SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
Real-Time Simulation
of Renewable Energy Systems
Using RT-LAB
Presented by Andy Yen
andy.yen@opal-rt.com
Montréal, Canada
©2013 OPAL-RT - June 24th, 2013
From Imagination to Real-Time
IEEE COMPEL 2013
The 14th IEEE Workshop on Control and
Modeling for Power Electronics (COMPEL)
2
When we think about environment and energy, we think:
– Electric Vehicle
– Hydro Power
– Wind Power
– Photovoltaic Power
– Renewable Energies
Power Engineers think about:
– How to control
– How to bring this technology quickly to market
– How to distribute power
– How to interconnect
Introduction
3
Context
Modelling Challenges for Renewable Energy Systems
Solution
Specialized models
Summary
Outline
Context : Real-Time Simulation Helps in Development Process
4
Rapid Control Prototyping Hardware in-the-loop Testing
Desktop Simulation
Coding
Validation
Context : Controlled System, and Real-Time Simulation
5
PlantController
Rapid Control Prototyping Hardware-in-the-loop
Simulation
6
Electric Drive for Hybrid Electric Vehicle and Electric Vehicle
Modular Multilevel Converter (MMC) for HVDC Connection
Wind farms, Photovoltaic Systems to Grid Connection
Renewable Energy Systems
7
Example figure : PMSM motor for electric vehicle model
Reduce latency
– Protection – Fast response needed
– High speed – Fast rotating machine
– Precision – Position of the rotor
Challenges for Electric Drive
Typical MMC HVDC circuit
MMC response to a short circuit
fault at transformer primary side
8
Challenges for Modular Multilevel Converter
Large number of
Inputs/Outputs managements
Wikipedia
9
Numerous converters
Fast switching
Short Transmission Lines
Challenges for Micro-Grid
Vgrid
A
B
C
a
b
c
Three-Phase
Breaker
A
B
C
A
B
C
Resistance: Ri
Inductance: Li
A
B
C
A
B
C
Three-Phase
Series RL
Resistance: Ri
Inductance: Li
A
B
C
A
B
C
Three-Phase
Resistance
Resistance: Rgrid
A
B
C
A
B
C
Three-Phase
Parallel RL
Inductance : Lgrid
Resistance : Rdamp_Lgrid
A
B
C
A
B
C
Three-Phase
Inductance
Inductance: La
Capacitance:
DClink_C
Resistance:
DClink_R
+
-
PV Subsystem
Delta
Capacitance : Cf
g
A
B
C
+
-
g
A
B
C
+
-
2-level IGBT/Diode
10
Low Latency
High resolution – Small Time Steps
Non-averaged model
Fault capabilities
Transient analysis
Higher Harmonics effect
Solution : FPGA-based simulation
FPGA
11
FPGA are more difficult to program
Modeling via Block Diagram
Generating bitstream is long
(typical: 120 min + )
Flashing FPGA firmware is long
~15 mins
FPGA-based Simulation with eHS
Easier to program
Flexibility
Save bitstream generation time
Save reprogramming time
Difficulties Want
Fast and versatile architecture
12
Workstation Multicore
CPU
FPGA
firmware
System Under
Control
Ethernet PCIExpress
Analog I/O
Digital I/O
Real-Time Computer
≈ 2 μs
CPU and FPGA-based Simulation Platform
Real-TimeSimulator CPU-Based Simulation
Controller
Firing PulsesMeasurements
Analog Outputs Digital Inputs
FPGA
(IO management)
CPU
25 μs model step
≈ 50-100 μs
Analog Outputs Digital Inputs
FPGA
CPU
FPGA-Based Simulation
Controller
Firing PulsesMeasurements
Real-TimeSimulator
0.25 μs model step
FPGA
14
eHS (electrical Hardware Simulation) solver
– Generic Power Converter solver on FPGA
– SPS model editor interface (Soon with PLECS, PSIM and EMTP-RV)
– Reconfigurable from Host PC without reprogramming the FPGA
– Simulation in off-line mode with eHS nodal solver within Simulink
eHS Key Features
Automatic Model
Generation
eHS
Automatic generation of
electric circuit model:
No Mathematical Modeling
No FPGA expertise
No VHDL programming
Circuit Editor
(SPS, PLECS, …)
eHS uses the modified nodal analysis approach
– It solves a admittance matrix to find the voltage at each node and the current from each sources.
– The admittance matrix does not need to be re-computed for each switch status
– Simulated model topology and parameters can be modified without recompiling the bitstream
The maximum size of the circuit is determined by the number of inputs,
switches and reactive components
Currently, the maximum number of components is :
– 16 inputs (voltage/current sources)
– 16 outputs (voltage/current measurements)
– 24 switches (IGBTs, breakers, etc)
– 60 non-switching devices (ie. L and C) – unlimited resistors
eHS Nodal Solver
eHS core
Y[0:15]
24x switches control
16x Inputs
U[0:15]
S[0:23]
16 Measurements
eHS method replaces switches by:
– either a very small inductance when conducting
– or a very small capacitor when not conducting
This method is called the fix-Y because the admittance matrix does not change
when a switch changes state.
Switch Model in eHS
h is the time step
For the matrix to remain the same upon switching event, the following equation
must remains true
Gs= h
L = C
h where h is the time step
When building the nodal matrix a value between 10 and 0.001 has to be set to
represent a switch. This determines the value of the inductor and the capacitor
representing the switch.
L= h
Gs C=h × Gs
For example, a time step 100ns and a Gs=1, the switch will be represented by the
following inductance when conducting or the following capacitance when non-
conducting.
L= h
Gs = 100ns
1 = 100nH C=h × Gs=100ns × 1=100nF
Ideally, we need a very small inductor and a very small capacitor to represent a ideal
switch. Depending of the circuit topology, the best result is obtained by optimizing
