SlideShare ist ein Scribd-Unternehmen logo
1 von 1
Downloaden Sie, um offline zu lesen
Par$cle	
  Deposi$on	
  in	
  Human	
  Lungs	
  due	
  to	
  Varying	
  Cross-­‐Sec$onal	
  
Ellip$city	
  of	
  the	
  Le>	
  and	
  Right	
  Main	
  Bronchi	
  
Introduc$on	
  
The	
  authors	
  would	
  like	
  to	
  thank	
  Dr.	
  Jeff	
  Feinstein	
  for	
  providing	
  the	
  CT	
  image	
  dataset.	
  	
  
Results	
  
Methods	
  
Conclusions	
  
Steven	
  C.	
  Roth,	
  Jessica	
  Oakes,	
  PhD,	
  Shawn	
  C.	
  Shadden,	
  PhD	
  
Mechanical	
  Engineering,	
  UC	
  Berkeley	
  
Email:	
  shadden@berkeley.edu;	
  Web:	
  shaddenlab.berkeley.edu	
   American	
  Physical	
  Society	
  68th	
  Annual	
  Division	
  of	
  Fluid	
  Dynamics	
  MeeCng	
  Boston,	
  MA|	
  Nov	
  22-­‐24,	
  2015	
  	
  
[1]	
  Fox	
  et	
  al+	
  Lazy	
  Dog	
  Weekly,	
  2014;	
  
Biomechanical
Engineering
Computational
Laboratory
Image-­‐Based	
  Airway	
  Geometry	
  and	
  Mesh:	
  
•  Medical	
   CT	
   image	
   dataset	
   were	
   converted	
   into	
   a	
   3D	
   model	
   with	
   the	
   open	
   source	
  
soUware	
  SimVascular	
  (hXp://simvascular.github.io/).	
  
•  Primary	
   bronchi	
   cross-­‐sec]ons	
   were	
   modified	
   to	
   three	
   various	
   major/minor	
   diameter	
  
ra]os	
  of	
  the	
  airway	
  while	
  preserving	
  cross-­‐sec]onal	
  area.	
  	
  
•  Geometries	
  were	
  meshed	
  with	
  unstructured	
  tetrahedral	
  elements	
  with	
  MeshSim.	
  	
  
•  Boundary	
  layer	
  meshing	
  was	
  applied	
  at	
  the	
  wall	
  where	
  velocity	
  gradients	
  are	
  high.	
  
	
  
Flow	
  and	
  ParCcle	
  Transport	
  SimulaCons:	
  
•  Assuming	
   incompressible	
   and	
   Newtonian	
   fluid,	
   the	
   fluid	
   velocity	
   and	
   pressure	
   were	
  
calculated	
  by	
  solving	
  the	
  Navier-­‐Stokes	
  equa]ons:	
  
	
  
	
  
	
  with	
  a	
  stabilized	
  Finite	
  Element	
  solver.2	
  
•  Constant	
  flow	
  rate	
  (0.25	
  L/s)	
  was	
  prescribed	
  at	
  the	
  trachea	
  and	
  resistances	
  were	
  applied	
  
at	
  the	
  outlet	
  faces	
  by	
  assuming	
  the	
  resistance	
  (R)	
  is	
  propor]onal	
  to	
  the	
  lobe	
  volume	
  and	
  
the	
  cross-­‐sec]onal	
  area	
  frac]on:	
  
	
  
	
  
	
  
•  The	
  resistances	
  were	
  iterated	
  on	
  un]l	
  the	
  desired	
  flow	
  division	
  was	
  achieved:3	
  
	
  
	
  
	
  
•  Assuming	
   spherical,	
   and	
   non-­‐interac]ng,	
   par]cles	
   were	
   tracked	
   by	
   solving	
   a	
   reduced	
  
form	
  of	
  the	
  Maxey-­‐Riley	
  equa]on:	
  
•  Flow	
   field	
   and	
   par]cle	
   deposi]on	
   sites	
   were	
   independent	
   of	
   the	
   mesh	
   and	
   par]cle	
  
integra]on	
  parameters.	
  	
