
2

For k  q – 1 (mod q),

f   vi 

n

4i  12
for 4  i   3


2
= 
4i  2n  10 for n  3  i  n.

2


Therefore,

f  V   0, 2, 4, ..., 2s  2 , where s = max{p, q} = n + 1. So, it follows that the

Cn  i  , (n  4), 3  i  n – 1, cycle will one chord of

vertex labels are all distinct and even. Hence, the graph

even order is k-even-edge-graceful for all k  z (mod q), where 0  z  q – 1 and n  0 (mod 4). 
For example, consider the graph C16(5), Here n = 16; s = max{p, q} = 17; 2s = 34.
The 18-EEGL of C16(5) is given in Figure 7.
0
30

4
37

6
35

65

39
68

67

12
41

26

16
61

43

22

20
63

45

18

24

57
14

47
59

49
53

10

51
2

28

32

Figure 7: 18-EEGL of C16(5)

www.ijesi.org

9 | Page
K-Even Edge-Graceful Labeling Of…
Definition 2. 6
The crown Cn  K1 is the graph obtained from the cycle Cn by attaching pendant edge at each vertex of
the cycle and is denoted by

Cn . In this graph,

p = q = 2n.

Theorem 2.7
The crown graph

where


Cn ,  n  3

of even order is k-even-edge-graceful for all

p

k  z  mod  ,
3


p
 1 and n  0 (mod 3).
3

0 z

Proof
For this graph, p = q = 2n. Let v1, v2, v3, ..., vn and

C


n

'
'
'
v1' , v2 , v3 , ..., vn

be the vertices and pendant vertices of

respectively.
v1'
e1'
v1
e1

en
vn

'

vn

v2

e2'

v3

e3'

en'
en-1

e2

vn-1

vn' 1

v2'

'

en 1

v3'

e3

en-2
...

..

v4

.

e4'

..

v4'

.

Figure 8:

+
Cn

with ordinary labeling

The edges are defined by
ei =

 vi , vi1 

and

ei'

=

for 1  i  n – 1 ;

v , v 
i

'
i

en =

 vn , v1 

for 1  i  n (see Figure 8).

First, we label the edges as follows:
For k  1,

f  ei 

f  e1' 
f  ei' 

for 1  i  n

= 2k + 4i – 5
= 2k

for 2  i  n.

= 2k + 4(n – i + 1)

Then the induced vertex labels are as follows:

Case 1:

p

k  0  mod 
3

www.ijesi.org

10 | Page
K-Even Edge-Graceful Labeling Of…

f   vi 

=

4n  4i  10 when i  1, 2

for 3  i  n.
4i  10

p
p

k  z  mod  , 1  z   1 and z is odd
3
3

5  3z

6 z  4i  10
for 1  i  n 


2
f   vi  = 
6 z  4n  4i  10 for n  5  3z  i  n.

2

p
p

Case 3: k  z  mod  , 1  z 
 1 and z is even
3
3

6  3z

for 1  i  n 
6 z  4i  10

2
f   vi  = 
6 z  4n  4i  10 for n  6  3z  i  n.

2

Case 2:

The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex

Cn ,  n  3

labels are all distinct and even. Hence, the crown graph
for all

p

k  z  mod  ,
3


where

0 z

For example, consider the graph
graceful labeling of

C6

of even order is k-even-edge-graceful

p
 1 and n  0 (mod 3). 
3

C6 . Here p = q = 12; s = max{p, q} = 12; 2s = 24. The 2-even-edge-

is given in Figure 9.

4
4

23
8

8

6

3

19
12

12

24

10

2

0

7
22
15

14
18

20

20

11

16
16
Figure 9: 2-EEGL of

www.ijesi.org

+
C6

11 | Page
K-Even Edge-Graceful Labeling Of…
Theorem 2.8
The crown graph


Cn ,  n  4 

of even order is k-even-edge-graceful for all

k  z  mod p  ,

where 0  z  p – 1, n  1 (mod 3) and n  1.
Proof
Let the vertices and edges be defined as in Theorem 6.4.2. The edge labels are also same as in Theorem
6.4.2.
Then the induced vertex labels are as follows:
Case 1: k  0 (mod p)

f   vi 

=

4n  4i  10 when i  1, 2

for 3  i  n.
4i  10

When z is odd, the induced vertex labels are given below:
Case 2: k  z (mod p), 1  z 

p +1
3

5  3z

6 z  4i  10
for 1  i  n 


2
f   vi  = 
6 z  4n  4i  10 for n  5  3z  i  n.

2

p+4
2p+2
Case 3: k  z (mod p),
z
3
3
5  3z

6 z  4n  4i  10 for 1  i  2n  2

f   vi  = 
6 z  8n  4i  10 for 2n  5  3z  i  n.

2

2p+5
Case 4: k  z (mod p),
 z  p1
3
5  3z

6 z  8n  4i  10 for 1  i  3n+ 2

f   vi  = 
6 z  12n  4i  10 for 3n  5  3z  i  n.

2

When z is even, the induced vertex labels are given below:
Case 5:

k  z  modp  , 1  z 

f   vi 

Case 6:

=

p +1
3

6  3z

6 z  4i  10
for 1  i  n 


2

6 z  4n  4i  10 for n  6  3z  i  n.

2


k  z  mod p  ,

p+4
2p+2
z 
3
3

www.ijesi.org

12 | Page
K-Even Edge-Graceful Labeling Of…

6  3z

6 z  4n  4i  10 for 1  i  2n  2

f   vi  = 
6 z  8n  4i  10 for 2n  6  3z  i  n.

2

2p+5
Case 7: k  z  mod p  ,
z  p  1
3
6  3z

6 z  8n  4i  10 for 1  i  3n 


2
f   vi  = 
6 z  12n  4i  10 for 3n  6  3z  i  n.

2

The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex

Cn ,  n  4 

labels are all distinct and even. Hence, the crown graph
for all

of even order is k-even-edge-graceful

k  z  mod p  , where 0  z  p – 1, n  1 (mod 3) and n  1. 
For example, consider the graph

graceful labeling of

C


7

C7 .