the value of Gs and compare results with conventional off-line software.
Switch Model in eHS
18
FPGA are more difficult to program
Modeling via Block Diagram
Generating bitstream is long
(typical: 120 min + )
Flashing FPGA firmware is long
~15 mins
FPGA-based Simulation with eHS
Easier to program
Flexibility,
freedom to change circuit topology
Save bitstream generation time
Save reflashing time
On-line modification of circuit
parameters
On-line modification of circuit
topology
Difficulties Want
eHS model : PV connected to grid.
Time Step = 500ns
4 sources inputs (1 DC from PV, 3 phases AC from Grid)
16 voltage and current measurements,
15 switches (2x 2level inverters & 3phase breaker)
CPU (20 μs)FPGA (500 ns)CPU
Vgrid
A
B
C
a
b
c
Three-Phase
Breaker
A
B
C
A
B
C
Resistance: Ri
Inductance: Li
A
B
C
A
B
C
Three-Phase
Series RL
Resistance: Ri
Inductance: Li
A
B
C
A
B
C
Three-Phase
Resistance
Resistance: Rgrid
A
B
C
A
B
C
Three-Phase
Parallel RL
Inductance : Lgrid
Resistance : Rdamp_Lgrid
A
B
C
A
B
C
Three-Phase
Inductance
Inductance: La
Capacitance:
DClink_C
Resistance:
DClink_R
+
-
PV Subsystem
Delta
Capacitance : Cf
g
A
B
C
+
-
g
A
B
C
+
-
2-level IGBT/Diode
19
Real-Time eHS Simulation Examples
CONTROLLERS (On CPU, FPGA or using external hardware)
20
Results for PV model
Real-Time eHS Simulation
21
Standard architecture of OPAL-RT RT-LAB simulator and RCP system
Mixed CPU-FPGA-based Multi-Rate Simulation Platform
≈ 2 μs
Analog Outputs Digital Inputs
FPGA
CPU
Actual Controller
Firing PulsesMeasurements
Real-TimeSimulator
0.25 μs model step
10 μs to 100 μs model step
≈ 20-30 μs
Complex grid and mechanical
models and controllers
communication systems
≈ 2 μs
Analog Outputs Digital Inputs
FPGA
CPU
RT-LAB Prototype
Controller
Firing PulsesMeasurements
0.25 μs model step
10 μs to 100 μs model step
≈ 20-30 μs
Complex grid and mechanical
models and controllers
communication systems
Low Latency
Small
time step
For fast Power
Electronic
Larger
time step
For grid and
mechanical
subsystems
22
MMC Solver
Specialized Models
23
Motor model on FPGA
– Using Finite Element Analysis (FEA) modeling approach:
• Such as JMAG-RT and MotorSolve
Specialized Models
Flux, impedance values according to
the mechanical angles of the motors
24
Comparative results :
Specialized models
 Torque control results at high currents (saturation)
-50
0
50
Currents(A)
0 0.005 0.01 0.015
0
5
10
15
Time (s)
Torque(N.m.)
DQ (fixed Ld-Lq)
VDQ
SH
(Ld=1.43 mH Lq=2.34 mH)(Ld=1.53 mH Lq=2.5 mH) (Ld=1.45 mH Lq=2.45 mH)
motor file: '10k_D_C_I-.rtt'
motor speed: 4000 RPM
VDQ torque= 12.7 N.m.
DQ torque=13.7 N.m.
SH average torque= 12.5 N.m.
Iref=20A (beta=0) Iref=40A (beta=40 deg)Iref=30A (beta=0)
CPU
25
eHS Real-Time (eFPGAsim, Virtex 6)
– Ac side & Converter: 400 ns
– Inverter & Filter: 690 ns
– FPGA PMSM motor: 100ns
Real-Time FPGA-based Simulation Example
− Inverter switching frequency = 8 kHz
− Converter switching frequency = 4 kHz
eHS FPGA eHS FPGA FPGA
M
INV
P
N
TB L3_U0
L3_V0
L3_W0
C_UV
C_VW
C_WU
Sine-Wave Filter
Motor
L3_U0
L3_V0
L3_W0
C_UV
C_VW
C_WU
L3_U0
L3_V0
L3_W0
Power
Source
INPUT FILTER
CNV
3-level
Invertor
OUTPUT FILTER
M
INV
P
N
TB L3_U0
L3_V0
L3_W0
C_UV
C_VW
C_WU
Sine-Wave Filter
Motor
L3_U0
L3_V0
L3_W0
C_UV
C_VW
C_WU
L3_U0
L3_V0
L3_W0
Power
Source
INPUT FILTER
CNV
Trans
former
L1
L1
L1
L2
L2
L2
C
C
C
L
L
L
C
C
C
Load
Real-Time FPGA-based Simulation Example
26
eHS and SPS
superimposed
eHS and SPS
superimposed
zoomed
Motor voltage
(Phase-to-phase)
Motor current
zoomed
8-kHz components due to the 8-kHz PWM carrier
27
Non-Flashing technology:
– 1 firmware by application which handle
a large number of configuration
Multiple configurations:
– Generic Power Systems solver
– Modification in a model editor
– Reconfigurable from the host PC
OPAL-RT FPGA-based Simulation
28
Flexible I/O routing and configuration
OPAL-RT Real-Time Simulation
29
Flexible I/O routing and configuration
OPAL-RT Real-Time Simulation
30
Flexible I/O routing and configuration
OPAL-RT Real-Time Simulation
31
FPGA-based Simulation has many advantages over regular CPU-based
simulation
High Resolution Simulation
Low Latency
With OPAL-RT’s eFPGAsim, modelling is :
Easy
Reliable
Flexible
Customizable
Summary
FPGA
≈ 2 us
Analog Outputs Digital Inputs
FPGA
CPU
Controller
Firing PulsesMeasurements
Real-TimeSimulator
0.25 us model step
32
Cover the complete spectrum of power system analysis & studies
ePOWERgrid Product Family
ePHASORsim
Real-Time Transient
Stability Simulator
10 ms time step
NEW
HYPERsim
Large Scale Power System
Simulation for Utilities & Manufacturers
10 µs to 100 µs time step
NEW
eFPGAsim
Power Electronics Simulation on FPGA
1 µs to 100 ns time step
NEW
1 s
(1 Hz)
10,000
5000
2500
1000
100
10
0
10 ms
(100 Hz)
50 µs
(20 KHz)
10 µs
(100 KHz)
1µs
(1 MHz)
100 ns
(10 MHz)
10 ns
(100 MHz)
20,000
Period (frequency) of transient phenomena simulated
Number of
Nodes
eMEGAsim
Power System & Power Electronics Simulation
Based on Matlab/Simulink and SimPowerSystem
7 µs to 100 µs time step
OPAL-RT Democratize Real-Time Simulation
33
Real-Time Simulation
of Renewable Energy Systems
Using RT-LAB
Presented by Andy Yen
andy.yen@opal-rt.com
Montréal, Canada
From Imagination to Real-Time
Thank you !
©2013 OPAL-RT - June 24th, 2013
IEEE COMPEL 2013
The 14th IEEE Workshop on Control and
Modeling for Power Electronics (COMPEL)