  
	
  
MoCvaCon:	
  
•  The	
  extent	
  of	
  par]cle	
  deposi]on	
  in	
  the	
  human	
  lungs	
  due	
  to	
  varying	
  lungs	
  geometries	
  has	
  
yet	
  to	
  be	
  extensively	
  studied.1	
  	
  
•  Complex	
   flow	
   structures	
   arise	
   due	
   to	
   varia]ons	
   in	
   lung	
   geometries	
   which	
   may	
   affect	
  
par]cle	
  deposi]on.	
  
Study	
  Overview:	
  
•  3D	
  airway	
  geometries	
  were	
  studied	
  with	
  various	
  degrees	
  of	
  primary	
  bronchi	
  ellip]city.	
  
•  Airflow	
  and	
  par]cle	
  deposi]on	
  sites	
  were	
  determined	
  numerically.	
  
	
  
	
  
	
  
Fig.	
  1:	
  Velocity	
  Magnitude	
  for	
  the	
  3	
  Airway	
  Geometries	
  
Fig.	
  2:	
  Pressure	
  in	
  2:1	
  Geometry	
  
•  Velocity	
   magnitudes	
   are	
   higher	
   in	
   the	
   higher	
   ra]o	
  
models.	
  The	
  secondary-­‐flow	
  velocity	
  magnitudes	
  are	
  
the	
  highest	
  in	
  the	
  1.5:1	
  model.	
  
•  Fig.	
   2	
   shows	
   large	
   pressure	
   drop	
   across	
   the	
   lower	
  
conduc]ng	
  airways.	
  
•  Par]cle	
  deposi]on	
  maps	
  (Fig.	
  3)	
  for	
  all	
  three	
  models	
  
are	
   similar	
   to	
   each	
   other	
   and	
   thus	
   there	
   was	
  
negligible	
  effect	
  of	
  the	
  cross-­‐sec]onal	
  ra]os	
  on	
  total	
  
deposi]on	
  (Fig.	
  4).	
  
	
  
	
  
•  Dean-­‐like	
   flow	
   structures	
   occurred	
   in	
   the	
   main	
   bronchi	
   of	
   all	
   models.	
   	
   Recircula]on	
  
zones	
  were	
  enhanced	
  in	
  the	
  models	
  with	
  the	
  smaller	
  ellip]city	
  ra]os.	
  	
  
•  Varying	
   main	
   bronchi	
   ellip]city	
   did	
   not	
   influence	
   the	
   total	
   par]cle	
   deposi]on	
   in	
   the	
  
airways.	
  
Future	
  ConsideraCons:	
  
•  To	
   fully	
   understand	
   the	
   effect	
   of	
   the	
   main	
   bronchi	
   ellip]city	
   on	
   par]cle	
   deposi]on,	
  
unsteady	
  flow	
  and	
  resistance-­‐compliance	
  boundary	
  condi]ons	
  should	
  be	
  considered.	
  	
  
	
  
[1]	
  Snyder,	
  B.,	
  and	
  D.	
  E.	
  Olson.	
  "Flow	
  development	
  in	
  a	
  model	
  airway	
  bronchus."Journal	
  of	
  Fluid	
  Mechanics	
  207	
  (1989):	
  
379-­‐392.	
  
[2]	
  Taylor,	
  C.,	
  Hughes,	
  T.,	
  and	
  Zarins,	
  C.	
  	
  “Finite	
  element	
  modeling	
  of	
  blood	
  flow	
  in	
  arteries.”	
  	
  Computer	
  Methods	
  in	
  Applied	
  
Mechanics	
  and	
  Engineering.	
  (1998):	
  155-­‐196.	
  	
  
[3]	
  Horsfield,	
  Keith,	
  et	
  al.	
  "Models	
  of	
  the	
  human	
  bronchial	
  tree."	
  Journal	
  of	
  applied	
  physiology	
  31.2	
  (1971):	
  207-­‐217.	
  