Here p = q = 14; s = max {p, q} = 14; 2s = 28. The 5-even-edge-

is given in Figure 10.
10
10
24
9

33
14

20

14

0

29

18

18

34

6

13
16

4

25

30

2

17
12

8
21

22

26
26

22

Figure 10: 5-EEGL of

C 7+

Theorem 2.9
The crown graph


Cn , (n  5) of even order is k-even-edge-graceful for all k  z (mod p), where 0  z  p

– 1, n  2 (mod 3) and n  2.
Proof
Let the vertices and edges be defined as in Theorem 2.7. The edge labels are also same as in Theorem
2.7.
Then the induced vertex labels are as follows:
Case 1: k  0 (mod p)

www.ijesi.org

13 | Page
K-Even Edge-Graceful Labeling Of…

f   vi 

=

4n  4i  10 when i  1, 2

for 3  i  n.
4i  10

When z is odd, the induced vertex labels are given below:
Case 2: k  z (mod p), 1  z 

f   vi 

5  3z

6 z  4i  10
for 1  i  n 

2
= 

6 z  4n  4i  10 for n + 5  3z  i  n.

2


Case 3: k  z (mod p),

f



 vi 

p+5
3

z

2p +1
3


6 z  4n  4i  10
= 

 6 z  8n  4i  10



Case 4: k  z (mod p),

f   vi 

p+2
3

2p+4
3

for 1  i  2n 
for 2n 

5  3z
2

5  3z
 i  n.
2

zp–1


 6 z  8n  4i  10
= 

6 z  12n  4i  10



for 1  i  3n 
for 3n 

5  3z
2

5  3z
 i  n.
2

When z is even, the induced vertex labels are given below:
Case 5: k  z (mod p), 1  z 

f   vi 

6  3z

6 z  4i  10
for 1  i  n 


2
= 
6 z  4n  4i  10 for n  6  3z  i  n.

2


Case 6: k  z (mod p),

f



 vi 

f

 vi 

p+5
3

z

2p +1
3


6 z  4n  4i  10
= 

 6 z  8n  4i  10



Case 7: k  z (mod p),


p+2
3

2p+4
3

for 1  i  2n 
for 2n 

6  3z
2

6  3z
 i  n.
2

zp–1


6 z  8n  4i  10

= 

6 z  12n  4i  10



for 1  i  3n 
for 3n 

6  3z
2

6  3z
 i  n.
2

www.ijesi.org

14 | Page
K-Even Edge-Graceful Labeling Of…
The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex

Cn , (n  5) of even order is k-even-edge-graceful for

labels are all distinct and even. Hence, the crown graph

all k  z (mod p), where 0  z  p – 1, n  2 (mod 3) and n  2. 
For example, consider the graph
The 10-even-edge-graceful labeling of

C5 . Here p = q = 10; s = max {p, q} = 10; 2s = 20.

C5

is given in Figure 11.
0
20

4

14

35

16

19

24

36
18

10

23

31
6

2
27

28

32
12

8

Figure 11: 10-EEGL of
Definition 2.10
A graph

Hm G 

+
C5

is obtained from a graph G by replacing each edge with m parallel edges.

Theorem 2.11
The graph Hn(Pn), (n  2) of
k  z (mod p – 1), where 0  z  p – 2 and n is even.
Proof

even

order

Let {v1, v2, ..., vn} be the vertices of Hn(Pn). Let the edges eij of
eij = (vi, vi+1) for 1  i  n – 1, 1  j  n (see Figure 12).
v1
v2
v3
...
e21
e11

is

k-even-edge-graceful

H n  Pn 

...

for

all

be defined by

vn-1

vn
en-11

e12

e22

en-12

e13

e23

en-13

...

...

...

e1n

e2n

en-1n

Figure 12: Hn(Pn) with ordinary labeling

www.ijesi.org

15 | Page
K-Even Edge-Graceful Labeling Of…
For this graph, p = n; q = n(n – 1).
First, we label the edges as follows:
For k  1,

for 1  i  n  1, i is odd and 1 j  n
2k  ni  2 j  5
f  eij  = 
2k  2 j  n(i  1)  4 for 1  i  n  1, i is even and 1 j  n .
Then the induced vertex labels are as follows:
Case 1: k  0 (mod p – 1)

f   v1 

= 2n (n – 2).

f   vi 

=

f   vn 

= n (n – 4).

n  2n  2i  9  for 2  i  4

for 4  i  n  1.
n  2i  7 

Case 2: k  z (mod p – 1), 1  z  p – 2

f   v1 

Subcase (i):


= 2n (z – 1).
k  1 (mod p – 1)

f (vi )

= n(2i – 3) for 2  i  n – 1.

f  (vn )

= n[n + 2(z – 2)].

Subcase (ii):

p
2
n  2i  3  4n  z  1 for 2  i  n  2 z  3



n  2  i  2 z  n   5 for n  2 z  3  i  n  1.
 

k  z (mod p – 1), 2  z 

f   vi 

=

f  (vn )

= n[n + 2(z – 2)].

Subcase (iii):

p+2
 z  p2
2
n  2  i  2 z  n   5 for 2  i  2n  2 z  2

 

n  2  i  2n  2 z   3 for 2n  2 z  2  i  n  1.

 

k  z (mod p – 1),

f   vi 

=

f  (vn )

= n[2(z – 1) – n].

Therefore,

f  V 

 {0, 2, 4, ..., 2s – 2}, where s = max {p, q} = n(n – 1). So, it follows that the

vertex labels are all distinct and even. Hence, the graph Hn(Pn), (n  2) of even order is k-even-edge-graceful for
all k  z (mod p – 1), where 0  z  p – 2 and n is even. 
For example, consider the graph H8(P8). Here p = 8; q = 56;
s = max {p, q} = 56; 2s = 112. The 6-EEGL of H8(P8) is given in Figure 13.

www.ijesi.org

16 | Page
K-Even Edge-Graceful Labeling Of…
80

17

56

18

72

33

88

34

104

49

8

50

24

65

19

20

35

36

51

52

67

21

22

37

38

53

54

69

23

24

39

40

55

56

71

25

26

41

42

57

58

73

27

28

43

44

59

60

75

29

30

45

46

61

62

77

31

32

47

48

63

64

16

79

Figure 13: 6-EEGL of H8(P8)

REFERENCES
[1].
[2].
[3].
[4].
[5].
[6].
[7].
[8].

