SlideShare ist ein Scribd-Unternehmen logo
1 von 102
Downloaden Sie, um offline zu lesen
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 1/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
@fglongatt
29 Octubre 2015
Portoviejo, Ecuador
Prof Francisco M. Gonzalez-Longatt, PhD
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 2/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 3/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Agenda
• Historic Overview
• Key Milestone
• Evolution of HVDC Projects
• Configurations of HVDC
• Operation of Multi-Terminal HVDC: Challenges
• A DC Grid as Part of a Larger System: Where is The
Border ???
• Conclusions
• Questions and Answers
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 4/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
• This section presents a brief history and facts
related to the HVDC transmission systems, the
classical dilemma of AC versus DC.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 5/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Ancient History
• The first electrical networks used direct current - generated,
distributed and consumed at a single voltage level
• By the late 1880s the increase in distance from generation to
load and increasing price of copper was making the
economies of dc difficult
• 1870s first ac transformers were built based on earlier work
on induction coils
• 1891 Westinghouse built the first commercial alternating
current distribution system
• 1893 transmission of ac power from Niagara (at 25Hz) and
dc was dead in the water
• But nothing ever goes away……
Invention of the transformer allowed voltage to be stepped up for transmission
• But transformers only work for AC to AC power transmission network.
• Hence AC became the preferred medium.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 6/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
War of Currents: AC versus DC
War of Currents
• George Westinghouse and Thomas Edison became adversaries due to Edison's
promotion of direct current (DC) for electric power distribution over alternating
current (AC) advocated by several European companies and Westinghouse
Electric based in Pittsburgh, Pennsylvania.
George Westinghouse, Jr
(October 6, 1846 – March 12, 1914)
Thomas Alva Edison
(February 11, 1847 – October 18, 1931)
War of Currents
• Thomas Edison (DC) vs
George Westinghouse (AC)
• AC won…or so it seemed.
• Why?
However, AC transmission is hard to
control (power flows where it wants to
flow).
High Voltage Direct Current (HVDC)
transmission is more efficient and more
controllable.
“Take warning! Alternating currents are
dangerous, they are fit only for the
electric chair”, Thomas A. Edison
(1847-1931)
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 7/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
The Beginning of DC Systems
• 1882 – First Demo of 1.5 kW HVDC
• Marcel Deprez was a Frenchman who created the DC distribution
system for the Exposition in Paris helped Miller create the first
long distance high voltage direct current transmission ever.
• They transmitted 1,500 watts at 2000 volts over 35 miles from
Miesbach (the foothills of the Alps) to the Glaspalast in Munich.
Marcel Deprez (December 12, 1843 - October 13, 1918)
“The two systems shake hands fraternally in order to
give each other help and assistance…” (1889) R. Thury
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 8/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Thury Systems (1/4)
• 1889 – Rene Thury developed a new
630 kW system transmitted power
at 14 kV DC over 120 km.
• He was known for his work with high
voltage direct current electricity
transmission and was known in the
professional world as the “King of
DC”.
Schematic diagram of a Thury HVDC transmission system
René Thury (August 7, 1860 – April 23, 1938)
In 1882, Thury's 6 pole dynamos were more compact than
Edison's. The small 1,300 kg (2,900 lb) version produced 22 kW at
600 rpm, while a larger 4,500 kg (9,900 lb) version produced 66
kW at 350 rpm
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 9/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Thury Systems (3/4)
• 1913 – fifteen Thury systems were
in place up to 100 kV
Name
Converter
Station 1
Converter
Station 2
Cable
(km)
Overhead
line (km)
Voltage
(kV)
Power
(MW)
Year of
inaug.
Year of
decomm.
Remarks
Gorzente River
- Genoa DC
transmission
scheme
Italy -
Gorzente
River
Italy -
Genoa
? ? 6 ? 1889 ?
upgraded later to a
voltage of 14 kV,
power of 2.5 MW and
a length of 120 km,
dismantled
La Chaux-de-
Fonds DC
transmission
scheme
Switzerland
- ?
Switzerland
- ?
? ? 14 ? 1897 ? dismantled
St. Maurice -
Lausanne DC
transmission
scheme
Switzerland
- St. Maurice
Switzerland
- Lausanne
? ? 22 3.7 1899 ? dismantled
Lyon-Moutiers
DC
transmission
scheme
France -
Lyon
France -
Moutiers
10 190 ±75 30 1906 1936
Wilesden-
Ironbridge DC
transmission
scheme
UK -
Wilesden
UK -
Ironbridge
22.5 ? 100 ? 1910 ?
Chambéry DC
transmission
scheme
France - ? France - ? ? ? 150 ? 1925 1937
1889 1897 1906 1912 1925
Year
6
14
22
58
100
150
DirectVoltage[kV]
Gorzente River, Genoa
La Chaux de Fonds
St. Maurice, Lausanne
Lyon,Moutiers
Lyon, Moutiers, La Bridoire
Wilesden, Irongridge
Lyon, Moutiers,
La Bridoire and Bozel
Chambéry
Bipolar voltages
of up to 150 kV
where
successfully
achieved.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 10/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Thury Systems (4/4)
• 1930 – Thury system were obsolete due the rotating
machinery required high maintenance and had high
energy loss.
PERSPECTIVE VIEW OF THE THURY MACHINE
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 11/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Early History: Mercury-Arc
• 1932 – General Electric used mercury-vapor valves
and a 12 kV DC transmission line in Mechanicville,
New York. HVDC Mechanicville–Schenectady was the first
experimental HVDC transmission line in the United
States. Built in 1932, the circuit traversed 37
kilometres (23 mi) from Mechanicville, New York
to Schenectady, New York.
The system used mercury arc rectifiers at a voltage
of 20,000 volts and a rated power of 5 MW. The
facility was dismantled after World War II.
Mechanicville Hydroelectric
Station. HVDC from hydroelectric
power plant in Mechanicville to
Schenectady (NY).
37 km / 12 kV / 5 MW.
Interesting fact: 40 Hz at plant and
60 Hz in NY
https://www.youtube.com/watch?v=YpvQyB0wClc
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 12/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Early History: Elbe-Berlin Project
• 1941- Berlin used a similar line underground, however, project
terminated due to the fall of government in 1945.
• 1939 - 1951: 7 experimental HVDC transmission systems using mercury-arc
valves were built in Switzerland, Germany, Sweden and Russia.
The Elbe-Berlin Project
The Elbe-Berlin transmission line would
bring power from the power plant
Vockerode on the river Elbe to the Reich
capital. Although the distance was 115 km
over land, and raw materials extremely
scarce in those days of World War II, the
Reich authorities ordered that the line be
built as a pair of underground cables.
Perhaps it is not so far-fetched an
assumption that the government wanted to
hide the transmission line from allied
bomber planes. The history and properties
of the transmission scheme are described
in detail by Tröger (Entstehung der 440 kV
Gleichstrom-Hochspannungs-Übertragung
Elbe-Berlin, ETZ 69, 1948).
Six single-anode mercury-arc
valves at Charlottenburg Station,
Berlin, for the HVdc test
installation, Berlin-Moabit, 1942
(photo courtesy of Siemens AG,
Siemens Press Picture, ref.
number sosep200501-01).
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 13/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Modern History
• 1950- First modern HVDC system was in service between
Sweden and the island Gotland (ASEA Swedish industry
company), rated 20MW, 100kVdc
• 1960 - Three additional order were received by ASEA in New
Zealand, Sweden/Denmark, and Japan.
Mercury arc valve at Ygne, Gotland
Thyristor valves at Ygne converter station, Gotland
Connected the Swedish
mainland, at Vstervik, to Ygne in the island of
Gotland. 98 km / 20 MW / 100 kV
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 14/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Modern History
• 1961 1st Cross Channel link from England to France rated
160MW, 100kVdc
The first HVDC Cross-Channel went into service in 1961 between static inverter plants at Lydd in England and Echinghen, near Boulogne-sur-Mer, in France.
This scheme was equipped with mercury vapour rectifiers. In order to keep the disturbances of the magnetic compasses of passing ships as small as possible, a
bipolar cable was used. The cable had a length of 64 kilometres (40 mi) and was operated symmetrically at a voltage of ±100 kV and a maximum current of 800
amperes. The maximum transmission power of this cable was 160 megawatts (MW). The cable was built by ABB Group.
Anglo-French Interconnector Echinghen, near Boulogne-sur-Mer, France
Lydd in England
52km
225 kV, 60Hz
275 kV, 50Hz
Électricité de France
CEGB (the Central
Electricity Generating Board
UK)
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 15/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Modern History
• 1964 Volgograd-Donbass overhead line link rated
750MW 400kVdc and 450km long.
The HVDC Volgograd-Donbass is a high voltage direct
current line between the static inverter plants at
Volzhskaya (situated near the hydro-electric power plant
Volgograd) and Mikhailovskaya in the Donbass area,
which went into service in 1964.
It consists of a 475 kilometre long overhead line.
The static inverters of the HVDC Volgograd-Donbass are equipped
with mercury arc rectifiers for a voltage of 100 kV and a maximum
current of 940 ampere, which were partly replaced at the beginning
of the 90's by thyristors.
The HVDC Volgograd-Donbass is a bipolar HVDC with an
operating voltage of 400 kV.
It can transfer a maximum power of 750 megawatts.
475 Km
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 16/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Modern History
• 1969- First HVDC system to use solid state valves.
• 1970s – First HVDC system implemented within an AC
network (Los Angeles, California).
• 1972 Eel River Canada back-to-back rated at 320MW
1st thyristor based link
• First microcomputer based control equipment for HVDC in
1979.
It is Commissioned in 1972, between Hydro-Quebec (QHQ) and the New Brunswick Electric Power Commission (NBEPC).
it supplies 320 MW at 80 kV d.c.
The link is of zero length and connects two a.c. systems of the same nominal frequency (60Hz).
The largest thyristors used in converter valves have blocking voltages of the order of kilovolts and currents of the order 100s of amperes.
Source: HVDC Power Transmission Systems: Technology and System Interactions
by K. R. Padiyar
Eel River
Controller
http://new.abb.com/systems/hvdc/reference
s/eel-river
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 17/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Evolution of Mercury Arc
• Evolution of mercury-
arc valves HVDC
systems.
• 1970s: voltages > 400
kV and capacities >
1000 MW.
• Pacific Intertie
(1970): 1440 MW, 500
kV
• Nelson River Bipole
(1973-1977): 1620
MW, 450 kV
0
Commissioning Year
DirectVoltage(kV)
100
200
300
400
500
600
1930 1935 1940 1945 1950 1955 1960 1965 1970 1975
Kingsnorth
Pacific DC Intertie
Volgograd-
Donbass
Nelson River
Bipole 1
Inter-Island 1
Vancouver Island 1
SACOI 1
Sakuma B2B
Konti-Skan 1
Moscow-Kashira
Elbe-Project
Cross-Channel
Gotland 1
Lehrte-Misburg
Trollhattan-Merud
Charlottenburg-Moabit
Zurich-
Wettingen
Mechanicville-Schenectady
Biggest
1620 MW
Average
357 MW
Legend
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 18/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Recent History
• 1986 - 2nd Cross Channel link from England to France rated
2x1000MW 270kV.
“Interconnexion France Angleterre” (IFA)
Connection to France; Owned by National Grid and RTE
Because the first installation did not meet increasing requirements, it
was replaced in 1985–1986 by a new HVDC line with a maximum
transmission rate of 2,000 MW between France and Great Britain,
for which two new static inverter plants were built in Sellindge
(UK) and in Bonningues-lès-Calais (Les Mandarins station), near
Calais, (France).
The cable and substations were built by Areva.
This HVDC-link is 73 kilometres (45 mi) long in route, with 70
kilometres (43 mi) between the two ends.
The undersea section consists of eight 46 kilometres (29 mi) long 270 kV submarine cables (four pairs), laid
between Folkestone (UK) and Sangatte (France), arranged as two independent bipoles.
The landside parts of the link consist of 8 cables with lengths of 18.5 kilometres (11.5 mi) in England, and 6.35
kilometres (3.95 mi) in France.
Interconnexion France-Angleterre : Station de conversion courant alternatif-courant continu des Mandarins (Pas de Calais)
http://www.rte-france.com/fr/mediatheque/medias/infrastructures-62-fr/interconnexions-interconnexions-fr
In 2006, 97.5% of the energy transfers have been made from France to UK, supplying
the equivalent of 3 million English homes. The link availability is around 98%, which
is among the best rates in the world. The continued size and duration of this flow is
open to some doubt, given the growth in demand in Europe for clean electricity, and
increasing electricity demand within France.
18
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 19/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Recent History
• 1984-87 Itaipu Brazil 2x3150 600kVdc 800km
overhead line link
The HVDC Itaipu is a High Voltage Direct Current transmission line in Brazil from the Itaipu hydroelectric power plant to the region of São Paulo.
The project has two bipolar lines, which run from the generator site at Foz do Iguaçu in Paraná to the "load" (user) site Ibiúna near São Roque, São Paulo.
The lines were put in service in several steps between 1984 and 1987, and are among the major installations of HVDC in the world.
Bipole 1.
1. stage: ± 300 kV, 1575 MW in July 1984
2. stage: + 300kV,2362.5 MW in April 1985
- 600 kV
3. stage: ± 600 kV, 3150 MW in May 1986
4.stage: ± 300 kV, 1575 MW { commissioned
Bipole 2.
5.stage: + 300 kV, 2362,5 MW { at the
- 600 kV { same time by
6.stage: ± 600 kV, 3150 MW { August, 1987
Simplified diagram of the Itaipu Transmission System
SOURCE: ITAIPU HVDC TRANSMISSION SYSTEM 10 YEARS OPERATIONAL EXPERIENCE,
http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/81f41178f000ca94c1256fda004aead6/$file/sepope2.pdf
Itaipu HVDC System main
circuit and evolution
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 20/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Recent History
• Foz do Iguaçu converter station
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 21/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Recent History
• First active DC filters for
outstanding filtering
performance in 1994.
• First Capacitor
Commutated Converter
(CCC) in Argentina-Brazil
interconnection, 1998
“Garabi” the Argentina – Brazil 1000 MW Interconnection Commissioning
and Early Operating Experience
Source: http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/336dd56474cadec5c1256fda004aeadd/$file/erlac01.pdf
60Hz 60Hz50Hz
50Hz
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 22/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Voltage Source Converter (VSC)
• First Voltage Source Converter (VSC) for
transmission in Gotland, Sweden, 50MW 80 kV, 1999.
Backs
Nas
Wind Farms
P = 50 MW
D = 70 km
Vdc = 80kV
Bipolar
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 23/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Evolution of Thyristor
• Thyristor (or SCR):
possible to achieve higher
voltages.
• A modern 6-inch thyristor:
up to 4 kA / block up to 8.5
kV.
• Thyristor valves
improvements: larger
powers through longer
distances.
• 1st commercial system:
1972 Eel River link in
Canada (GE). B2B / 320
MW / 160 kV
BlockingVoltage(kV)
1970 1975 1980 1985 1990 1995 2000 2005 2010
0
3000
6000
9000
12000
15000
18000
21000
24000
27000
6"
Si-area(mm2
)
1.5"
1000 MW Converter
400 thyristors
8.5 kV
0
1
2
3
1.65 kV
4
5
6
7
8
9
1000 MW Converter
14000 thyristors
Year
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 24/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Evolution of CSC
• Evolution of CSC-HVDC voltage versus Transmission
distance (km).
• Very mature technology (> 140 HVDC systems
worldwide) –Figures 2014.
DirectVoltage(kV)
0
0
200
400
600
800
1000
1200
1400
1600
1800
30002500200015001000500
Transmission Distance (Km)
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 25/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Examples LCC
• Yunnan-Guangdong (2009).
• 5,000MW,800kV Bipolar
• 1418km
• Three Gorges (2004)
