SlideShare ist ein Scribd-Unternehmen logo
1 von 37
A N I N T R O D U C T I O N T O B A Y E S I A N B E L I E F
N E T W O R K S A N D N A Ï V E B A Y E S I A N
C L A S S I F I C A T I O N
A D N A N M A S O O D
S C I S . N O V A . E D U / ~ A D N A N
A D N A N @ N O V A . E D U
Belief Networks &
Bayesian Classification
Overview
 Probability and Uncertainty
 Probability Notation
 Bayesian Statistics
 Notation of Probability
 Axioms of Probability
 Probability Table
 Bayesian Belief Network
 Joint Probability Table
 Probability of Disjunctions
 Conditional Probability
 Conditional Independence
 Bayes' Rule
 Classification with Bayes rule
 Bayesian Classification
 Conclusion & Further Reading
Probability and Uncertainty
 Probability provide a way of summarizing the uncertainty.
 60% chance of rain today
 85% chance of alarm in case of a burglary
 Probability is calculated based upon past performance, or
degree of belief.
Bayesian Statistics
 Three approaches to Probability
 Axiomatic
 Probability by definition and properties
 Relative Frequency
 Repeated trials
 Degree of belief (subjective)
 Personal measure of uncertainty
 Examples
 The chance that a meteor strikes earth is 1%
 The probability of rain today is 30%
 The chance of getting an A on the exam is 50%
Notation of Probability

Notation of Probability

Axioms of Probability

Probability Table
 P(Weather= sunny)=P(sunny)=5/13
 P(Weather)={5/14, 4/14, 5/14}
 Calculate probabilities from data
sunny overcast rainy
5/14 4/14 5/14
Outlook
An expert built belief network using weather
dataset(Mitchell; Witten & Frank)
Bayesian inference can help answer questions like probability of
game play if
a. Outlook=sunny, Temperature=cool, Humidity=high,
Wind=strong
b. Outlook=overcast, Temperature=cool, Humidity=high,
Wind=strong
Bayesian Belief Network
 Bayesian belief network allows a subset of the
variables conditionally independent
 A graphical model of causal relationships
 Several cases of learning Bayesian belief networks
• Given both network structure and all the variables: easy
• Given network structure but only some variables
• When the network structure is not known in advance
Bayesian Belief Network
Family
History
Smoker
Lung Cancer Emphysema
Positive X Ray Dyspnea
LC 0.8 0.5 0.7 0.1
~LC 0.2 0.5 0.3 0.9
(FH, S) (FH, ~S)(~FH, S) (~FH, ~S)
Bayesian Belief Network
The conditional probability table
for the variable Lung Cancer
A Hypothesis for playing tennis
Joint Probability Table

2/14 2/14 0/14
2/14 1/14 3/14
1/14 1/14 2/14
Outlook
Sunny overcast rainy
Hot
mild
cool
Temperature
Example: Calculating Global Probabilistic Beliefs
 P(PlayTennis) = 9/14 = 0.64
 P(~PlayTennis) = 5/14 = 0.36
 P(Outlook=sunny|PlayTennis) = 2/9 = 0.22
 P(Outlook=sunny|~PlayTennis) = 3/5 = 0.60
 P(Temperature=cool|PlayTennis) = 3/9 = 0.33
 P(Temperature=cool|~PlayTennis) = 1/5 = .20
 P(Humidity=high|PlayTennis) = 3/9 = 0.33
 P(Humidity=high|~PlayTennis) = 4/5 = 0.80
 P(Wind=strong|PlayTennis) = 3/9 = 0.33
 P(Wind=strong|~PlayTennis) = 3/5 = 0.60
Probability of Disjunctions

Conditional Probability
 Probabilities discussed so far are called prior probabilities
or unconditional probabilities
 Probabilities depend only on the data, not on any other variable
 But what if you have some evidence or knowledge about the
situation? You know have a toothache. Now what is the
probability of having a cavity?
Conditional Probability