G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE, 65(1977) 562 – 570.
G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, in Theory and Applications
of Graphs, Lecture Notes in Math., 642, Springer-Verlag, New York (1978) 53 – 65.
J.A. Gallian, A dynamic survey of graph labeling, The electronic journal of Combinatorics 16 (2009), #DS6.
B. Gayathri, M. Duraisamy, and M. Tamilselvi, Even edge graceful labeling of some cycle related graphs, Int. J. Math. Comput.
Sci., 2 (2007) 179 – 187.
F. Harary, “Graph Theory” – Addison Wesley, Reading Mass (1972).
S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50 (1985) 231 – 241.
W.C. Shiu, M.H. Ling, and R.M. Low, The edge-graceful spectra of connected bicyclic graphs without pendant, JCMCC, 66
(2008) 171 – 185.
Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang, On the edge-graceful spectra of cycles with one chord and dumbbell graphs,
Congressus Numerantium, 170 (2004) 171 – 183.

www.ijesi.org

17 | Page

Weitere ähnliche Inhalte

Was ist angesagt?

modul 4 add maths 07
modul 4 add maths 07modul 4 add maths 07
modul 4 add maths 07Sasi Villa
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...Thomas Ong
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookRushane Barnes
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...Bagalkot
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018KarunaGupta1982
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add mathsSasi Villa
 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Saripah Ahmad Mozac
 
MODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and EquationsMODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and Equationsguestcc333c
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiationatiqah ayie
 
Maths formulae booklet (iit jee)
Maths formulae booklet (iit jee)Maths formulae booklet (iit jee)
Maths formulae booklet (iit jee)s9182647608y
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3naveenkumar9211
 

Was ist angesagt? (20)

Poisson factorization
Poisson factorizationPoisson factorization
Poisson factorization
 
Soalan Jawapan Omk 2007
Soalan Jawapan Omk 2007Soalan Jawapan Omk 2007
Soalan Jawapan Omk 2007
 
Maths04
Maths04Maths04
Maths04
 
modul 4 add maths 07
modul 4 add maths 07modul 4 add maths 07
modul 4 add maths 07
 
4.1 matrices
4.1 matrices4.1 matrices
4.1 matrices
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
O Level A Maths Sec 3 Syallbus 2011 Simultaneous Equation, Indices, Surds, Ex...
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018
 
Class 12 practice paper
Class 12 practice paperClass 12 practice paper
Class 12 practice paper
 
Tugas 2 turunan
Tugas 2 turunanTugas 2 turunan
Tugas 2 turunan
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222
 
MODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and EquationsMODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and Equations
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiation
 
Maths formulae booklet (iit jee)
Maths formulae booklet (iit jee)Maths formulae booklet (iit jee)
Maths formulae booklet (iit jee)
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3
 

Andere mochten auch

CV_AJIT_KULKARNI - crd
CV_AJIT_KULKARNI - crdCV_AJIT_KULKARNI - crd
CV_AJIT_KULKARNI - crdAjit Kulkarni
 
Si impersonale e passivante
Si impersonale e passivanteSi impersonale e passivante
Si impersonale e passivanteLyceum Italy
 
Kinematika ruhu materialnoyi toshki
Kinematika ruhu materialnoyi toshkiKinematika ruhu materialnoyi toshki
Kinematika ruhu materialnoyi toshkiIlona Bacurovska
 
La cultura, La ciudad Y Acción Colectiva por Jhonatan Torres Jovien
La cultura, La ciudad Y Acción Colectiva por Jhonatan Torres JovienLa cultura, La ciudad Y Acción Colectiva por Jhonatan Torres Jovien
La cultura, La ciudad Y Acción Colectiva por Jhonatan Torres Jovienjonatot
 
Communication and media
Communication and mediaCommunication and media
Communication and mediaJLuo7
 
Manne Donation Press Release
Manne Donation Press ReleaseManne Donation Press Release
Manne Donation Press ReleaseAndrew Coffey
 
федосеев Power point1
федосеев Power point1федосеев Power point1
федосеев Power point1Interfixx
 
Termodinamica en el corte de metales
Termodinamica en el corte de metales Termodinamica en el corte de metales
Termodinamica en el corte de metales itzayannaa
 
Эксперимент с полкой (решения ТОС в аптечной сети)
Эксперимент с полкой (решения ТОС в аптечной сети)Эксперимент с полкой (решения ТОС в аптечной сети)
Эксперимент с полкой (решения ТОС в аптечной сети)Apple Consulting
 
Design of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other Experiences
Design of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other ExperiencesDesign of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other Experiences
Design of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other ExperiencesCIFOR-ICRAF
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI) International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI) inventionjournals
 
Kinematika ruhu materialnoi tochki
Kinematika ruhu materialnoi tochkiKinematika ruhu materialnoi tochki
Kinematika ruhu materialnoi tochkiIlona Bacurovska
 
Power point alejandro gonzalez
Power point alejandro gonzalezPower point alejandro gonzalez
Power point alejandro gonzalezalejandro696
 

Andere mochten auch (15)

CV_AJIT_KULKARNI - crd
CV_AJIT_KULKARNI - crdCV_AJIT_KULKARNI - crd
CV_AJIT_KULKARNI - crd
 
Si impersonale e passivante
Si impersonale e passivanteSi impersonale e passivante
Si impersonale e passivante
 
Kinematika ruhu materialnoyi toshki
Kinematika ruhu materialnoyi toshkiKinematika ruhu materialnoyi toshki
Kinematika ruhu materialnoyi toshki
 
La cultura, La ciudad Y Acción Colectiva por Jhonatan Torres Jovien
La cultura, La ciudad Y Acción Colectiva por Jhonatan Torres JovienLa cultura, La ciudad Y Acción Colectiva por Jhonatan Torres Jovien
La cultura, La ciudad Y Acción Colectiva por Jhonatan Torres Jovien
 
Communication and media
Communication and mediaCommunication and media
Communication and media
 
Manne Donation Press Release
Manne Donation Press ReleaseManne Donation Press Release
Manne Donation Press Release
 
федосеев Power point1
федосеев Power point1федосеев Power point1
федосеев Power point1
 
Termodinamica en el corte de metales
Termodinamica en el corte de metales Termodinamica en el corte de metales
Termodinamica en el corte de metales
 