	
  
Qin (mm3
/s) RT (g/mm4 ·s) VF(RU) VF(RM) VF(RL) VF(LU) VF(LL)
2.5 · 105
1.96 · 10−4
0.21 0.09 0.25 0.20 0.25
Table	
  1:	
  Simula$on	
  Parameters3	
  	
  
2:1 1:1
g/mm-s2
Particle Diameter ( µm)
1 3 5 7 9
PercentDeposited
0
10
20
30
40
1:1
1.5:1
2:1
Fig.	
  3:	
  Par$cle	
  
Deposi$on	
  Map	
  (7	
  
microns)	
  
Fig.	
  4:	
  Total	
  Percent	
  Deposi$on	
  in	
  Airways	
  

Weitere ähnliche Inhalte

Was ist angesagt?

A Revisit To Forchheimer Equation Applied In Porous Media Flow
A Revisit To Forchheimer Equation Applied In Porous Media FlowA Revisit To Forchheimer Equation Applied In Porous Media Flow
A Revisit To Forchheimer Equation Applied In Porous Media FlowIJRES Journal
 
Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...
Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...
Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...SandroSnchezZamora
 
Modification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic lineModification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic lineIAEME Publication
 
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...Dr. Amarjeet Singh
 
Selection of drains coverings type in eastern of egypt
Selection of drains coverings type in eastern of egyptSelection of drains coverings type in eastern of egypt
Selection of drains coverings type in eastern of egypteSAT Publishing House
 
Mechanical fluid , Broad Crested Wrir
Mechanical fluid , Broad Crested WrirMechanical fluid , Broad Crested Wrir
Mechanical fluid , Broad Crested WrirHusseinAli272
 
CFD Class Final Paper
CFD Class Final PaperCFD Class Final Paper
CFD Class Final PaperNathan Butt
 
Joseph Lawson Dissertation
Joseph Lawson DissertationJoseph Lawson Dissertation
Joseph Lawson DissertationJoseph Lawson
 
Implication of fractal dimension on properties of rivers and river basins
Implication of fractal dimension on properties of rivers and river basinsImplication of fractal dimension on properties of rivers and river basins
Implication of fractal dimension on properties of rivers and river basinsIAEME Publication
 
The effect of rotational speed variation on the velocity vectors in the singl...
The effect of rotational speed variation on the velocity vectors in the singl...The effect of rotational speed variation on the velocity vectors in the singl...
The effect of rotational speed variation on the velocity vectors in the singl...IOSR Journals
 
Properties of fluids c
Properties of fluids cProperties of fluids c
Properties of fluids cShrikunj Patel
 
Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...
Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...
Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...Dr Ramesh Dikpal
 
Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...
Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...
Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...IJERA Editor
 
Numerical study of disk drive rotating flow structure in the cavity
Numerical study of disk drive rotating flow structure in the cavityNumerical study of disk drive rotating flow structure in the cavity
Numerical study of disk drive rotating flow structure in the cavityeSAT Journals
 

Was ist angesagt? (20)

A Revisit To Forchheimer Equation Applied In Porous Media Flow
A Revisit To Forchheimer Equation Applied In Porous Media FlowA Revisit To Forchheimer Equation Applied In Porous Media Flow
A Revisit To Forchheimer Equation Applied In Porous Media Flow
 
83845
8384583845
83845
 
Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...
Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...
Paschalis, A., Molnar, P., Fatichi, S. y Burlando, P. (2013). Un modelo estoc...
 
Modification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic lineModification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic line
 
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
The Effect of Geometry Parameters and Flow Characteristics on Erosion and Sed...
 
Selection of drains coverings type in eastern of egypt
Selection of drains coverings type in eastern of egyptSelection of drains coverings type in eastern of egypt
Selection of drains coverings type in eastern of egypt
 
Mechanical fluid , Broad Crested Wrir
Mechanical fluid , Broad Crested WrirMechanical fluid , Broad Crested Wrir
Mechanical fluid , Broad Crested Wrir
 
930497
930497930497
930497
 
CFD Class Final Paper
CFD Class Final PaperCFD Class Final Paper
CFD Class Final Paper
 
Joseph Lawson Dissertation
Joseph Lawson DissertationJoseph Lawson Dissertation
Joseph Lawson Dissertation
 
CANCAM 2015 -Anuvrat
CANCAM 2015 -AnuvratCANCAM 2015 -Anuvrat
CANCAM 2015 -Anuvrat
 
Implication of fractal dimension on properties of rivers and river basins
Implication of fractal dimension on properties of rivers and river basinsImplication of fractal dimension on properties of rivers and river basins
Implication of fractal dimension on properties of rivers and river basins
 
Current BAA - FY12
Current BAA - FY12Current BAA - FY12
Current BAA - FY12
 
The effect of rotational speed variation on the velocity vectors in the singl...
The effect of rotational speed variation on the velocity vectors in the singl...The effect of rotational speed variation on the velocity vectors in the singl...
The effect of rotational speed variation on the velocity vectors in the singl...
 