Conditional Probability

Conditional Independence

The independence hypothesis…
 … makes computation possible
 … yields optimal classifiers when satisfied
 … but is seldom satisfied in practice, as attributes
(variables) are often correlated.
 Attempts to overcome this limitation:
• Bayesian networks, that combine Bayesian reasoning with
causal relationships between attributes
• Decision trees, that reason on one attribute at the time,
considering most important attributes first
Conditional Independence

Bayes’ Rule
 Remember Conditional Probabilities:
 P(A|B)=P(A,B)/P(B)
 P(B)P(A|B)=P(A.B)
 P(B|A)=P(B,A)/P(A)
 P(A)P(B|A)=P(B,A)
 P(B,A)=P(A,B)
 P(B)P(A|B)=P(A)P(B|A)
Bayes’ Rule: P(A|B)=P(B|A)P(A)/P(B)
Bayes’ Rule

Classification with Bayes Rule

Naïve Bayes Classifier

Bayesian Classification: Why?
 Probabilistic learning: Computation of explicit
probabilities for hypothesis, among the most practical
approaches to certain types of learning problems
 Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is
correct. Prior knowledge can be combined with
observed data.
 Probabilistic prediction: Predict multiple
hypotheses, weighted by their probabilities
 Benchmark: Even if Bayesian methods are
computationally intractable, they can provide a
benchmark for other algorithms
Classification with Bayes Rule
Courtesy, Simafore - http://www.simafore.com/blog/bid/100934/Beware-of-2-facts-when-using-Naive-Bayes-classification-for-analytics
Issues with naïve Bayes
 Change in Classifier Data (on the fly, during classification)
 Conditional independence assumption is violated
 Consider the task of classifying whether or not a certain word is
corporation name
 E.g. “Google,” “Microsoft,”” “IBM,” and “ACME”
 Two useful features we might want to use are capitalized, and all-
capitals
 Native Bayes will assume that these two features are independent
given the class, but this clearly isn’t the case (things that are all-caps
must also be capitalized )!!
 However naïve Bayes seems to work well in practice even
when this assumption is violated
Naïve Bayes Classifier
Naive Bayesian Classifier
 Given a training set, we can compute the probabilities
Outlook P N
Sunny 2/9 3/5
Overcast 4/9 0
rain 3/9 2/5
Temperature
Hot 2/9 2/5
Mild 4/9 2/5
cool 3/9 1/5
Humidity P N
High 3/9 4/5
normal 6/9 1/5
Windy
true 3/9 3/5
false 6/9 2/5

Estimating a-posteriori probabilities

Naïve Bayesian Classification

P(p) = 9/14
P(n) = 5/14
outlook
P(sunny|p) = 2/9 P(sunny|n) = 3/5
P(overcast|p) =4/9 P(overcast|n) = 0
P(rain|p) = 3/9 P(rain|n) = 2/5
temperature
P(hot|p) = 2/9 P(hot|n) = 2/5
P(mild|p) = 4/9 P(mild|n) = 2/5
P(cool|p) = 3/9 P(cool|n) = 1/5
humidity
P(high|p) = 3/9 P(high|n) = 4/5
P(normal|p) = 6/9 P(normal|n) = 2/5
windy
P(true|p) = 3/9 P(true|n) = 3/5
P(false|p) = 6/9 P(false|n) = 2/5
Play Tennis example

Conclusion & Future Reading
 Probabilities
 Joint Probabilities
 Conditional Probabilities
 Independence, Conditional Independence
 Naïve Bayes Classifier
References
 J. Han, M. Kamber; Data Mining; Morgan Kaufmann Publishers: San
Francisco, CA.
 Bayesian Networks without Tears. | Charniak | AI Magazine
http://www.aaai.org/ojs/index.php/aimagazine/article/view/918
 Bayesian networks - Automated Reasoning Group – UCLA – Adnan
Darwiche

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classification
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
 
Naive Bayes Presentation
Naive Bayes PresentationNaive Bayes Presentation
Naive Bayes Presentation
 
Bayes Belief Networks
Bayes Belief NetworksBayes Belief Networks
Bayes Belief Networks
 
Principal Component Analysis
Principal Component AnalysisPrincipal Component Analysis
Principal Component Analysis
 
Bayesian inference
Bayesian inferenceBayesian inference
Bayesian inference
 
Bayesian classification
Bayesian classification Bayesian classification
Bayesian classification
 
Random forest
Random forestRandom forest
Random forest
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classification
 
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...
 