Top 10 tips
Top 10 tipsTop 10 tips
Top 10 tips
 
Эксперимент с полкой (решения ТОС в аптечной сети)
Эксперимент с полкой (решения ТОС в аптечной сети)Эксперимент с полкой (решения ТОС в аптечной сети)
Эксперимент с полкой (решения ТОС в аптечной сети)
 
Design of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other Experiences
Design of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other ExperiencesDesign of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other Experiences
Design of 3E REDD+ Benefit Sharing Mechanisms: Learning from Other Experiences
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI) International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Pronomi relativi
Pronomi relativiPronomi relativi
Pronomi relativi
 
Kinematika ruhu materialnoi tochki
Kinematika ruhu materialnoi tochkiKinematika ruhu materialnoi tochki
Kinematika ruhu materialnoi tochki
 
Power point alejandro gonzalez
Power point alejandro gonzalezPower point alejandro gonzalez
Power point alejandro gonzalez
 

Ähnlich wie International Journal of Engineering and Science Invention (IJESI)

Goldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane mapsGoldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane mapsMathieu Dutour Sikiric
 
An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles
An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles  An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles
An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles graphhoc
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residuesiosrjce
 
A Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's ConjectureA Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's Conjecturenikos mantzakouras
 
On the Odd Gracefulness of Cyclic Snakes With Pendant Edges
On the Odd Gracefulness of Cyclic Snakes With Pendant EdgesOn the Odd Gracefulness of Cyclic Snakes With Pendant Edges
On the Odd Gracefulness of Cyclic Snakes With Pendant EdgesGiselleginaGloria
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsDennis Almeida
 
E-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror GraphsE-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror GraphsWaqas Tariq
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Prakash Dabhi
 
Some New Families on H-Cordial Graphs
Some New Families on H-Cordial GraphsSome New Families on H-Cordial Graphs
Some New Families on H-Cordial GraphsIJMER
 
AIOU Code 1307 Solved Assignment 1 Autumn 2022.pptx
AIOU Code 1307 Solved Assignment 1 Autumn 2022.pptxAIOU Code 1307 Solved Assignment 1 Autumn 2022.pptx
AIOU Code 1307 Solved Assignment 1 Autumn 2022.pptxZawarali786
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsijtsrd
 
ODD HARMONIOUS LABELINGS OF CYCLIC SNAKES
ODD HARMONIOUS LABELINGS OF CYCLIC SNAKESODD HARMONIOUS LABELINGS OF CYCLIC SNAKES
ODD HARMONIOUS LABELINGS OF CYCLIC SNAKESgraphhoc
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 
Lecture 5(polar coordinates)
Lecture 5(polar coordinates)Lecture 5(polar coordinates)
Lecture 5(polar coordinates)FahadYaqoob5
 

Ähnlich wie International Journal of Engineering and Science Invention (IJESI) (20)

Goldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane mapsGoldberg-Coxeter construction for 3- or 4-valent plane maps
Goldberg-Coxeter construction for 3- or 4-valent plane maps
 
Muchtadi
MuchtadiMuchtadi
Muchtadi
 
Maths05
Maths05Maths05
Maths05
 
An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles
An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles  An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles
An Algorithm for Odd Graceful Labeling of the Union of Paths and Cycles
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
 
A Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's ConjectureA Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's Conjecture
 
On the Odd Gracefulness of Cyclic Snakes With Pendant Edges
On the Odd Gracefulness of Cyclic Snakes With Pendant EdgesOn the Odd Gracefulness of Cyclic Snakes With Pendant Edges
On the Odd Gracefulness of Cyclic Snakes With Pendant Edges
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectors
 
E-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror GraphsE-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror Graphs
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13
 
Some New Families on H-Cordial Graphs
Some New Families on H-Cordial GraphsSome New Families on H-Cordial Graphs
Some New Families on H-Cordial Graphs
 
FDP-libre(1)
FDP-libre(1)FDP-libre(1)
FDP-libre(1)
 
AIOU Code 1307 Solved Assignment 1 Autumn 2022.pptx
AIOU Code 1307 Solved Assignment 1 Autumn 2022.pptxAIOU Code 1307 Solved Assignment 1 Autumn 2022.pptx
AIOU Code 1307 Solved Assignment 1 Autumn 2022.pptx
 
Vectors2
Vectors2Vectors2
Vectors2
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
 
ODD HARMONIOUS LABELINGS OF CYCLIC SNAKES
ODD HARMONIOUS LABELINGS OF CYCLIC SNAKESODD HARMONIOUS LABELINGS OF CYCLIC SNAKES
ODD HARMONIOUS LABELINGS OF CYCLIC SNAKES
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
Lecture 5(polar coordinates)
Lecture 5(polar coordinates)Lecture 5(polar coordinates)
Lecture 5(polar coordinates)
 

Kürzlich hochgeladen

Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 

Kürzlich hochgeladen (20)

Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 

International Journal of Engineering and Science Invention (IJESI)