• 3000MW, 500kV Bipolar
• 940km
• Melo-Uruguay-Brazil (2011)
• 500MW,Back-to-Back
Three Gorges ABB
UHV DC Yunnan - Guangdong Project: Chuxiong
Substation, China - DC Yard
500kV 50Hz Uruguay
525kV 60Hz Brazil
Alstom
Grid
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 26/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Voltage Source Converter (VSC) built for
importing power from an offshore wind park to
shore
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 27/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Key Milestone: BorWin1 2009
• VDC BorWin1 is the first HVDC facility in Germany to use
Voltage Sourced Converters (VSC), and the first in the world to
be built for importing power from an offshore wind park to
shore.
Commissioning year: 2015
Power rating: 400 MW
No of circuits: 1
AC Voltage:
170 kV (Platform BorWin
alpha),
380 kV (Diele)
DC Voltage: ±150 kV
Length of DC
underground cable:
2 x 75 km
Length of DC
submarine cable:
2 x 125 km
Main reason for
choosing HVDC
Light:
Length of land and sea
cables
Application: Offshore wind connections
http://www.tennettso.de/site/binaries/content/assets/press/information/en/100341_ten_husum_borwin_1_en.pdf
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 28/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Key Milestone: BorWin1 2009
• 2009 Borwin1 400MW 150kVdc, VSC 1st large
offshore wind farm connection.
http://www.tennettso.de
125 km sea cable
400 MW
Offshore
converter
Source: ABB
400 MW HVDC Light® system off-shore
station on platform with sub-sea structure
80 Wind Turbines
40 m Deep
100 km
https://library.e.abb.com/public/9379edf992f625b6c125777c00328e51/Project%20BorWin1%20-%20150%20kV%20HVDC%20Light%20subm%20rev%202.pdf
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 29/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Offshore Wind rojects
• Offshore wind power plants are growing in terms of
rated power and are being located farther from the
coasts and the grid entry points.
Project
Company
/Location
Rated
Power
(MW)
System
Voltage
(kV)
DC Cable
length (km)
Year of
Completion
BornWin1
TanneT
(Germany)
400
DC: 150
AC: 155/400
SM: 2x125
UG: 2x75
2009
DolWin1
TanneT
(Germany)
800
DC: 320
AC: 155/400
SM: 2x75
UG: 2x90
2014
DolWin2
Tanner
(Germany)
900
DC: 320
AC: 155/380
SM: 2x45
UG: 2x90
2015
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 30/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Ultrahigh Voltage Direct Current (UHVDC)
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 31/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Ultrahigh Voltage Direct Current (UHVDC)
• The first Ultrahigh Voltage Direct Current (UHVDC)
project in the world to go into commercial operation, in
July 2010.
http://www08.abb.com/global/scot/scot221.nsf/veritydisplay/57af6cb9ca0204ffc1257dcf004d7495
/$file/POW0056%20Rev%202.pdf
Commissionin
g year:
2010
Power rating:
6,400 MW (7,200
MW)
No. of poles: 2
AC voltage:
525 kV (both
ends)
DC voltage: ±800 kV
Length of
overhead DC
line:
1,980 km
Main reason
for choosing
HVDC:
Long distance
Application:
Connecting
remote generation
6400 MW
800 kV
1980 Km
XianJiba- Shanghai
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 32/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Recent History
• 2010 XianJiba- Shanghai 6400 MW 800 kV
±800kV DC
Fulong
Substation
FengXiang
Substation
State Grid Corporation of China
Source: ABB
Source: ABB
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 33/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
First Modular Multi-level converter (MMC)
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 34/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Second Milestone: Trans Bay Cable
• The Trans Bay Cable is a high-voltage direct current
underwater cable interconnection between San Francisco,
California and Pittsburg, California
Potrero
Hill
Pittsburg
400 MW
88 km
http://www.transbaycable.com/
First MMC
Multilevel
system
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 35/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 36/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Longest HVDC Line: Rio Madeira
• The Rio Madeira transmission link in Brazil is the world's
longest power transmission line: 600kV, bipolar, 2375 km.
Commercial operation in November 2013
Commissioning year: 2013
Power rating: 3 150 MW
2 x 400 MW (back-to-back)
AC voltage: Transmission link: 500 kV
Back-to-back: 500 kV and 230 kV
DC voltage: ± 600 kV
Length of DC
overhead line:
2,375 km
Type of link * Long distance overhead line
* Back-to-back station
Main reason for
choosing HVDC:
Long distance
Back-to-back: Asynchronous
networks
Application: Connecting remote generation
Interconnecting grids
http://www.abb.com/industries/ap/db0003db004333/137155e51dd72f1ec125774b004608ca.aspx%7Ctytu%C5%82=
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 37/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Rio Madeira
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 38/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 39/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Nanao 3-Terminal VSC-HVDC
• The world’s first three-terminal VSC HVDC system in China.
• The pilot project with designed ratings of ±160kV/200MW-
100MW-50MW brings dispersed, intermittent clean wind power
generated on Nanao island into the mainland Guangdong power
grid through 32km of combination of HVDC land cables,
sea cables and overheard lines.
Diagram of Nan’ao three-terminal HVDC Flexible project
R&D and application of voltage sourced converter based high voltage direct current engineering
technology in China
Guangfu TANG (&), Zhiyuan HE, Hui PANG
https://www.dnvgl.com/news/dnv-gl-advises-on-world-s-first-multi-terminal-vsc-hvdc-
transmission-project-integrating-clean-energy-into-china-s-regional-power-
composition-mix-6205
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 40/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Nanao 3-Terminal VSC-HVDC -2013
Wind farms in Nanao Island: By 2011, total capacity is 143MW n In 2013, more 25MW; In
2015, offshore 50MW (Tayu).
VSC-MTDC project in Nanao Island: Three sending converter stations, One receiving
inverter station Voltage ±160kV, Capacity 200 MW, Capacity 200 MW, Distance: 20km.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 41/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
World's First 5-Terminal VSC HVDC
• 4th July 2014, ±200kV Zhoushan VSC-HVDC project--the world
first 5-terminal one was put into service (141 km).
• This project establishes a critical interconnection between mainland
and 5 isolated islands.
State Grid Company of
Zhejiang province
Diagram of Zhoushan five-terminal HVDC Flexible project
16 km
34 km
52 km
39km
400 MW
300 MW
100 MW
100 MW
100 MW
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 42/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
North-East Agra: 1st UHVDC Multi-Terminal
• Power Grid Corporation of India Ltd. The world’s first multi-
terminal UHVDC transmission link.
• The ±800 kV North-East Agra UHVDC link will have a record 8,000 MW
converter capacity, including a 2,000 MW redundancy, and transmit clean
hydroelectric power from India's northeast region to the city of Agra, a distance
of 1,728 km.
Commissioning year: 2016
Power rating:
6,000 MW
(multiterminal)
No. of poles:
Converter: 4
Line: 2
AC voltage:
400 kV (all
stations)
DC voltage: ±800 kV
Length of overhead
DC line:
1,728 km
Main reason for
choosing HVDC:
Long distance,
bulk power
Application:
Connecting
remote
generation
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 43/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Evolution of VSC Projects in North America,
Europe and Asia
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 44/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
HVDC Installation Around the World
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 45/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
HVDC Projects in North America
Name
Converter
station 1
Converter
station 2
Total
Length
(Cable/P
ole)
(km)
Volt
(kV)
Power
(MW)
Year Type
Rock Island Clean
Line
USA - O'Brien
County, IA
USA - Grundy
County, IL
805
(0/805)
600 3500 ~2017 Thyr
Plains & Eastern
Clean Line
USA - Texas
County, OK
USA - Shelby
County, TN
1207
(0/1207)
600 3500 ~2018 Thyr
TransWest Express
USA – Sinclair,
WY
USA – Boulder
City, NV
1165
(0/1165)
600 3000
New England Clean
Power Line
USA - Alburgh,
VT
USA - Ludlow,
VT
248
(248/0)
320 1000 ~2019
Labrador-Island
Link
Canada -
Muskrat Falls,
NL
Canada -
Soldiers Pond,
NL
1135
(35/1100)
350 900 ~2017 Thyr
Maritime Link
Canada -
Bottom Brook,
NL
Canada -
Woodbine, NS
360
(170/190)
200 500 ~2017 IGBT
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 46/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
HVDC Projects in Europe
Name
Converter
station 1
Converter
station 2
Total Length
(Cable/Pole)
(km)
Volt (kV)
Power
(MW)
Year Type
BorWin3 Germany - Diele Germany - BorWin Gamma platform 200 (200/0) ±320 900 2019 IGBT
DolWin3 Germany - DolWin Gamma platform 160 (160/0) ±320 900 2017 IGBT
HVDC Italy-
Croatia
Italy - Candia Croatia - Konjsko ? 2017 Thyr
Shetland HVDC
Connection
UK - Upper Kergord
Valley
UK - Blackhillock 345 (345/0) ? 550 2016 Thyr
BorWin2 Germany - Diele Germany - BorWin Beta platform 200 (200/0) ±300 800 2015 IGBT
DolWin1 Germany - Heede Germany - DolWin Alpha platform 165 (165/0) ±320 800 2015 IGBT
HelWin1 Germany - Büttel Germany - HelWin Alpha platform 130 (130/0) ±250 576 2015 IGBT
SylWin1 Germany - Büttel Germany - SylWin Alpha platform 205 (205/0) ±320 864 2015 IGBT
LitPol Link Lithuania - Alytus Poland - Elk 160 (0/160) 70 500 2015 Thyr
Åland - Finland Åland - Ytterby Finland - Nådendal 158 (158/0) 80 100 2015 IGBT
Troll A 3&4 Norway - Kollsnes Norway - Troll A 3&4 platform 70 (70/0) 66 100 2015 IGBT
Western HVDC
Link
UK - Hunterston UK - Connah's Quay 414 (414/0) 600 2000 2015 Thyr
HVDC NordBalt Sweden - Nybro Lithuania - Klapeida 450 (450/0) 300 700 2015 IGBT
DolWin2 Germany - Heede Germany - DolWin Beta platform 135 (135/0) ±320 900 2015 IGBT
HelWin2 Germany - Büttel Germany - HelWin Beta platform 130 (130/0) ±320 690 2015 IGBT
HVDC Finland -
Åland
Finland - Ytterby Finland - Nådendal 158 (158/0) 80 100 2015 IGBT
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 47/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
HVDC Projects in Asia
Name
Converter
station 1
Converter
station 2
Total Length
(Cable/Pole)
(km)
Volt (kV)
Power
(MW)
Year Type
Humeng - Liaoning China China 800 6400 2018 Thyr
Jinsha River II -
Fujian
China China 800 6400 2018 Thyr
Humeng - Liaoning China China 800 6400 2018 Thyr
Jinsha River II - East
China
China China 800 6400 2016 Thyr
Goupitan -
Guangdong
China China 3000 2016 Thyr
Humeng - Shandong China China 800 6400 2015 Thyr
Xiluodo - Hanzhou China China 800 6400 2015 Thyr
Irkutsk - Beijing
Russia -
Irkutsk
China -
Beijing
800 6400 2015 Thyr
Xiluodo - West
Zhejiang
China-
Xiluodu
China-
Jinghua
1680 800 8000 2014 Thyr
Hami - Central China China-Hami
China-
Zhengzhou
2192 800 6400 2014 Thyr
Naoao Multi-terminal
VSC HVDC
China China
32
(10/32)
±160 200/100/50 2013 IEGT/IGBT
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 48/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
UHVDC Prospects 600kV-800kV
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 49/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
UHVDC Prospects 500kV-1100kV in China
New Constructions by 2015
800 kV HVDC: 13 lines
1100 kV HVDC: 1 line
Total HVDC (approx.):
30000 km
50 HVDC lines
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 50/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
±1100kV UHVDC Project in China
• Ratings: 1100kV, 11,000MW /
5000A, 12 pulse, 26000 km
• Timeline: Lab: 2007 Aug at CEPRI
• Decision: End of 2010
• Spec issued: May, 2011
• Converter Transformer & Bushings
Prototype: June,2012
• Valve prototype: Feb. 2012
• Construction Kick-off meeting: July 10,
2013
• June 2016 , Low end energized
• Dec. 2016 , High end energized
• Project Org. Chengdu, Sichun
• EPC Project Management:
• HVDC Construction Division of
SGCC.
• 15 main subcontractors
• Engineering: Led by SPERI of
SGCC
Zhundong, Xingjiang
Chengdu,
Sichun
24 m Wall Bushing in ABB Ludvika, Apr 2012
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 51/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
A Super – Infrastucture: SuperGrid
Baltic and North Sea Countries: bring offshore wind farm power to onshore.
SKAGERRAK
IRISH SEA
ENGLISH CHANNEL
KATTEGAT
DENMARK
GERMANY
NETHERLANDS
BELGIUM
UNITED
KINGDOM
IRELAND
www.fglongatt.org.ve
Francisco Gonzalez-Longatt, PhD
June 2012
Coventry, UK
Supergrid is defined as "a pan-European transmission
network facilitating the integration of large-scale renewable
energy and the balancing and transportation of electricity,
with the aim of improving the European market"
North Africa under Mediterranean Sea to
Continental Europe: bring renewable energy
of Photovoltaic, solar and wind.
AC Network
DC Network
@fglongatt
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 52/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 53/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
North Sea National Targets 2030 (1/4)
SKAGERRAK
IRISH SEA
ENGLISH CHANNEL
KATTEGAT
DENMARK
GERMANY
NETHERLANDS
BELGIUM
UNITED
KINGDOM
IRELAND
www.fglongatt.org.ve
Francisco Gonzalez-Longatt, PhD
June 2012
Coventry, UK
@fglongatt
Data source: EWEA
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 54/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Massive Penetration Renewables: UK
• Birmingham, UK Speaking at the Renewable UK
conference in Birmingham (5 Nov 2013), UK Energy
Secretary Ed Davey confirmed plans for the
development of up to 39 GW of offshore wind capacity
in UK waters by 2030.
http://www.renewableenergyworld.com/rea/news/article/2013/11/uk-confirms-plans-for-39-gw-of-offshore-wind-by-2030?cmpid=WindNL-Thursday-November14-2013
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 55/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
UK Wind Farms: East Anglia (3/4)
Docking Shoal
540 MW
East Anglia Five
1200 MW
East Anglia Four
1200 MW
East Anglia Three
1200 MW
East Anglia Six
1200 MW
East Anglia Two
1200 MW
East Anglia Five
1200 MW
East Anglia Six
1200 MW
East Anglia
Three
1200 MW
East
Anglia
Four
1200 MW
East Anglia
Two
1200 MW
East Anglia One
1200 MW
Galloper Wind Farm
Greater Gabbard
London Array
Phase 1
London Array
Phase 2
Kentish Flats
90 MW
Thanet
Thanet 2
147 MW
Dudgeon
560 MW
Race Bank
Scroby
sands
Gunfleet Sands I +II
173 MW
Gunfleet Sads 3 –
Demonstration Project
Sheringhan
Shoal
Kentish Flats
Extension 51 MW
SKAGERRAK
IRISH SEA
ENGLISH CHANNEL
KATTEGAT
DENMARK
GERMANY
NETHERLANDS
BELGIUM
UNITED
KINGDOM
IRELAND
www.fglongatt.org.ve
Francisco Gonzalez -Longatt, PhD
June 2012
Coventry, UK
@fglongatt
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 56/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Firth of Forth
Phase 1
1075 MW
Firth of
Forth
Phase 3
790 MW
Firth of Forth
Phase 2
1820 MW
Forth Array
Neart na
Gaoith
Inch Cape
Bell Rock
UK Wind Farms: Dogger Bank, HornSea, Firth of Forth (4/4)
SKAGERRAK
IRISH SEA
ENGLISH CHANNEL
KATTEGAT
DENMARK
GERMANY
NETHERLANDS
BELGIUM
UNITED
KINGDOM
IRELAND
www.fglongatt.org.ve
Francisco Gonzalez -Longatt, PhD
June 2012
Coventry, UK
Dogger
Bank
6000 MW
Hornsea
2800 MW
Njord
(Hornsea)
600 MW
Hornsea
2800 MW
Heron Wind
(Hornsea)
600 MW
Triton Knoll
1200 MW
Westermost
Rough
Race
Bank
Dudgeon
560 MW
Dogger Bank Project One
Dogger Bank Tranche A
1600 MW
"They could see gross value added to the UK economy of £7 billion and a
cumulative cost-reduction impact of £45 billion for the whole offshore wind
sector in UK waters by 2050,"
Wind farm 'may save £45bn' in costs
Offshore wind could boost GDP by “huge” 0.6%
The figures build on 2010 research from the Offshore Valuation Group
which found that by harnessing less than a third of the UK’s offshore wind
resource, the UK could generate the equivalent of
one billion barrels of oil a year by 2050
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 57/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Bigger is Better (?) (3/5)
• UpWind: Design limits and solutions for very large
wind turbines .
• A 20 MW turbine is feasible
(2011).
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 58/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
8MW Offshore Wind Turbine (4/5)
• 8MW is something normal!!!
1. Vestas V164 8MW
The V164 8MW turbine is the latest addition to the to top 10 list.
The Vestas V164 came online in January 2014, nearly three
years after the project was first unveiled in London. Curiously for
an offshore turbine, the V164 is geared. Other notable features
include a 80 metre-long blades and a lightweight nacelle that
won the design innovation category in Windpower Monthly's
annual wind turbine awards. The first machine has been installed