Introduction to Machine Learning Classifiers
Introduction to Machine Learning ClassifiersIntroduction to Machine Learning Classifiers
Introduction to Machine Learning Classifiers
 
Data mining: Concepts and Techniques, Chapter12 outlier Analysis
Data mining: Concepts and Techniques, Chapter12 outlier Analysis Data mining: Concepts and Techniques, Chapter12 outlier Analysis
Data mining: Concepts and Techniques, Chapter12 outlier Analysis
 
Logistic Regression in Python | Logistic Regression Example | Machine Learnin...
Logistic Regression in Python | Logistic Regression Example | Machine Learnin...Logistic Regression in Python | Logistic Regression Example | Machine Learnin...
Logistic Regression in Python | Logistic Regression Example | Machine Learnin...
 
Bayes network
Bayes networkBayes network
Bayes network
 
Decision tree
Decision treeDecision tree
Decision tree
 
Naive Bayes Classifier
Naive Bayes ClassifierNaive Bayes Classifier
Naive Bayes Classifier
 
Bayesian networks
Bayesian networksBayesian networks
Bayesian networks
 
Machine learning session4(linear regression)
Machine learning   session4(linear regression)Machine learning   session4(linear regression)
Machine learning session4(linear regression)
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-Learn
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
 

Andere mochten auch (10)

Association Analysis
Association AnalysisAssociation Analysis
Association Analysis
 
Clustering: A Survey
Clustering: A SurveyClustering: A Survey
Clustering: A Survey
 
Data Mining: clustering and analysis
Data Mining: clustering and analysisData Mining: clustering and analysis
Data Mining: clustering and analysis
 
Chap8 basic cluster_analysis
Chap8 basic cluster_analysisChap8 basic cluster_analysis
Chap8 basic cluster_analysis
 
Bayesian Belief Networks for dummies
Bayesian Belief Networks for dummiesBayesian Belief Networks for dummies
Bayesian Belief Networks for dummies
 
Types of clustering and different types of clustering algorithms
Types of clustering and different types of clustering algorithmsTypes of clustering and different types of clustering algorithms
Types of clustering and different types of clustering algorithms
 
Clustering in Data Mining
Clustering in Data MiningClustering in Data Mining
Clustering in Data Mining
 
Clustering training
Clustering trainingClustering training
Clustering training
 
K means Clustering
K means ClusteringK means Clustering
K means Clustering
 
K means Clustering Algorithm
K means Clustering AlgorithmK means Clustering Algorithm
K means Clustering Algorithm
 

Ähnlich wie Belief Networks & Bayesian Classification

Naïve Bayes Machine Learning Classification with R Programming: A case study ...
Naïve Bayes Machine Learning Classification with R Programming: A case study ...Naïve Bayes Machine Learning Classification with R Programming: A case study ...
Naïve Bayes Machine Learning Classification with R Programming: A case study ...
SubmissionResearchpa
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
bmcfad01
 
Ppt unit-05-mbf103
Ppt unit-05-mbf103Ppt unit-05-mbf103
Ppt unit-05-mbf103
Vibha Nayak
 

Ähnlich wie Belief Networks & Bayesian Classification (20)

Navies bayes
Navies bayesNavies bayes
Navies bayes
 
Naïve Bayes Machine Learning Classification with R Programming: A case study ...
Naïve Bayes Machine Learning Classification with R Programming: A case study ...Naïve Bayes Machine Learning Classification with R Programming: A case study ...
Naïve Bayes Machine Learning Classification with R Programming: A case study ...
 