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 10ǁ October. 2013 ǁ PP.01-17 K-Even Edge-Graceful Labeling of Some Cycle Related Graphs 1 Dr. B. Gayathri, 2S. Kousalya Devi 1,2 M.Sc., M.Phil., Ph.D., Pgdca., M.C.A., Associate Professor And Research Advisor Post Graduate & Research Department Of Mathematics Periyar E.V.R.College (Autonomous) Tiruchirappalli-620 023. Tamilnadu. India. ABSTRACT: In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the even edge-graceful graphs. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edgegraceful graphs.We introduced k-even edge-graceful graphs. In this paper, we investigate the k-even edgegracefulness of some cycle related graphs. KEYWORDS: k-even edge-graceful labeling, k-even edge-graceful graphs. AMS MOS) subject classification: 05C78. I. INTRODUCTION All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary[5]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. The cardinality of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G denoted by q. A graph with p vertices and q edges is called a (p, q) graph. In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the even edge-graceful graphs and further studied in. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edge-graceful graphs. We have introduced k-even edge- graceful graphs. Definition 1.1: k-even edge-graceful labeling (k-EEGL) of a (p, q) graph G(V, E) is an injection f from E to {2k – 1, 2k,   2k + 1, ..., 2k + 2q – 2} such that the induced mapping f defined on V by f ( x) = (f(xy)) (mod 2s) taken over all edges xy are distinct and even where s = max{p, q} and k is an integer greater than or equal to 1. A graph G that admits k-even edge-graceful labeling is called a k-even edge-graceful graph (K-EEGG). Remark 1.2: 1-even edge-graceful labeling is an even edge-graceful labeling. The definition of k-edge-graceful and k-even edge-graceful are equivalent to one another in the case of trees. The edge-gracefulness and even edge-gracefulness of odd order trees are still open. The theory of 1-even edge-graceful is completely different from that of k- even edge-graceful. For example, tree of order 4 is 2-even edge-graceful but not 1-even edge-graceful. In this paper we investigate the k-even edge-gracefulness of some cycle related graphs. Throughout this paper, we assume that k is a positive integer greater than or equal to 1. 2. Prior Results: 1.Theorem : If a (p, q) graph G is k-even edge-graceful with all edges labeled with even numbers and p  q then G is k-edge-graceful. 2.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and p  q then q(q  2k  1)  Further q(q + 2k – 1)  p( p  1) (mod p) . 2 0(mod p) if p is odd  p  2 (mod p) if p is even  www.ijesi.org 1 | Page
  • 2. K-Even Edge-Graceful Labeling Of… 3.Theorem : If a (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and p  q then p  0, 1 or 3 (mod 4). 4.Theorem : If a (p, q) graph G is a k-even edge-graceful tree of odd order then p (l – 1) + 1 2 k= where l is any odd positive integer and hence k  1(mod p). 5. Observation : We observe that any tree of odd order p has the sum of the labels congruent to 0 (mod p). 6. Theorem : If a (p, q) graph G is a k-even edge-graceful tree of even order with p  0 (mod 4) then k = k Further p (2l – 1) + 1 where l is any positive integer. 4 p4  4 (mod p) if l is odd    3 p  4 (mod p) if l is even  4  2. MAIN RESULTS Definition 2.1 Let Cn denote the cycle of length n. Then the join of {e} with any one vertex of Cn is denoted by Cn  {e}. In this graph, p = q = n + 1. Theorem 2.2 The kz graph Cn  {e} p p   mod  , where 0  z   1 , 2 2  of even order is for all n  1 (mod 4) and n  1. Proof Let {v1, v2, ..., vn, v} be the vertices of Cn  {e}, the edges ei = and en+1 = k-even-edge-graceful  v2 , v  (see Figure 1). vn-1  vi , vi1  for 1  i  n – 1; e =  vn , v1  n vn en-1 en ... v1 .. e1 . e2 v3 en+1 v2 v Figure 1: Cn  {e} with ordinary labeling First, we label the edges as follows: For k  1, 1  i  n and i is odd, f  ei  = 2k + i – 2. When i is even, we label the edges as follows: For p2 p  , k  z  mod  , 0  z  4 2  www.ijesi.org 2 | Page
  • 3. K-Even Edge-Graceful Labeling Of… For For For n  4z  7  2k  n  i  2 for 1  i   2 f  ei  =  n  4z  7  2k  n  i for  i  n.  2  p2 p k  mod  , 4  2 f  ei  = 2k + n + i. k p6 p  mod  , 4  2 f  ei  = 2k + n + i – 2. p  p  10 p  k  z  mod  ,  z   1, 2 4 2  3n  4 z  9  2k  n  i  2 for 1  i   2 f  ei  =  3n  4 z  9  2k  n  i for  i  n.  2   2k when k  0  mod p  f  en1  =  2k  2n  2 z  2 when k  z  mod p  and 1 z  p  1. Then the induced vertex labels are as follows: p2 p   mod  , 0  z  4 2  n  4z  7  n  4 z  2i  5 for 1  i   2 f   vi  =   4 z  n  2i  5 for n  4 z  7  i  n.  2  p+2 p Case 2: k   mod  4  2  f  v1  = 2n f   vi  = 2i – 2 ; Case 1: k  z Case 3: k f   vi  Case 4: for 2  i  n. p+6 p  mod  4  2 = 2i for 1  i  n. p  p  10 p  k  z  mod  ,  z  1 2 4 2  www.ijesi.org 3 | Page