Weitere ähnliche Inhalte

Was ist angesagt?

Shunt active power filter
Shunt active power filterShunt active power filter
Shunt active power filterRanganath
 
3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS
3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS
3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARSMATHEW JOSEPH
 
What is HIL (HardWare In The Loop)
What is HIL (HardWare In The Loop)What is HIL (HardWare In The Loop)
What is HIL (HardWare In The Loop)Tbrad
 
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Ghazal Falahi
 
high power converter and ac drives.pdf
high power converter and ac drives.pdfhigh power converter and ac drives.pdf
high power converter and ac drives.pdfSoumyadeepRoy48
 
Plc presentation
Plc presentationPlc presentation
Plc presentationNits Sharma
 
Modular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorialModular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorialGhazal Falahi
 
INTERLINE FLOW CONTROLLER
INTERLINE FLOW CONTROLLERINTERLINE FLOW CONTROLLER
INTERLINE FLOW CONTROLLERNitish NIT
 
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptFACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptMamta Bagoria
 
Power System Stabilizer
Power System StabilizerPower System Stabilizer
Power System StabilizerSuman Sourabh
 
Model based design-Hardware in loop-software in loop
Model based design-Hardware in loop-software in loopModel based design-Hardware in loop-software in loop
Model based design-Hardware in loop-software in loopMahmoud Hussein
 
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)
•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)Cesar Hernaez Ojeda
 
Digital Systems Design
Digital Systems DesignDigital Systems Design
Digital Systems DesignReza Sameni
 
BLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPTBLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPTAmiya Ranjan Behera
 
Matlab solving rlc circuit
Matlab solving rlc circuitMatlab solving rlc circuit
Matlab solving rlc circuitAmeen San
 

Was ist angesagt? (20)

Hardware in loop simulation
Hardware in loop simulationHardware in loop simulation
Hardware in loop simulation
 
Shunt active power filter
Shunt active power filterShunt active power filter
Shunt active power filter
 
3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS
3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS
3 PHASE INVERTER WITH SPEED CONTROL FOR ELECTRIC CARS
 
What is HIL (HardWare In The Loop)
What is HIL (HardWare In The Loop)What is HIL (HardWare In The Loop)
What is HIL (HardWare In The Loop)
 
Lecture 2 Servomotors - Basics & Working
Lecture 2   Servomotors - Basics & WorkingLecture 2   Servomotors - Basics & Working
Lecture 2 Servomotors - Basics & Working
 
Vlsi design
Vlsi designVlsi design
Vlsi design
 
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
 
Design and implementation of active power filter for harmonic elimination and...
Design and implementation of active power filter for harmonic elimination and...Design and implementation of active power filter for harmonic elimination and...
Design and implementation of active power filter for harmonic elimination and...
 
high power converter and ac drives.pdf
high power converter and ac drives.pdfhigh power converter and ac drives.pdf
high power converter and ac drives.pdf
 
Plc presentation
Plc presentationPlc presentation
Plc presentation
 
Modular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorialModular Multilevel Converter MMC tutorial
Modular Multilevel Converter MMC tutorial
 
INTERLINE FLOW CONTROLLER
INTERLINE FLOW CONTROLLERINTERLINE FLOW CONTROLLER
INTERLINE FLOW CONTROLLER
 
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptFACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
 
Power System Stabilizer
Power System StabilizerPower System Stabilizer
Power System Stabilizer
 
Model based design-Hardware in loop-software in loop
Model based design-Hardware in loop-software in loopModel based design-Hardware in loop-software in loop
Model based design-Hardware in loop-software in loop
 
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)
•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)
 
Digital Systems Design
Digital Systems DesignDigital Systems Design
Digital Systems Design
 
BLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPTBLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPT
 
Processors selection
Processors selectionProcessors selection
Processors selection
 
Matlab solving rlc circuit
Matlab solving rlc circuitMatlab solving rlc circuit
Matlab solving rlc circuit
 

Andere mochten auch

OPAL-RT RT13: Real time simulation of distribution grids
OPAL-RT RT13: Real time simulation of distribution gridsOPAL-RT RT13: Real time simulation of distribution grids
OPAL-RT RT13: Real time simulation of distribution gridsOPAL-RT TECHNOLOGIES
 
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Luigi Vanfretti
 
OPAL-RT RT13: OP5600 & OP7000 hardware
OPAL-RT RT13: OP5600 & OP7000 hardwareOPAL-RT RT13: OP5600 & OP7000 hardware
OPAL-RT RT13: OP5600 & OP7000 hardwareOPAL-RT TECHNOLOGIES
 