for testing at the Danish national wind turbine test centre at
Osterild.
2. Enercon E126 7.5MW
3. Samsung S7.0 171 7MW
4. MHI SeaAngel 7MW
5. Repower 6M Series
6. Siemens SWT-6.0 150
7. Alstom Haliade
8. Sinovel SL6000
9. Areva M5000
10. Gamesa G5MW
http://www.windpowermonthly.com/10-biggest-turbines
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 59/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Vestas V164-8.0 MW
Vestas V164-8.0 MW - a game changer in offshore
https://www.youtube.com/watch?v=uJBFAAJXH4c
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 60/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Technologies for Energy Storage
• 471 Global Energy Projects
2013
http://www.energystorageexchange.org/
1339 Projects
186,224 GW
2015
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 61/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Global Energy Storage
http://www.energystorageexchange.org/projects/data_visualization
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 62/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Global Storage
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 63/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Technologies for Energy Storage (4/4)
1339 Projects
186,224 GW
2015
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 64/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Storage in UK (2/4)
Dinorwig
Power
Station
30 Projects
3255 MW
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 65/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Storage in UK (3/4)
• Smarter Network Storage
The Smarter Network Storage (SNS) project aims to carry out a range of
technical and commercial innovation to tackle the challenges associated with the
low-carbon transition and facilitate the economic adoption of storage. It is
differentiated from other LCNF electrical storage projects by its demonstration of
storage across multiple parts of the electricity system, outside the boundaries of the
distribution network. By demonstrating this multi-purpose application of
6MW/10MWh of energy storage at Leighton Buzzard primary substation, the
project will explore the capabilities and value in alternative revenue streams for
storage, whilst deferring traditional network
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 66/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Storage in UK
• Preliminary analysis in UK suggest an additional storage
could be installed in the range of 1GW - 29GW under
certain future scenarios by 2050, of which distribution
storage is estimated to dominate bulk storage, due to the
savings from avoided distribution network costs.
The Electricity Storage Network has warned
that delays in installing at least an additional
2GW of electricity storage by 2020 will
result in costs of £100m a year for
taxpayers and investors.
The alert came as DECC named the first
two winners of its £20m energy storage
competition with the ESN adding that failure
to act would also cause a loss of value
rising to £10bn a year by 2050.
http://renews.biz/53357/uk-urged-to-focus-on-storage/
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 67/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
EV at Loughborough University
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 68/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
EV at Loughborough University
• Electric Vehicles at Loughborough University
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 69/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Electric vehicle charging
• Electric vehicle charging profiles have been constructed
from data on time-of-arrival for drivers at their home
destination, from the National Travel Survey.
Number of electric vehicles arriving
home, in 10-minute intervals, calculated
from the National Travel Survey (2010)
for 7.6 million vehicles
http://www.element-energy.co.uk/wordpress/wp-content/uploads/2014/07/HEUS_Lot_II_Correlation_of_Consumption_with_Low_Carbon_Technologies_Final.pdf
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 70/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Electric vehicle charging
• For simplicity, it is assumed all drivers travel the same
distance every day, 365 days per year
• The charging profile of a typical electric vehicle is
aggregated here from an ensemble of vehicles (including
PHEVs, RE-EVs and BEVs) and arrival times.
30
31
32
33
34
35
36
37
38
39
2012 2030
Distance(km)
Year
Distance Travelled (km)
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 71/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Annual Distance Driven
Annual electric vehicle mileage (km) as a function of year
The annual distance driven is informed by
Element Energy’s work in modelling of the
GB vehicle stock.
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 72/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
EV Type Evolution
EV type distribution, DECC Low Uptake Scenario
The modelling of electric vehicles assumes battery capacities of 8kWh for PHEVs,
16kWh for RE-EVs, and 22kWh for BEVs
Range-extended electric vehicles (REEV) Battery electric vehicle (BEV) Plug-in hybrid electric vehicle (PHEV)
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 73/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Demand Profile: EV
Average aggregated electricity
demand profile for a single electric
vehicle, at a single household
without DSR measures
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 74/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
EV –Prospective 2030
UK domestic electric vehicles uptake for 2012-2030
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 75/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
This section presents several different types of
HVDC configurations
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 76/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Types of HVDC Systems
Different common system configurations and operating
modes used for HVDC transmission
Monopole, Ground Return
Monopole, Metallic Return
Monopole, Midpoint Grounded
Back-to-Back
(a) Monopole (b) Bipole
Bipole Bipole, Metallic Return
(c) Multi-Terminal
Multiterminal
Bipole, Series-Connected
Converters
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 77/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
This section presents several different types of
HVDC configurations
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 78/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Multi-Terminal HVDC Systems
• Future Electricity Network use the concept of Multi-
Terminal HVDC Systems
MTDC
AC
System
,dc iU
,dc iP
i
Multiterminal
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 79/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Practical Multi-Terminal HVDC
10GW
5GW
Belgium
London
Hull
Glasgow
Norfolk Bank
2GW
5GW
10GW
Firth of Forth
5GW
5GW
5GW
5GW
Norway
German WF
Dogger Bank
2
8
4ac
3
8ac
1 10ac101ac
9ac
9
4
1-2
VSC4
VSC9
2-10
VSC1
G10
UK1
3-7
2-3
3-6
8-9
3-92-5
1-4
5ac
5VSC5
UK2
6ac
6VSC6
UK3
7ac
7
3acVSC3
2acVSC2
G1
G2
G3
G9
VSC8
G8
Germany
UK
VSC7
Zeebrugge
VSC8
VSC10
WF
WF
WF
www.fglongatt.org.ve
Francisco Gonzalez-Longatt, PhD
March 2015
Loughborough, UK
4.30
5.00
0.70
3.60
13.60
10.00
5.30
4.50
5.10
5.00
10.00
8.75
43.45
35.00
1.15
4.70
4.73
2.00
4.26
1.86
4.0
G7
2.22
27.26
16.8
30.8
27.3
5.50
Pdc
Pac
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 80/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
This section introduces challenges of MTDC in
terms of System Operation
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 81/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Introduction
• HVDC is present in the system for
several decades.
• It is part of the operational
procedures of the system operator:
• Part of the scheduling process.
• Used in special protection schemes.
• Used to manage power system stability.
• However, the used schemes tend to
be “specific” and “special” to the
situation.
• HVDC is often regarded as
“external” to the system operator.
• As HVDC penetration is
increasing, there is a need to
consider it as an inherent part of the
power system.
SURVEY PAPER 2: Modeling and Control of HVDC Grids: A Key Challenge for the Future Power
System. Authors: Jef Beerten, Oriol Gomis-Bellmunt, Xavier Guillaud, Johan Rimez, Arjen van der Meer,
Dirk Van Hertem
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 82/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
HVDC Grid Influences Operations
Emergency
operations
Energy Balance
Market Operation
Preventive
and
Corrective
actions
Reliability in
the system
(and how it is
dealt with):Both
dynamically (all
forms of
stability) and
steady state.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 83/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
HVDC Grid Influences Operations
Technology used influences the system’s
operation :
• Appropriate ratings for cables, lines
and converters (e.g. maximum steady-
state and transient voltages and power
ratings).
• Protection system (largest effect of a
single failure, fault ride through
requirements).
• Harmonic filter requirements.
• Converter requirements (e.g. ramp
rates).
• Need for DC choppers or offshore wind
farm control.
• Technology requirements and
operational requirements are linked.
SURVEY PAPER 2: Modeling and Control of HVDC Grids: A Key Challenge for
the Future Power
System. Authors: Jef Beerten, Oriol Gomis-Bellmunt, Xavier Guillaud, Johan
Rimez, Arjen van der Meer,
Dirk Van Hertem
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 84/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 85/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where is The Border?
•Area which is operated
by the same entity:
1. One single zone of
operation
2. DC separate from the
AC system.
3. Each zone separately.
4. Based on country
borders.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 86/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where is The Border?
• Area which is operated
by the same entity:
1. One single zone of
operation
2. DC separate from the
AC system.
3. Each zone separately.
4. Based on country
borders.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 87/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where is The Border?
•Area which is operated
by the same entity:
1. One single zone of
operation
2. DC separate from the
AC system.
3. Each zone separately.
4. Based on country
borders.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 88/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where is The Border?
•Area which is operated
by the same entity:
1. One single zone of
operation
2. DC separate from the
AC system.
3. Each zone separately.
4. Based on country
borders.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 89/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where is The Border?
• Area which is operated
by the same entity:
1. One single zone of
operation
2. DC separate from the
AC system.
3. Each zone separately.
4. Based on country
borders.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 90/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where is The Border?
Different possible definitions.
Different implementations.
Different consequences towards cost-benefit.
•Area which is operated
by the same entity:
1. One single zone of
operation
2. DC separate from the
AC system.
3. Each zone separately.
4. Based on country
borders.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 91/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where to draw the border between AC and DC?
• Where to draw the
border between AC and
DC:
• At the DC busbar/PCC.
• At the AC busbar/PCC.
• Halfway the converter the
border.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 92/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where to Draw the Border Between AC and DC?
• Where to draw the
border between AC and
DC:
• At the DC busbar/PCC.
• At the AC busbar/PCC.
• Halfway the converter the
border.
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 93/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Where to Draw the Border Between AC and DC?
• Where to draw the border
between AC and DC:
• At the DC busbar/PCC.
• At the AC busbar/PCC.
• Halfway the converter
the border.
The border determines the
interactions and who controls?
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 94/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 95/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Frequency/Voltage Management:
• Solving unbalances through
power injection adjustment
(simplified).
• Outage of a converter station
connecting the HVDC grid
with AC grid 1, zone 1.
• Examples of Solutions:
1. Equal droop reaction causes
all converters connected to
the HVDC grid to contribute.
2. Control zone 1 of AC grid 1
takes the full unbalance over
from the other systems.
P
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 96/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Frequency/Voltage Management:
• Solving unbalances through
power injection adjustment
(simplified).
• Outage of a converter station
connecting the HVDC grid with
AC grid 1, zone 1.
• Examples of Solutions:
1. Equal droop reaction causes
all converters connected to the
HVDC grid to contribute.
2. The schedule with AC grid 2 is
corrected, resulting in only a
contribution from AC grid 1
3. Control zone 1 of AC grid 1
takes the full unbalance over
from the other systems.
P
/6P
/6P
/6P
/6P
/6P
/6P
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 97/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Frequency/Voltage Management:
• Solving unbalances through
power injection adjustment
(simplified).
• Outage of a converter station
connecting the HVDC grid with AC
grid 1, zone 1.
• Examples of Solutions:
1. Equal droop reaction causes all converters
connected to the HVDC grid to
contribute.
2. The schedule with AC grid 2 is
corrected, resulting in only a
contribution from AC grid 1
3. Control zone 1 of AC grid 1 takes the full
unbalance over from the other systems.
P
/ 4P
0 0
/ 4P
/ 4P
/ 4P
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 98/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Frequency/Voltage Management:
• Solving unbalances through
power injection adjustment
(simplified).
• Outage of a converter station
connecting the HVDC grid with
AC grid 1, zone 1.
• Examples of Solutions:
1. Equal droop reaction causes all
converters connected to the
HVDC grid to contribute.
2. The schedule with AC grid 2 is
corrected, resulting in only a
contribution from AC grid 1
3. Control zone 1 of AC grid 1
takes the full unbalance over
from the other systems.
P
0 0
0
0
0
P
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 99/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Frequency/Voltage Management:
• Solving unbalances through
power injection adjustment
(simplified).
• Outage of a converter station
connecting the HVDC grid with
AC grid 1, zone 1.
• Examples of Solutions:
1. Equal droop reaction causes all
converters connected to the
HVDC grid to contribute.
2. The schedule with AC grid 2 is
corrected, resulting in only a
contribution from AC grid 1
3. Control zone 1 of AC grid 1
takes the full unbalance over
from the other systems.
P
0 0
0
0
0
P
Still an action
needed to fix
frequencies and
voltages
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 100/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 101/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
Conclusions
• As HVDC is increasingly present in power systems.
• New technology allows to provide new “services”.
• It is needed to adapt our operational procedures to make
HVDC operations an inherent part of system operations.
• Influence reaches far into neighbouring zones: both
positive and negative
• Coordination is needed.
• The framework in which the AC and DC systems are
operated will play a key role.
@fglongatt
www.fglongatt.org
Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 102/102
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
It is time for questions and answers
Copyright Notice
The documents are created by Francisco M. Gonzalez-Longatt and contain copyrighted material, trademarks, and other proprietary information. All rights reserved. No part of the documents may be reproduced or
copied in any form or by any means - such as graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems without the prior written permission of Francisco M.
Gonzalez-Longatt . The use of these documents by you, or anyone else authorized by you, is prohibited unless specifically permitted by Francisco M. Gonzalez-Longatt. You may not alter or remove any
trademark, copyright or other notice from the documents. The documents are provided “as is” and Francisco M. Gonzalez-Longatt shall not have any responsibility or liability whatsoever for the results of use of the
documents by you.

