SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
RECTANGULAR FEED MICROSTRIPANTENNA
PARAMETER STUDY WITH HFSS SOFTWARE
School of Electrical Engineering
(Branch - ENTC)
Course: Antenna theory and design
Group-2 Batch-2 Block-1
Omkar Rane (TETB118) Exam Seat No: T187014
Chaitanya Deshpande (TETB119) Exam Seat No: T187001
Kaustubh Wankhade (TETB131) Exam Seat No: T187003
Rectangular Microstrip Feedline Antenna(MSA)
Microstrip antennas are low profile antennas and requires where size, weight, cost, performance and ease of installation and
aerodynamic profile are constraint such as in high-performance aircraft, spacecraft, satellite and missile applications.
Presently in some government and commercial applications such as in mobile radio and wireless communications that have
similar specifications, to meet these requirements, microstrip antennas can be used. These antennas are low profile,
conformable to planar and non-planar surfaces, simple and inexpensive to manufacture using modern printed circuit
technology . They are very versatile in terms of resonant frequency, polarization, pattern and impedance when a particular
patch shape and mode are selected. In addition by adding loads between the patch and the ground plane, such as pins and
varactor diodes, adaptive elements with variable resonant frequency, impedance polarization and pattern can be designed.
Major operational disadvantages of microstrip antennas are their low efficiency, low power, high Q, poor polarization purity,
poor scanning performance, spurious feed radiation and very narrow frequency bandwidth, which is typically only a fraction
of a percent or at most a few percent. In some government security systems narrow bandwidth are desirable; however, there
are methods such as increasing the height of the substrate that can be used to extend the efficiency (to as large as 90 % if
surface waves are not included) and bandwidth (up to 35%); however, as the height increases, surface waves are introduced
which usually are not desirable because they extract power from the total available for direct radiation (space waves). The
surface waves travel within the substrate and they are scattered at bends and surface discontinuities, such as the truncation of
the dielectric ground plane and degrade the antenna pattern and polarization characteristics. Surface waves can be eliminated,
while maintaining large bandwidths, by using cavities stacking as well as other methods of microstrip elements can also be
used to increase the bandwidth. In addition, microstrip antennas also exhibit large electromagnetic signatures at certain
frequencies outside the operating band are rather large physically at VHF and possibly UHF frequencies, and in large arrays
there is a tradeoff between bandwidth and scan volume. The next section describes the basic characteristics of antenna.
Ref: http://www.antenna-theory.com/antennas/patches/patch3.php
Design of MSA patch length and width
Step 1: Calculation of the
Width (W) -
Step 2: Calculation of the Effective Dielectric Constant. This
is based on the height, dielectric constant of the dielectric and
the calculated width of the patch antenna.
Step 3: Calculation of the Effective length
Step 4: Calculation of the length extension ΔL
Step 5: Calculation of actual length of the patch
Where the following parameters are used
f0 is the Resonance Frequency
W is the Width of the Patch
L is the Length of the Patch
h is the thickness
εr is the relative Permittivity of the dielectric substrate
c is the Speed of light: 3 x 108
Rectangular Microstrip Feedline formulae
Antenna dimensions and operating frequency
Ref: EM-TALK Patch and Line Calculator
Feedline Dimensions :
L=7.47245 mm
W=3.0589 mm
Z0 (impedance)=50 Ω
Dimension of Ground ,Substrate and Patch:
Overall dimension of antenna : 40 x 40 mm
Infinite Ground: 40x 40 mm
Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4
Width of patch: 16.597 mm
Length of patch :12.438 mm
Operating Frequency of
MSA : f0 =5.5 GHz
mmL
LLeffL
L
hweffhweffhL
Leff
efffcLeff
eff
whrreff
mmw
rfocw
47.7
2
57.0
))8.0)/)((258.0/()264.0)/)((3.0(*412.0
01.0
)*0*2/(
2.7
)2/1()]^06.3/6.1(121[*)2/)14.4(()2/)14.4((
)2/1()]^/(121[*)2/)1(()2/)1((
06.3
))14.4/(2(*))9^10*5.5*2/()8^10*3((
)1/(2*)2/(
=
−=
=
+−++=
=
=
=
−+−++=
−+−++=
=
+=
+=
HFSS design
Results (main antenna- f =5.5 GHz )
VSWR S11 Rectangular plot
2D polar plot 3D polar plot
Parametric study for Rectangular Microstrip Antenna
a) Varying L and W more than original value and observe results
b) Varying L and W less than original value and observe results
c) Changing height of substrate (h>1.6 mm)
d) Changing height of substrate (h<1.6 mm)
e) Changing Material of substrate (ℰr )
a) Varying L and W more than original value and observe
Calculations
Feedline Dimensions :
L=9.8794 mm
W=3.0589 mm
Z0 (impedance)=50 Ω
Dimension of Ground ,Substrate and Patch:
Overall dimension of antenna : 40 x 40 mm
Infinite Ground: 40x 40 mm
Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4
Width of patch: 14 mm
Length of patch :17 mm
Operating Frequency of
MSA : f0 =4.16 GHz
rfocw
mmL
LLeffL
L
hweffhweffhL
Leff
efffcLeff
eff
whrreff
mmw
rfocw
mmL
LLeffL
L
)1/(2*)2/(
87.9
2
57.0
))8.0)/)((258.0/()264.0)/)((3.0(*412.0
007.0
)*0*2/(
2.7
)2/1()]^05.3/6.1(121[*)2/)14.4(()2/)14.4((
)2/1()]^/(121[*)2/)1(()2/)1((
05.3
))14.4/(2(*))9^10*16.4*2/()8^10*3((
)1/(2*)2/(
47.7
2
57.0
+=
=
−=
=
+−++=
=
=
=
−+−++=
−+−++=
=
+=
+=
=
−=
=
HFSS design
Results (f=4.16GHz)
VSWR S11 Rectangular plot
2D polar plot
3D polar plot
Calculations
Feedline Dimensions :
L=6.737 mm
W=3.0589 mm
Z0 (impedance)=50 Ω
Dimension of Ground ,Substrate and Patch:
Overall dimension of antenna : 40 x 40 mm
Infinite Ground: 40x 40 mm
Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4
Width of patch: 11.130 mm
Length of patch :14.965 mm
Operating Frequency of
MSA : f0 =6.1 GHz
b) Varying L and W less than original value and observe
mmL
LLeffL
L
hweffhweffhL
Leff
efffcLeff
eff
whrreff
mmw
rfocw
mmL
LLeffL
73.6
2
57.0
))8.0)/)((258.0/()264.0)/)((3.0(*412.0
01.0
)*0*2/(
2.7
)2/1()]^06.3/6.1(121[*)2/)14.4(()2/)14.4((
)2/1()]^/(121[*)2/)1(()2/)1((
05.3
))14.4/(2(*))9^10*1.6*2/()8^10*3((
)1/(2*)2/(
87.9
2
=
−=
=
+−++=
=
=
=
−+−++=
−+−++=
=
+=
+=
=
−=
HFSS design
Results (f=6.1 GHz)
VSWR S11 Rectangular plot
2D polar plot 3D polar plot
HFSS design
c) Changing height of substrate (h>1.6mm)
Results (h>1.6mm)
VSWR Rectangular plot
2D polar plot 3D polar plot
HFSS design
d) Changing height of substrate (h<1.6mm)
Results (h<1.6mm)
VSWR Rectangular plot
2D polar plot
3D polar plot
e) Changing material of substrate
Previously the dielectric material was FR_4 Epoxy which is now Changed to RT_Duroid
ℰ r =4.4 for FR_4 Epoxy substrate material and ℰ r=2.2 for RT_Duroid
Radiation pattern
2D polar plot
3D polar plot
VSWR Rectangular plot
Applications of MSA
1) Mobile and satellite communication application:
Mobile communication requires small, low-cost, low profile
antennas. Microstrip patch antenna meets all requirements and
various types of microstrip antennas have been designed for use
in mobile communication systems. In case of satellite
communication circularly polarized radiation patterns are
required and can be realized using either square or circular
patch with one or two feed points.
2) Global Positioning System applications:
Nowadays microstrip patch antennas with substrate having high permittivity
sintered material are used for global positioning system. These antennas are
circularly polarized, very compact and quite expensive due to its positioning. It
is expected that millions of GPS receivers will be used by the general
population for land vehicles, aircraft and maritime vessels to find there position
accurately Єr2 Єr1 Patch Antenna Transmission Line Ground plane with
aperture Patch Microstrip feed line Antenna dielectric Feed substrate .
3) Radio Frequency Identification (RFID):
RFID uses in different areas like mobile communication,
logistics, manufacturing, transportation and health care [2].
RFID system generally uses frequencies between 30 Hz and 5.8
GHz depending on its applications. Basically RFID system is a
tag or transponder and a transceiver or reader. Worldwide
Interoperability for Microwave Access (WiMax): The IEEE
802.16 standard is known as WiMax. It can reach upto 30 mile
radius theoretically and data rate 70 Mbps. MPA generates three
resonant modes at 2.7, 3.3 and 5.3 GHz and can, therefore, be
used in WiMax compliant communication equipment.
4) Radar Application:
Radar can be used for detecting moving targets such as people
and vehicles. It demands a low profile, light weight antenna
subsystem, the microstrip antennas are an ideal choice. The
fabrication technology based on photolithography enables the
bulk production of microstrip antenna with repeatable
performance at a lower cost in a lesser time frame as compared
to the conventional antennas. Rectenna Application: Rectenna is
a rectifying antenna, a special type of antenna that is used to
directly convert microwave energy into DC power. Rectenna is
a combination of four subsystems i.e. Antenna, ore rectification
filter, rectifier, post rectification filter. in rectenna application, it
is necessary to design antennas with very high directive
characteristics to meet the demands of long-distance links. Since
the aim is to use the rectenna to transfer DC power through
wireless links for a long distance, this can only be accomplished
by increasing the electrical size of the antenna.
Ref:
https://www.drdo.gov.in/drdo/pub/techf
ocus/aug05/antena.htm
5) Telemedicine Application:
In telemedicine application antenna is operating at 2.45 GHz. Wearable
microstrip antenna is suitable for Wireless Body Area Network (WBAN).
The proposed antenna achieved a higher gain and front to back ratio
compared to the other antennas, in addition to the semi directional radiation
pattern which is preferred over the omni-directional pattern to overcome
unnecessary radiation to the user's body and satisfies the requirement for on-
body and off-body applications. A antenna having gain of 6.7 dB and a F/B
ratio of 11.7 dB and resonates at 2.45GHz is suitable for telemedicine
applications. Medicinal applications of patch: It is found that in the treatment
of malignant tumours the microwave energy is said to be the most effective
way of inducing hyperthermia. The design of the particular radiator which is
to be used for this purpose should posses light weight, easy in handling and
to be rugged. Only the patch radiator fulfils these requirements. The initial
designs for the Microstrip radiator for inducing hyperthermia was based on
the printed dipoles and annular rings which were designed on S-band. And
later on the design was based on the circular microstrip disk at L-band. There
is a simple operation that goes on with the instrument; two coupled
Microstrip lines are separated with a flexible separation which is used to
measure the temperature inside the human body. A flexible patch applicator
can be seen in the figure below which operates at 430 MHz
Conclusion
1) With increase in width, aperture area, (dielectric constant)εr and fringing fields increase, hence frequency
decreases and input impedance plot shifts towards lower impedance values. BW αWand Gain αW.
2) As height of substrate increases, fringing fields and probe inductance increase, frequency decreases and input
impedance plot shifts upward.
3) With decrease in εr, both Length and Width of patch Increase, which increases fringing fields and aperture area,
hence both Bandwidth and Gain increase.
4) With increase in εr , size of the antenna decreases for same resonance frequency. Hence, gain decreases and
HPBW increases.
5) Width of microstrip feedline plays important role in impedance matching.
References
[1] http://www.antenna-theory.com/antennas/patches/patch3.php
[2] EM-TALK Patch and Line Calculator
[3] https://www.pasternack.com/t-calculator-microstrip.aspx
[4] https://chemandy.com/calculators/microstrip-transmission-line-calculator.html