Unit-2.ppt
Unit-2.pptUnit-2.ppt
Unit-2.ppt
 
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Baye...
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Baye...Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Baye...
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Baye...
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
 
Ppt unit-05-mbf103
Ppt unit-05-mbf103Ppt unit-05-mbf103
Ppt unit-05-mbf103
 
Supervised algorithms
Supervised algorithmsSupervised algorithms
Supervised algorithms
 
Bayesian Inference (UC Berkeley School of Information; July 25, 2019)
Bayesian Inference (UC Berkeley School of Information; July 25, 2019)Bayesian Inference (UC Berkeley School of Information; July 25, 2019)
Bayesian Inference (UC Berkeley School of Information; July 25, 2019)
 
tps5e_Ch5_3.ppt
tps5e_Ch5_3.ppttps5e_Ch5_3.ppt
tps5e_Ch5_3.ppt
 
tps5e_Ch5_3.ppt
tps5e_Ch5_3.ppttps5e_Ch5_3.ppt
tps5e_Ch5_3.ppt
 
Lesson 5.ppt
Lesson 5.pptLesson 5.ppt
Lesson 5.ppt
 
Bayesian models in r
Bayesian models in rBayesian models in r
Bayesian models in r
 
Bayes' theorem
Bayes' theoremBayes' theorem
Bayes' theorem
 
Artificial Intelligence Notes Unit 3
Artificial Intelligence Notes Unit 3Artificial Intelligence Notes Unit 3
Artificial Intelligence Notes Unit 3
 
Precipitation’s Level Prediction Based on Tree Augmented Naïve Bayes model
Precipitation’s Level Prediction Based on Tree Augmented Naïve Bayes modelPrecipitation’s Level Prediction Based on Tree Augmented Naïve Bayes model
Precipitation’s Level Prediction Based on Tree Augmented Naïve Bayes model
 
Notes_5.2.pptx
Notes_5.2.pptxNotes_5.2.pptx
Notes_5.2.pptx
 
Notes_5.2 (1).pptx
Notes_5.2 (1).pptxNotes_5.2 (1).pptx
Notes_5.2 (1).pptx
 
Notes_5.2 (1).pptx
Notes_5.2 (1).pptxNotes_5.2 (1).pptx
Notes_5.2 (1).pptx
 
Basen Network
Basen NetworkBasen Network
Basen Network
 
Uncertainty
UncertaintyUncertainty
Uncertainty
 

Mehr von Adnan Masood

Brief bibliography of interestingness measure, bayesian belief network and ca...
Brief bibliography of interestingness measure, bayesian belief network and ca...Brief bibliography of interestingness measure, bayesian belief network and ca...
Brief bibliography of interestingness measure, bayesian belief network and ca...
Adnan Masood
 

Mehr von Adnan Masood (10)

Spark with Azure HDInsight - Tampa Bay Data Science - Adnan Masood, PhD
Spark with Azure HDInsight  - Tampa Bay Data Science - Adnan Masood, PhDSpark with Azure HDInsight  - Tampa Bay Data Science - Adnan Masood, PhD
Spark with Azure HDInsight - Tampa Bay Data Science - Adnan Masood, PhD
 
Data science with Windows Azure - A Brief Introduction
Data science with Windows Azure - A Brief IntroductionData science with Windows Azure - A Brief Introduction
Data science with Windows Azure - A Brief Introduction
 
Restructuring Technical Debt - A Software and System Quality Approach
Restructuring Technical Debt - A Software and System Quality ApproachRestructuring Technical Debt - A Software and System Quality Approach
Restructuring Technical Debt - A Software and System Quality Approach
 
System Quality Attributes for Software Architecture
System Quality Attributes for Software ArchitectureSystem Quality Attributes for Software Architecture
System Quality Attributes for Software Architecture
 
Agile Software Development
Agile Software DevelopmentAgile Software Development
Agile Software Development
 
Bayesian Networks and Association Analysis
Bayesian Networks and Association AnalysisBayesian Networks and Association Analysis
Bayesian Networks and Association Analysis
 
Probabilistic Interestingness Measures - An Introduction with Bayesian Belief...
Probabilistic Interestingness Measures - An Introduction with Bayesian Belief...Probabilistic Interestingness Measures - An Introduction with Bayesian Belief...
Probabilistic Interestingness Measures - An Introduction with Bayesian Belief...
 