Weitere ähnliche Inhalte

Was ist angesagt?

Unit commitment in power system
Unit commitment in power systemUnit commitment in power system
Unit commitment in power systemAbrar Ahmed
 
Power Quality & Power Quality Problems
Power Quality & Power Quality ProblemsPower Quality & Power Quality Problems
Power Quality & Power Quality ProblemsPower System Operation
 
Hvdc transmission & its applications
Hvdc transmission & its applicationsHvdc transmission & its applications
Hvdc transmission & its applicationsPooja Dubey
 
Power system slide notes
Power system slide notesPower system slide notes
Power system slide notesmichaeljmack
 
Frequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrancisco Gonzalez-Longatt
 
Electric Energy Storage Systems
Electric Energy Storage SystemsElectric Energy Storage Systems
Electric Energy Storage SystemsHussein Kassem
 
Introduction to power system analysis
Introduction to power system analysisIntroduction to power system analysis
Introduction to power system analysisRevathi Subramaniam
 
abb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integrationabb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integrationSteve Wittrig
 
Unified Power Flow Controller(upfc) 2
Unified Power Flow Controller(upfc) 2Unified Power Flow Controller(upfc) 2
Unified Power Flow Controller(upfc) 2JayakalyanReddy
 
ELECTRIC TRACTION SYSTEM
ELECTRIC TRACTION SYSTEMELECTRIC TRACTION SYSTEM
ELECTRIC TRACTION SYSTEMSaikumarDendi
 
BESS - Battery Energy Storage System.pdf
BESS - Battery Energy Storage System.pdfBESS - Battery Energy Storage System.pdf
BESS - Battery Energy Storage System.pdfPaul374728
 
Integration of Renewable Energy Sources
Integration of Renewable Energy SourcesIntegration of Renewable Energy Sources
Integration of Renewable Energy SourcesSandeep Kaushal
 
Vehicle to grid technology
Vehicle to grid technologyVehicle to grid technology
Vehicle to grid technologyMD. Anamul Haque
 
Reactive power management and voltage control by using statcom
Reactive power management and voltage control by using statcomReactive power management and voltage control by using statcom
Reactive power management and voltage control by using statcomHussain Ali
 
Base Load Plants and Peak Load Plant
Base Load Plants and Peak Load PlantBase Load Plants and Peak Load Plant
Base Load Plants and Peak Load PlantSatish Taji
 
Power control and power flow analysis
Power control and power flow analysisPower control and power flow analysis
Power control and power flow analysisjawaharramaya
 
Fault Location Of Transmission Line
Fault Location Of Transmission LineFault Location Of Transmission Line
Fault Location Of Transmission LineCHIRANJEEB DASH
 

Was ist angesagt? (20)

Power flow analysis
Power flow analysisPower flow analysis
Power flow analysis
 
Unit commitment in power system
Unit commitment in power systemUnit commitment in power system
Unit commitment in power system
 
Power Quality & Power Quality Problems
Power Quality & Power Quality ProblemsPower Quality & Power Quality Problems
Power Quality & Power Quality Problems
 
Hvdc transmission & its applications
Hvdc transmission & its applicationsHvdc transmission & its applications
Hvdc transmission & its applications
 
Power system slide notes
Power system slide notesPower system slide notes
Power system slide notes
 
Frequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networks
 
Electric Energy Storage Systems
Electric Energy Storage SystemsElectric Energy Storage Systems
Electric Energy Storage Systems
 
Introduction to power system analysis
Introduction to power system analysisIntroduction to power system analysis
Introduction to power system analysis
 
Unit commitment
Unit commitmentUnit commitment
Unit commitment
 
abb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integrationabb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integration
 
Unified Power Flow Controller(upfc) 2
Unified Power Flow Controller(upfc) 2Unified Power Flow Controller(upfc) 2
Unified Power Flow Controller(upfc) 2
 
ELECTRIC TRACTION SYSTEM
ELECTRIC TRACTION SYSTEMELECTRIC TRACTION SYSTEM
ELECTRIC TRACTION SYSTEM
 
BESS - Battery Energy Storage System.pdf
BESS - Battery Energy Storage System.pdfBESS - Battery Energy Storage System.pdf
BESS - Battery Energy Storage System.pdf
 
Integration of Renewable Energy Sources
Integration of Renewable Energy SourcesIntegration of Renewable Energy Sources
Integration of Renewable Energy Sources
 
Vehicle to grid technology
Vehicle to grid technologyVehicle to grid technology
Vehicle to grid technology
 
Reactive power management and voltage control by using statcom
Reactive power management and voltage control by using statcomReactive power management and voltage control by using statcom
Reactive power management and voltage control by using statcom
 
Base Load Plants and Peak Load Plant
Base Load Plants and Peak Load PlantBase Load Plants and Peak Load Plant
Base Load Plants and Peak Load Plant
 
Power control and power flow analysis
Power control and power flow analysisPower control and power flow analysis
Power control and power flow analysis
 
FACTS Presentacion
FACTS PresentacionFACTS Presentacion
FACTS Presentacion
 
Fault Location Of Transmission Line
Fault Location Of Transmission LineFault Location Of Transmission Line
Fault Location Of Transmission Line
 

Andere mochten auch

Massive Integration of Offshore Using HVDC, 8th August 2012
Massive Integration of Offshore Using HVDC, 8th August 2012Massive Integration of Offshore Using HVDC, 8th August 2012
Massive Integration of Offshore Using HVDC, 8th August 2012Francisco Gonzalez-Longatt
 
Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015
Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015
Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015Francisco Gonzalez-Longatt
 
RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...
RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...
RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...OPAL-RT TECHNOLOGIES
 
O&m of hvdc station power grid india
O&m of hvdc station power grid indiaO&m of hvdc station power grid india
O&m of hvdc station power grid indiaVaibhav Jain
 
High Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmissionHigh Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmissionZunAib Ali
 
Simulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCADSimulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCADVishal Bhimani
 

Andere mochten auch (8)

Massive Integration of Offshore Using HVDC, 8th August 2012
Massive Integration of Offshore Using HVDC, 8th August 2012Massive Integration of Offshore Using HVDC, 8th August 2012
Massive Integration of Offshore Using HVDC, 8th August 2012
 
Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015
Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015
Future Energy System: Big-data+Uncertainties = Risk, Arequipa, Peru 6 oct2015
 
RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...
RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...
RT15 Berkeley | Real-Time Simulation of A Modular Multilevel Converter Based ...
 