I012545259
I012545259I012545259
I012545259
 
Properties of fluids c
Properties of fluids cProperties of fluids c
Properties of fluids c
 
Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...
Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...
Evaluation of Morphometric Parameters Derived from CartoDEM and Aster GDEM wi...
 
20320130405018
2032013040501820320130405018
20320130405018
 
Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...
Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...
Computational Fluid Dynamics (CFD) Analysis of Natural Convection of Converge...
 
Numerical study of disk drive rotating flow structure in the cavity
Numerical study of disk drive rotating flow structure in the cavityNumerical study of disk drive rotating flow structure in the cavity
Numerical study of disk drive rotating flow structure in the cavity
 

Ähnlich wie POSTER_JMO_v3.pptx

Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...
Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...
Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...IJERA Editor
 
flow_through_linear_weir in analysis of the
flow_through_linear_weir in analysis of the flow_through_linear_weir in analysis of the
flow_through_linear_weir in analysis of the huamrajak
 
Crimson Publishers-The Emerging Use of SPH In Biomedical Applications
Crimson Publishers-The Emerging Use of SPH In Biomedical ApplicationsCrimson Publishers-The Emerging Use of SPH In Biomedical Applications
Crimson Publishers-The Emerging Use of SPH In Biomedical ApplicationsCrimsonPublishers-SBB
 
REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...
REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...
REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...ijiert bestjournal
 
How can identify sensitivity of hydraulic characteristics of irrigation systems?
How can identify sensitivity of hydraulic characteristics of irrigation systems?How can identify sensitivity of hydraulic characteristics of irrigation systems?
How can identify sensitivity of hydraulic characteristics of irrigation systems?AI Publications
 
Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...
Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...
Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...Carnegie Mellon University
 
FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMP
FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMPFLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMP
FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMPijiert bestjournal
 
HDMICS WSS Koutsiaris 2007
HDMICS WSS Koutsiaris 2007HDMICS WSS Koutsiaris 2007
HDMICS WSS Koutsiaris 2007Koutsiaris Aris
 
coursedetailinfo.pdf
coursedetailinfo.pdfcoursedetailinfo.pdf
coursedetailinfo.pdfssuserad5f1a
 
Asme2009 82287 - Porous Media - Forced Convection Flow
Asme2009 82287 - Porous Media - Forced Convection FlowAsme2009 82287 - Porous Media - Forced Convection Flow
Asme2009 82287 - Porous Media - Forced Convection FlowHIIO
 
Numerical Analysis of Header Configuration of the Plate-Fin Heat Exchanger
Numerical Analysis of Header Configuration of the Plate-Fin  Heat ExchangerNumerical Analysis of Header Configuration of the Plate-Fin  Heat Exchanger
Numerical Analysis of Header Configuration of the Plate-Fin Heat ExchangerIJMER
 
CFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flowCFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flowIJSRD
 
Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...
Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...
Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...IJRESJOURNAL
 
The Development of Computational Fluid Dynamic Models for Studying the Detect...
The Development of Computational Fluid Dynamic Models for Studying the Detect...The Development of Computational Fluid Dynamic Models for Studying the Detect...
The Development of Computational Fluid Dynamic Models for Studying the Detect...Cristina Staicu
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...
Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...
Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...Universiti Kebangsaan Malaysia
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD Editor
 

Ähnlich wie POSTER_JMO_v3.pptx (20)

Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...
Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...
Analytical Study of A Two-Phase Model For Steady Flow of Blood in A Circular ...
 
flow_through_linear_weir in analysis of the
flow_through_linear_weir in analysis of the flow_through_linear_weir in analysis of the
flow_through_linear_weir in analysis of the
 
Crimson Publishers-The Emerging Use of SPH In Biomedical Applications
Crimson Publishers-The Emerging Use of SPH In Biomedical ApplicationsCrimson Publishers-The Emerging Use of SPH In Biomedical Applications
Crimson Publishers-The Emerging Use of SPH In Biomedical Applications
 
REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...
REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...
REVIEW OF FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGA...
 