Web API or WCF - An Architectural Comparison
Web API or WCF - An Architectural ComparisonWeb API or WCF - An Architectural Comparison
Web API or WCF - An Architectural Comparison
 
SOLID Principles of Refactoring Presentation - Inland Empire User Group
SOLID Principles of Refactoring Presentation - Inland Empire User GroupSOLID Principles of Refactoring Presentation - Inland Empire User Group
SOLID Principles of Refactoring Presentation - Inland Empire User Group
 
Brief bibliography of interestingness measure, bayesian belief network and ca...
Brief bibliography of interestingness measure, bayesian belief network and ca...Brief bibliography of interestingness measure, bayesian belief network and ca...
Brief bibliography of interestingness measure, bayesian belief network and ca...
 

Kürzlich hochgeladen

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Kürzlich hochgeladen (20)

Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 

Belief Networks & Bayesian Classification

  • 1. A N I N T R O D U C T I O N T O B A Y E S I A N B E L I E F N E T W O R K S A N D N A Ï V E B A Y E S I A N C L A S S I F I C A T I O N A D N A N M A S O O D S C I S . N O V A . E D U / ~ A D N A N A D N A N @ N O V A . E D U Belief Networks & Bayesian Classification
  • 2. Overview  Probability and Uncertainty  Probability Notation  Bayesian Statistics  Notation of Probability  Axioms of Probability  Probability Table  Bayesian Belief Network  Joint Probability Table  Probability of Disjunctions  Conditional Probability  Conditional Independence  Bayes' Rule  Classification with Bayes rule  Bayesian Classification  Conclusion & Further Reading
  • 3. Probability and Uncertainty  Probability provide a way of summarizing the uncertainty.  60% chance of rain today  85% chance of alarm in case of a burglary  Probability is calculated based upon past performance, or degree of belief.
  • 4. Bayesian Statistics  Three approaches to Probability  Axiomatic  Probability by definition and properties  Relative Frequency  Repeated trials  Degree of belief (subjective)  Personal measure of uncertainty  Examples  The chance that a meteor strikes earth is 1%  The probability of rain today is 30%  The chance of getting an A on the exam is 50%
  • 8. Probability Table  P(Weather= sunny)=P(sunny)=5/13  P(Weather)={5/14, 4/14, 5/14}  Calculate probabilities from data sunny overcast rainy 5/14 4/14 5/14 Outlook
  • 9. An expert built belief network using weather dataset(Mitchell; Witten & Frank) Bayesian inference can help answer questions like probability of game play if a. Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong b. Outlook=overcast, Temperature=cool, Humidity=high, Wind=strong
  • 10. Bayesian Belief Network  Bayesian belief network allows a subset of the variables conditionally independent  A graphical model of causal relationships  Several cases of learning Bayesian belief networks • Given both network structure and all the variables: easy • Given network structure but only some variables • When the network structure is not known in advance
  • 11. Bayesian Belief Network Family History Smoker Lung Cancer Emphysema Positive X Ray Dyspnea LC 0.8 0.5 0.7 0.1 ~LC 0.2 0.5 0.3 0.9 (FH, S) (FH, ~S)(~FH, S) (~FH, ~S) Bayesian Belief Network The conditional probability table for the variable Lung Cancer
  • 12. A Hypothesis for playing tennis
  • 13. Joint Probability Table  2/14 2/14 0/14 2/14 1/14 3/14 1/14 1/14 2/14 Outlook Sunny overcast rainy Hot mild cool Temperature