OPAL-RT RT13 Conference: New OP4500 hardware
OPAL-RT RT13 Conference: New OP4500 hardwareOPAL-RT RT13 Conference: New OP4500 hardware
OPAL-RT RT13 Conference: New OP4500 hardwareOPAL-RT TECHNOLOGIES
 
Challenges of Parallel Simulation of Power Systems_english
Challenges of Parallel Simulation of Power Systems_englishChallenges of Parallel Simulation of Power Systems_english
Challenges of Parallel Simulation of Power Systems_englishOPAL-RT TECHNOLOGIES
 
Opal Rt Giroux Scrpting In Emtp Works
Opal Rt Giroux Scrpting In Emtp WorksOpal Rt Giroux Scrpting In Emtp Works
Opal Rt Giroux Scrpting In Emtp Workscorinne rocherieux
 
OPAL-RT RT14 Conference: Real-time HIL/RCP Laboratory
OPAL-RT RT14 Conference: Real-time HIL/RCP LaboratoryOPAL-RT RT14 Conference: Real-time HIL/RCP Laboratory
OPAL-RT RT14 Conference: Real-time HIL/RCP LaboratoryOPAL-RT TECHNOLOGIES
 
OPAL-RT Distributed Multi-User Laboratories
OPAL-RT Distributed Multi-User LaboratoriesOPAL-RT Distributed Multi-User Laboratories
OPAL-RT Distributed Multi-User LaboratoriesDarcy La Ronde
 
OPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIO
OPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIOOPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIO
OPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIOOPAL-RT TECHNOLOGIES
 
Psim tutorial- tiristor
Psim tutorial- tiristorPsim tutorial- tiristor
Psim tutorial- tiristorSENAI
 

Andere mochten auch (11)

OPAL-RT RT13: Real time simulation of distribution grids
OPAL-RT RT13: Real time simulation of distribution gridsOPAL-RT RT13: Real time simulation of distribution grids
OPAL-RT RT13: Real time simulation of distribution grids
 
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
Real-Time Hardware-in-the-Loop Testing of an Excitation Control System for Os...
 
OPAL-RT RT13: OP5600 & OP7000 hardware
OPAL-RT RT13: OP5600 & OP7000 hardwareOPAL-RT RT13: OP5600 & OP7000 hardware
OPAL-RT RT13: OP5600 & OP7000 hardware
 
OPAL-RT RT13 Conference: New OP4500 hardware
OPAL-RT RT13 Conference: New OP4500 hardwareOPAL-RT RT13 Conference: New OP4500 hardware
OPAL-RT RT13 Conference: New OP4500 hardware
 
Challenges of Parallel Simulation of Power Systems_english
Challenges of Parallel Simulation of Power Systems_englishChallenges of Parallel Simulation of Power Systems_english
Challenges of Parallel Simulation of Power Systems_english
 
Opal Rt Giroux Scrpting In Emtp Works
Opal Rt Giroux Scrpting In Emtp WorksOpal Rt Giroux Scrpting In Emtp Works
Opal Rt Giroux Scrpting In Emtp Works
 
OPAL-RT - PSIM & eHS Interface
OPAL-RT - PSIM & eHS InterfaceOPAL-RT - PSIM & eHS Interface
OPAL-RT - PSIM & eHS Interface
 
OPAL-RT RT14 Conference: Real-time HIL/RCP Laboratory
OPAL-RT RT14 Conference: Real-time HIL/RCP LaboratoryOPAL-RT RT14 Conference: Real-time HIL/RCP Laboratory
OPAL-RT RT14 Conference: Real-time HIL/RCP Laboratory
 
OPAL-RT Distributed Multi-User Laboratories
OPAL-RT Distributed Multi-User LaboratoriesOPAL-RT Distributed Multi-User Laboratories
OPAL-RT Distributed Multi-User Laboratories
 
OPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIO
OPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIOOPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIO
OPAL-RT RT14: Running OPAL-RT's eHS solver on NI cRIO
 
Psim tutorial- tiristor
Psim tutorial- tiristorPsim tutorial- tiristor
Psim tutorial- tiristor
 

Ähnlich wie OPAL-RT Real time simulation using RT-LAB

RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...
RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...
RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...OPAL-RT TECHNOLOGIES
 
OPAL-RT Induction machine & power electronic test system on FPGA
OPAL-RT Induction machine & power electronic test system on FPGAOPAL-RT Induction machine & power electronic test system on FPGA
OPAL-RT Induction machine & power electronic test system on FPGAOPAL-RT TECHNOLOGIES
 
Webinar | HIL Testing of Electric Transportation
Webinar | HIL Testing of Electric TransportationWebinar | HIL Testing of Electric Transportation
Webinar | HIL Testing of Electric TransportationOPAL-RT TECHNOLOGIES
 
RT15 Berkeley | OPAL-RT Solutions for Microgrid Applications
RT15 Berkeley | OPAL-RT Solutions for Microgrid ApplicationsRT15 Berkeley | OPAL-RT Solutions for Microgrid Applications
RT15 Berkeley | OPAL-RT Solutions for Microgrid ApplicationsOPAL-RT TECHNOLOGIES
 
Design and Control of HESS based PEV
Design and Control of  HESS based PEVDesign and Control of  HESS based PEV
Design and Control of HESS based PEVMalyala Varun
 
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWDsuresh386785
 
Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...
Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...
Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...IJSRD
 
RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...
RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...
RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...OPAL-RT TECHNOLOGIES
 
Rapid Control Prototyping Solutions
Rapid Control Prototyping SolutionsRapid Control Prototyping Solutions
Rapid Control Prototyping SolutionsOPAL-RT TECHNOLOGIES
 