  • 4. K-Even Edge-Graceful Labeling Of… 3n  4 z  9  4 z  n  2i  7 for 1  i <  2 f   vi  =  4 z  3n  2i  7 for 3n  4 z  9  i  n.  2  p p  For k  z  mod  , 0  z   1, 2 2  f   vn1  = 0. Therefore, labels Cn  0z are {e} of f  V  = {0, 2, 4, ..., 2s – 2}, where s = max{p, q} = n + 1. So, it follows that the vertex all even distinct order is and even. k-even-edge-graceful for Hence, all k the graph  p   mod  , 2  where z p  1 , n  1 (mod 4) and n  1.  2 For example, consider the graph C13  {e}. Here n = 13; s = max {p, q} = 14; 2s = 28. The 21-EEGL of C13  {e} is given in Figure 2. 51 65 67 6 4 49 53 8 2 10 41 26 56 12 61 0 55 24 14 47 22 16 20 59 43 18 57 45 Figure 2: 21-EEGL of C13  {e} For example, consider the graph C17  {e}. Here n = 17; s = max {p, q} = 18; 2s = 36. The 5-EEGL of C17  {e} is given in Figure 3. 23 41 21 28 26 30 43 32 25 24 39 34 22 19 9 20 2 36 37 0 29 18 4 17 16 35 6 14 15 8 12 10 33 11 31 13 Figure 3: 5-EEGL of C17  {e} www.ijesi.org 4 | Page
  • 5. K-Even Edge-Graceful Labeling Of… Definition 2.3 [8] For p  4, a cycle (of order p) with one chord is a simple graph obtained from a p-cycle by adding a chord. Let the p-cycle be v1v2 ... vpv1. Without loss of generality, we assume that the chord joins v1 with any one vi, where 3  i  p – 1. This graph is denoted by Cp(i). For example cycle by q = p + 1. adding a chord between the C p  5 vertices means a graph obtained from a p- v1 and v5. In this graph, Theorem 2.4 The graph Cn(i), (n > 4), 3  i  n – 1, cycle with one chord of odd order is k-even-edge-graceful for all kz q q   mod  , where 0  z   1 . 2 2  Proof Let ei =  vi , vi1  {v1, v2, v3, ..., vi, for 1  i  n – 1; en = vi+1,  vn , v1  ..., vn} and en+1 = be the vertices of Cn(i), the edges  v1 , vi  , 3  i  n – 1 (see Figure 4). The chord connecting the vertex v1 with vi, (i  3) is shown in Figure 4. For this graph, p = n and q = n + 1. v1 vn en e1 v2 en-1 e2 v3 vn-1 e3 en-2 en+1 vn-2 v4 e4 vi+2 .. . . .. ei+2 ei+1 ei vi+1 vi Figure 4: Cn(i) with ordinary labeling First, we label the edges as follows: For k  1 and 1  i  n, f  ei  = f  en1  = when i is odd  2k  i  2  2k  n  i  2 when i is even.  2k when k  0  mod q   2k  2n  2 z  2 when k  z  mod q  , 1  z  q  1. Then the induced vertex labels are as follows: Case I: n  1 (mod 4) and n  1 q+2 q   mod  , 0  z  4 2  n  4z  7   4 z  n  2i  5 for 1  i   2 f   vi  =  4 z  n  2i  7 for n  4 z  7  i  n.  2  Case 1: k  z www.ijesi.org 5 | Page
  • 6. K-Even Edge-Graceful Labeling Of… Case 2: k f   vi  q6 q  mod  4  2 = 2i for 1  i  n. q  q  10 q  k  z  mod  ,  z  1 2 4 2  3n  4 z  9  4 z  n  2i  7 for 1  i   2 f   vi  =  4 z  3n  2i  9 for 3n  4 z  9  i  n.  2  Case 3: Case II: n  3 (mod 4) and n  3 q q  k  z  mod  , 0  z  2 4  n  4z  7   4 z  n  2i  5 for 1  i   2 f   vi  =  4 z  n  2i  7 for n  4 z  7  i  n.  2  Case 1: Case 2: k f   vi  Case 3: q4 q  mod  4  2 = 2i – 2 for 1  i  n. q  q 8 q  k  z  mod  ,  z  1 2 4 2  f   vi  Therefore, = f  V  3n  4 z  9  4 z  n  2i  7 for 1  i    2  4 z  3n  2i  9 for 3n  4 z  9  i  n.  2   {0, 2, 4, ..., 2s – 2}, where s = max {p, q} = n + 1. So, it follows that the vertex labels are all distinct and even. Hence, the graph Cn(i), (n > 4), 3  i  n – 1, cycle with one chord of odd order is k-even-edge-graceful for all k  z 0z q  1.  2 For example, consider the graph q   mod  , 2  C9  5 . Here n = 9; s = max {p, q} = 10; 2s = 20. www.ijesi.org 6 | Page
  • 7. K-Even Edge-Graceful Labeling Of… The 15-even-edge-graceful labeling of C9  5 is given in Figure 5. 6 29 37 2 8 39 45 10 0 40 31 35 12 18 41 43 33 14 16 Figure 5: 15-EEGL of C9(5) For example, consider the graph C11(6). Here n = 11; s = max {p, q} = 12; 2s = 24. The 11-EEGL of C11(6) is given in Figure 6. 0 4 31 21 6 41 22 33 29 8 24 20 23 39 18 10 35 27 16 12 25 37 14 Figure 6: 11-EEGL of C11(6) Theorem 2.5 The graph for all Cn  i  , (n  4), 3  i  n – 1, cycle with one chord of even order is k-even-edge-graceful k  z  mod q  , where 0  z  q – 1 and n  0  mod 4  . Proof Let the vertices and edges be defined as in Theorem 6.3.2. First, we label the edges as follows: For k  1, f  e1  = 2k + 1 f  ei  f  e2  = 2k – 1 = 2k + 2i – 3 ; for 3i  n  3. 2 n  3  i  n, 2 2k  2i  1 when i is odd f  ei  =  2k  2i  3 when i is even. For k  1 and www.ijesi.org 7 | Page
  • 8. K-Even Edge-Graceful Labeling Of… f  en1  =  2k when k  0  mod q   2k  2n  2 z  2 when k  z  mod q  , 1  z  q  1. Then the induced vertex labels are as follows: Case 1: k  0 (mod q) f   v1  f   v3  = 2n – 2 ; f   v2  = 0. = 2. n  4i  8 for 4  i   3   2 f   vi  =  4i  2n  6 for n  3  i  n.  2  q 1 Case 2: k  z (mod q), 1  z  2  when i = 1, 2. f  vi  = 4z + 4i – 8 For k  z (mod q), 1  f   v3  z q 3 , 2 = 4z + 2 For 4  i  n, f   vi  For =  4 z  4i  8  4 z  4i  2n  10    4 z  4i  2n  6  4 z  4i  4n  8  n z3 2 n n for  z  3  i   3 2 2 n for  3  i  n  z  2 2 for n  z  2  i  n. for 4  i  q 1  mod q  , 2 f   v3  = 0 k n  4i  10 for 4  i   3   2 f   vi  =  4i  2n  8 for n  3  i  n.  2  q +1 Case 3: k   mod q  2 f   v1  = 2n f   v2  = 2. ; f   v3  = 4. www.ijesi.org 8 | Page