How can identify sensitivity of hydraulic characteristics of irrigation systems?
How can identify sensitivity of hydraulic characteristics of irrigation systems?How can identify sensitivity of hydraulic characteristics of irrigation systems?
How can identify sensitivity of hydraulic characteristics of irrigation systems?
 
Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...
Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...
Thermohydraulic Performance of a Series of In-Line Noncircular Ducts in a Par...
 
FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMP
FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMPFLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMP
FLOW DISTRIBUTION NETWORK ANALYSIS FOR DISCHARGE SIDE OF CENTRIFUGAL PUMP
 
HDMICS WSS Koutsiaris 2007
HDMICS WSS Koutsiaris 2007HDMICS WSS Koutsiaris 2007
HDMICS WSS Koutsiaris 2007
 
coursedetailinfo.pdf
coursedetailinfo.pdfcoursedetailinfo.pdf
coursedetailinfo.pdf
 
F0442935
F0442935F0442935
F0442935
 
Ijmet 06 10_001
Ijmet 06 10_001Ijmet 06 10_001
Ijmet 06 10_001
 
Asme2009 82287 - Porous Media - Forced Convection Flow
Asme2009 82287 - Porous Media - Forced Convection FlowAsme2009 82287 - Porous Media - Forced Convection Flow
Asme2009 82287 - Porous Media - Forced Convection Flow
 
Lg3420362048
Lg3420362048Lg3420362048
Lg3420362048
 
Numerical Analysis of Header Configuration of the Plate-Fin Heat Exchanger
Numerical Analysis of Header Configuration of the Plate-Fin  Heat ExchangerNumerical Analysis of Header Configuration of the Plate-Fin  Heat Exchanger
Numerical Analysis of Header Configuration of the Plate-Fin Heat Exchanger
 
CFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flowCFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flow
 
Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...
Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...
Simulation and Experiment Study of Flow Field of Flow channel for Rectangular...
 
The Development of Computational Fluid Dynamic Models for Studying the Detect...
The Development of Computational Fluid Dynamic Models for Studying the Detect...The Development of Computational Fluid Dynamic Models for Studying the Detect...
The Development of Computational Fluid Dynamic Models for Studying the Detect...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...
Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...
Effect of geometrical shapes on 3D hydrodynamic focusing of a microfluidic fl...
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
 