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLERDC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLERTridib Bose
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsimperix
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
OPAL-RT Webinar - MMC RCP HIL Solutions
OPAL-RT Webinar - MMC RCP HIL SolutionsOPAL-RT Webinar - MMC RCP HIL Solutions
OPAL-RT Webinar - MMC RCP HIL SolutionsOPAL-RT TECHNOLOGIES
 
Power Saving Design Techniques with Low Cost FPGAs
Power Saving Design Techniques  with Low Cost FPGAs Power Saving Design Techniques  with Low Cost FPGAs
Power Saving Design Techniques with Low Cost FPGAs Premier Farnell
 
Development of Digital Controller for DC-DC Buck Converter
Development of Digital Controller for DC-DC Buck ConverterDevelopment of Digital Controller for DC-DC Buck Converter
Development of Digital Controller for DC-DC Buck ConverterIJPEDS-IAES
 
OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...
OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...
OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...OPAL-RT TECHNOLOGIES
 

Ähnlich wie OPAL-RT Real time simulation using RT-LAB (20)

RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...
RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...
RT15 Berkeley | Introduction to FPGA Power Electronic & Electric Machine real...
 
OPAL-RT Induction machine & power electronic test system on FPGA
OPAL-RT Induction machine & power electronic test system on FPGAOPAL-RT Induction machine & power electronic test system on FPGA
OPAL-RT Induction machine & power electronic test system on FPGA
 
Webinar | HIL Testing of Electric Transportation
Webinar | HIL Testing of Electric TransportationWebinar | HIL Testing of Electric Transportation
Webinar | HIL Testing of Electric Transportation
 
bucu2_5
bucu2_5bucu2_5
bucu2_5
 
5378086.ppt
5378086.ppt5378086.ppt
5378086.ppt
 
RT15 Berkeley | OPAL-RT Solutions for Microgrid Applications
RT15 Berkeley | OPAL-RT Solutions for Microgrid ApplicationsRT15 Berkeley | OPAL-RT Solutions for Microgrid Applications
RT15 Berkeley | OPAL-RT Solutions for Microgrid Applications
 
Design and Control of HESS based PEV
Design and Control of  HESS based PEVDesign and Control of  HESS based PEV
Design and Control of HESS based PEV
 
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
15.02.2024.pptxDSD3E23DSDSDQWE23EWQDSDSDQWD
 
Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...
Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...
Field Programmable Gate Array (FPGA) - Based Pulse Width Modulation for Singl...
 
40120140505013
4012014050501340120140505013
40120140505013
 
RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...
RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...
RT15 Berkeley | Power HIL Simulator (SimP) A prototype to develop a high band...
 
Rapid Control Prototyping Solutions
Rapid Control Prototyping SolutionsRapid Control Prototyping Solutions
Rapid Control Prototyping Solutions
 
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLERDC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronics
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
OPAL-RT Webinar - MMC RCP HIL Solutions
OPAL-RT Webinar - MMC RCP HIL SolutionsOPAL-RT Webinar - MMC RCP HIL Solutions
OPAL-RT Webinar - MMC RCP HIL Solutions
 
Power Saving Design Techniques with Low Cost FPGAs
Power Saving Design Techniques  with Low Cost FPGAs Power Saving Design Techniques  with Low Cost FPGAs
Power Saving Design Techniques with Low Cost FPGAs
 
Development of Digital Controller for DC-DC Buck Converter
Development of Digital Controller for DC-DC Buck ConverterDevelopment of Digital Controller for DC-DC Buck Converter
Development of Digital Controller for DC-DC Buck Converter
 
Introduction
IntroductionIntroduction
Introduction
 
OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...
OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...
OPAL-RT RT13 Conference: Rapid control prototyping solutions for power electr...
 

Mehr von OPAL-RT TECHNOLOGIES

Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...
Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...
Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...OPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos
2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos
2017 Atlanta Regional User Seminar - Real-Time Microgrid DemosOPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar - Conclusion
2017 Atlanta Regional User Seminar - Conclusion 2017 Atlanta Regional User Seminar - Conclusion
2017 Atlanta Regional User Seminar - Conclusion OPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...
2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...
2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...OPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...
2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...
2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...OPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...
2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...
2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...OPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...OPAL-RT TECHNOLOGIES
 
Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...
Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...
Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...OPAL-RT TECHNOLOGIES
 
2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar Introduction2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar IntroductionOPAL-RT TECHNOLOGIES
 
Webinar | HIL-based Wide-area Monitoring, Protection and Control R&D and Testing
Webinar | HIL-based Wide-area Monitoring, Protection and Control R&D and TestingWebinar | HIL-based Wide-area Monitoring, Protection and Control R&D and Testing
Webinar | HIL-based Wide-area Monitoring, Protection and Control R&D and TestingOPAL-RT TECHNOLOGIES
 
OPAL-RT and RTDS Technologies Co-Simulation
OPAL-RT and RTDS Technologies Co-SimulationOPAL-RT and RTDS Technologies Co-Simulation
OPAL-RT and RTDS Technologies Co-SimulationOPAL-RT TECHNOLOGIES
 
Microgrid Controller HIL Demonstration Platform
Microgrid Controller HIL Demonstration Platform Microgrid Controller HIL Demonstration Platform
Microgrid Controller HIL Demonstration Platform OPAL-RT TECHNOLOGIES
 
OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...
OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...
OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...OPAL-RT TECHNOLOGIES
 
RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...
RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...
RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...OPAL-RT TECHNOLOGIES
 
RT15 Berkeley | HYPERSIM - OPAL-RT
RT15 Berkeley | HYPERSIM - OPAL-RTRT15 Berkeley | HYPERSIM - OPAL-RT
RT15 Berkeley | HYPERSIM - OPAL-RTOPAL-RT TECHNOLOGIES
 
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RTRT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RTOPAL-RT TECHNOLOGIES
 
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...OPAL-RT TECHNOLOGIES
 
RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...
RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...
RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...OPAL-RT TECHNOLOGIES
 

Mehr von OPAL-RT TECHNOLOGIES (20)

Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...
Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...
Detailed large-scale real-time HYPERSIM EMT simulation for transient stabilit...
 