O&m of hvdc station power grid india
O&m of hvdc station power grid indiaO&m of hvdc station power grid india
O&m of hvdc station power grid india
 
Hvdc technology
Hvdc technologyHvdc technology
Hvdc technology
 
HVDC & FACTS
HVDC & FACTSHVDC & FACTS
HVDC & FACTS
 
High Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmissionHigh Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmission
 
Simulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCADSimulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCAD
 

Ähnlich wie Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Portoviejo Ecuador

Sistemas_Proteccion.pdf
Sistemas_Proteccion.pdfSistemas_Proteccion.pdf
Sistemas_Proteccion.pdfDanyPQ
 
TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)
TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)
TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)Neha Gethe
 
ThorCon Public Presentation - Jakarta 02/03/20
ThorCon Public Presentation - Jakarta 02/03/20ThorCon Public Presentation - Jakarta 02/03/20
ThorCon Public Presentation - Jakarta 02/03/20Bob Soelaiman Effendi
 
Not our fault! - earth faults, past, present, and future, and their mitigation
Not our fault! - earth faults, past, present, and future, and their mitigationNot our fault! - earth faults, past, present, and future, and their mitigation
Not our fault! - earth faults, past, present, and future, and their mitigationDennis Keen
 
transistor (1).ppt
transistor (1).ppttransistor (1).ppt
transistor (1).pptPremBorse1
 
Distribution Transformers
Distribution TransformersDistribution Transformers
Distribution TransformersRao Saim Zafar
 
Desertec talk1
Desertec talk1Desertec talk1
Desertec talk1GerryWolff
 
Effects of Grounding Configurations on Post-Contingency Performance of MTDC...
 Effects of Grounding Configurations on Post-Contingency Performance of  MTDC... Effects of Grounding Configurations on Post-Contingency Performance of  MTDC...
Effects of Grounding Configurations on Post-Contingency Performance of MTDC...Francisco Gonzalez-Longatt
 
Man-Made Nuclear Holocaust
Man-Made Nuclear HolocaustMan-Made Nuclear Holocaust
Man-Made Nuclear Holocaustsyottovasikka
 
Wireless power transmission wpt Saminor report final
Wireless power transmission wpt Saminor report finalWireless power transmission wpt Saminor report final
Wireless power transmission wpt Saminor report finalRameez Raja
 
Klaus Jäger_Development and future of (solar) energy technologies
Klaus Jäger_Development and future of (solar) energy technologiesKlaus Jäger_Development and future of (solar) energy technologies
Klaus Jäger_Development and future of (solar) energy technologiesUNICORNS IN TECH
 
hydro energy in Spain
hydro energy in Spainhydro energy in Spain
hydro energy in SpainDiaz Bai
 
„IT COMES TO THE ENERGY ! - The 2000-watt-society vision of Switzerland
„IT COMES TO THE ENERGY ! -  The 2000-watt-society vision of Switzerland„IT COMES TO THE ENERGY ! -  The 2000-watt-society vision of Switzerland
„IT COMES TO THE ENERGY ! - The 2000-watt-society vision of Switzerlandmorosini1952
 
Wireless Power Transmission
Wireless Power TransmissionWireless Power Transmission
Wireless Power TransmissionLeonardo ENERGY
 
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...Francisco Gonzalez-Longatt
 
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...Thane Heins
 
BASIC-ELECTRICAL-IMP.pdf
BASIC-ELECTRICAL-IMP.pdfBASIC-ELECTRICAL-IMP.pdf
BASIC-ELECTRICAL-IMP.pdfssuser62a594
 

Ähnlich wie Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Portoviejo Ecuador (20)

Sistemas_Proteccion.pdf
Sistemas_Proteccion.pdfSistemas_Proteccion.pdf
Sistemas_Proteccion.pdf
 
TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)
TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)
TRANSFORMER(परिणामित्र , परिवर्तक, रूपांतरकर्ता)
 
ThorCon Public Presentation - Jakarta 02/03/20
ThorCon Public Presentation - Jakarta 02/03/20ThorCon Public Presentation - Jakarta 02/03/20
ThorCon Public Presentation - Jakarta 02/03/20
 
Not our fault! - earth faults, past, present, and future, and their mitigation
Not our fault! - earth faults, past, present, and future, and their mitigationNot our fault! - earth faults, past, present, and future, and their mitigation
Not our fault! - earth faults, past, present, and future, and their mitigation
 
transistor (1).ppt
transistor (1).ppttransistor (1).ppt
transistor (1).ppt
 
Distribution Transformers
Distribution TransformersDistribution Transformers
Distribution Transformers
 
Desertec talk1
Desertec talk1Desertec talk1
Desertec talk1
 
Effects of Grounding Configurations on Post-Contingency Performance of MTDC...
 Effects of Grounding Configurations on Post-Contingency Performance of  MTDC... Effects of Grounding Configurations on Post-Contingency Performance of  MTDC...
Effects of Grounding Configurations on Post-Contingency Performance of MTDC...
 
Man-Made Nuclear Holocaust
Man-Made Nuclear HolocaustMan-Made Nuclear Holocaust
Man-Made Nuclear Holocaust
 
Wireless power transmission wpt Saminor report final
Wireless power transmission wpt Saminor report finalWireless power transmission wpt Saminor report final
Wireless power transmission wpt Saminor report final
 
Klaus Jäger_Development and future of (solar) energy technologies
Klaus Jäger_Development and future of (solar) energy technologiesKlaus Jäger_Development and future of (solar) energy technologies
Klaus Jäger_Development and future of (solar) energy technologies
 
hydro energy in Spain
hydro energy in Spainhydro energy in Spain
hydro energy in Spain
 
„IT COMES TO THE ENERGY ! - The 2000-watt-society vision of Switzerland
„IT COMES TO THE ENERGY ! -  The 2000-watt-society vision of Switzerland„IT COMES TO THE ENERGY ! -  The 2000-watt-society vision of Switzerland
„IT COMES TO THE ENERGY ! - The 2000-watt-society vision of Switzerland
 
Wireless Power Transmission
Wireless Power TransmissionWireless Power Transmission
Wireless Power Transmission
 
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...Moving Towards Future Electrical Systems:Multi-Terminal HVDC + Wind Power 2...
Moving Towards Future Electrical Systems: Multi-Terminal HVDC + Wind Power 2...
 
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
 
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
How to Eliminate 100% of ALL the C02 and Air Pollution Produced During ALL Gl...
 
BASIC-ELECTRICAL-IMP.pdf
BASIC-ELECTRICAL-IMP.pdfBASIC-ELECTRICAL-IMP.pdf
BASIC-ELECTRICAL-IMP.pdf
 
Singh
SinghSingh
Singh
 
Ijecet 06 10_001
Ijecet 06 10_001Ijecet 06 10_001
Ijecet 06 10_001
 

Mehr von Francisco Gonzalez-Longatt

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsFrancisco Gonzalez-Longatt
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) Francisco Gonzalez-Longatt
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system Francisco Gonzalez-Longatt
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolFrancisco Gonzalez-Longatt
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Francisco Gonzalez-Longatt
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Francisco Gonzalez-Longatt
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Francisco Gonzalez-Longatt
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...Francisco Gonzalez-Longatt
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Francisco Gonzalez-Longatt
 
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013Francisco Gonzalez-Longatt
 

Mehr von Francisco Gonzalez-Longatt (20)

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia Systems
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR)
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency Conntrol
 
0. Introduction to future energy systems
0. Introduction to future energy systems0. Introduction to future energy systems
0. Introduction to future energy systems
 
Challenges in the Future Power Network
Challenges in the Future Power NetworkChallenges in the Future Power Network
Challenges in the Future Power Network
 
Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
 
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
Exploring Beyond the Frontiers to Build a Smarter Grid. UK-India Seminar 2013
 

Kürzlich hochgeladen

Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 

Kürzlich hochgeladen (20)

Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

Future Meshed HVDC Grids: Challenges and Opportunities, 29th October 2015, Portoviejo Ecuador