POSTER_JMO_v3.pptx

  • 1. Par$cle  Deposi$on  in  Human  Lungs  due  to  Varying  Cross-­‐Sec$onal   Ellip$city  of  the  Le>  and  Right  Main  Bronchi   Introduc$on   The  authors  would  like  to  thank  Dr.  Jeff  Feinstein  for  providing  the  CT  image  dataset.     Results   Methods   Conclusions   Steven  C.  Roth,  Jessica  Oakes,  PhD,  Shawn  C.  Shadden,  PhD   Mechanical  Engineering,  UC  Berkeley   Email:  shadden@berkeley.edu;  Web:  shaddenlab.berkeley.edu   American  Physical  Society  68th  Annual  Division  of  Fluid  Dynamics  MeeCng  Boston,  MA|  Nov  22-­‐24,  2015     [1]  Fox  et  al+  Lazy  Dog  Weekly,  2014;   Biomechanical Engineering Computational Laboratory Image-­‐Based  Airway  Geometry  and  Mesh:   •  Medical   CT   image   dataset   were   converted   into   a   3D   model   with   the   open   source   soUware  SimVascular  (hXp://simvascular.github.io/).   •  Primary   bronchi   cross-­‐sec]ons   were   modified   to   three   various   major/minor   diameter   ra]os  of  the  airway  while  preserving  cross-­‐sec]onal  area.     •  Geometries  were  meshed  with  unstructured  tetrahedral  elements  with  MeshSim.     •  Boundary  layer  meshing  was  applied  at  the  wall  where  velocity  gradients  are  high.     Flow  and  ParCcle  Transport  SimulaCons:   •  Assuming   incompressible   and   Newtonian   fluid,   the   fluid   velocity   and   pressure   were   calculated  by  solving  the  Navier-­‐Stokes  equa]ons:        with  a  stabilized  Finite  Element  solver.2   •  Constant  flow  rate  (0.25  L/s)  was  prescribed  at  the  trachea  and  resistances  were  applied   at  the  outlet  faces  by  assuming  the  resistance  (R)  is  propor]onal  to  the  lobe  volume  and   the  cross-­‐sec]onal  area  frac]on:         •  The  resistances  were  iterated  on  un]l  the  desired  flow  division  was  achieved:3         •  Assuming   spherical,   and   non-­‐interac]ng,   par]cles   were   tracked   by   solving   a   reduced   form  of  the  Maxey-­‐Riley  equa]on:   •  Flow   field   and   par]cle   deposi]on   sites   were   independent   of   the   mesh   and   par]cle   integra]on  parameters.       MoCvaCon:   •  The  extent  of  par]cle  deposi]on  in  the  human  lungs  due  to  varying  lungs  geometries  has   yet  to  be  extensively  studied.1     •  Complex   flow   structures   arise   due   to   varia]ons   in   lung   geometries   which   may   affect   par]cle  deposi]on.   Study  Overview:   •  3D  airway  geometries  were  studied  with  various  degrees  of  primary  bronchi  ellip]city.   •  Airflow  and  par]cle  deposi]on  sites  were  determined  numerically.         Fig.  1:  Velocity  Magnitude  for  the  3  Airway  Geometries   Fig.  2:  Pressure  in  2:1  Geometry   •  Velocity   magnitudes   are   higher   in   the   higher   ra]o   models.  The  secondary-­‐flow  velocity  magnitudes  are   the  highest  in  the  1.5:1  model.   •  Fig.   2   shows   large   pressure   drop   across   the   lower   conduc]ng  airways.   •  Par]cle  deposi]on  maps  (Fig.  3)  for  all  three  models   are   similar   to   each   other   and   thus   there   was   negligible  effect  of  the  cross-­‐sec]onal  ra]os  on  total   deposi]on  (Fig.  4).       •  Dean-­‐like   flow   structures   occurred   in   the   main   bronchi   of   all   models.     Recircula]on   zones  were  enhanced  in  the  models  with  the  smaller  ellip]city  ra]os.     •  Varying   main   bronchi   ellip]city   did   not   influence   the   total   par]cle   deposi]on   in   the   airways.   Future  ConsideraCons:   •  To   fully   understand   the   effect   of   the   main   bronchi   ellip]city   on   par]cle   deposi]on,   unsteady  flow  and  resistance-­‐compliance  boundary  condi]ons  should  be  considered.       [1]  Snyder,  B.,  and  D.  E.  Olson.  "Flow  development  in  a  model  airway  bronchus."Journal  of  Fluid  Mechanics  207  (1989):   379-­‐392.   [2]  Taylor,  C.,  Hughes,  T.,  and  Zarins,  C.    “Finite  element  modeling  of  blood  flow  in  arteries.”    Computer  Methods  in  Applied   Mechanics  and  Engineering.  (1998):  155-­‐196.     [3]  Horsfield,  Keith,  et  al.  "Models  of  the  human  bronchial  tree."  Journal  of  applied  physiology  31.2  (1971):  207-­‐217.     Qin (mm3 /s) RT (g/mm4 ·s) VF(RU) VF(RM) VF(RL) VF(LU) VF(LL) 2.5 · 105 1.96 · 10−4 0.21 0.09 0.25 0.20 0.25 Table  1:  Simula$on  Parameters3     2:1 1:1 g/mm-s2 Particle Diameter ( µm) 1 3 5 7 9 PercentDeposited 0 10 20 30 40 1:1 1.5:1 2:1 Fig.  3:  Par$cle   Deposi$on  Map  (7   microns)   Fig.  4:  Total  Percent  Deposi$on  in  Airways