  • 9. K-Even Edge-Graceful Labeling Of… f   vi  Case 4:  4i  6  = 0    4i  2n  4  k  z  mod q  , f   vi  f   v3  q+3  z  q 1 2 = 4z + 4i – 2n – 10 when i = 1, 2. = 4z – 2n. For k  z (mod q), f   vi  n 2 2 n when i   2 2 n for  3  i  n. 2 for 4  i < q3  z  q2, 2 4 z  4i  2n  10  4 z  4i  4n  12 =    4 z  4i  4n  8  4 z  4i  6n  10   for 4  i  n  z  3 n for n  z  3  i   3 2 n 3n for  3  i  z3 2 2 3n for  z  3  i  n. 2 For k  q – 1 (mod q), f   vi  n  4i  12 for 4  i   3   2 =  4i  2n  10 for n  3  i  n.  2  Therefore, f  V   0, 2, 4, ..., 2s  2 , where s = max{p, q} = n + 1. So, it follows that the Cn  i  , (n  4), 3  i  n – 1, cycle will one chord of vertex labels are all distinct and even. Hence, the graph even order is k-even-edge-graceful for all k  z (mod q), where 0  z  q – 1 and n  0 (mod 4).  For example, consider the graph C16(5), Here n = 16; s = max{p, q} = 17; 2s = 34. The 18-EEGL of C16(5) is given in Figure 7. 0 30 4 37 6 35 65 39 68 67 12 41 26 16 61 43 22 20 63 45 18 24 57 14 47 59 49 53 10 51 2 28 32 Figure 7: 18-EEGL of C16(5) www.ijesi.org 9 | Page
  • 10. K-Even Edge-Graceful Labeling Of… Definition 2. 6 The crown Cn  K1 is the graph obtained from the cycle Cn by attaching pendant edge at each vertex of the cycle and is denoted by Cn . In this graph, p = q = 2n. Theorem 2.7 The crown graph where  Cn ,  n  3 of even order is k-even-edge-graceful for all p  k  z  mod  , 3  p  1 and n  0 (mod 3). 3 0 z Proof For this graph, p = q = 2n. Let v1, v2, v3, ..., vn and C  n ' ' ' v1' , v2 , v3 , ..., vn be the vertices and pendant vertices of respectively. v1' e1' v1 e1 en vn ' vn v2 e2' v3 e3' en' en-1 e2 vn-1 vn' 1 v2' ' en 1 v3' e3 en-2 ... .. v4 . e4' .. v4' . Figure 8: + Cn with ordinary labeling The edges are defined by ei =  vi , vi1  and ei' = for 1  i  n – 1 ; v , v  i ' i en =  vn , v1  for 1  i  n (see Figure 8). First, we label the edges as follows: For k  1, f  ei  f  e1'  f  ei'  for 1  i  n = 2k + 4i – 5 = 2k for 2  i  n. = 2k + 4(n – i + 1) Then the induced vertex labels are as follows: Case 1: p  k  0  mod  3  www.ijesi.org 10 | Page
  • 11. K-Even Edge-Graceful Labeling Of… f   vi  = 4n  4i  10 when i  1, 2  for 3  i  n. 4i  10 p p  k  z  mod  , 1  z   1 and z is odd 3 3  5  3z  6 z  4i  10 for 1  i  n    2 f   vi  =  6 z  4n  4i  10 for n  5  3z  i  n.  2  p p  Case 3: k  z  mod  , 1  z   1 and z is even 3 3  6  3z  for 1  i  n  6 z  4i  10  2 f   vi  =  6 z  4n  4i  10 for n  6  3z  i  n.  2  Case 2: The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex  Cn ,  n  3 labels are all distinct and even. Hence, the crown graph for all p  k  z  mod  , 3  where 0 z For example, consider the graph graceful labeling of C6 of even order is k-even-edge-graceful p  1 and n  0 (mod 3).  3 C6 . Here p = q = 12; s = max{p, q} = 12; 2s = 24. The 2-even-edge- is given in Figure 9. 4 4 23 8 8 6 3 19 12 12 24 10 2 0 7 22 15 14 18 20 20 11 16 16 Figure 9: 2-EEGL of www.ijesi.org + C6 11 | Page
  • 12. K-Even Edge-Graceful Labeling Of… Theorem 2.8 The crown graph  Cn ,  n  4  of even order is k-even-edge-graceful for all k  z  mod p  , where 0  z  p – 1, n  1 (mod 3) and n  1. Proof Let the vertices and edges be defined as in Theorem 6.4.2. The edge labels are also same as in Theorem 6.4.2. Then the induced vertex labels are as follows: Case 1: k  0 (mod p) f   vi  = 4n  4i  10 when i  1, 2  for 3  i  n. 4i  10 When z is odd, the induced vertex labels are given below: Case 2: k  z (mod p), 1  z  p +1 3 5  3z  6 z  4i  10 for 1  i  n    2 f   vi  =  6 z  4n  4i  10 for n  5  3z  i  n.  2  p+4 2p+2 Case 3: k  z (mod p), z 3 3 5  3z  6 z  4n  4i  10 for 1  i  2n  2  f   vi  =  6 z  8n  4i  10 for 2n  5  3z  i  n.  2  2p+5 Case 4: k  z (mod p),  z  p1 3 5  3z  6 z  8n  4i  10 for 1  i  3n+ 2  f   vi  =  6 z  12n  4i  10 for 3n  5  3z  i  n.  2  When z is even, the induced vertex labels are given below: Case 5: k  z  modp  , 1  z  f   vi  Case 6: = p +1 3 6  3z  6 z  4i  10 for 1  i  n    2  6 z  4n  4i  10 for n  6  3z  i  n.  2  k  z  mod p  , p+4 2p+2 z  3 3 www.ijesi.org 12 | Page
  • 13. K-Even Edge-Graceful Labeling Of… 6  3z  6 z  4n  4i  10 for 1  i  2n  2  f   vi  =  6 z  8n  4i  10 for 2n  6  3z  i  n.  2  2p+5 Case 7: k  z  mod p  , z  p  1 3 6  3z  6 z  8n  4i  10 for 1  i  3n    2 f   vi  =  6 z  12n  4i  10 for 3n  6  3z  i  n.  2  The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex  Cn ,  n  4  labels are all distinct and even. Hence, the crown graph for all of even order is k-even-edge-graceful k  z  mod p  , where 0  z  p – 1, n  1 (mod 3) and n  1.  For example, consider the graph graceful labeling of C  7 C7 . Here p = q = 14; s = max {p, q} = 14; 2s = 28. The 5-even-edge- is given in Figure 10. 10 10 24 9 33 14 20 14 0 29 18 18 34 6 13 16 4 25 30 2 17 12 8 21 22 26 26 22 Figure 10: 5-EEGL of C 7+ Theorem 2.9 The crown graph  Cn , (n  5) of even order is k-even-edge-graceful for all k  z (mod p), where 0  z  p – 1, n  2 (mod 3) and n  2. Proof Let the vertices and edges be defined as in Theorem 2.7. The edge labels are also same as in Theorem 2.7. Then the induced vertex labels are as follows: Case 1: k  0 (mod p) www.ijesi.org 13 | Page