  • 14. Example: Calculating Global Probabilistic Beliefs  P(PlayTennis) = 9/14 = 0.64  P(~PlayTennis) = 5/14 = 0.36  P(Outlook=sunny|PlayTennis) = 2/9 = 0.22  P(Outlook=sunny|~PlayTennis) = 3/5 = 0.60  P(Temperature=cool|PlayTennis) = 3/9 = 0.33  P(Temperature=cool|~PlayTennis) = 1/5 = .20  P(Humidity=high|PlayTennis) = 3/9 = 0.33  P(Humidity=high|~PlayTennis) = 4/5 = 0.80  P(Wind=strong|PlayTennis) = 3/9 = 0.33  P(Wind=strong|~PlayTennis) = 3/5 = 0.60
  • 16. Conditional Probability  Probabilities discussed so far are called prior probabilities or unconditional probabilities  Probabilities depend only on the data, not on any other variable  But what if you have some evidence or knowledge about the situation? You know have a toothache. Now what is the probability of having a cavity?
  • 20. The independence hypothesis…  … makes computation possible  … yields optimal classifiers when satisfied  … but is seldom satisfied in practice, as attributes (variables) are often correlated.  Attempts to overcome this limitation: • Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes • Decision trees, that reason on one attribute at the time, considering most important attributes first
  • 22. Bayes’ Rule  Remember Conditional Probabilities:  P(A|B)=P(A,B)/P(B)  P(B)P(A|B)=P(A.B)  P(B|A)=P(B,A)/P(A)  P(A)P(B|A)=P(B,A)  P(B,A)=P(A,B)  P(B)P(A|B)=P(A)P(B|A) Bayes’ Rule: P(A|B)=P(B|A)P(A)/P(B)
  • 26. Bayesian Classification: Why?  Probabilistic learning: Computation of explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems  Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.  Probabilistic prediction: Predict multiple hypotheses, weighted by their probabilities  Benchmark: Even if Bayesian methods are computationally intractable, they can provide a benchmark for other algorithms
  • 27. Classification with Bayes Rule Courtesy, Simafore - http://www.simafore.com/blog/bid/100934/Beware-of-2-facts-when-using-Naive-Bayes-classification-for-analytics
  • 28. Issues with naïve Bayes  Change in Classifier Data (on the fly, during classification)  Conditional independence assumption is violated  Consider the task of classifying whether or not a certain word is corporation name  E.g. “Google,” “Microsoft,”” “IBM,” and “ACME”  Two useful features we might want to use are capitalized, and all- capitals  Native Bayes will assume that these two features are independent given the class, but this clearly isn’t the case (things that are all-caps must also be capitalized )!!  However naïve Bayes seems to work well in practice even when this assumption is violated
  • 30. Naive Bayesian Classifier  Given a training set, we can compute the probabilities Outlook P N Sunny 2/9 3/5 Overcast 4/9 0 rain 3/9 2/5 Temperature Hot 2/9 2/5 Mild 4/9 2/5 cool 3/9 1/5 Humidity P N High 3/9 4/5 normal 6/9 1/5 Windy true 3/9 3/5 false 6/9 2/5
  • 31.
  • 34. P(p) = 9/14 P(n) = 5/14 outlook P(sunny|p) = 2/9 P(sunny|n) = 3/5 P(overcast|p) =4/9 P(overcast|n) = 0 P(rain|p) = 3/9 P(rain|n) = 2/5 temperature P(hot|p) = 2/9 P(hot|n) = 2/5 P(mild|p) = 4/9 P(mild|n) = 2/5 P(cool|p) = 3/9 P(cool|n) = 1/5 humidity P(high|p) = 3/9 P(high|n) = 4/5 P(normal|p) = 6/9 P(normal|n) = 2/5 windy P(true|p) = 3/9 P(true|n) = 3/5 P(false|p) = 6/9 P(false|n) = 2/5
  • 36. Conclusion & Future Reading  Probabilities  Joint Probabilities  Conditional Probabilities  Independence, Conditional Independence  Naïve Bayes Classifier
  • 37. References  J. Han, M. Kamber; Data Mining; Morgan Kaufmann Publishers: San Francisco, CA.  Bayesian Networks without Tears. | Charniak | AI Magazine http://www.aaai.org/ojs/index.php/aimagazine/article/view/918  Bayesian networks - Automated Reasoning Group – UCLA – Adnan Darwiche