2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos
2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos
2017 Atlanta Regional User Seminar - Real-Time Microgrid Demos
 
2017 Atlanta Regional User Seminar - Conclusion
2017 Atlanta Regional User Seminar - Conclusion 2017 Atlanta Regional User Seminar - Conclusion
2017 Atlanta Regional User Seminar - Conclusion
 
2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...
2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...
2017 Atlanta Regional User Seminar - Using OPAL-RT Real-Time Simulation and H...
 
2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...
2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...
2017 Atlanta Regional User Seminar - Virtualizing Industrial Control Systems ...
 
2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...
2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...
2017 Atlanta Regional User Seminar - Residential Battery Storage Systems. Des...
 
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
 
Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...
Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...
Comparison of Non-real-time and Real-time Simulators with Relays-in-the-Loop ...
 
2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar Introduction2017 Atlanta Regional User Seminar Introduction
2017 Atlanta Regional User Seminar Introduction
 
Webinar | HIL-based Wide-area Monitoring, Protection and Control R&D and Testing
Webinar | HIL-based Wide-area Monitoring, Protection and Control R&D and TestingWebinar | HIL-based Wide-area Monitoring, Protection and Control R&D and Testing
Webinar | HIL-based Wide-area Monitoring, Protection and Control R&D and Testing
 
OPAL-RT and RTDS Technologies Co-Simulation
OPAL-RT and RTDS Technologies Co-SimulationOPAL-RT and RTDS Technologies Co-Simulation
OPAL-RT and RTDS Technologies Co-Simulation
 
Power Grid Cybersecurity
Power Grid CybersecurityPower Grid Cybersecurity
Power Grid Cybersecurity
 
Lab-Scale MMC Test Bench
Lab-Scale MMC Test BenchLab-Scale MMC Test Bench
Lab-Scale MMC Test Bench
 
Microgrid Controller HIL Demonstration Platform
Microgrid Controller HIL Demonstration Platform Microgrid Controller HIL Demonstration Platform
Microgrid Controller HIL Demonstration Platform
 
OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...
OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...
OPAL-RT | Setup and Performance of a Combined Hardware-in-loop and Software-i...
 
RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...
RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...
RT15 Berkeley | ePHASORsim: Real-time transient stability simulation tool - O...
 
RT15 Berkeley | HYPERSIM - OPAL-RT
RT15 Berkeley | HYPERSIM - OPAL-RTRT15 Berkeley | HYPERSIM - OPAL-RT
RT15 Berkeley | HYPERSIM - OPAL-RT
 
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RTRT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
 
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...RT15 Berkeley |  ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
RT15 Berkeley | ARTEMiS-SSN Features for Micro-grid / Renewable Energy Sourc...
 
RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...
RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...
RT15 Berkeley | Requirements on Power Amplifiers and HIL Real-Time Processors...
 

Kürzlich hochgeladen

SpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at RuntimeSpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at Runtimeandrehoraa
 
Folding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesFolding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesPhilip Schwarz
 
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样umasea
 
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...Cizo Technology Services
 
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Matt Ray
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based projectAnoyGreter
 
Intelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmIntelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmSujith Sukumaran
 
PREDICTING RIVER WATER QUALITY ppt presentation
PREDICTING  RIVER  WATER QUALITY  ppt presentationPREDICTING  RIVER  WATER QUALITY  ppt presentation
PREDICTING RIVER WATER QUALITY ppt presentationvaddepallysandeep122
 
cpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptcpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptrcbcrtm
 
Precise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive GoalPrecise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive GoalLionel Briand
 
Unveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New FeaturesUnveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New FeaturesŁukasz Chruściel
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...confluent
 
Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...
Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...
Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...OnePlan Solutions
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsSafe Software
 
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024StefanoLambiase
 
Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Hr365.us smith
 
What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...Technogeeks
 
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Angel Borroy López
 

Kürzlich hochgeladen (20)

SpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at RuntimeSpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at Runtime
 
Folding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesFolding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a series
 
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
 
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
Global Identity Enrolment and Verification Pro Solution - Cizo Technology Ser...
 
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based project
 
Advantages of Odoo ERP 17 for Your Business
Advantages of Odoo ERP 17 for Your BusinessAdvantages of Odoo ERP 17 for Your Business
Advantages of Odoo ERP 17 for Your Business
 
Intelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmIntelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalm
 
PREDICTING RIVER WATER QUALITY ppt presentation
PREDICTING  RIVER  WATER QUALITY  ppt presentationPREDICTING  RIVER  WATER QUALITY  ppt presentation
PREDICTING RIVER WATER QUALITY ppt presentation
 
cpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptcpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.ppt
 
Precise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive GoalPrecise and Complete Requirements? An Elusive Goal
Precise and Complete Requirements? An Elusive Goal
 
Unveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New FeaturesUnveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New Features
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
 
Odoo Development Company in India | Devintelle Consulting Service
Odoo Development Company in India | Devintelle Consulting ServiceOdoo Development Company in India | Devintelle Consulting Service
Odoo Development Company in India | Devintelle Consulting Service
 
Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...
Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...
Maximizing Efficiency and Profitability with OnePlan’s Professional Service A...
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data Streams
 
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
 
Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)
 
What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...
 