  • 1. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 1/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org @fglongatt 29 Octubre 2015 Portoviejo, Ecuador Prof Francisco M. Gonzalez-Longatt, PhD
  • 2. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 2/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
  • 3. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 3/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Agenda • Historic Overview • Key Milestone • Evolution of HVDC Projects • Configurations of HVDC • Operation of Multi-Terminal HVDC: Challenges • A DC Grid as Part of a Larger System: Where is The Border ??? • Conclusions • Questions and Answers
  • 4. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 4/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org • This section presents a brief history and facts related to the HVDC transmission systems, the classical dilemma of AC versus DC.
  • 5. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 5/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Ancient History • The first electrical networks used direct current - generated, distributed and consumed at a single voltage level • By the late 1880s the increase in distance from generation to load and increasing price of copper was making the economies of dc difficult • 1870s first ac transformers were built based on earlier work on induction coils • 1891 Westinghouse built the first commercial alternating current distribution system • 1893 transmission of ac power from Niagara (at 25Hz) and dc was dead in the water • But nothing ever goes away…… Invention of the transformer allowed voltage to be stepped up for transmission • But transformers only work for AC to AC power transmission network. • Hence AC became the preferred medium.
  • 6. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 6/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org War of Currents: AC versus DC War of Currents • George Westinghouse and Thomas Edison became adversaries due to Edison's promotion of direct current (DC) for electric power distribution over alternating current (AC) advocated by several European companies and Westinghouse Electric based in Pittsburgh, Pennsylvania. George Westinghouse, Jr (October 6, 1846 – March 12, 1914) Thomas Alva Edison (February 11, 1847 – October 18, 1931) War of Currents • Thomas Edison (DC) vs George Westinghouse (AC) • AC won…or so it seemed. • Why? However, AC transmission is hard to control (power flows where it wants to flow). High Voltage Direct Current (HVDC) transmission is more efficient and more controllable. “Take warning! Alternating currents are dangerous, they are fit only for the electric chair”, Thomas A. Edison (1847-1931)
  • 7. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 7/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org The Beginning of DC Systems • 1882 – First Demo of 1.5 kW HVDC • Marcel Deprez was a Frenchman who created the DC distribution system for the Exposition in Paris helped Miller create the first long distance high voltage direct current transmission ever. • They transmitted 1,500 watts at 2000 volts over 35 miles from Miesbach (the foothills of the Alps) to the Glaspalast in Munich. Marcel Deprez (December 12, 1843 - October 13, 1918) “The two systems shake hands fraternally in order to give each other help and assistance…” (1889) R. Thury
  • 8. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 8/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Thury Systems (1/4) • 1889 – Rene Thury developed a new 630 kW system transmitted power at 14 kV DC over 120 km. • He was known for his work with high voltage direct current electricity transmission and was known in the professional world as the “King of DC”. Schematic diagram of a Thury HVDC transmission system René Thury (August 7, 1860 – April 23, 1938) In 1882, Thury's 6 pole dynamos were more compact than Edison's. The small 1,300 kg (2,900 lb) version produced 22 kW at 600 rpm, while a larger 4,500 kg (9,900 lb) version produced 66 kW at 350 rpm
  • 9. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 9/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Thury Systems (3/4) • 1913 – fifteen Thury systems were in place up to 100 kV Name Converter Station 1 Converter Station 2 Cable (km) Overhead line (km) Voltage (kV) Power (MW) Year of inaug. Year of decomm. Remarks Gorzente River - Genoa DC transmission scheme Italy - Gorzente River Italy - Genoa ? ? 6 ? 1889 ? upgraded later to a voltage of 14 kV, power of 2.5 MW and a length of 120 km, dismantled La Chaux-de- Fonds DC transmission scheme Switzerland - ? Switzerland - ? ? ? 14 ? 1897 ? dismantled St. Maurice - Lausanne DC transmission scheme Switzerland - St. Maurice Switzerland - Lausanne ? ? 22 3.7 1899 ? dismantled Lyon-Moutiers DC transmission scheme France - Lyon France - Moutiers 10 190 ±75 30 1906 1936 Wilesden- Ironbridge DC transmission scheme UK - Wilesden UK - Ironbridge 22.5 ? 100 ? 1910 ? Chambéry DC transmission scheme France - ? France - ? ? ? 150 ? 1925 1937 1889 1897 1906 1912 1925 Year 6 14 22 58 100 150 DirectVoltage[kV] Gorzente River, Genoa La Chaux de Fonds St. Maurice, Lausanne Lyon,Moutiers Lyon, Moutiers, La Bridoire Wilesden, Irongridge Lyon, Moutiers, La Bridoire and Bozel Chambéry Bipolar voltages of up to 150 kV where successfully achieved.
  • 10. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 10/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Thury Systems (4/4) • 1930 – Thury system were obsolete due the rotating machinery required high maintenance and had high energy loss. PERSPECTIVE VIEW OF THE THURY MACHINE
  • 11. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 11/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Early History: Mercury-Arc • 1932 – General Electric used mercury-vapor valves and a 12 kV DC transmission line in Mechanicville, New York. HVDC Mechanicville–Schenectady was the first experimental HVDC transmission line in the United States. Built in 1932, the circuit traversed 37 kilometres (23 mi) from Mechanicville, New York to Schenectady, New York. The system used mercury arc rectifiers at a voltage of 20,000 volts and a rated power of 5 MW. The facility was dismantled after World War II. Mechanicville Hydroelectric Station. HVDC from hydroelectric power plant in Mechanicville to Schenectady (NY). 37 km / 12 kV / 5 MW. Interesting fact: 40 Hz at plant and 60 Hz in NY https://www.youtube.com/watch?v=YpvQyB0wClc
  • 12. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 12/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Early History: Elbe-Berlin Project • 1941- Berlin used a similar line underground, however, project terminated due to the fall of government in 1945. • 1939 - 1951: 7 experimental HVDC transmission systems using mercury-arc valves were built in Switzerland, Germany, Sweden and Russia. The Elbe-Berlin Project The Elbe-Berlin transmission line would bring power from the power plant Vockerode on the river Elbe to the Reich capital. Although the distance was 115 km over land, and raw materials extremely scarce in those days of World War II, the Reich authorities ordered that the line be built as a pair of underground cables. Perhaps it is not so far-fetched an assumption that the government wanted to hide the transmission line from allied bomber planes. The history and properties of the transmission scheme are described in detail by Tröger (Entstehung der 440 kV Gleichstrom-Hochspannungs-Übertragung Elbe-Berlin, ETZ 69, 1948). Six single-anode mercury-arc valves at Charlottenburg Station, Berlin, for the HVdc test installation, Berlin-Moabit, 1942 (photo courtesy of Siemens AG, Siemens Press Picture, ref. number sosep200501-01).
  • 13. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 13/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Modern History • 1950- First modern HVDC system was in service between Sweden and the island Gotland (ASEA Swedish industry company), rated 20MW, 100kVdc • 1960 - Three additional order were received by ASEA in New Zealand, Sweden/Denmark, and Japan. Mercury arc valve at Ygne, Gotland Thyristor valves at Ygne converter station, Gotland Connected the Swedish mainland, at Vstervik, to Ygne in the island of Gotland. 98 km / 20 MW / 100 kV
  • 14. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 14/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Modern History • 1961 1st Cross Channel link from England to France rated 160MW, 100kVdc The first HVDC Cross-Channel went into service in 1961 between static inverter plants at Lydd in England and Echinghen, near Boulogne-sur-Mer, in France. This scheme was equipped with mercury vapour rectifiers. In order to keep the disturbances of the magnetic compasses of passing ships as small as possible, a bipolar cable was used. The cable had a length of 64 kilometres (40 mi) and was operated symmetrically at a voltage of ±100 kV and a maximum current of 800 amperes. The maximum transmission power of this cable was 160 megawatts (MW). The cable was built by ABB Group. Anglo-French Interconnector Echinghen, near Boulogne-sur-Mer, France Lydd in England 52km 225 kV, 60Hz 275 kV, 50Hz Électricité de France CEGB (the Central Electricity Generating Board UK)
  • 15. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 15/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Modern History • 1964 Volgograd-Donbass overhead line link rated 750MW 400kVdc and 450km long. The HVDC Volgograd-Donbass is a high voltage direct current line between the static inverter plants at Volzhskaya (situated near the hydro-electric power plant Volgograd) and Mikhailovskaya in the Donbass area, which went into service in 1964. It consists of a 475 kilometre long overhead line. The static inverters of the HVDC Volgograd-Donbass are equipped with mercury arc rectifiers for a voltage of 100 kV and a maximum current of 940 ampere, which were partly replaced at the beginning of the 90's by thyristors. The HVDC Volgograd-Donbass is a bipolar HVDC with an operating voltage of 400 kV. It can transfer a maximum power of 750 megawatts. 475 Km
  • 16. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 16/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Modern History • 1969- First HVDC system to use solid state valves. • 1970s – First HVDC system implemented within an AC network (Los Angeles, California). • 1972 Eel River Canada back-to-back rated at 320MW 1st thyristor based link • First microcomputer based control equipment for HVDC in 1979. It is Commissioned in 1972, between Hydro-Quebec (QHQ) and the New Brunswick Electric Power Commission (NBEPC). it supplies 320 MW at 80 kV d.c. The link is of zero length and connects two a.c. systems of the same nominal frequency (60Hz). The largest thyristors used in converter valves have blocking voltages of the order of kilovolts and currents of the order 100s of amperes. Source: HVDC Power Transmission Systems: Technology and System Interactions by K. R. Padiyar Eel River Controller http://new.abb.com/systems/hvdc/reference s/eel-river
  • 17. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 17/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Evolution of Mercury Arc • Evolution of mercury- arc valves HVDC systems. • 1970s: voltages > 400 kV and capacities > 1000 MW. • Pacific Intertie (1970): 1440 MW, 500 kV • Nelson River Bipole (1973-1977): 1620 MW, 450 kV 0 Commissioning Year DirectVoltage(kV) 100 200 300 400 500 600 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 Kingsnorth Pacific DC Intertie Volgograd- Donbass Nelson River Bipole 1 Inter-Island 1 Vancouver Island 1 SACOI 1 Sakuma B2B Konti-Skan 1 Moscow-Kashira Elbe-Project Cross-Channel Gotland 1 Lehrte-Misburg Trollhattan-Merud Charlottenburg-Moabit Zurich- Wettingen Mechanicville-Schenectady Biggest 1620 MW Average 357 MW Legend @fglongatt
  • 18. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 18/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Recent History • 1986 - 2nd Cross Channel link from England to France rated 2x1000MW 270kV. “Interconnexion France Angleterre” (IFA) Connection to France; Owned by National Grid and RTE Because the first installation did not meet increasing requirements, it was replaced in 1985–1986 by a new HVDC line with a maximum transmission rate of 2,000 MW between France and Great Britain, for which two new static inverter plants were built in Sellindge (UK) and in Bonningues-lès-Calais (Les Mandarins station), near Calais, (France). The cable and substations were built by Areva. This HVDC-link is 73 kilometres (45 mi) long in route, with 70 kilometres (43 mi) between the two ends. The undersea section consists of eight 46 kilometres (29 mi) long 270 kV submarine cables (four pairs), laid between Folkestone (UK) and Sangatte (France), arranged as two independent bipoles. The landside parts of the link consist of 8 cables with lengths of 18.5 kilometres (11.5 mi) in England, and 6.35 kilometres (3.95 mi) in France. Interconnexion France-Angleterre : Station de conversion courant alternatif-courant continu des Mandarins (Pas de Calais) http://www.rte-france.com/fr/mediatheque/medias/infrastructures-62-fr/interconnexions-interconnexions-fr In 2006, 97.5% of the energy transfers have been made from France to UK, supplying the equivalent of 3 million English homes. The link availability is around 98%, which is among the best rates in the world. The continued size and duration of this flow is open to some doubt, given the growth in demand in Europe for clean electricity, and increasing electricity demand within France. 18
  • 19. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 19/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Recent History • 1984-87 Itaipu Brazil 2x3150 600kVdc 800km overhead line link The HVDC Itaipu is a High Voltage Direct Current transmission line in Brazil from the Itaipu hydroelectric power plant to the region of São Paulo. The project has two bipolar lines, which run from the generator site at Foz do Iguaçu in Paraná to the "load" (user) site Ibiúna near São Roque, São Paulo. The lines were put in service in several steps between 1984 and 1987, and are among the major installations of HVDC in the world. Bipole 1. 1. stage: ± 300 kV, 1575 MW in July 1984 2. stage: + 300kV,2362.5 MW in April 1985 - 600 kV 3. stage: ± 600 kV, 3150 MW in May 1986 4.stage: ± 300 kV, 1575 MW { commissioned Bipole 2. 5.stage: + 300 kV, 2362,5 MW { at the - 600 kV { same time by 6.stage: ± 600 kV, 3150 MW { August, 1987 Simplified diagram of the Itaipu Transmission System SOURCE: ITAIPU HVDC TRANSMISSION SYSTEM 10 YEARS OPERATIONAL EXPERIENCE, http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/81f41178f000ca94c1256fda004aead6/$file/sepope2.pdf Itaipu HVDC System main circuit and evolution
  • 20. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 20/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Recent History • Foz do Iguaçu converter station
  • 21. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 21/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Recent History • First active DC filters for outstanding filtering performance in 1994. • First Capacitor Commutated Converter (CCC) in Argentina-Brazil interconnection, 1998 “Garabi” the Argentina – Brazil 1000 MW Interconnection Commissioning and Early Operating Experience Source: http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/336dd56474cadec5c1256fda004aeadd/$file/erlac01.pdf 60Hz 60Hz50Hz 50Hz
  • 22. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 22/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Voltage Source Converter (VSC) • First Voltage Source Converter (VSC) for transmission in Gotland, Sweden, 50MW 80 kV, 1999. Backs Nas Wind Farms P = 50 MW D = 70 km Vdc = 80kV Bipolar
  • 23. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 23/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Evolution of Thyristor • Thyristor (or SCR): possible to achieve higher voltages. • A modern 6-inch thyristor: up to 4 kA / block up to 8.5 kV. • Thyristor valves improvements: larger powers through longer distances. • 1st commercial system: 1972 Eel River link in Canada (GE). B2B / 320 MW / 160 kV BlockingVoltage(kV) 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 6" Si-area(mm2 ) 1.5" 1000 MW Converter 400 thyristors 8.5 kV 0 1 2 3 1.65 kV 4 5 6 7 8 9 1000 MW Converter 14000 thyristors Year @fglongatt
  • 24. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 24/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Evolution of CSC • Evolution of CSC-HVDC voltage versus Transmission distance (km). • Very mature technology (> 140 HVDC systems worldwide) –Figures 2014. DirectVoltage(kV) 0 0 200 400 600 800 1000 1200 1400 1600 1800 30002500200015001000500 Transmission Distance (Km) @fglongatt
  • 25. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 25/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Examples LCC • Yunnan-Guangdong (2009). • 5,000MW,800kV Bipolar • 1418km • Three Gorges (2004) • 3000MW, 500kV Bipolar • 940km • Melo-Uruguay-Brazil (2011) • 500MW,Back-to-Back Three Gorges ABB UHV DC Yunnan - Guangdong Project: Chuxiong Substation, China - DC Yard 500kV 50Hz Uruguay 525kV 60Hz Brazil Alstom Grid