  • 14. K-Even Edge-Graceful Labeling Of… f   vi  = 4n  4i  10 when i  1, 2  for 3  i  n. 4i  10 When z is odd, the induced vertex labels are given below: Case 2: k  z (mod p), 1  z  f   vi  5  3z  6 z  4i  10 for 1  i  n   2 =   6 z  4n  4i  10 for n + 5  3z  i  n.  2  Case 3: k  z (mod p), f   vi  p+5 3 z 2p +1 3  6 z  4n  4i  10 =    6 z  8n  4i  10   Case 4: k  z (mod p), f   vi  p+2 3 2p+4 3 for 1  i  2n  for 2n  5  3z 2 5  3z  i  n. 2 zp–1   6 z  8n  4i  10 =   6 z  12n  4i  10   for 1  i  3n  for 3n  5  3z 2 5  3z  i  n. 2 When z is even, the induced vertex labels are given below: Case 5: k  z (mod p), 1  z  f   vi  6  3z  6 z  4i  10 for 1  i  n    2 =  6 z  4n  4i  10 for n  6  3z  i  n.  2  Case 6: k  z (mod p), f   vi  f  vi  p+5 3 z 2p +1 3  6 z  4n  4i  10 =    6 z  8n  4i  10   Case 7: k  z (mod p),  p+2 3 2p+4 3 for 1  i  2n  for 2n  6  3z 2 6  3z  i  n. 2 zp–1  6 z  8n  4i  10  =   6 z  12n  4i  10   for 1  i  3n  for 3n  6  3z 2 6  3z  i  n. 2 www.ijesi.org 14 | Page
  • 15. K-Even Edge-Graceful Labeling Of… The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex  Cn , (n  5) of even order is k-even-edge-graceful for labels are all distinct and even. Hence, the crown graph all k  z (mod p), where 0  z  p – 1, n  2 (mod 3) and n  2.  For example, consider the graph The 10-even-edge-graceful labeling of C5 . Here p = q = 10; s = max {p, q} = 10; 2s = 20. C5 is given in Figure 11. 0 20 4 14 35 16 19 24 36 18 10 23 31 6 2 27 28 32 12 8 Figure 11: 10-EEGL of Definition 2.10 A graph Hm G  + C5 is obtained from a graph G by replacing each edge with m parallel edges. Theorem 2.11 The graph Hn(Pn), (n  2) of k  z (mod p – 1), where 0  z  p – 2 and n is even. Proof even order Let {v1, v2, ..., vn} be the vertices of Hn(Pn). Let the edges eij of eij = (vi, vi+1) for 1  i  n – 1, 1  j  n (see Figure 12). v1 v2 v3 ... e21 e11 is k-even-edge-graceful H n  Pn  ... for all be defined by vn-1 vn en-11 e12 e22 en-12 e13 e23 en-13 ... ... ... e1n e2n en-1n Figure 12: Hn(Pn) with ordinary labeling www.ijesi.org 15 | Page
  • 16. K-Even Edge-Graceful Labeling Of… For this graph, p = n; q = n(n – 1). First, we label the edges as follows: For k  1, for 1  i  n  1, i is odd and 1 j  n 2k  ni  2 j  5 f  eij  =  2k  2 j  n(i  1)  4 for 1  i  n  1, i is even and 1 j  n . Then the induced vertex labels are as follows: Case 1: k  0 (mod p – 1) f   v1  = 2n (n – 2). f   vi  = f   vn  = n (n – 4). n  2n  2i  9  for 2  i  4  for 4  i  n  1. n  2i  7  Case 2: k  z (mod p – 1), 1  z  p – 2 f   v1  Subcase (i):  = 2n (z – 1). k  1 (mod p – 1) f (vi ) = n(2i – 3) for 2  i  n – 1. f  (vn ) = n[n + 2(z – 2)]. Subcase (ii): p 2 n  2i  3  4n  z  1 for 2  i  n  2 z  3    n  2  i  2 z  n   5 for n  2 z  3  i  n  1.   k  z (mod p – 1), 2  z  f   vi  = f  (vn ) = n[n + 2(z – 2)]. Subcase (iii): p+2  z  p2 2 n  2  i  2 z  n   5 for 2  i  2n  2 z  2     n  2  i  2n  2 z   3 for 2n  2 z  2  i  n  1.    k  z (mod p – 1), f   vi  = f  (vn ) = n[2(z – 1) – n]. Therefore, f  V   {0, 2, 4, ..., 2s – 2}, where s = max {p, q} = n(n – 1). So, it follows that the vertex labels are all distinct and even. Hence, the graph Hn(Pn), (n  2) of even order is k-even-edge-graceful for all k  z (mod p – 1), where 0  z  p – 2 and n is even.  For example, consider the graph H8(P8). Here p = 8; q = 56; s = max {p, q} = 56; 2s = 112. The 6-EEGL of H8(P8) is given in Figure 13. www.ijesi.org 16 | Page
  • 17. K-Even Edge-Graceful Labeling Of… 80 17 56 18 72 33 88 34 104 49 8 50 24 65 19 20 35 36 51 52 67 21 22 37 38 53 54 69 23 24 39 40 55 56 71 25 26 41 42 57 58 73 27 28 43 44 59 60 75 29 30 45 46 61 62 77 31 32 47 48 63 64 16 79 Figure 13: 6-EEGL of H8(P8) REFERENCES [1]. [2]. [3]. [4]. [5]. [6]. [7]. [8]. G.S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE, 65(1977) 562 – 570. G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, in Theory and Applications of Graphs, Lecture Notes in Math., 642, Springer-Verlag, New York (1978) 53 – 65. J.A. Gallian, A dynamic survey of graph labeling, The electronic journal of Combinatorics 16 (2009), #DS6. B. Gayathri, M. Duraisamy, and M. Tamilselvi, Even edge graceful labeling of some cycle related graphs, Int. J. Math. Comput. Sci., 2 (2007) 179 – 187. F. Harary, “Graph Theory” – Addison Wesley, Reading Mass (1972). S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50 (1985) 231 – 241. W.C. Shiu, M.H. Ling, and R.M. Low, The edge-graceful spectra of connected bicyclic graphs without pendant, JCMCC, 66 (2008) 171 – 185. Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang, On the edge-graceful spectra of cycles with one chord and dumbbell graphs, Congressus Numerantium, 170 (2004) 171 – 183. www.ijesi.org 17 | Page