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
 

OPAL-RT Real time simulation using RT-LAB

  • 1. Real-Time Simulation of Renewable Energy Systems Using RT-LAB Presented by Andy Yen andy.yen@opal-rt.com Montréal, Canada ©2013 OPAL-RT - June 24th, 2013 From Imagination to Real-Time IEEE COMPEL 2013 The 14th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL)
  • 2. 2 When we think about environment and energy, we think: – Electric Vehicle – Hydro Power – Wind Power – Photovoltaic Power – Renewable Energies Power Engineers think about: – How to control – How to bring this technology quickly to market – How to distribute power – How to interconnect Introduction
  • 3. 3 Context Modelling Challenges for Renewable Energy Systems Solution Specialized models Summary Outline
  • 4. Context : Real-Time Simulation Helps in Development Process 4 Rapid Control Prototyping Hardware in-the-loop Testing Desktop Simulation Coding Validation
  • 5. Context : Controlled System, and Real-Time Simulation 5 PlantController Rapid Control Prototyping Hardware-in-the-loop Simulation
  • 6. 6 Electric Drive for Hybrid Electric Vehicle and Electric Vehicle Modular Multilevel Converter (MMC) for HVDC Connection Wind farms, Photovoltaic Systems to Grid Connection Renewable Energy Systems
  • 7. 7 Example figure : PMSM motor for electric vehicle model Reduce latency – Protection – Fast response needed – High speed – Fast rotating machine – Precision – Position of the rotor Challenges for Electric Drive
  • 8. Typical MMC HVDC circuit MMC response to a short circuit fault at transformer primary side 8 Challenges for Modular Multilevel Converter Large number of Inputs/Outputs managements Wikipedia
  • 9. 9 Numerous converters Fast switching Short Transmission Lines Challenges for Micro-Grid Vgrid A B C a b c Three-Phase Breaker A B C A B C Resistance: Ri Inductance: Li A B C A B C Three-Phase Series RL Resistance: Ri Inductance: Li A B C A B C Three-Phase Resistance Resistance: Rgrid A B C A B C Three-Phase Parallel RL Inductance : Lgrid Resistance : Rdamp_Lgrid A B C A B C Three-Phase Inductance Inductance: La Capacitance: DClink_C Resistance: DClink_R + - PV Subsystem Delta Capacitance : Cf g A B C + - g A B C + - 2-level IGBT/Diode
  • 10. 10 Low Latency High resolution – Small Time Steps Non-averaged model Fault capabilities Transient analysis Higher Harmonics effect Solution : FPGA-based simulation FPGA
  • 11. 11 FPGA are more difficult to program Modeling via Block Diagram Generating bitstream is long (typical: 120 min + ) Flashing FPGA firmware is long ~15 mins FPGA-based Simulation with eHS Easier to program Flexibility Save bitstream generation time Save reprogramming time Difficulties Want
  • 12. Fast and versatile architecture 12 Workstation Multicore CPU FPGA firmware System Under Control Ethernet PCIExpress Analog I/O Digital I/O Real-Time Computer
  • 13. ≈ 2 μs CPU and FPGA-based Simulation Platform Real-TimeSimulator CPU-Based Simulation Controller Firing PulsesMeasurements Analog Outputs Digital Inputs FPGA (IO management) CPU 25 μs model step ≈ 50-100 μs Analog Outputs Digital Inputs FPGA CPU FPGA-Based Simulation Controller Firing PulsesMeasurements Real-TimeSimulator 0.25 μs model step
  • 14. FPGA 14 eHS (electrical Hardware Simulation) solver – Generic Power Converter solver on FPGA – SPS model editor interface (Soon with PLECS, PSIM and EMTP-RV) – Reconfigurable from Host PC without reprogramming the FPGA – Simulation in off-line mode with eHS nodal solver within Simulink eHS Key Features Automatic Model Generation eHS Automatic generation of electric circuit model: No Mathematical Modeling No FPGA expertise No VHDL programming Circuit Editor (SPS, PLECS, …)
  • 15. eHS uses the modified nodal analysis approach – It solves a admittance matrix to find the voltage at each node and the current from each sources. – The admittance matrix does not need to be re-computed for each switch status – Simulated model topology and parameters can be modified without recompiling the bitstream The maximum size of the circuit is determined by the number of inputs, switches and reactive components Currently, the maximum number of components is : – 16 inputs (voltage/current sources) – 16 outputs (voltage/current measurements) – 24 switches (IGBTs, breakers, etc) – 60 non-switching devices (ie. L and C) – unlimited resistors eHS Nodal Solver eHS core Y[0:15] 24x switches control 16x Inputs U[0:15] S[0:23] 16 Measurements
  • 16. eHS method replaces switches by: – either a very small inductance when conducting – or a very small capacitor when not conducting This method is called the fix-Y because the admittance matrix does not change when a switch changes state. Switch Model in eHS h is the time step
  • 17. For the matrix to remain the same upon switching event, the following equation must remains true Gs= h L = C h where h is the time step When building the nodal matrix a value between 10 and 0.001 has to be set to represent a switch. This determines the value of the inductor and the capacitor representing the switch. L= h Gs C=h × Gs For example, a time step 100ns and a Gs=1, the switch will be represented by the following inductance when conducting or the following capacitance when non- conducting. L= h Gs = 100ns 1 = 100nH C=h × Gs=100ns × 1=100nF Ideally, we need a very small inductor and a very small capacitor to represent a ideal switch. Depending of the circuit topology, the best result is obtained by optimizing the value of Gs and compare results with conventional off-line software. Switch Model in eHS