  • 26. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 26/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Voltage Source Converter (VSC) built for importing power from an offshore wind park to shore
  • 27. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 27/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Key Milestone: BorWin1 2009 • VDC BorWin1 is the first HVDC facility in Germany to use Voltage Sourced Converters (VSC), and the first in the world to be built for importing power from an offshore wind park to shore. Commissioning year: 2015 Power rating: 400 MW No of circuits: 1 AC Voltage: 170 kV (Platform BorWin alpha), 380 kV (Diele) DC Voltage: ±150 kV Length of DC underground cable: 2 x 75 km Length of DC submarine cable: 2 x 125 km Main reason for choosing HVDC Light: Length of land and sea cables Application: Offshore wind connections http://www.tennettso.de/site/binaries/content/assets/press/information/en/100341_ten_husum_borwin_1_en.pdf
  • 28. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 28/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Key Milestone: BorWin1 2009 • 2009 Borwin1 400MW 150kVdc, VSC 1st large offshore wind farm connection. http://www.tennettso.de 125 km sea cable 400 MW Offshore converter Source: ABB 400 MW HVDC Light® system off-shore station on platform with sub-sea structure 80 Wind Turbines 40 m Deep 100 km https://library.e.abb.com/public/9379edf992f625b6c125777c00328e51/Project%20BorWin1%20-%20150%20kV%20HVDC%20Light%20subm%20rev%202.pdf
  • 29. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 29/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Offshore Wind rojects • Offshore wind power plants are growing in terms of rated power and are being located farther from the coasts and the grid entry points. Project Company /Location Rated Power (MW) System Voltage (kV) DC Cable length (km) Year of Completion BornWin1 TanneT (Germany) 400 DC: 150 AC: 155/400 SM: 2x125 UG: 2x75 2009 DolWin1 TanneT (Germany) 800 DC: 320 AC: 155/400 SM: 2x75 UG: 2x90 2014 DolWin2 Tanner (Germany) 900 DC: 320 AC: 155/380 SM: 2x45 UG: 2x90 2015
  • 30. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 30/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Ultrahigh Voltage Direct Current (UHVDC)
  • 31. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 31/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Ultrahigh Voltage Direct Current (UHVDC) • The first Ultrahigh Voltage Direct Current (UHVDC) project in the world to go into commercial operation, in July 2010. http://www08.abb.com/global/scot/scot221.nsf/veritydisplay/57af6cb9ca0204ffc1257dcf004d7495 /$file/POW0056%20Rev%202.pdf Commissionin g year: 2010 Power rating: 6,400 MW (7,200 MW) No. of poles: 2 AC voltage: 525 kV (both ends) DC voltage: ±800 kV Length of overhead DC line: 1,980 km Main reason for choosing HVDC: Long distance Application: Connecting remote generation 6400 MW 800 kV 1980 Km XianJiba- Shanghai
  • 32. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 32/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Recent History • 2010 XianJiba- Shanghai 6400 MW 800 kV ±800kV DC Fulong Substation FengXiang Substation State Grid Corporation of China Source: ABB Source: ABB
  • 33. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 33/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org First Modular Multi-level converter (MMC)
  • 34. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 34/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Second Milestone: Trans Bay Cable • The Trans Bay Cable is a high-voltage direct current underwater cable interconnection between San Francisco, California and Pittsburg, California Potrero Hill Pittsburg 400 MW 88 km http://www.transbaycable.com/ First MMC Multilevel system
  • 35. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 35/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
  • 36. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 36/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Longest HVDC Line: Rio Madeira • The Rio Madeira transmission link in Brazil is the world's longest power transmission line: 600kV, bipolar, 2375 km. Commercial operation in November 2013 Commissioning year: 2013 Power rating: 3 150 MW 2 x 400 MW (back-to-back) AC voltage: Transmission link: 500 kV Back-to-back: 500 kV and 230 kV DC voltage: ± 600 kV Length of DC overhead line: 2,375 km Type of link * Long distance overhead line * Back-to-back station Main reason for choosing HVDC: Long distance Back-to-back: Asynchronous networks Application: Connecting remote generation Interconnecting grids http://www.abb.com/industries/ap/db0003db004333/137155e51dd72f1ec125774b004608ca.aspx%7Ctytu%C5%82=
  • 37. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 37/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Rio Madeira
  • 38. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 38/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
  • 39. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 39/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Nanao 3-Terminal VSC-HVDC • The world’s first three-terminal VSC HVDC system in China. • The pilot project with designed ratings of ±160kV/200MW- 100MW-50MW brings dispersed, intermittent clean wind power generated on Nanao island into the mainland Guangdong power grid through 32km of combination of HVDC land cables, sea cables and overheard lines. Diagram of Nan’ao three-terminal HVDC Flexible project R&D and application of voltage sourced converter based high voltage direct current engineering technology in China Guangfu TANG (&), Zhiyuan HE, Hui PANG https://www.dnvgl.com/news/dnv-gl-advises-on-world-s-first-multi-terminal-vsc-hvdc- transmission-project-integrating-clean-energy-into-china-s-regional-power- composition-mix-6205
  • 40. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 40/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Nanao 3-Terminal VSC-HVDC -2013 Wind farms in Nanao Island: By 2011, total capacity is 143MW n In 2013, more 25MW; In 2015, offshore 50MW (Tayu). VSC-MTDC project in Nanao Island: Three sending converter stations, One receiving inverter station Voltage ±160kV, Capacity 200 MW, Capacity 200 MW, Distance: 20km.
  • 41. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 41/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org World's First 5-Terminal VSC HVDC • 4th July 2014, ±200kV Zhoushan VSC-HVDC project--the world first 5-terminal one was put into service (141 km). • This project establishes a critical interconnection between mainland and 5 isolated islands. State Grid Company of Zhejiang province Diagram of Zhoushan five-terminal HVDC Flexible project 16 km 34 km 52 km 39km 400 MW 300 MW 100 MW 100 MW 100 MW
  • 42. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 42/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org North-East Agra: 1st UHVDC Multi-Terminal • Power Grid Corporation of India Ltd. The world’s first multi- terminal UHVDC transmission link. • The ±800 kV North-East Agra UHVDC link will have a record 8,000 MW converter capacity, including a 2,000 MW redundancy, and transmit clean hydroelectric power from India's northeast region to the city of Agra, a distance of 1,728 km. Commissioning year: 2016 Power rating: 6,000 MW (multiterminal) No. of poles: Converter: 4 Line: 2 AC voltage: 400 kV (all stations) DC voltage: ±800 kV Length of overhead DC line: 1,728 km Main reason for choosing HVDC: Long distance, bulk power Application: Connecting remote generation
  • 43. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 43/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Evolution of VSC Projects in North America, Europe and Asia
  • 44. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 44/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org HVDC Installation Around the World
  • 45. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 45/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org HVDC Projects in North America Name Converter station 1 Converter station 2 Total Length (Cable/P ole) (km) Volt (kV) Power (MW) Year Type Rock Island Clean Line USA - O'Brien County, IA USA - Grundy County, IL 805 (0/805) 600 3500 ~2017 Thyr Plains & Eastern Clean Line USA - Texas County, OK USA - Shelby County, TN 1207 (0/1207) 600 3500 ~2018 Thyr TransWest Express USA – Sinclair, WY USA – Boulder City, NV 1165 (0/1165) 600 3000 New England Clean Power Line USA - Alburgh, VT USA - Ludlow, VT 248 (248/0) 320 1000 ~2019 Labrador-Island Link Canada - Muskrat Falls, NL Canada - Soldiers Pond, NL 1135 (35/1100) 350 900 ~2017 Thyr Maritime Link Canada - Bottom Brook, NL Canada - Woodbine, NS 360 (170/190) 200 500 ~2017 IGBT
  • 46. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 46/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org HVDC Projects in Europe Name Converter station 1 Converter station 2 Total Length (Cable/Pole) (km) Volt (kV) Power (MW) Year Type BorWin3 Germany - Diele Germany - BorWin Gamma platform 200 (200/0) ±320 900 2019 IGBT DolWin3 Germany - DolWin Gamma platform 160 (160/0) ±320 900 2017 IGBT HVDC Italy- Croatia Italy - Candia Croatia - Konjsko ? 2017 Thyr Shetland HVDC Connection UK - Upper Kergord Valley UK - Blackhillock 345 (345/0) ? 550 2016 Thyr BorWin2 Germany - Diele Germany - BorWin Beta platform 200 (200/0) ±300 800 2015 IGBT DolWin1 Germany - Heede Germany - DolWin Alpha platform 165 (165/0) ±320 800 2015 IGBT HelWin1 Germany - Büttel Germany - HelWin Alpha platform 130 (130/0) ±250 576 2015 IGBT SylWin1 Germany - Büttel Germany - SylWin Alpha platform 205 (205/0) ±320 864 2015 IGBT LitPol Link Lithuania - Alytus Poland - Elk 160 (0/160) 70 500 2015 Thyr Åland - Finland Åland - Ytterby Finland - Nådendal 158 (158/0) 80 100 2015 IGBT Troll A 3&4 Norway - Kollsnes Norway - Troll A 3&4 platform 70 (70/0) 66 100 2015 IGBT Western HVDC Link UK - Hunterston UK - Connah's Quay 414 (414/0) 600 2000 2015 Thyr HVDC NordBalt Sweden - Nybro Lithuania - Klapeida 450 (450/0) 300 700 2015 IGBT DolWin2 Germany - Heede Germany - DolWin Beta platform 135 (135/0) ±320 900 2015 IGBT HelWin2 Germany - Büttel Germany - HelWin Beta platform 130 (130/0) ±320 690 2015 IGBT HVDC Finland - Åland Finland - Ytterby Finland - Nådendal 158 (158/0) 80 100 2015 IGBT
  • 47. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 47/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org HVDC Projects in Asia Name Converter station 1 Converter station 2 Total Length (Cable/Pole) (km) Volt (kV) Power (MW) Year Type Humeng - Liaoning China China 800 6400 2018 Thyr Jinsha River II - Fujian China China 800 6400 2018 Thyr Humeng - Liaoning China China 800 6400 2018 Thyr Jinsha River II - East China China China 800 6400 2016 Thyr Goupitan - Guangdong China China 3000 2016 Thyr Humeng - Shandong China China 800 6400 2015 Thyr Xiluodo - Hanzhou China China 800 6400 2015 Thyr Irkutsk - Beijing Russia - Irkutsk China - Beijing 800 6400 2015 Thyr Xiluodo - West Zhejiang China- Xiluodu China- Jinghua 1680 800 8000 2014 Thyr Hami - Central China China-Hami China- Zhengzhou 2192 800 6400 2014 Thyr Naoao Multi-terminal VSC HVDC China China 32 (10/32) ±160 200/100/50 2013 IEGT/IGBT
  • 48. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 48/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org UHVDC Prospects 600kV-800kV
  • 49. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 49/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org UHVDC Prospects 500kV-1100kV in China New Constructions by 2015 800 kV HVDC: 13 lines 1100 kV HVDC: 1 line Total HVDC (approx.): 30000 km 50 HVDC lines
  • 50. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 50/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org ±1100kV UHVDC Project in China • Ratings: 1100kV, 11,000MW / 5000A, 12 pulse, 26000 km • Timeline: Lab: 2007 Aug at CEPRI • Decision: End of 2010 • Spec issued: May, 2011 • Converter Transformer & Bushings Prototype: June,2012 • Valve prototype: Feb. 2012 • Construction Kick-off meeting: July 10, 2013 • June 2016 , Low end energized • Dec. 2016 , High end energized • Project Org. Chengdu, Sichun • EPC Project Management: • HVDC Construction Division of SGCC. • 15 main subcontractors • Engineering: Led by SPERI of SGCC Zhundong, Xingjiang Chengdu, Sichun 24 m Wall Bushing in ABB Ludvika, Apr 2012
  • 51. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 51/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org A Super – Infrastucture: SuperGrid Baltic and North Sea Countries: bring offshore wind farm power to onshore. SKAGERRAK IRISH SEA ENGLISH CHANNEL KATTEGAT DENMARK GERMANY NETHERLANDS BELGIUM UNITED KINGDOM IRELAND www.fglongatt.org.ve Francisco Gonzalez-Longatt, PhD June 2012 Coventry, UK Supergrid is defined as "a pan-European transmission network facilitating the integration of large-scale renewable energy and the balancing and transportation of electricity, with the aim of improving the European market" North Africa under Mediterranean Sea to Continental Europe: bring renewable energy of Photovoltaic, solar and wind. AC Network DC Network @fglongatt @fglongatt
  • 52. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 52/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org @fglongatt
  • 53. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 53/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org North Sea National Targets 2030 (1/4) SKAGERRAK IRISH SEA ENGLISH CHANNEL KATTEGAT DENMARK GERMANY NETHERLANDS BELGIUM UNITED KINGDOM IRELAND www.fglongatt.org.ve Francisco Gonzalez-Longatt, PhD June 2012 Coventry, UK @fglongatt Data source: EWEA @fglongatt
  • 54. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 54/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Massive Penetration Renewables: UK • Birmingham, UK Speaking at the Renewable UK conference in Birmingham (5 Nov 2013), UK Energy Secretary Ed Davey confirmed plans for the development of up to 39 GW of offshore wind capacity in UK waters by 2030. http://www.renewableenergyworld.com/rea/news/article/2013/11/uk-confirms-plans-for-39-gw-of-offshore-wind-by-2030?cmpid=WindNL-Thursday-November14-2013
  • 55. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 55/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org UK Wind Farms: East Anglia (3/4) Docking Shoal 540 MW East Anglia Five 1200 MW East Anglia Four 1200 MW East Anglia Three 1200 MW East Anglia Six 1200 MW East Anglia Two 1200 MW East Anglia Five 1200 MW East Anglia Six 1200 MW East Anglia Three 1200 MW East Anglia Four 1200 MW East Anglia Two 1200 MW East Anglia One 1200 MW Galloper Wind Farm Greater Gabbard London Array Phase 1 London Array Phase 2 Kentish Flats 90 MW Thanet Thanet 2 147 MW Dudgeon 560 MW Race Bank Scroby sands Gunfleet Sands I +II 173 MW Gunfleet Sads 3 – Demonstration Project Sheringhan Shoal Kentish Flats Extension 51 MW SKAGERRAK IRISH SEA ENGLISH CHANNEL KATTEGAT DENMARK GERMANY NETHERLANDS BELGIUM UNITED KINGDOM IRELAND www.fglongatt.org.ve Francisco Gonzalez -Longatt, PhD June 2012 Coventry, UK @fglongatt @fglongatt
  • 56. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 56/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Firth of Forth Phase 1 1075 MW Firth of Forth Phase 3 790 MW Firth of Forth Phase 2 1820 MW Forth Array Neart na Gaoith Inch Cape Bell Rock UK Wind Farms: Dogger Bank, HornSea, Firth of Forth (4/4) SKAGERRAK IRISH SEA ENGLISH CHANNEL KATTEGAT DENMARK GERMANY NETHERLANDS BELGIUM UNITED KINGDOM IRELAND www.fglongatt.org.ve Francisco Gonzalez -Longatt, PhD June 2012 Coventry, UK Dogger Bank 6000 MW Hornsea 2800 MW Njord (Hornsea) 600 MW Hornsea 2800 MW Heron Wind (Hornsea) 600 MW Triton Knoll 1200 MW Westermost Rough Race Bank Dudgeon 560 MW Dogger Bank Project One Dogger Bank Tranche A 1600 MW "They could see gross value added to the UK economy of £7 billion and a cumulative cost-reduction impact of £45 billion for the whole offshore wind sector in UK waters by 2050," Wind farm 'may save £45bn' in costs Offshore wind could boost GDP by “huge” 0.6% The figures build on 2010 research from the Offshore Valuation Group which found that by harnessing less than a third of the UK’s offshore wind resource, the UK could generate the equivalent of one billion barrels of oil a year by 2050 @fglongatt
  • 57. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 57/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Bigger is Better (?) (3/5) • UpWind: Design limits and solutions for very large wind turbines . • A 20 MW turbine is feasible (2011).
  • 58. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 58/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org 8MW Offshore Wind Turbine (4/5) • 8MW is something normal!!! 1. Vestas V164 8MW The V164 8MW turbine is the latest addition to the to top 10 list. The Vestas V164 came online in January 2014, nearly three years after the project was first unveiled in London. Curiously for an offshore turbine, the V164 is geared. Other notable features include a 80 metre-long blades and a lightweight nacelle that won the design innovation category in Windpower Monthly's annual wind turbine awards. The first machine has been installed for testing at the Danish national wind turbine test centre at Osterild. 2. Enercon E126 7.5MW 3. Samsung S7.0 171 7MW 4. MHI SeaAngel 7MW 5. Repower 6M Series 6. Siemens SWT-6.0 150 7. Alstom Haliade 8. Sinovel SL6000 9. Areva M5000 10. Gamesa G5MW http://www.windpowermonthly.com/10-biggest-turbines
  • 59. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 59/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Vestas V164-8.0 MW Vestas V164-8.0 MW - a game changer in offshore https://www.youtube.com/watch?v=uJBFAAJXH4c
  • 60. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 60/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Technologies for Energy Storage • 471 Global Energy Projects 2013 http://www.energystorageexchange.org/ 1339 Projects 186,224 GW 2015
  • 61. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 61/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Global Energy Storage http://www.energystorageexchange.org/projects/data_visualization
  • 62. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 62/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Global Storage
  • 63. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 63/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Technologies for Energy Storage (4/4) 1339 Projects 186,224 GW 2015
  • 64. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 64/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Storage in UK (2/4) Dinorwig Power Station 30 Projects 3255 MW
  • 65. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 65/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Storage in UK (3/4) • Smarter Network Storage The Smarter Network Storage (SNS) project aims to carry out a range of technical and commercial innovation to tackle the challenges associated with the low-carbon transition and facilitate the economic adoption of storage. It is differentiated from other LCNF electrical storage projects by its demonstration of storage across multiple parts of the electricity system, outside the boundaries of the distribution network. By demonstrating this multi-purpose application of 6MW/10MWh of energy storage at Leighton Buzzard primary substation, the project will explore the capabilities and value in alternative revenue streams for storage, whilst deferring traditional network
  • 66. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 66/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Storage in UK • Preliminary analysis in UK suggest an additional storage could be installed in the range of 1GW - 29GW under certain future scenarios by 2050, of which distribution storage is estimated to dominate bulk storage, due to the savings from avoided distribution network costs. The Electricity Storage Network has warned that delays in installing at least an additional 2GW of electricity storage by 2020 will result in costs of £100m a year for taxpayers and investors. The alert came as DECC named the first two winners of its £20m energy storage competition with the ESN adding that failure to act would also cause a loss of value rising to £10bn a year by 2050. http://renews.biz/53357/uk-urged-to-focus-on-storage/
  • 67. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 67/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org EV at Loughborough University @fglongatt
  • 68. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 68/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org EV at Loughborough University • Electric Vehicles at Loughborough University @fglongatt
  • 69. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 69/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Electric vehicle charging • Electric vehicle charging profiles have been constructed from data on time-of-arrival for drivers at their home destination, from the National Travel Survey. Number of electric vehicles arriving home, in 10-minute intervals, calculated from the National Travel Survey (2010) for 7.6 million vehicles http://www.element-energy.co.uk/wordpress/wp-content/uploads/2014/07/HEUS_Lot_II_Correlation_of_Consumption_with_Low_Carbon_Technologies_Final.pdf @fglongatt
  • 70. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 70/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Electric vehicle charging • For simplicity, it is assumed all drivers travel the same distance every day, 365 days per year • The charging profile of a typical electric vehicle is aggregated here from an ensemble of vehicles (including PHEVs, RE-EVs and BEVs) and arrival times. 30 31 32 33 34 35 36 37 38 39 2012 2030 Distance(km) Year Distance Travelled (km) @fglongatt
  • 71. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 71/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Annual Distance Driven Annual electric vehicle mileage (km) as a function of year The annual distance driven is informed by Element Energy’s work in modelling of the GB vehicle stock. @fglongatt
  • 72. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 72/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org EV Type Evolution EV type distribution, DECC Low Uptake Scenario The modelling of electric vehicles assumes battery capacities of 8kWh for PHEVs, 16kWh for RE-EVs, and 22kWh for BEVs Range-extended electric vehicles (REEV) Battery electric vehicle (BEV) Plug-in hybrid electric vehicle (PHEV) @fglongatt
  • 73. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 73/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Demand Profile: EV Average aggregated electricity demand profile for a single electric vehicle, at a single household without DSR measures @fglongatt
  • 74. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 74/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org EV –Prospective 2030 UK domestic electric vehicles uptake for 2012-2030 @fglongatt
  • 75. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 75/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org This section presents several different types of HVDC configurations
  • 76. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 76/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Types of HVDC Systems Different common system configurations and operating modes used for HVDC transmission Monopole, Ground Return Monopole, Metallic Return Monopole, Midpoint Grounded Back-to-Back (a) Monopole (b) Bipole Bipole Bipole, Metallic Return (c) Multi-Terminal Multiterminal Bipole, Series-Connected Converters @fglongatt
  • 77. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 77/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org This section presents several different types of HVDC configurations
  • 78. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 78/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Multi-Terminal HVDC Systems • Future Electricity Network use the concept of Multi- Terminal HVDC Systems MTDC AC System ,dc iU ,dc iP i Multiterminal @fglongatt
  • 79. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 79/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Practical Multi-Terminal HVDC 10GW 5GW Belgium London Hull Glasgow Norfolk Bank 2GW 5GW 10GW Firth of Forth 5GW 5GW 5GW 5GW Norway German WF Dogger Bank 2 8 4ac 3 8ac 1 10ac101ac 9ac 9 4 1-2 VSC4 VSC9 2-10 VSC1 G10 UK1 3-7 2-3 3-6 8-9 3-92-5 1-4 5ac 5VSC5 UK2 6ac 6VSC6 UK3 7ac 7 3acVSC3 2acVSC2 G1 G2 G3 G9 VSC8 G8 Germany UK VSC7 Zeebrugge VSC8 VSC10 WF WF WF www.fglongatt.org.ve Francisco Gonzalez-Longatt, PhD March 2015 Loughborough, UK 4.30 5.00 0.70 3.60 13.60 10.00 5.30 4.50 5.10 5.00 10.00 8.75 43.45 35.00 1.15 4.70 4.73 2.00 4.26 1.86 4.0 G7 2.22 27.26 16.8 30.8 27.3 5.50 Pdc Pac
  • 80. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 80/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org This section introduces challenges of MTDC in terms of System Operation
  • 81. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 81/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Introduction • HVDC is present in the system for several decades. • It is part of the operational procedures of the system operator: • Part of the scheduling process. • Used in special protection schemes. • Used to manage power system stability. • However, the used schemes tend to be “specific” and “special” to the situation. • HVDC is often regarded as “external” to the system operator. • As HVDC penetration is increasing, there is a need to consider it as an inherent part of the power system. SURVEY PAPER 2: Modeling and Control of HVDC Grids: A Key Challenge for the Future Power System. Authors: Jef Beerten, Oriol Gomis-Bellmunt, Xavier Guillaud, Johan Rimez, Arjen van der Meer, Dirk Van Hertem
  • 82. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 82/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org HVDC Grid Influences Operations Emergency operations Energy Balance Market Operation Preventive and Corrective actions Reliability in the system (and how it is dealt with):Both dynamically (all forms of stability) and steady state.
  • 83. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 83/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org HVDC Grid Influences Operations Technology used influences the system’s operation : • Appropriate ratings for cables, lines and converters (e.g. maximum steady- state and transient voltages and power ratings). • Protection system (largest effect of a single failure, fault ride through requirements). • Harmonic filter requirements. • Converter requirements (e.g. ramp rates). • Need for DC choppers or offshore wind farm control. • Technology requirements and operational requirements are linked. SURVEY PAPER 2: Modeling and Control of HVDC Grids: A Key Challenge for the Future Power System. Authors: Jef Beerten, Oriol Gomis-Bellmunt, Xavier Guillaud, Johan Rimez, Arjen van der Meer, Dirk Van Hertem
  • 84. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 84/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
  • 85. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 85/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where is The Border? •Area which is operated by the same entity: 1. One single zone of operation 2. DC separate from the AC system. 3. Each zone separately. 4. Based on country borders.
  • 86. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 86/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where is The Border? • Area which is operated by the same entity: 1. One single zone of operation 2. DC separate from the AC system. 3. Each zone separately. 4. Based on country borders.
  • 87. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 87/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where is The Border? •Area which is operated by the same entity: 1. One single zone of operation 2. DC separate from the AC system. 3. Each zone separately. 4. Based on country borders.
  • 88. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 88/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where is The Border? •Area which is operated by the same entity: 1. One single zone of operation 2. DC separate from the AC system. 3. Each zone separately. 4. Based on country borders.
  • 89. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 89/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where is The Border? • Area which is operated by the same entity: 1. One single zone of operation 2. DC separate from the AC system. 3. Each zone separately. 4. Based on country borders.
  • 90. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 90/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where is The Border? Different possible definitions. Different implementations. Different consequences towards cost-benefit. •Area which is operated by the same entity: 1. One single zone of operation 2. DC separate from the AC system. 3. Each zone separately. 4. Based on country borders.
  • 91. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 91/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where to draw the border between AC and DC? • Where to draw the border between AC and DC: • At the DC busbar/PCC. • At the AC busbar/PCC. • Halfway the converter the border.
  • 92. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 92/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where to Draw the Border Between AC and DC? • Where to draw the border between AC and DC: • At the DC busbar/PCC. • At the AC busbar/PCC. • Halfway the converter the border.
  • 93. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 93/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Where to Draw the Border Between AC and DC? • Where to draw the border between AC and DC: • At the DC busbar/PCC. • At the AC busbar/PCC. • Halfway the converter the border. The border determines the interactions and who controls?
  • 94. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 94/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
  • 95. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 95/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Frequency/Voltage Management: • Solving unbalances through power injection adjustment (simplified). • Outage of a converter station connecting the HVDC grid with AC grid 1, zone 1. • Examples of Solutions: 1. Equal droop reaction causes all converters connected to the HVDC grid to contribute. 2. Control zone 1 of AC grid 1 takes the full unbalance over from the other systems. P
  • 96. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 96/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Frequency/Voltage Management: • Solving unbalances through power injection adjustment (simplified). • Outage of a converter station connecting the HVDC grid with AC grid 1, zone 1. • Examples of Solutions: 1. Equal droop reaction causes all converters connected to the HVDC grid to contribute. 2. The schedule with AC grid 2 is corrected, resulting in only a contribution from AC grid 1 3. Control zone 1 of AC grid 1 takes the full unbalance over from the other systems. P /6P /6P /6P /6P /6P /6P
  • 97. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 97/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Frequency/Voltage Management: • Solving unbalances through power injection adjustment (simplified). • Outage of a converter station connecting the HVDC grid with AC grid 1, zone 1. • Examples of Solutions: 1. Equal droop reaction causes all converters connected to the HVDC grid to contribute. 2. The schedule with AC grid 2 is corrected, resulting in only a contribution from AC grid 1 3. Control zone 1 of AC grid 1 takes the full unbalance over from the other systems. P / 4P 0 0 / 4P / 4P / 4P
  • 98. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 98/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Frequency/Voltage Management: • Solving unbalances through power injection adjustment (simplified). • Outage of a converter station connecting the HVDC grid with AC grid 1, zone 1. • Examples of Solutions: 1. Equal droop reaction causes all converters connected to the HVDC grid to contribute. 2. The schedule with AC grid 2 is corrected, resulting in only a contribution from AC grid 1 3. Control zone 1 of AC grid 1 takes the full unbalance over from the other systems. P 0 0 0 0 0 P
  • 99. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 99/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Frequency/Voltage Management: • Solving unbalances through power injection adjustment (simplified). • Outage of a converter station connecting the HVDC grid with AC grid 1, zone 1. • Examples of Solutions: 1. Equal droop reaction causes all converters connected to the HVDC grid to contribute. 2. The schedule with AC grid 2 is corrected, resulting in only a contribution from AC grid 1 3. Control zone 1 of AC grid 1 takes the full unbalance over from the other systems. P 0 0 0 0 0 P Still an action needed to fix frequencies and voltages
  • 100. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 100/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org
  • 101. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 101/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org Conclusions • As HVDC is increasingly present in power systems. • New technology allows to provide new “services”. • It is needed to adapt our operational procedures to make HVDC operations an inherent part of system operations. • Influence reaches far into neighbouring zones: both positive and negative • Coordination is needed. • The framework in which the AC and DC systems are operated will play a key role. @fglongatt
  • 102. www.fglongatt.org Prof Francisco M. Gonzalez-Longatt PhD | fglongatt@fglongatt.org | Copyright © 2008-2015 102/102 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.Copyright©2014.http:www.fglongatt.org It is time for questions and answers Copyright Notice The documents are created by Francisco M. Gonzalez-Longatt and contain copyrighted material, trademarks, and other proprietary information. All rights reserved. No part of the documents may be reproduced or copied in any form or by any means - such as graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems without the prior written permission of Francisco M. Gonzalez-Longatt . The use of these documents by you, or anyone else authorized by you, is prohibited unless specifically permitted by Francisco M. Gonzalez-Longatt. You may not alter or remove any trademark, copyright or other notice from the documents. The documents are provided “as is” and Francisco M. Gonzalez-Longatt shall not have any responsibility or liability whatsoever for the results of use of the documents by you.