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Inroduction to HFSS
Inroduction to HFSSInroduction to HFSS
Inroduction to HFSS
 
MicroStrip Antenna
MicroStrip AntennaMicroStrip Antenna
MicroStrip Antenna
 
Traveling Wave Antenna
Traveling Wave Antenna  Traveling Wave Antenna
Traveling Wave Antenna
 
TYPES OF ANTENNA
TYPES OF ANTENNA TYPES OF ANTENNA
TYPES OF ANTENNA
 
log periodic antenna
log periodic antennalog periodic antenna
log periodic antenna
 
Reconfigurable antenna for research work
Reconfigurable antenna for research workReconfigurable antenna for research work
Reconfigurable antenna for research work
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
A Multi-band Slot Antenna for GPS
A Multi-band Slot Antenna for   GPSA Multi-band Slot Antenna for   GPS
A Multi-band Slot Antenna for GPS
 
Broadband antennas
Broadband antennasBroadband antennas
Broadband antennas
 
MicroStrip Patch Antenna
MicroStrip Patch AntennaMicroStrip Patch Antenna
MicroStrip Patch Antenna
 
Ph.D Research proposal
Ph.D Research proposalPh.D Research proposal
Ph.D Research proposal
 
Microstrip Antennas
Microstrip AntennasMicrostrip Antennas
Microstrip Antennas
 
Beam forming
Beam formingBeam forming
Beam forming
 
Helical antenna
Helical antennaHelical antenna
Helical antenna
 
Coaxial feed microstrip patch antenna using HFSS
 Coaxial feed microstrip patch antenna using  HFSS Coaxial feed microstrip patch antenna using  HFSS
Coaxial feed microstrip patch antenna using HFSS
 
MIMO.ppt (2) 2
MIMO.ppt (2) 2MIMO.ppt (2) 2
MIMO.ppt (2) 2
 
Patch antenna
Patch antenna Patch antenna
Patch antenna
 
Antenna array
Antenna arrayAntenna array
Antenna array
 
Antenna arrays
Antenna arraysAntenna arrays
Antenna arrays
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 

Ähnlich wie Rectangular Microstrip Antenna Parameter Study with HFSS

Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.IJSRD
 
ANSYSS Microstrip patch Anteena using HFSS.pptx
ANSYSS Microstrip patch  Anteena using HFSS.pptxANSYSS Microstrip patch  Anteena using HFSS.pptx
ANSYSS Microstrip patch Anteena using HFSS.pptxRobinKumar260480
 
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final yearMicrostrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final yearRohitKumar639388
 
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...Mohamed Hassouna
 
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...IRJET Journal
 
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
Designing of Rectangular Microstrip Patch Antenna for C-Band  ApplicationDesigning of Rectangular Microstrip Patch Antenna for C-Band  Application
Designing of Rectangular Microstrip Patch Antenna for C-Band ApplicationIJMER
 
C04010 02 1519
C04010 02 1519C04010 02 1519
C04010 02 1519IJMER
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX jantjournal
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET Journal
 
IRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip AntennaIRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip AntennaIRJET Journal
 
iaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationiaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationIaetsd Iaetsd
 
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYMINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYIAEME Publication
 
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna DesignA Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna DesignIJERA Editor
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...jantjournal
 

Ähnlich wie Rectangular Microstrip Antenna Parameter Study with HFSS (20)

Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
Modified T&U Shape Triangular Microstrip Patch Antenna Array for Communication.
 
ANSYSS Microstrip patch Anteena using HFSS.pptx
ANSYSS Microstrip patch  Anteena using HFSS.pptxANSYSS Microstrip patch  Anteena using HFSS.pptx
ANSYSS Microstrip patch Anteena using HFSS.pptx
 
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final yearMicrostrip patch antenna in hfss Anyss presentation PPT for college final year
Microstrip patch antenna in hfss Anyss presentation PPT for college final year
 
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
Performance Analysis of Corporate Feed Rectangular Patch Element and Circular...
 
Ac4101168171
Ac4101168171Ac4101168171
Ac4101168171
 
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
Design of Rectangular Shaped Slotted Micro Strip Antenna for Triple Frequency...
 
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
Designing of Rectangular Microstrip Patch Antenna for C-Band  ApplicationDesigning of Rectangular Microstrip Patch Antenna for C-Band  Application
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
 
C04010 02 1519
C04010 02 1519C04010 02 1519
C04010 02 1519
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX
 
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...IRJET- 	  Design and Analysis of LPDA Antenna for through the Wall Detection ...
IRJET- Design and Analysis of LPDA Antenna for through the Wall Detection ...
 
IRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip AntennaIRJET - Design and Simulation of Multiband Microstrip Antenna
IRJET - Design and Simulation of Multiband Microstrip Antenna
 
iaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan applicationiaetsd Design of slotted microstrip patch antenna for wlan application
iaetsd Design of slotted microstrip patch antenna for wlan application
 
Dual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
Dual U-Slot Microstrip Patch Antenna with Enhanced BandwidthDual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
Dual U-Slot Microstrip Patch Antenna with Enhanced Bandwidth
 
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRYMINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
MINIATURISATION OF PATCH ANTENNA USING NOVEL FRACTAL GEOMETRY
 
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna DesignA Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
A Simple Uhf Rfid Circularly-Polarized Reader Antenna Design
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
A TRIPLE RECTANGULAR-SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN & WIMAX APPLIC...
 

Mehr von Omkar Rane

Enabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on serverEnabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on serverOmkar Rane
 
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-SimulinkAnti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-SimulinkOmkar Rane
 
Autosar fundamental
Autosar fundamentalAutosar fundamental
Autosar fundamentalOmkar Rane
 
Stress Management
Stress ManagementStress Management
Stress ManagementOmkar Rane
 
Bootloaders (U-Boot)
Bootloaders (U-Boot) Bootloaders (U-Boot)
Bootloaders (U-Boot) Omkar Rane
 
Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)Omkar Rane
 
Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship Omkar Rane
 
Machine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsMachine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsOmkar Rane
 
Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768Omkar Rane
 
ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768Omkar Rane
 
PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768Omkar Rane
 
UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)Omkar Rane
 
LED Blinking logic on LPC1768
LED Blinking logic on LPC1768LED Blinking logic on LPC1768
LED Blinking logic on LPC1768Omkar Rane
 
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)Omkar Rane
 
Vlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad ScannerVlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad ScannerOmkar Rane
 
VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner Omkar Rane
 
LPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock featuresLPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock featuresOmkar Rane
 
Nexys4ddr rm FPGA board Datasheet
Nexys4ddr rm  FPGA board DatasheetNexys4ddr rm  FPGA board Datasheet
Nexys4ddr rm FPGA board DatasheetOmkar Rane
 
Linear Regression (Machine Learning)
Linear Regression (Machine Learning)Linear Regression (Machine Learning)
Linear Regression (Machine Learning)Omkar Rane
 
transmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-windtransmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-windOmkar Rane
 

Mehr von Omkar Rane (20)

Enabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on serverEnabling SSL Elasticsearch on server
Enabling SSL Elasticsearch on server
 
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-SimulinkAnti lock braking (ABS) Model based Design in MATLAB-Simulink
Anti lock braking (ABS) Model based Design in MATLAB-Simulink
 
Autosar fundamental
Autosar fundamentalAutosar fundamental
Autosar fundamental
 
Stress Management
Stress ManagementStress Management
Stress Management
 
Bootloaders (U-Boot)
Bootloaders (U-Boot) Bootloaders (U-Boot)
Bootloaders (U-Boot)
 
Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)Concept of Diversity & Fading (wireless communication)
Concept of Diversity & Fading (wireless communication)
 
Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship Tata Motors GDC .LTD Internship
Tata Motors GDC .LTD Internship
 
Machine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsMachine Learning Model for M.S admissions
Machine Learning Model for M.S admissions
 
Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768Timer 0 programming on LPC 1768
Timer 0 programming on LPC 1768
 
ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768ADC (Analog to Digital conversion) using LPC 1768
ADC (Analog to Digital conversion) using LPC 1768
 
PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768PWM based motor speed control using LPC 1768
PWM based motor speed control using LPC 1768
 
UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)UART interfacing on LPC1768 (Cortex M3 micro controller)
UART interfacing on LPC1768 (Cortex M3 micro controller)
 
LED Blinking logic on LPC1768
LED Blinking logic on LPC1768LED Blinking logic on LPC1768
LED Blinking logic on LPC1768
 
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
CAN interfacing on LPC1768 (ARM Cortex M3 based Micro controller)
 
Vlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad ScannerVlisi Course project presentation:Keypad Scanner
Vlisi Course project presentation:Keypad Scanner
 
VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner VlSI course project report : Keypad Scanner
VlSI course project report : Keypad Scanner
 
LPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock featuresLPC 1768 A study on Real Time clock features
LPC 1768 A study on Real Time clock features
 
Nexys4ddr rm FPGA board Datasheet
Nexys4ddr rm  FPGA board DatasheetNexys4ddr rm  FPGA board Datasheet
Nexys4ddr rm FPGA board Datasheet
 
Linear Regression (Machine Learning)
Linear Regression (Machine Learning)Linear Regression (Machine Learning)
Linear Regression (Machine Learning)
 
transmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-windtransmission gate based design for 2:1 Multiplexer in micro-wind
transmission gate based design for 2:1 Multiplexer in micro-wind
 

Kürzlich hochgeladen

Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 

Kürzlich hochgeladen (20)

Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 

Rectangular Microstrip Antenna Parameter Study with HFSS

  • 1. RECTANGULAR FEED MICROSTRIPANTENNA PARAMETER STUDY WITH HFSS SOFTWARE School of Electrical Engineering (Branch - ENTC) Course: Antenna theory and design Group-2 Batch-2 Block-1 Omkar Rane (TETB118) Exam Seat No: T187014 Chaitanya Deshpande (TETB119) Exam Seat No: T187001 Kaustubh Wankhade (TETB131) Exam Seat No: T187003
  • 2. Rectangular Microstrip Feedline Antenna(MSA) Microstrip antennas are low profile antennas and requires where size, weight, cost, performance and ease of installation and aerodynamic profile are constraint such as in high-performance aircraft, spacecraft, satellite and missile applications. Presently in some government and commercial applications such as in mobile radio and wireless communications that have similar specifications, to meet these requirements, microstrip antennas can be used. These antennas are low profile, conformable to planar and non-planar surfaces, simple and inexpensive to manufacture using modern printed circuit technology . They are very versatile in terms of resonant frequency, polarization, pattern and impedance when a particular patch shape and mode are selected. In addition by adding loads between the patch and the ground plane, such as pins and varactor diodes, adaptive elements with variable resonant frequency, impedance polarization and pattern can be designed. Major operational disadvantages of microstrip antennas are their low efficiency, low power, high Q, poor polarization purity, poor scanning performance, spurious feed radiation and very narrow frequency bandwidth, which is typically only a fraction of a percent or at most a few percent. In some government security systems narrow bandwidth are desirable; however, there are methods such as increasing the height of the substrate that can be used to extend the efficiency (to as large as 90 % if surface waves are not included) and bandwidth (up to 35%); however, as the height increases, surface waves are introduced which usually are not desirable because they extract power from the total available for direct radiation (space waves). The surface waves travel within the substrate and they are scattered at bends and surface discontinuities, such as the truncation of the dielectric ground plane and degrade the antenna pattern and polarization characteristics. Surface waves can be eliminated, while maintaining large bandwidths, by using cavities stacking as well as other methods of microstrip elements can also be used to increase the bandwidth. In addition, microstrip antennas also exhibit large electromagnetic signatures at certain frequencies outside the operating band are rather large physically at VHF and possibly UHF frequencies, and in large arrays there is a tradeoff between bandwidth and scan volume. The next section describes the basic characteristics of antenna.
  • 4. Design of MSA patch length and width Step 1: Calculation of the Width (W) - Step 2: Calculation of the Effective Dielectric Constant. This is based on the height, dielectric constant of the dielectric and the calculated width of the patch antenna. Step 3: Calculation of the Effective length Step 4: Calculation of the length extension ΔL Step 5: Calculation of actual length of the patch Where the following parameters are used f0 is the Resonance Frequency W is the Width of the Patch L is the Length of the Patch h is the thickness εr is the relative Permittivity of the dielectric substrate c is the Speed of light: 3 x 108
  • 6. Antenna dimensions and operating frequency Ref: EM-TALK Patch and Line Calculator Feedline Dimensions : L=7.47245 mm W=3.0589 mm Z0 (impedance)=50 Ω Dimension of Ground ,Substrate and Patch: Overall dimension of antenna : 40 x 40 mm Infinite Ground: 40x 40 mm Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4 Width of patch: 16.597 mm Length of patch :12.438 mm Operating Frequency of MSA : f0 =5.5 GHz
  • 9. Results (main antenna- f =5.5 GHz ) VSWR S11 Rectangular plot 2D polar plot 3D polar plot
  • 10. Parametric study for Rectangular Microstrip Antenna a) Varying L and W more than original value and observe results b) Varying L and W less than original value and observe results c) Changing height of substrate (h>1.6 mm) d) Changing height of substrate (h<1.6 mm) e) Changing Material of substrate (ℰr )
  • 11. a) Varying L and W more than original value and observe Calculations Feedline Dimensions : L=9.8794 mm W=3.0589 mm Z0 (impedance)=50 Ω Dimension of Ground ,Substrate and Patch: Overall dimension of antenna : 40 x 40 mm Infinite Ground: 40x 40 mm Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4 Width of patch: 14 mm Length of patch :17 mm Operating Frequency of MSA : f0 =4.16 GHz
  • 14. Results (f=4.16GHz) VSWR S11 Rectangular plot 2D polar plot 3D polar plot
  • 15. Calculations Feedline Dimensions : L=6.737 mm W=3.0589 mm Z0 (impedance)=50 Ω Dimension of Ground ,Substrate and Patch: Overall dimension of antenna : 40 x 40 mm Infinite Ground: 40x 40 mm Substrate FR_4 Epoxy : height =1.6 mm and εr=4.4 Width of patch: 11.130 mm Length of patch :14.965 mm Operating Frequency of MSA : f0 =6.1 GHz b) Varying L and W less than original value and observe
  • 18. Results (f=6.1 GHz) VSWR S11 Rectangular plot 2D polar plot 3D polar plot
  • 19. HFSS design c) Changing height of substrate (h>1.6mm)
  • 20. Results (h>1.6mm) VSWR Rectangular plot 2D polar plot 3D polar plot
  • 21. HFSS design d) Changing height of substrate (h<1.6mm)
  • 22. Results (h<1.6mm) VSWR Rectangular plot 2D polar plot 3D polar plot
  • 23. e) Changing material of substrate Previously the dielectric material was FR_4 Epoxy which is now Changed to RT_Duroid ℰ r =4.4 for FR_4 Epoxy substrate material and ℰ r=2.2 for RT_Duroid Radiation pattern
  • 24. 2D polar plot 3D polar plot VSWR Rectangular plot
  • 25. Applications of MSA 1) Mobile and satellite communication application: Mobile communication requires small, low-cost, low profile antennas. Microstrip patch antenna meets all requirements and various types of microstrip antennas have been designed for use in mobile communication systems. In case of satellite communication circularly polarized radiation patterns are required and can be realized using either square or circular patch with one or two feed points.
  • 26. 2) Global Positioning System applications: Nowadays microstrip patch antennas with substrate having high permittivity sintered material are used for global positioning system. These antennas are circularly polarized, very compact and quite expensive due to its positioning. It is expected that millions of GPS receivers will be used by the general population for land vehicles, aircraft and maritime vessels to find there position accurately Єr2 Єr1 Patch Antenna Transmission Line Ground plane with aperture Patch Microstrip feed line Antenna dielectric Feed substrate .
  • 27. 3) Radio Frequency Identification (RFID): RFID uses in different areas like mobile communication, logistics, manufacturing, transportation and health care [2]. RFID system generally uses frequencies between 30 Hz and 5.8 GHz depending on its applications. Basically RFID system is a tag or transponder and a transceiver or reader. Worldwide Interoperability for Microwave Access (WiMax): The IEEE 802.16 standard is known as WiMax. It can reach upto 30 mile radius theoretically and data rate 70 Mbps. MPA generates three resonant modes at 2.7, 3.3 and 5.3 GHz and can, therefore, be used in WiMax compliant communication equipment.
  • 28. 4) Radar Application: Radar can be used for detecting moving targets such as people and vehicles. It demands a low profile, light weight antenna subsystem, the microstrip antennas are an ideal choice. The fabrication technology based on photolithography enables the bulk production of microstrip antenna with repeatable performance at a lower cost in a lesser time frame as compared to the conventional antennas. Rectenna Application: Rectenna is a rectifying antenna, a special type of antenna that is used to directly convert microwave energy into DC power. Rectenna is a combination of four subsystems i.e. Antenna, ore rectification filter, rectifier, post rectification filter. in rectenna application, it is necessary to design antennas with very high directive characteristics to meet the demands of long-distance links. Since the aim is to use the rectenna to transfer DC power through wireless links for a long distance, this can only be accomplished by increasing the electrical size of the antenna. Ref: https://www.drdo.gov.in/drdo/pub/techf ocus/aug05/antena.htm
  • 29. 5) Telemedicine Application: In telemedicine application antenna is operating at 2.45 GHz. Wearable microstrip antenna is suitable for Wireless Body Area Network (WBAN). The proposed antenna achieved a higher gain and front to back ratio compared to the other antennas, in addition to the semi directional radiation pattern which is preferred over the omni-directional pattern to overcome unnecessary radiation to the user's body and satisfies the requirement for on- body and off-body applications. A antenna having gain of 6.7 dB and a F/B ratio of 11.7 dB and resonates at 2.45GHz is suitable for telemedicine applications. Medicinal applications of patch: It is found that in the treatment of malignant tumours the microwave energy is said to be the most effective way of inducing hyperthermia. The design of the particular radiator which is to be used for this purpose should posses light weight, easy in handling and to be rugged. Only the patch radiator fulfils these requirements. The initial designs for the Microstrip radiator for inducing hyperthermia was based on the printed dipoles and annular rings which were designed on S-band. And later on the design was based on the circular microstrip disk at L-band. There is a simple operation that goes on with the instrument; two coupled Microstrip lines are separated with a flexible separation which is used to measure the temperature inside the human body. A flexible patch applicator can be seen in the figure below which operates at 430 MHz
  • 30. Conclusion 1) With increase in width, aperture area, (dielectric constant)εr and fringing fields increase, hence frequency decreases and input impedance plot shifts towards lower impedance values. BW αWand Gain αW. 2) As height of substrate increases, fringing fields and probe inductance increase, frequency decreases and input impedance plot shifts upward. 3) With decrease in εr, both Length and Width of patch Increase, which increases fringing fields and aperture area, hence both Bandwidth and Gain increase. 4) With increase in εr , size of the antenna decreases for same resonance frequency. Hence, gain decreases and HPBW increases. 5) Width of microstrip feedline plays important role in impedance matching.
  • 31. References [1] http://www.antenna-theory.com/antennas/patches/patch3.php [2] EM-TALK Patch and Line Calculator [3] https://www.pasternack.com/t-calculator-microstrip.aspx [4] https://chemandy.com/calculators/microstrip-transmission-line-calculator.html