  • 18. 18 FPGA are more difficult to program Modeling via Block Diagram Generating bitstream is long (typical: 120 min + ) Flashing FPGA firmware is long ~15 mins FPGA-based Simulation with eHS Easier to program Flexibility, freedom to change circuit topology Save bitstream generation time Save reflashing time On-line modification of circuit parameters On-line modification of circuit topology Difficulties Want
  • 19. eHS model : PV connected to grid. Time Step = 500ns 4 sources inputs (1 DC from PV, 3 phases AC from Grid) 16 voltage and current measurements, 15 switches (2x 2level inverters & 3phase breaker) CPU (20 μs)FPGA (500 ns)CPU Vgrid A B C a b c Three-Phase Breaker A B C A B C Resistance: Ri Inductance: Li A B C A B C Three-Phase Series RL Resistance: Ri Inductance: Li A B C A B C Three-Phase Resistance Resistance: Rgrid A B C A B C Three-Phase Parallel RL Inductance : Lgrid Resistance : Rdamp_Lgrid A B C A B C Three-Phase Inductance Inductance: La Capacitance: DClink_C Resistance: DClink_R + - PV Subsystem Delta Capacitance : Cf g A B C + - g A B C + - 2-level IGBT/Diode 19 Real-Time eHS Simulation Examples CONTROLLERS (On CPU, FPGA or using external hardware)
  • 20. 20 Results for PV model Real-Time eHS Simulation
  • 21. 21 Standard architecture of OPAL-RT RT-LAB simulator and RCP system Mixed CPU-FPGA-based Multi-Rate Simulation Platform ≈ 2 μs Analog Outputs Digital Inputs FPGA CPU Actual Controller Firing PulsesMeasurements Real-TimeSimulator 0.25 μs model step 10 μs to 100 μs model step ≈ 20-30 μs Complex grid and mechanical models and controllers communication systems ≈ 2 μs Analog Outputs Digital Inputs FPGA CPU RT-LAB Prototype Controller Firing PulsesMeasurements 0.25 μs model step 10 μs to 100 μs model step ≈ 20-30 μs Complex grid and mechanical models and controllers communication systems Low Latency Small time step For fast Power Electronic Larger time step For grid and mechanical subsystems
  • 23. 23 Motor model on FPGA – Using Finite Element Analysis (FEA) modeling approach: • Such as JMAG-RT and MotorSolve Specialized Models Flux, impedance values according to the mechanical angles of the motors
  • 24. 24 Comparative results : Specialized models  Torque control results at high currents (saturation) -50 0 50 Currents(A) 0 0.005 0.01 0.015 0 5 10 15 Time (s) Torque(N.m.) DQ (fixed Ld-Lq) VDQ SH (Ld=1.43 mH Lq=2.34 mH)(Ld=1.53 mH Lq=2.5 mH) (Ld=1.45 mH Lq=2.45 mH) motor file: '10k_D_C_I-.rtt' motor speed: 4000 RPM VDQ torque= 12.7 N.m. DQ torque=13.7 N.m. SH average torque= 12.5 N.m. Iref=20A (beta=0) Iref=40A (beta=40 deg)Iref=30A (beta=0)
  • 25. CPU 25 eHS Real-Time (eFPGAsim, Virtex 6) – Ac side & Converter: 400 ns – Inverter & Filter: 690 ns – FPGA PMSM motor: 100ns Real-Time FPGA-based Simulation Example − Inverter switching frequency = 8 kHz − Converter switching frequency = 4 kHz eHS FPGA eHS FPGA FPGA M INV P N TB L3_U0 L3_V0 L3_W0 C_UV C_VW C_WU Sine-Wave Filter Motor L3_U0 L3_V0 L3_W0 C_UV C_VW C_WU L3_U0 L3_V0 L3_W0 Power Source INPUT FILTER CNV 3-level Invertor OUTPUT FILTER M INV P N TB L3_U0 L3_V0 L3_W0 C_UV C_VW C_WU Sine-Wave Filter Motor L3_U0 L3_V0 L3_W0 C_UV C_VW C_WU L3_U0 L3_V0 L3_W0 Power Source INPUT FILTER CNV Trans former L1 L1 L1 L2 L2 L2 C C C L L L C C C Load
  • 26. Real-Time FPGA-based Simulation Example 26 eHS and SPS superimposed eHS and SPS superimposed zoomed Motor voltage (Phase-to-phase) Motor current zoomed 8-kHz components due to the 8-kHz PWM carrier
  • 27. 27 Non-Flashing technology: – 1 firmware by application which handle a large number of configuration Multiple configurations: – Generic Power Systems solver – Modification in a model editor – Reconfigurable from the host PC OPAL-RT FPGA-based Simulation
  • 28. 28 Flexible I/O routing and configuration OPAL-RT Real-Time Simulation
  • 29. 29 Flexible I/O routing and configuration OPAL-RT Real-Time Simulation
  • 30. 30 Flexible I/O routing and configuration OPAL-RT Real-Time Simulation
  • 31. 31 FPGA-based Simulation has many advantages over regular CPU-based simulation High Resolution Simulation Low Latency With OPAL-RT’s eFPGAsim, modelling is : Easy Reliable Flexible Customizable Summary FPGA ≈ 2 us Analog Outputs Digital Inputs FPGA CPU Controller Firing PulsesMeasurements Real-TimeSimulator 0.25 us model step
  • 32. 32 Cover the complete spectrum of power system analysis & studies ePOWERgrid Product Family ePHASORsim Real-Time Transient Stability Simulator 10 ms time step NEW HYPERsim Large Scale Power System Simulation for Utilities & Manufacturers 10 µs to 100 µs time step NEW eFPGAsim Power Electronics Simulation on FPGA 1 µs to 100 ns time step NEW 1 s (1 Hz) 10,000 5000 2500 1000 100 10 0 10 ms (100 Hz) 50 µs (20 KHz) 10 µs (100 KHz) 1µs (1 MHz) 100 ns (10 MHz) 10 ns (100 MHz) 20,000 Period (frequency) of transient phenomena simulated Number of Nodes eMEGAsim Power System & Power Electronics Simulation Based on Matlab/Simulink and SimPowerSystem 7 µs to 100 µs time step
  • 34. Real-Time Simulation of Renewable Energy Systems Using RT-LAB Presented by Andy Yen andy.yen@opal-rt.com Montréal, Canada From Imagination to Real-Time Thank you ! ©2013 OPAL-RT - June 24th, 2013 IEEE COMPEL 2013 The 14th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL)