SlideShare ist ein Scribd-Unternehmen logo
1 von 78
1
Matched Filters and
Ambiguity Functions for
RADAR Signals
Part 1
SOLO HERMELIN
Updated: 01.12.08http://www.solohermelin.com
2
SOLO
Matched Filters and Ambiguity Functions for RADAR Signals
Table of Content
RADAR RF Signals
Maximization of Signal-to-Noise Ratio
Continuous Linear Systems
The Matched Filter
The Matched Filter Approximations
1.Single RF Pulse
2. Linear FM Modulated Pulse (Chirp)
Discrete Linear Systems
RADAR Signals
Signal Duration and Bandwidth
Complex Representation of Bandpass Signals
Matched Filter Response to a Band Limited Radar Signal
Matched Filter Response to Phase Coding
Matched Filter Response to its Doppler-Shifted Signal
3
SOLO
Matched Filters and Ambiguity Functions for RADAR Signals
Table of Content (continue – 1)
Ambiguity Function for RADAR Signals
Definition of Ambiguity Function
Ambiguity Function Properties
Cuts Through the Ambiguity Function
Ambiguity as a Measure of Range and Doppler Resolution
Ambiguity Function Close to Origin
Ambiguity Function for Single RF Pulse
Ambiguity Function for Linear FM Modulation Pulse
Ambiguity Function for a Coherent Pulse Train
Ambiguity Function Examples (Rihaczek, A.W.,
“Principles of High Resolution Radar”)
References
A
M
B
I
G
U
I
T
Y
F
U
N
C
T
I
O
N
S
4
SOLO
The transmitted RADAR RF
Signal is:
( ) ( ) ( )[ ]ttftEtEt 0000 2cos ϕπ +=
E0 – amplitude of the signal
f0 – RF frequency of the signal
φ0 –phase of the signal (possible modulated)
The returned signal is delayed by the time that takes to signal to reach the target and to
return back to the receiver. Since the electromagnetic waves travel with the speed of light
c (much greater then RADAR and
Target velocities), the received signal
is delayed by
c
RR
td
21 +
≅
The received signal is: ( ) ( ) ( ) ( )[ ] ( )tnoisettttfttEtE dddr +−+−⋅−= ϕπα 00 2cos
To retrieve the range (and range-rate) information from the received signal the
transmitted signal must be modulated in Amplitude or/and Frequency or/and Phase.
ά < 1 represents the attenuation of the signal
RADAR Signal Processing
RADAR RF Signals
5
SOLO
The received signal is:
( ) ( ) ( ) ( )[ ] ( )tnoisettttfttEtE dddr +−+−⋅−= ϕπα 00 2cos
( ) ( ) tRRtRtRRtR ⋅+=⋅+= 222111 & 
We want to compute the delay time td due to the time td1 it takes the EM-wave to reach
the target at a distance R1 (at t=0), from the transmitter, and to the time td2 it takes the
EM-wave to return to the receiver, at a distance R2 (at t=0) from the target. 21 ddd ttt +=
According to the Special Theory of Relativity
the EM wave will travel with a constant
velocity c (independent of the relative
velocities ).21 & RR 
The EM wave that reached the target at
time t was send at td1 ,therefore
( ) ( ) 111111 ddd tcttRRttR ⋅=−⋅+=−  ( )
1
11
1
Rc
tRR
ttd 

+
⋅+
=
In the same way the EM wave received from the target at time t was reflected at td2 ,
therefore
( ) ( ) 222222 ddd tcttRRttR ⋅=−⋅+=−  ( )
2
22
2
Rc
tRR
ttd 

+
⋅+
=
RADAR Signal Processing
6
SOLO
The received signal is:
( ) ( ) ( ) ( )[ ] ( )tnoisettttfttEtE dddr +−+−⋅−= ϕπα 00 2cos
21 ddd ttt += ( )
1
11
1
Rc
tRR
ttd 

+
⋅+
= ( )
2
22
2
Rc
tRR
ttd 

+
⋅+
=
( ) ( )
2
22
1
11
21
Rc
tRR
Rc
tRR
tttttttt ddd 



+
⋅+
−
+
⋅+
−=−−=−






+
−
+
−
+





+
−
+
−
=−
2
2
2
2
1
1
1
1
2
1
2
1
Rc
R
t
Rc
Rc
Rc
R
t
Rc
Rc
tt d 



From which:
or:
Since in most applications we can
approximate where they appear in the arguments of E0 (t-td), φ (t-td),
however, because f0 is of order of 109
Hz=1 GHz, in radar applications, we must use:
cRR <<21, 
1,
2
2
1
1
≈
+
−
+
−
Rc
Rc
Rc
Rc




( )   





−⋅










++





−⋅










+=





−⋅





−+





−⋅





−⋅≈− 2
.
201
.
10
22
0
11
00
2
1
2
1
2
12
1
2
12
1
21
D
Ralong
FreqDoppler
DD
Ralong
FreqDoppler
Dd ttffttff
c
R
t
c
R
f
c
R
t
c
R
fttf

( ) ( ) ( ) ( ) ( )[ ] ( )tnoisettttffttEtE ddDdr +−+−⋅+−= ˆˆˆ2cosˆ 00 ϕπα
where 21
2
2
1
121
2
02
1
01
ˆˆˆ,,,ˆˆˆ,
2ˆ,
2ˆ
dddddDDDDD ttt
c
R
t
c
R
tfff
c
R
ff
c
R
ff +=≈≈+=−≈−≈

Finally
Matched Filters in RADAR Systems
Doppler Effect
7
SOLO
The received signal model:
( ) ( ) ( ) ( ) ( )[ ] ( )tnoisettttffttEtE ddDdr +−+−⋅+−= ϕπα 00 2cos
Matched Filters in RADAR Systems
Delayed by two-
way trip time
Scaled down
Amplitude Possible phase
modulated
Corrupted
By noise
Doppler
effect
We want to estimate:
• delay td range c td/2
• amplitude reduction α
• Doppler frequency fD
• noise power n (relative to signal power)
• phase modulation φ
8
Matched Filters in RADAR SystemsSOLO
α MV
R
EV
Target
Transmitter&
Receiver
The transmitted RADAR RF
Signal is:
( ) ( ) ( )[ ]ttftEtEt θπ += 00 2cos
( )
c
tR
td
02
≅
Since the received signal preserve the envelope shape of the known transmitted signal
we want to design a Matched Filter that will distinguish the signal from the receiver noise.
( ) ( )
λ
λ
0
/
0
0 22 0 tR
f
c
tR
f
fc
D

−=−≅
=
the received signal is: ( ) ( ) ( ) ( ) ( )[ ] ( )tnoisettttffttEtE ddDdr +−+−+−≈ θπα 00 2cos
Scaled Down
In Amplitude Two-Way
Delay
Possible
Phase Modulation
Doppler
Frequency
For R1 = R2 = R we obtain that
Return to Table of Content
9
Matched Filters for RADAR Signals
( ) ( ) ( )tntstv ii
+=
Linear Filter
( )thopt
( ) ( ) ( )tntsty oo
+=
SOLO
Maximization of Signal-to-Noise Ratio
Consider the problem of choosing a linear time-invariant filter hopt (t) that maximizes
the output signal-to-noise ratio at a predefined time t0.
The input waveform is: ( ) ( ) ( )tntstv ii +=
( )tsi - a known signal component
( )tni - noise (stationary random process) component
The output waveform is: ( ) ( ) ( )tntsty oo
+=
Assume that the linear filter has a finite time memory T, then
( ) ( ) ( )∫ −=
T
iopto dtshts
0
00 τττ ( ) ( ) ( )∫ −=
T
iopto dtnhtn
0
00 τττ
The signal-to-noise ratio is defined as:
( )
( )0
2
0
2
tn
ts
N
S
o
o
=





To find hopt (t) a variational technique is applied, by defining a non-optimal filter
( ) ( ) ( )tgthth opt ε+= ( ) ( ) 0
0
0 =−∫
T
i dtsg τττwith: and ε any real.
( )0
2
tno - the mean square value of ( )0tno
Continuous Linear Systems
10
Matched Filters for RADAR Signals
( ) ( ) ( )tntstv ii +=
Linear Filter
( ) ( )tgthopt ε+
( ) ( ) ( )tntsty oo
''' +=
SOLO
Maximization of Signal-to-Noise Ratio
The output signal s’o (t) and noise n’o (t) at time t0 are:
( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( ) ( )0
0
0
0
0
0
0
00'
tsdtsgdtsh
dtsghts
o
T
i
T
iopt
T
iopto
=−+−=
−+=
∫∫
∫
  
τττετττ
τττετ
( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )∫
∫∫∫
−+=
−+−=−+=
T
io
T
i
T
iopt
T
iopto
dtngtn
dtngdtnhdtnghtn
0
00
0
0
0
0
0
00'
τττε
τττεττττττετ
( )[ ] ( )[ ] ( ) ( ) ( ) ( ) ( )
2
0
0
2
0
00
2
0
2
0 2' 





−+−+= ∫∫
T
i
T
iooo dtngdtngtntntn τττετττε
By the definition of the optimal filter ( )[ ] ( )[ ]2
0
2
0' tntn oo ≥
Therefore ( ) ( ) ( ) ( ) ( ) 02
2
0
0
2
0
00 ≥





−+− ∫∫
T
i
T
io dtngdtngtn τττετττε
Continuous Linear Systems (continue – 1(
11
Matched Filters for RADAR Signals
( ) ( ) ( )tntstv ii +=
Linear Filter
( ) ( )tgthopt ε+
( ) ( ) ( )tntsty oo
''' +=
SOLO
Maximization of Signal-to-Noise Ratio
This inequality is satisfied for all values of ε if and only if the first term vanishes
( ) ( ) ( ) ( ) ( ) 02
2
0
0
2
0
00 ≥





−+− ∫∫
T
i
T
io dtngdtngtn τττετττε
( ) ( ) 0
0
0 =−∫
T
i dtsg τττ
( ) ( ) ( ) 02
0
00 =−∫
T
io dtngtn τττ
Using we obtain:( ) ( ) ( )∫ −=
T
iopto dtnhtn
0
00 τττ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
0 0
00
0 0
00 =−−=−− ∫∫∫∫
T T
iiopt
T T
iiopt ddtntnhgddtntnhg στστστστστστ
where is the Autocorrelation Function of the input noise.( ) ( ) ( )στστ −−=− 00: tntnR iinn ii
Continuous Linear Systems (continue – 2(
12
Matched Filters for RADAR Signals
( ) ( ) ( )tntstv ii +=
Linear Filter
( ) ( )tgthopt ε+
( ) ( ) ( )tntsty oo
''' +=
SOLO
Maximization of Signal-to-Noise Ratio
Therefore the optimality condition is:
( ) ( ) ( ) 0
0 0
=





−∫ ∫ τσστστ ddRhg
T T
nnopt ii
( ) ( ) 0
0
0 =−∫
T
i dtsg τττComparing with the condition:
we obtain:
( ) ( ) ( ) TtskdRh i
T
nnopt ii
≤≤−=−∫ ττσστσ 00
0
k is obtained using:
( ) ( ) ( ) ( ) ( ) ( ) ( )
k
tn
ddRhh
k
dtshts o
T T
nnoptopt
T
iopto ii
0
2
0 00
00
1
=−=−= ∫∫∫ στστσττττ
( )
( )0
0
2
ts
tn
k
o
o
=
For T → ∞ we can take the Fourier Transfer of the result:
( ) ( ) ( )
( )
( )[ ]τσστσ −=





−∫∞→
0
0
0
2
0
lim ts
ts
tn
dRh i
o
o
T
nnopt
T ii
FF
Continuous Linear Systems (continue – 3(
13
Matched Filters for RADAR SignalsSOLO
Maximization of Signal-to-Noise Ratio
( ) ( ) ( )
( )
( )[ ]τσστσ −=





−∫
∞
0
0
0
2
0
ts
ts
tn
dRh i
o
o
nnopt ii
FF
( ) ( ) ( )tntstv ii +=
Linear Filter
( )thopt
( ) ( ) ( )tntsty oo
+=
( ) ( ) ( )
( )
( ) 0*
0
0
2
tj
i
o
o
nnopt eS
ts
tn
H ii
ω
ωωω −
=Φ ( ) ( )
( )
( )
( )ω
ω
ω
ω
iinn
tj
i
o
o
opt
eS
ts
tn
H
Φ
=
− 0*
0
0
2
Continuous Linear Systems (continue – 4(
Return to Table of Content
14
Matched Filters for RADAR Signals
( )tsi
t
T0 mt
SOLO
The Matched Filter
Assume that the two-sided noise spectrum density is of a white noise, i.e.
( ) ( )στδστ −=−
2
0N
R iinn
( ) ( )[ ] 2
0N
R iiii nnnn ==Φ τω F
then
( ) ( ) 0*2 tj
i
o
opt eS
N
k
H ω
ωω −
= ( ) ( ) Tttts
N
k
th i
o
opt ≤≤−= 0
2
0
( )tsi
t
t
( )tsi −
T0
0
T−
mt
( )tsi
t
t
t
( )tsi −
( ) ( ) Ttttts
N
k
th mmiopt ≤≤−= ,0
2
0
T0
0
T−
0 mtm
tT −
mt
The optimal filter, that maximizes the
Signal-to-Noise Ratio for a white noise is
called a Matched Filter of the known
Signal si (t).
We can see that for a known input
signal of finite duration T the optimal
Matched Filter is also of finite duration T.
15
Matched Filters for RADAR Signals
( ) ( ) ( ) ( ) 0
2
0
0
2 tj
iiopt eS
N
k
SHS ω
ωωωω −
==
SOLO
The Matched Filter
The signal and the noise at the output of the matched filter are found as follows:
then
( ) ( ) ( )
( ) ( )
( )∫ ∫∫
+∞
∞−
+∞
∞−
−−
+∞
∞−
−






==
π
ω
ω
π
ω
ω ωωω
2
2
2
2 0*2 d
dvevseS
N
kd
eS
N
k
ts vj
i
ttj
i
o
ttj
i
o
o
m
( ) ( ) 0*2 tj
i
o
opt eS
N
k
H ω
ωω −
=
( ) ( ) ( )
( ) ( )∫∫ ∫
+∞
∞−
+∞
∞−
+∞
∞−
−−
+−== dvttvsvs
N
k
dv
d
eSvs
N
k
ii
o
vttj
ii
o
0
* 2
2
2 0
π
ω
ω ω
The Autocorrelation Function of the input signal is defined as: ( ) ( ) ( )∫
+∞
∞−
−= dvvsvsR iiss ii
ττ :
therefore: ( ) ( )0
2
ttR
N
k
ts iiss
o
o −=
( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗






=Φ= ωω
π
ωωωω
π
d
N
S
N
k
dHHtn o
i
o
optnnopto ii
2
2
2
1
2
1 2
2
2
( ) ( ) mtj
i
o
opt
eS
N
k
H ω
ωω −
=
*2
( ) ( ) ( )[ ]∫
+∞
∞−
== dvvs
N
k
R
N
k
ts i
o
ss
o
o ii
2
0
2
0
2
16
Matched Filters for RADAR SignalsSOLO
The Matched Filter
therefore:
( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
∗






=Φ= ωω
π
ωωωω
π
d
N
S
N
k
dHHtn o
i
o
optnnopto ii
2
2
2
1
2
1 2
2
2
( ) ( ) ( )[ ]∫
+∞
∞−
== dvvs
N
k
R
N
k
ts i
o
ss
o
o ii
2
0
2
0
2
( )[ ]
( )
( )[ ]
( )
( )[ ]
( )∫
∫
∫
∫
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞− 





=












==





π
ω
ω
π
ω
ω
2222
2
2
2
2
2
2
2
2
2
2
2
0
d
S
N
dvvs
dN
S
N
k
dvvs
N
k
tn
ts
N
S
i
o
i
o
i
o
i
o
o
o
Max
Since by Parseval’s relation: (E – input signal energy)( )[ ] ( ) E
d
Sdvvs ii
== ∫∫
+∞
∞−
+∞
∞−
π
ω
ω
2
22
( )[ ]
( ) oo
o
Max N
E
tn
ts
N
S 2
2
2
0
==





We have: ( ) ( ) ( )∫
+∞
∞−
+−= dvttvsvs
N
k
ts ii
o
to 0
2
0
Independent of signal waveform
17
Matched Filters for RADAR Signals
( ) ( )
( ) ( )


≤≤−=
= −∗
Ttttsth
eSH tj
00
0ω
ωω
SOLO
The Matched Filter (Summary(
s (t) - Signal waveform
S (ω) - Signal spectral density
h (t) - Filter impulse response
H (ω) - Filter transfer function
t0 - Time filter output is sampled (for Radar signals this is the time the received returned
signal is expected to arrive)
n (t) - noise
N (ω) - Noise spectral density
Matched Filter is a linear time-invariant filter hopt (t) that maximizes
the output signal-to-noise ratio at a predefined time t0, for a given signal s (t(.
The Matched Filter output is:
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0
00
tj
o eSSHSS
dttssdthsts
ω
ωωωωω
ττττττ
−∗
+∞
∞−
+∞
∞−
⋅=⋅=
+−=−= ∫∫
Return to Table of Content
18
Matched Filters for RADAR SignalsSOLO
Matched Filter Output for White Noise Spectrum
s (t) - Signal waveform with energy E
S (ω) - Signal spectral density
h (t) - Filter impulse response
H (ω) - Filter transfer function
( ) ( ) ( ) ( ) ( ) ( )
( )0
* 0
2
1
2
1
ttRdeSSdeSHts ss
ttjtj
o −=== ∫∫
+∞
∞−
−
+∞
∞−
ωωω
π
ωωω
π
ωω
( ) ( ) ( ) ( )0*
'
0
2
ss
TheoremsParsevalT
RdSSdttsE === ∫∫
+∞
∞−
ωωω
so (t) - Filter output signal
N (ω) - Noise spectral density η/2
Rnn (τ) - Noise Autocorrelation Function η/2 δ (τ) ( ) ( ) ( )∫−
∞→
+=
T
T
T
nn dttntn
T
R ττ
1
lim
Rss (τ) - Signal Autocorrelation Function ( ) ( ) ( )∫−
∞→
+=
T
T
T
ss dttsts
T
R ττ
1
lim
S/N - Output Power signal-to-noise ratio E/(η/2)
t0 - Time filter output is sampled (for Radar signals this is the time the received returned
signal is expected to arrive)
Return to Table of Content
19
Matched Filters for RADAR Signals
SOLO
The Matched Filter Approximations
1.Single RF Pulse
( )
( )




>
≤≤−
=
2/0
2/2/cos 0
p
pp
i
tt
ttttA
ts
ω
pt - pulse width
( ) ( )
( )
( )
( )
( )














−





 −
+
+





 +






=
= ∫−
−
2
2
sin
2
2
sin
2
cos
0
0
0
0
2/
2/
0
p
p
p
p
p
t
t
tj
i
t
t
t
t
tA
dtetAjS
p
p
ωω
ωω
ωω
ωω
ωω ω
Fourier Transform
0ω - carrier frequency
We found: ( ) ( ) ( ) ( )∫
+∞
∞−
−=−= dvtvsvs
N
k
ttR
N
k
ts ii
o
tss
o
to ii
22
00
0
therefore:
( ) ( )
( )
( )
( )[ ]
( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( )
( ) ( ) ttt
N
tkA
ttt
N
kA
tttvttt
tttvttt
N
kA
ttdvtvt
ttdvtvt
N
kA
ttdvtvAvA
ttdvtvAvA
N
k
tR
N
k
ts
p
o
p
p
o
tt
p
tt
tp
p
t
ttp
o
p
tt
t
p
t
tt
o
tt
t
p
p
t
tt
o
ss
o
to
p
p
p
p
p
p
p
p
p
p
p
p
p
ii
0
2
0
2
1
1
2/
2/0
0
0
2/
2/0
0
02
2/
2/
00
2/
2/
00
2
2/
2/
00
2/
2/
00
0
cos/1cos
02sin
2
1
cos
02sin
2
1
cos
02coscos
02coscos
0coscos
0coscos
22
0
2
0
ωω
ω
ω
ω
ω
ω
ω
ωω
ωω
ωω
ωω
ω
−=−≈







<<−−++
<<−+−
=








<<−−+
<<−+
=








<<−−
<<−
==
<<
−
+
−
−
+
−
−
+
−
−
=
∫
∫
∫
∫
( ) ( ) ( )tntstv ii +=
Linear Filter
( )thopt
( ) ( ) ( )tntsty oo +=
20
Matched Filters for RADAR SignalsSOLO
The Matched Filter Approximations
1.Single RF Pulse (continue – 1(
( )
( )




>
≤≤−
=
2/0
2/2/cos 0
p
pp
i
tt
ttttA
ts
ω
pt - pulse width
( ) ( )
( )
( )
( )
( )
0
0
2
2
sin
2
2
sin
2 0
0
0
0
*
tj
p
p
p
p
p
tj
iMF
e
t
t
t
t
tA
ejSjS
ω
ω
ωω
ωω
ωω
ωω
ωω
−
−














−





 −
+
+





 +






=
=
0ω - carrier frequency
We obtained:
( )
( )





≥
<−
==
p
pp
o
p
to
tt
ttttt
N
tkA
ts
0
cos/1 0
2
00
ω
( ) ( ) ( )tntstv ii +=
Linear Filter
( )thopt
( ) ( ) ( )tntsty oo +=
t
2
τ
2
τ
−
( )tso
0
2
N
Ak τ
ττ−
0=mt
Return to Table of Content
21
Matched Filters for RADAR SignalsSOLO
The Matched Filter Approximations
1.Single RF Pulse (continue – 2(
( )
( )




>
≤≤−
=
2/0
2/2/cos 0
p
pp
i
tt
ttttA
ts
ω
pt - pulse width
( ) ( )
( )
( )
( )
( )
0
0
2
2
sin
2
2
sin
2 0
0
0
0
*
tj
p
p
p
p
p
tj
iMF
e
t
t
t
t
tA
ejSjS
ω
ω
ωω
ωω
ωω
ωω
ωω
−
−














−





 −
+
+





 +






=
=
0ω - carrier frequency
We obtained:
Return to Table of Content
22
SOLO
2. Linear FM Modulated Pulse (Chirp)
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
The Fourier Transform is:
( ) [ ]
( ) ( )∫∫
∫
−−
−












++−+












+−=
−





+=
2/
2/
2
0
2/
2/
2
0
2/
2/
2
0
2
exp
2
1
2
exp
2
1
exp
2
cos
p
p
p
p
p
p
t
t
t
t
t
t
i
dt
t
tjAdt
t
tjA
dttj
t
tAS
µ
ωω
µ
ωω
ω
µ
ωω
∫∫ −− 












 +
+−













 +
+













 −
−













 −
−=
2/
2/
2
0
2
0
2/
2/
2
0
2
0
2
exp
2
exp
22
exp
2
exp
2
p
p
p
p
t
t
t
t
dttjj
A
dttjj
A
µ
ωωµ
µ
ωω
µ
ωωµ
µ
ωω

Change variables: xt =




 −
−
µ
ωω
π
µ 0
yt =




 +
+
µ
ωω
π
µ 0
( ) ∫∫ −− 





−













 +
+



















 −
−=
2
1
2
1
2
exp
2
exp
22
exp
2
exp
2
2
2
0
2
2
0
Y
Y
X
X
i dt
y
jj
A
dt
x
jj
A
S
π
µ
ωωπ
µ
ωω
ω





 −
−=




 −
+=
µ
ωω
π
µ
µ
ωω
π
µ 0
2
0
1
2
&
2
pp t
X
t
X 




 +
−=




 +
+=
µ
ωω
π
µ
µ
ωω
π
µ 0
2
0
1
2
&
2
pp t
Y
t
Y
Define: ( )f
n
tf p ∆=−=∆ πωωµ
π
2
2
&
2
1
: 0
Matched Filters for RADAR Signals
23
SOLO
2. Linear FM Modulated Pulse (continue – 1)
The Fourier Transform is:
( ) ( ) ( )
∫∫ −− 





−




 +
+











 −
−=
2
1
2
1
2
exp
2
exp
22
exp
2
exp
2
22
0
22
0
Y
Y
X
X
i dt
y
jj
A
dt
x
jj
A
S
π
µ
ωωπ
µ
ωω
ω
The first part gives the spectrum around ω = ω0, and the second part around ω = -ω0 :
where: are Fresnel Integrals,
which have the properties:
( ) ( ) ∫∫ ==
UU
dz
z
USdz
z
UC
0
2
0
2
2
sin&
2
cos
ππ
( ) ( ) ( ) ( )USUSUCUC −=−−=− &
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] ( ) ( )−+
++−=−+−




 −
+
+++




 −
−=
ωωωω
µ
ωω
µ
π
µ
ωω
µ
π
ω
002211
2
0
2211
2
0
2
exp
2
2
exp
2
ii
i
SSYSjYCYSjYCj
A
XSjXCXSjXCj
A
S
Matched Filters for RADAR Signals
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
24
SOLO Fresnel Integrals
Augustin Jean Fresnel
1788-1827
Define Fresnel Integrals
( ) ( )
( ) ( )
( ) ( )
( ) ( )∫ ∑
∑∫
∞
=
+
∞
=
+
+
−=





=
++
−=





=
α
α
αα
π
α
αα
π
α
0 0
14
2
0
34
0
2
!214
1
2
sin:
!1234
1
2
cos:
n
n
n
n
n
n
nn
x
dS
nn
x
dC
( ) ( )αααα
πα
SjCdj +=





∫0
2
2
exp
( ) ( ) 5.0±=∞±=∞± SC
( ) ( ) ( ) ( )USUSUCUC −=−−=− &
The Cornu Spiral is defined as the
plot of S (u) versus C (u)
duuSd
duuCd






=






=
2
2
2
sin
2
cos
π
π
( ) ( ) duSdCd =+
22
Therefore u may be thought as measuring arc
length along the spiral.
25
SOLO
2. Linear FM Modulated Pulse (continue – 2)
The Fourier
Transform is:
Define:
( ) ( ) ( )[ ] ( ) ( )[ ]{ }2
21
2
210
2
XSXSXCXC
A
Si
+++=− +
µ
π
ωωAmplitude Term:
Square Law Phase Term: ( ) ( )
µ
ωω
ω
2
2
0
1
−
−=Φ
Residual Phase Term: ( ) ( ) ( )
( ) ( ) 4
1tan
5.05.0
5.05.0
tantan 11
1
21
211
2
π
ω
τ
==
+
+
→
+
+
=Φ −−
>>∆
−
f
XCXC
XSXS
( ) ( )n
t
fXn
t
fX
pp
−∆=+∆= 1
2
&1
2
21
( )ω2Φ( ) +
− ωω0iS
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] ( ) ( )−+
++−=−+−




 −
+
+++




 −
−=
ωωωω
µ
ωω
µ
π
µ
ωω
µ
π
ω
002211
2
0
2211
2
0
2
exp
2
2
exp
2
ii
i
SSYSjYCYSjYCj
A
XSjXCXSjXCj
A
S
Matched Filters for RADAR Signals
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
26
SOLO
2. Linear FM Modulated Pulse (continue – 3)
Matched Filters for RADAR Signals
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] ( ) ( )−+
−
−−
++−=−+−




 −
+
+++




 −
−==
ωωωω
µ
ωω
µ
π
µ
ωω
µ
π
ωω
ω
ωω
002211
2
0
2211
2
0*
0
00
2
exp
2
2
exp
2
MFMF
tj
tjtj
iMF
SSeYSjYCYSjYCj
A
eXSjXCXSjXCj
A
eSS
27
SOLO
2. Linear FM Modulated Pulse (continue – 4)
Matched Filters for RADAR Signals
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
The Matched Filter output is given by: ( ) ( ) ( ) ( )∫
+∞
∞−
−=−= dvtvsvs
N
k
ttR
N
k
ts ii
o
tss
o
to ii
22
00
0
( )
( ) ( )
( ) ( )








<<−




 −
+−





+
<<




 −
+−





+
=
∫
∫
+
−
+
−
2/
2/
2
0
2
0
2/
2/
2
0
2
0
0
2
cos
2
cos
0
2
cos
2
cos
2
0 p
p
p
p
tt
t
p
t
tt
p
o
to
ttdv
tv
tv
v
v
ttdv
tv
tv
v
v
N
k
ts
µ
ω
µ
ω
µ
ω
µ
ω
We discard the double frequency term, whose contribution to the value of integral
is small for large ω0,
( )
( )
( )








<<−











 −+
+−+





−+
<<











 −+
+−+





−+
=
∫
∫
+
−
+
−
2/
2/
22
0
2
0
2/
2/
22
0
2
0
2
0
2
22
2cos
2
cos
0
2
22
2cos
2
cos
0 p
p
p
p
tt
t
p
t
tt
p
o
to
ttdv
tvtv
tv
t
tvt
ttdv
tvtv
tv
t
tvt
N
Ak
ts
µµµ
ω
µ
µω
µµµ
ω
µ
µω
( )
( )















<<−
−+





 −+
+−
+






+−
<<
−+





 −+
+−
+






+−
=
+
−
+
−
+
−
+
−
0
242
2
22
2sin
2
sin
0
242
2
22
2sin
2
sin
2/
2/
0
22
0
2/
2/
2
0
2/
2/
0
22
0
2/
2/
2
0
2
tt
tv
tvtv
tv
t
tv
t
t
tt
tv
tvtv
tv
t
tv
t
t
N
Ak
p
tt
t
tt
t
p
t
tt
t
tt
o p
p
p
p
p
p
p
p
µµω
µµµω
µ
µµω
µµω
µµµω
µ
µµω
Expanding the integrand trigonometrically
28
SOLO
2. Linear FM Modulated Pulse (continue – 5)
Matched Filters for RADAR Signals
Return to Table of Content
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
The Matched Filter output is given by:
( )









<<−





+−
<<





+−
≈ +
−
+
−
0
2
sin
0
2
sin
2/
2/
2
0
2/
2/
2
0
2
0
tttv
t
t
tttv
t
t
tN
Ak
ts
p
tt
t
p
t
tt
o
to
p
p
p
p
µ
µ
ω
µ
µ
ω
µ
( )
( )






<<−





−−−





++−
<<





−+−−





+−
=
0
22
sin2/
2
sin
02/
2
sin
22
sin
2
0
2
0
2
0
2
02
tt
ttt
tttt
t
t
ttttt
t
t
ttt
t
tN
Ak
p
p
p
pp
p
o µµ
ωµ
µ
ω
µ
µ
ω
µµ
ω
µ
( ) ( )
( ) ( )
( )
( )
( )
( )









>
<














−






−
−
=







<<−





+
<<





−
=
p
p
p
p
p
p
p
o
p
pp
pp
o
tt
ttt
tt
tt
tt
tt
tt
N
tAk
ttttt
t
ttttt
t
tN
Ak
0
cos
/1
2
/1
2
sin
/1
2
0cos
2
sin2
0cos
2
sin2
0
2
0
02 ω
µ
µ
ω
µ
ω
µ
µ
29
SOLO
2. Linear FM Modulated Pulse (continue – 6)
Matched Filters for RADAR Signals
Return to Table of Content
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
The Matched Filter output is given by:
( )
( )
( )
( )
( )









>
<














−






−
−
≈
p
p
p
p
p
p
p
o
p
to
tt
ttt
tt
tt
tt
tt
tt
N
tAk
ts
0
cos
/1
2
/1
2
sin
/1 0
2
0
ω
µ
µ
o
p
N
tAk 2
pt
t
µ
π2
=∆
1>>ptµ
30
SOLO
2. Linear FM Modulated Pulse (continue – 6)
Matched Filters for RADAR Signals
Return to Table of Content
( )
222
cos
2
0
pp
i
t
t
tt
tAts ≤≤−





+=
µ
ω
ωωωπωµ
π
∆=−∆=∆=∆
2
:&2:
2
1
: 0
n
ftf p
31
Matched Filters for RADAR Signals
( ) ( ) ( )tntstv ii
+=
Linear Filter
( )Tnhopt
( ) ( ) ( )tntsty oo +=
( ) ( ) ( )TnnTnsTnv ii
+=
T T
( ) ( ) ( )TnnTnsTny oo
+=
SOLO
Maximization of Signal-to-Noise Ratio
Consider the problem of choosing a discrete linear time-invariant filter hopt (n T) that
Maximizes the discrete output signal-to-noise ratio at a predefined time mT.
The input waveform is: ( ) ( ) ( )tntstv ii +=
( )tsi - a known signal component
( )tni - noise (stationary random process) component
The output waveform is: ( ) ( ) ( )TnnTnsTny oo
+=
The signal-to-noise ratio at discrete time mT is defined as:
( )
( )Tmn
Tms
N
S
o
o
2
2
=





( )Tmno
2
- the mean square value of ( )Tmno
Discrete Linear Systems
The input and output of the discrete linear filter are synchronous discretized with
a constant time period T. S (z) is the Z-transform of the discrete signal input si (nT)
We have: ( ) ( ) ( )∫
+
−
=
σ
σ
ωωω
ω
σ
deeeTns TjTjTj
o
HS
2
1
( ){ } ( ) ( )∫
+
−
=
σ
σ
ω
ωω
σ
deTnnE Tj
o
22
2
1
HN
32
Matched Filters for RADAR Signals
( ) ( ) ( )tntstv ii
+=
Linear Filter
( )Tnhopt
( ) ( ) ( )tntsty oo +=
( ) ( ) ( )TnnTnsTnv ii
+=
T T
( ) ( ) ( )TnnTnsTny oo
+=
SOLO
Maximization of Signal-to-Noise Ratio
Consider the problem of choosing a discrete linear time-invariant filter hopt (n T) that
Maximizes the discrete output signal-to-noise ratio at a predefined time mT.
Like in the continuous case the optimal H (z) is:
( )
( )
( ) ( )
( ) ( )∫
∫
+
−
+
−
==





σ
σ
ω
σ
σ
ω
ωω
σ
ωω
σ
de
de
Tmn
Tms
N
S
Tj
Tj
i
o
o
2
2
2
2
2
1
2
1
HN
HS
Discrete Linear Systems (continue – 1(
If N (ω) = N0 we have:
( ) ( ) ( )∫
+
−
=
σ
σ
ωωω
ω
σ
deeeTns TjTjTj
o
HSi
2
1
( ){ } ( ) ( )∫
+
−
=
σ
σ
ω
ωω
σ
deTnnE Tj
o
22
2
1
HN
( ) ( )
( )
mTj
Tj
iTj
e
e
ke ω
ω
ω
ω
−
=
N
S
H
( ) [ ] [ ]nms
N
k
nhz
zN
k
z i
m
i
−=⇔





= −
00
1
SH
Return to Table of Content
33
RADAR SignalsSOLO
Waveforms
( ) ( ) ( )[ ]tttats θω += 0cos
a (t) – nonnegative function that represents any amplitude modulation (AM)
θ (t) – phase angle associated with any frequency modulation (FM)
ω0 – nominal carrier angular frequency ω0 = 2 π f0
f0 – nominal carrier frequency
Transmitted Signal
( ) ( ) ( )[ ]{ }ttjtats θω += 0exp
Phasor (complex) Transmitted Signal
34
RADAR SignalsSOLO
Quadrature Form
( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )[ ] ( )tttattta
tttats
00
0
sinsincoscos
cos
ωθωθ
θω
−=
+=
where: ( ) ( ) ( )[ ]
( ) ( ) ( )[ ]ttats
ttats
Q
I
θ
θ
sin
cos
=
=
( ) ( ) ( ) ( ) ( )ttsttsts QI 00 sincos ωω −=
One other form: ( ) ( ) ( )[ ] ( ) ( ) ( )
[ ]tjtjtjtj
ee
ta
tttats θωθω
θω −−+
+=+= 00
2
cos 0
( ) ( ) ( )[ ]tjtj
etgetgts 00 *
2
1 ωω −
+= ( ) ( ) ( ) ( ) ( )tj
QI etatsjtstg θ
=+=:
Envelope of the signal
( ) ( ) tj
etgts 0ω
=
Phasor (complex) Transmitted Signal
35
RADAR SignalsSOLO
Spectrum
Define the Fourier Transfer F
( ) ( ){ } ( ) ( )∫
+∞
∞−
−== dttjtstsS ωω exp:F ( ) ( ){ } ( ) ( )∫
+∞
∞−
==
π
ω
ωωω
2
exp:
d
tjSSts -1
F
( ) ( ) ( )[ ]tjtj
etgetgts 00 *
2
1 ωω −
+= ( ) ( ) ( )[ ]0
*
0
2
1
ωωωωω −−+−= GGS-1
F
F
-1
F
F
( ) ( ) ( ) ( ) ( )tj
QI etatsjtstg θ
=+=:
( ) ( ) ( )[ ]tttats θω += 0cos
Inverse Fourier Transfer F -1
Envelope of the signalWe defined:
36
RADAR SignalsSOLO
Energy ( ) ( ) ( )[ ]tttats θω += 0cos
( ) ( ) ( )[ ]{ } ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≈++== dttadttttadttsEs
2
0
22
2
1
22cos1
2
1
: θω
Parseval’s Formula
Proof:
( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
= ωωω
π
dFFdttftf 2
*
12
*
1
2
1
( ) ( ) ( )∫
+∞
∞−
−= dttjtfF ωω exp11
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫ ∫∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
=−=−=
π
ω
ωω
π
ω
ωω
π
ω
ωω
22
exp
2
exp 2
*
112
*
2
*
12
*
1
d
FF
d
dttjtfFdt
d
tjFtfdttftf
( ) ( ) ( )∫
+∞
∞−
−=
π
ω
ωω
2
exp
*
2
*
2
d
tjFtf
If s (t) is real, than s (t) = s*(t) and
( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
=== ωω
π
dSdttsdttsEs
222
2
1
:
37
RADAR SignalsSOLO
Energy (continue – 1) ( ) ( ) ( )[ ]tttats θω += 0cos
( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
=== ωω
π
dSdttsdttsEs
222
2
1
:
( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 





−−−+−−−+
−−−−+−−
=
−−+−−−+−=
−
−−
00
0000
0
*
0
*2
00
0
*
00
*
0
00
*
0
*
0
*
4
1
4
1
ϕϕ
ϕϕϕϕ
ωωωωωωωω
ωωωωωωωω
ωωωωωωωωωω
jj
jjjj
eGGeGG
GGGG
eGeGeGeGSS
For finite band (W << ω0 ) signals (see Figure)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )∫∫∫
∫∫
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
−
+∞
∞−
=−−−−=−−
≈−−−=−−−
ωωωωωωωωωωωωω
ωωωωωωωωωω ϕϕ
dGGdGGdGG
deGGdeGG jj
*
0
*
00
*
0
2
0
*
0
*2
00 000
( ) ( ) gs EdGdSE 2
2
1
2
1
2
1
:
22
=≈= ∫∫
+∞
∞−
+∞
∞−
ωω
π
ωω
π
Return to Table of Content
38
Signals
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
SOLO
Signal Duration and Bandwidth
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
−
∞+
∞−
∞+
∞−
−
∞+
∞−
∞+
∞−
∞+
∞−
=







=








=







=
dffSfSdfdesfS
dfdefSsdfdefSsdss
tfi
tfitfi
ττ
τττττττ
π
ππ
2
22
( ) ( )∫
+∞
∞−
= fdefSts tfi π2 ( ) ( ) ( )∫
+∞
∞−
== fdefSfi
td
tsd
ts tfi π
π 2
2'
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
−
+∞
∞−
+∞
∞−
−
+∞
∞−
+∞
∞−
−
+∞
∞−
=







−=








−=







−=
dffSfSfdfdesfSfi
dfdesfSfidfdefSfsidss
tfi
tfitfi
222
22
2'2
'2'2''
πττπ
ττπττπτττ
π
ππ
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSds
22
ττ
Parseval Theorem
From
From
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSfdtts
2222
4' π
39
Signals
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )∫
∫
∫
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
−
∞+
∞−
+∞
∞−
+∞
∞−
−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=====
dffS
fd
fd
fSd
fS
i
dffS
fdtdetstfS
dffS
tdfdefStst
dffS
tdtstst
tdts
tdtst
t
fifi
22
2
2
2
22
2
2
:
π
ππ
SOLO
Signal Duration and Bandwidth (continue – 1)
( ) ( )∫
+∞
∞−
−
= tdetsfS tfi π2
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
Fourier
( ) ( )∫
+∞
∞−
−
−= tdetsti
fd
fSd tfi π
π 2
2
( ) ( )∫
+∞
∞−
= fdefSfi
td
tsd tfi π
π 2
2
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )∫
∫
∫
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−
=








====
tdts
td
td
tsd
tsi
tdts
tdfdefSfts
tdts
fdtdetsfSf
tdts
fdfSfSf
fdfS
fdfSf
f
fifi
22
2
2
2
22
2
2222
:
ππ
ππππ
40
Signals
( ) ( ) ( ) ( ) ( )∫∫∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
=≤








dffSfdttstdttsdttstdtts
222222
2
2
4'
4
1
π
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSdts
22
τ
SOLO
Signal Duration and Bandwidth (continue – 2)
0&0 == ftChange time and frequency scale to get
From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttgdttfdttgtf
22
Choose ( ) ( ) ( ) ( ) ( )ts
td
tsd
tgtsttf ':& ===
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttsdttstdttstst
22
''we obtain
( ) ( )∫
+∞
∞−
dttstst 'Integrate by parts
( )



=
+=
→



=
=
sv
dtstsdu
dtsdv
stu '
'
( ) ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−−= dttststdttsstdttstst '' 2
0
2

( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
−= dttsdttstst 2
2
1
'
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSfdtts
2222
4' π
( )
( )
( )
( )
( )
( )
( )
( )∫
∫
∫
∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=≤
dffS
dffSf
dtts
dttst
dtts
dffSf
dtts
dttst
2
222
2
2
2
222
2
2
44
4
1
ππ
assume ( ) 0lim =
→∞
tst
t
41
SignalsSOLO
Signal Duration and Bandwidth (continue – 3)
( )
( )
( )
( )
( )
( )
    
22
2
222
2
2
4
4
1
ft
dffS
dffSf
dtts
dttst
∆
∞+
∞−
+∞
∞−
∆
∞+
∞−
+∞
∞−




























≤
∫
∫
∫
∫ π
Finally we obtain
( ) ( )ft ∆∆≤
2
1
0&0 == ftChange time and frequency scale to get
Since Schwarz Inequality: becomes an equality
if and only if g (t) = k f (t), then for:
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttgdttfdttgtf
22
( ) ( ) ( ) ( )tftsteAt
td
sd
tgeAts tt
ααα αα
222:
22
−=−=−==⇒= −−
we have ( ) ( )ft ∆∆=
2
1
42
Signals
t
t∆2
t
( ) 2
ts
f
f
f∆2
( ) 2
fS
SOLO
Signal Duration and Bandwidth – Summary
then
( ) ( )∫
+∞
∞−
−
= tdetsfS tfi π2
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
( ) ( )
( )
2/1
2
22
:














−
=∆
∫
∫
∞+
∞−
+∞
∞−
tdts
tdtstt
t
( )
( )∫
∫
∞+
∞−
+∞
∞−
=
tdts
tdtst
t
2
2
:
Signal Duration Signal Median
( ) ( )
( )
2/1
2
22
2
4
:














−
=∆
∫
∫
∞+
∞−
+∞
∞−
fdfS
fdfSff
f
π ( )
( )∫
∫
∞+
∞−
+∞
∞−
=
fdfS
fdfSf
f
2
2
2
:
π
Signal Bandwidth Frequency Median
Fourier
( ) ( )ft ∆∆≤
2
1
Return to Table of Content
43
Matched Filters for RADAR Signals
( ) ( ) ( )[ ]tttats θω += 0cos
SOLO
Complex Representation of Bandpass Signals
The majority of radar signals are narrow band signals, whose Fourier transform is
limited to an angular-frequency bandwidth of W centered about a carrier angular
frequency of ±ω0.
Another form of s (t) is
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( )
( ) ( ) ( ) ( )ttstts
tttatttats
QI
tsts QI
00
00
sincos
sinsincoscos
ωω
ωθωθ
−=
−=

sI (t) – in phase component sQ (t) – quadrature component
1
2
Define the signal complex envelope: ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tjta
tjttatsjtstg QI
θ
θθ
exp
sincos:
=
+=+=
Therefore:
( ) ( ) ( )[ ] ( )[ ]tstjtgts ReexpRe 0 == ω
( ) ( ) ( ) ( ) ( ) ( ) ( )tststjtgtjtgts *
2
1
2
1
exp
2
1
exp
2
1
00 +=−+= ∗
ωω
or:
3
4
( ) ( ) ( )[ ]tjtjtats θω += 0exp
Analytic (complex) signal
44
Matched Filters for RADAR Signals
( ) ( ) ( )[ ]tttats θω += 0cos
SOLO
Autocorrelation
The Autocorrelation Function is extensively used in Radar Signal Processing
( ) ( ) ( )∫
+∞
∞−
−= tdtstsRss ττ :
Real signalFor
The Autocorrelation Function is defined as:
Properties of the Autocorrelation Function:
2 ( ) ( )ττ ssss RR =−
( ) ( ) ( ) ( ) ( ) ( )ττττ
τ
ss
tt
ss RtdtststdtstsR =−=+=− ∫∫
+∞
∞−
+=+∞
∞−
'''
'
1 ( ) ( ) ( ) ( ) ( ) sss EfdfSfStdtstsR === ∫∫
+∞
∞−
+∞
∞−
*0 Es – signal energy
3
( ) ( ) ( ) ( ) ( ) ( )2222
2
2
0sss
EE
Inequality
Schwarz
ss REtdtstdtstdtstsR
ss
==−≤−= ∫∫∫
∞+
∞−
∞+
∞−
∞+
∞−
  
τττ
( ) ( )0ssss RR ≤τ
Autocorrelation is a mathematical tool for
finding specific patterns, such as the
presence of a known signal which has been
buried under noise.
45
Matched Filters for RADAR SignalsSOLO
Autocorrelation (continue – 1(
The Autocorrelation Function is extensively used in Radar Signal Processing
( ) ( ) ( )∫
+∞
∞−
−= tdtgtgRgg ττ *:
Signal complex envelopeFor
The Autocorrelation Function is defined as:
Properties of the Autocorrelation Function:
2 ( ) ( )ττ *gggg RR =−
( ) ( ) ( ) ( ) ( ) ( )ττττ
τ
*''*'*
'
gg
tt
gg RtdtgtgtdtgtgR =−=+=− ∫∫
+∞
∞−
+=+∞
∞−
1 ( ) ( ) ( ) ( ) ( ) sgg EfdfGfGtdtgtgR 2**0 === ∫∫
+∞
∞−
+∞
∞−
Es – signal energy
3
( ) ( ) ( ) ( ) ( ) ( )22
2
2
2
2
2
2
04** ggs
EE
Inequality
Schwarz
gg REtdtgtdtgtdtgtgR
ss
==−≤−= ∫∫∫
∞+
∞−
∞+
∞−
∞+
∞−
  
τττ
( ) ( )0gggg RR ≤τ
( ) ( ) ( )[ ]tjtatg θexp:=
46
Matched Filters for RADAR SignalsSOLO
Autocorrelation (continue – 2(
The Autocorrelation Function is extensively used in Radar Signal Processing
( ) ( ) ( )∫
+∞
∞−
−= tdtgtgRgg ττ *:
Signal complex envelopeFor
The Autocorrelation Function is defined as:
3
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( )
∫ ∫∫ ∫
∫ ∫
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
=
+∞
∞−
+∞
∞−
∂
∂
+
∂
∂
=






−−
∂
∂
==
∂
∂
=
    
0
11122
2
2
0
22211
1
1
0
212211
2
****
**00
gggg RR
gg
tdtgtgtdtg
t
tgtdtgtgtdtg
t
tg
tdtdtgtgtgtgR
τ
ττ
τ
τ
τ
( ) ( )0gggg RR ≤τ
( ) ( ) ( )[ ]tjtatg θexp:=
(continue – 1)
Since Rgg (0) is a maximum of a continuous function at τ=0, we must have
( ) 00
2
==
∂
∂
τ
τ
ggR
Therefore ( ) ( ) ( ) ( ) 0** =
∂
∂
+
∂
∂
∫∫
+∞
∞−
+∞
∞−
tdtg
t
tgtdtg
t
tg
47
Matched Filters for RADAR Signals
( ) ( ) ( )[ ]tttats θω += 0cos
SOLO
Matched Filter for Received Radar Signals
The majority of radar signals are narrow band signals, whose Fourier transform is
limited to an angular-frequency bandwidth of W centered about a carrier angular
frequency of ±ω0.
The received signal will be:
1
• attenuated by a factor α
• retarded by a time t0 = 2 R/c
• affected by the Doppler effect
c
RR
c
f
c
D
 22
2 0
2
00
ω
λ
πω
ω
π
λ
−=−=
==
( ) ( ) ( )( ) ( )[ ]0000 cos ttttttats Dr −+−+−= θωωα2
Since the range and range-rate (t0, ωD) are not known exactly in advance,
the matched filter is designed to match the received signal at any time t0
assuming zero Doppler ωD=0.
Return to Table of Content
48
Matched Filters for RADAR Signals
( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp
2
1
exp
2
1
ωω −+= ∗
( ) ( )
( ) ( )


≤≤−=
= −∗
Ttttsth
eSH tj
00
0ω
ωω
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]∫
∫∫
∞+
∞−
∗∗
+∞
∞−
+∞
∞−






+−−+−++−+−





−+=
+−=−=
00000000
0
exp
2
1
exp
2
1
exp
2
1
exp
2
1
ttjttgttjttgjgjg
dttssdthstso
τωττωττωττωτ
ττττττ
SOLO
The Matched Filter is a linear time-invariant filter hopt (t) that maximizes
the output signal-to-noise ratio at a predefined time t0, for a known transmitted signal s (t(.
Assuming no Doppler let find the Matched Filter for the received radar signal at a time t0:
( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp
2
1
exp
2
1
ωω −+= ∗
( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫∫
+∞
∞−
∗
+∞
∞−
∗
+−−−++−−= τττωτττω dttggttjdttggttj 000000 exp
4
1
exp
4
1
( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )∫∫
+∞
∞−
∗
+∞
∞−
∗
+−−−+−+−−+ τωττωτωττω dtjttggttjdtjttggttj 00000000 2expexp
4
1
2expexp
4
1
Matched Filter Response to a Band Limited Radar Signal
49
Matched Filter
output envelope
Matched Filters for RADAR Signals
( ) ( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
+−=−= ττττττ dttssdthstso 0
SOLO
Matched Filter Response to a Band Limited Radar Signal (continue – 1(
The transmitted radar signal:
( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp
2
1
exp
2
1
ωω −+= ∗
( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )






−+−−+






+−−= ∫∫
+∞
∞−
∗
+∞
∞−
∗
τωττωτττω dtjttggttjdttggttj 0000000 2expexpRe
2
1
expRe
2
1
The integral in the second term on the r.h.s. is the Fourier transform of
evaluated at ω = 2 ω0. Since the spectrum of is limited by ω = W << ω0, this
second term can be neglected, therefore:
( ) ( )[ ]0ttgg +−∗
ττ
( )τg
( ) ( )[ ] ( ) ( ) ( ) ( )[ ]tjtgdttggttjts o
filtermatchedsignal
o 0000 expRe
2
1
expRe
2
1
ωτττω =








+−−≈ ∫
∞+
∞−
∗

( ) [ ] ( ) ( ) [ ] ( )000000 exp
2
1
exp
2
1
ttRtjdttggtjtg gg
filtermatchedsignal
o −−=+−−= ∫
+∞
∞−
∗
ωτττω

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tjta
tjttatsjtstg QI
θ
θθ
exp
sincos:
=
+=+=
Constant Phase
Matched Filter (for time t0) output is:
Autocorrelation Function of ( )tg Return to Table of Content
50
Matched Filters for RADAR SignalsSOLO
Matched Filter Response to Phase Coding
( ) ( ) ( )


 ∆<<
=∆−= ∑
−
= elsewhere
tt
tftptfctg
M
p
p
0
011
0
Let the signal be a phase-modulated carrier, in which the modulation is in discrete and
equal steps Δt. The complex envelope of the signal can be described by a sequence of
complex numbers , such thatkc
( ) [ ] ( ) ( )∫
+∞
∞−
∗
+−−= dtttgtgtjgo 000exp
2
1
τωτ
Constant Phase
Matched Filter output envelope (change t ↔τ):
( )ttk ∆<≤+∆→ τττ 0
( ) [ ] ( ) ( )[ ]
[ ] ( )[ ]
( )
∑ ∫
∫∑
−
=
∆+
∆
∗
+∞
∞−
∗
−
=
∆−+−∆−=
∆−+−∆−∆−=+∆
1
0
1
0
1
0
0
exp
2
1
exp
2
1
M
p
tp
tp
p
M
p
po
dttkMtgctMj
dttkMtgtptfctMjtkg
τω
τωτ
Change variable of integration to t1 = t – τ + (M - k) Δt
( ) [ ] ( )
( )
( )
∑ ∫
−
=
−∆+−+
−∆−+
∗
∆−=+∆
1
0
1
110exp
2
1 M
p
tkMp
tkMp
po dttgctMjtkg
τ
τ
ωτ
tMt ∆=0 (expected receiving time)
( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp
2
1
exp
2
1
ωω −+= ∗
The signal:
51
Matched Filters for RADAR SignalsSOLO
Matched Filter Response to Phase Coding (continue – 1(
Matched Filter output envelope for a Phase Coding is:
( ) [ ] ( )[ ]
( )
∑ ∫
−
=
∆+
∆
∗
∆−+−∆−=+∆
1
0
1
0exp
2
1 M
p
tp
tp
po dttkMtgctMjtkg τωτ
Change variable of integration to t1 = t – τ + (M - k) Δt
( ) [ ] ( )
( )
( )
[ ] ( )
( )
( )
( )
( )
( )
∑ ∫∫∑ ∫
−
=
−∆+−+
∆−+
∗
∆−+
−∆−+
∗
−
=
−∆+−+
−∆−+
∗








+∆−=∆−=+∆
1
0
1
11110
1
0
1
110 exp
2
1
exp
2
1 M
p
tkMp
tkMp
tkMp
tkMp
p
M
p
tkMp
tkMp
po dttgdttgctMjdttgctMjtkg
τ
τ
τ
τ
ωωτ
( ) ( ) ( )
( ) ( ) ( ) τ
τ
−∆+−+<<∆−+=
∆−+<<−∆−+=
−+
∗
−−+
∗
tkMpttkMpctg
tkMpttkMpctg
kMp
kMp
11
*
1
11
*
1
( ) [ ] ∑ ∫∫
−
=
−∆
−+
−
−−+








+∆−=+∆
1
0 0
1
*
0
11
*
0exp
2
1 M
p
t
kMpkMppo dtcdtcctMjtkg
τ
τ
ωτ
( ) [ ] ∑
−
=
−+−−+ 











∆
−+





∆
∆−
∆
=+∆
1
0
*
1
*
0 1exp
2
1 M
p
kMpkMppo
t
c
t
cctMj
t
tkg
ττ
ωτ
This equation describes straight lines in the complex plane, that can have corners only at
τ = 0. At those corners
( ) [ ] ∑
−
=
−+∆−
∆
=∆
1
0
*
0exp
2
1 M
p
kMppo cctMj
t
tkg ω
Constant Phase
52
Matched Filters for RADAR SignalsSOLO
Matched Filter Response to Phase Coding (continue – 2(
Matched Filter output envelope for a Phase Coding is:
( ) [ ] ∑
−
=
−+−−+ 











∆
−+





∆
∆−
∆
=+∆
1
0
*
1
*
0 1exp
2
1 M
p
kMpkMppo
t
c
t
cctMj
t
tkg
ττ
ωτ
This equation describes straight lines in the complex plane, that can have corners only at
τ = 0. At those corners
( ) [ ] ∑
−
=
−+∆−
∆
=∆
1
0
*
0exp
2
1 M
p
kMppo cctMj
t
tkg ω
Constant Phase
We can see that is the Discrete Autocorrelation Function for the
observation time t0 = M Δt (the time the received Radar signal return is expected)
∑
−
=
−+
1
0
*
M
p
kMpp cc
53
Matched Filters for RADAR SignalsSOLO
Matched Filter Response to Phase Coding (continue – 3(
Example: Pulse poly-phase coded of length 4
Given the sequence: { } 1,,,1 −−++= jjck
which corresponds to the sequence of phases 0◦, 90◦, 270◦ and 180◦, the matched filter is
given in Figure bellow.
{ } 1,,,1
*
−+−+= jjck
54
Pulse poly-phase coded of length 4
At the Receiver the coded pulse enters a 4 cells delay lane (from
left to right), a bin at each clock.
The signals in the cells are multiplied by -1,+j,-j or +1 and summed.
clock
SOLO
Poly-Phase Modulation
-1 = -11 1+
-j +j = 02 1+j+
+j -1-j = -13 1+j+j−
+1 +1+1+1 = 44 1+j+j−1−
-j-1+j = -1
5 j+j−1−
+j - j = 0
6
j−1−
7 1− -1 = -1
8 0
Σ
{ } 1,,,1 −−++= jjck
1− 1+j+ j− {ck*}
0 = 00
0
1
2
3
4
5
6
7
{ } 1,,,1* −+−+= jjck
55
-1
Pulse bi-phase Barker coded of length 3
Digital Correlation
At the Receiver the coded pulse
enters a 3 cells delay lane (from left to
right), a bin at each clock.
The signals in the cells are multiplied
according to ck* sign and summed.
clock
-1 = -11
+1 -1 = 02
-( +1) = -15
0 = 06
+1 +1-( -1) = 33
+1-( +1) = 04
SOLO Pulse Compression Techniques
1
2
3
4
5
6
0
+1+1
0 = 00
56
Pulse bi-phase Barker coded of length 5
Digital Correlation
At the Receiver the coded pulse enters a
7 cells delay lane (from left to right),
a bin at each clock.
The signals in the cells are multiplied
by ck* and summed.
clock
SOLO Pulse Compression Techniques
+1-1+1+1+1 { }*
kc
+1 = +11
+1 = 19
0 = 010
2 -1 +1 = 0
+1 +1 -1-( +1) = 04
+1 +1 +1 –(-1)+1 = 55
0 = 00
3 +1-1 +1 = 1
+1 +1 -(+1) -1 = 06
+1-( +1) +1 = 17
–(+1) +1 = 08
Return to Table of Content
57
Matched Filters for RADAR Signals
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tjta
tjttatsjtstg QI
θ
θθ
exp
sincos:
=
+=+=
SOLO
Matched Filter Response to its Doppler-Shifted Signal
Matched Filter for the transmitted radar signal:
The received radar signal has the form:
( ) ( ) ( )[ ]
( ) ( ) ( ) ( )tjtgtjtg
tttats
00
0
exp
2
1
exp
2
1
cos
ωω
θω
−+=
+=
∗
( ) ( ) ( ) ( )[ ]000 cos tttttakts Dr −++−= θωω
( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )[ ] ( )tjtjtgtjtjtg
k
tttakts
DD
Dtr
0
*
0
00
expexp
2
1
expexp
2
cos
0
ωωωω
θωω
−+=
++==
( ) ( ) ( )∫
+∞
∞−
∗
=
−= τττ dtggtg
filtersignal
to 2
1
00
Matched Filter output envelope (designed under zero Doppler assumption) was found to be:
( ) ( ) ( ) ( )∫
+∞
∞−
∗
=
−= τττωτω dtgjgtg
filtersignal
DtDo   
exp
2
1
, 00
For a nonzero Doppler (ωD ≠ 0) the Matched Filter output envelope is:
58
Matched Filters for RADAR Signals
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tjta
tjttatsjtstg QI
θ
θθ
exp
sincos:
=
+=+=
SOLO
Matched Filter Response to its Doppler-Shifted Signal (continue – 1(
For a nonzero Doppler (ωD ≠ 0) the Matched Filter output complex envelope is:
( ) ( ) ( ) ( )∫
+∞
∞−
∗
=
−= τττωτω dtgjgtg
filtersignal
DtDo   
exp
2
1
, 00
Change between t and τ and define:
( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
The magnitude of the complex envelope ,is called the Ambiguity Function.( )DfX ,τ
The name is sometimes used for , and sometimes even for .( )DfX ,τ ( ) 2
, DfX τ
59
Matched Filters for RADAR SignalsSOLO
Matched Filter Response to its Doppler-Shifted Signal (continue – 2(
Properties of: ( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
( ) ( ) ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
∗
+∞
∞−
+∞
∞−
∗
=== dffGfGdttgdttgtgX
2
:0,01
2 ( ) ( ) ( )DDD fXfjfX ,*2exp, ττπτ =−−
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) [ ] ( ) ( )DDDD
tt
DD
DD
fXfjdttfjtgtgfj
dttfjtgtgfj
dttfjtgtgfX
,*2exp''2exp''*2exp
2exp2exp
2exp,
*
'
ττππττπ
τπττπ
πττ
τ
=






−=
+−+=
=−+=−−
∫
∫
∫
∞+
∞−
+=
∞+
∞−
∗
+∞
∞−
∗
( ) ( ) ( )DDD fXfjfX −−=− ,*2exp, ττπτ3
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( )DDDD
tt
DD
DD
fXfjdttfjtgtgfj
dttfjtgtgfj
dttfjtgtgfX
−−=






−−−=
++−=
=+=−
∫
∫
∫
∞+
∞−
+=
∞+
∞−
∗
+∞
∞−
∗
,*2exp''2exp''*2exp
2exp2exp
2exp,
*
'
ττππττπ
τπττπ
πττ
τ
60
Matched Filters for RADAR SignalsSOLO
Matched Filter Response to its Doppler-Shifted Signal (continue – 3(
Properties of: ( ) ( ) ( ) ( )∫
+∞
∞−
∗
−= dttfjtgtgfX DD πττ 2exp:,
4
5
( ) ( ) ( ) ( )τττ ggRdttgtgX =−= ∫
+∞
∞−
∗
:0,
( ) ( ) ( ) ( ) ( ) ( ) ( )fRdfffGfGdttfjtgtgfX GGDDD =+== ∫∫
+∞
∞−
+∞
∞−
∗ *
2exp,0 π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( )fRdfffGfG
dfdttffjtgfGdfdttffjtgfG
dttfjtgdftfjfGdttfjtgtgfX
GGD
DD
DDD
=+=






+−=+=
==
∫
∫ ∫∫ ∫
∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
∞+
∞−
∗
+∞
∞−
∗
+∞
∞−
+∞
∞−
∗
*
*
2exp2exp
2exp2exp2exp,0
ππ
πππ
Return to Table of Content
( ) [ ] ( ) ( ) [ ] ( ) [ ] ( )0,exp
2
1
exp
2
1
exp
2
1
000000000 ttXtjttRtjdttggtjtg gg
filtermatchedsignal
o −−=−−=+−−= ∫
+∞
∞−
∗
ωωτττω

Autocorrelation Function of the
Signal Complex Envelope ( )tg
We found that the Matched Filter Output Complex Envelope is:( )tgo
61
SOLO
Continue to
Ambiguity Functions
Matched Filters and Ambiguity Functions for RADAR Signals
January 18, 2015 62
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA
63
Fourier Transform
( ) ( ){ } ( ) ( )∫
+∞
∞−
−== dttjtftfF ωω exp:F
SOLO
Jean Baptiste Joseph
Fourier
1768-1830
F (ω) is known as Fourier Integral or Fourier Transform
and is in general complex
( ) ( ) ( ) ( ) ( )[ ]ωφωωωω jAFjFF expImRe =+=
Using the identities
( ) ( )t
d
tj δ
π
ω
ω =∫
+∞
∞− 2
exp
we can find the Inverse Fourier Transform ( ) ( ){ }ωFtf -1
F=
( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )[ ]00
2
1
2
exp
2
expexp
2
exp
++−=−=−=




−=
∫∫ ∫
∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
+∞
∞−
+∞
∞−
+∞
∞−
tftfdtfd
d
tjf
d
tjdjf
d
tjF
ττδττ
π
ω
τωτ
π
ω
ωττωτ
π
ω
ωω
( ) ( ){ } ( ) ( )∫
+∞
∞−
==
π
ω
ωωω
2
exp:
d
tjFFtf -1
F
( ) ( ) ( ) ( )[ ]00
2
1
++−=−∫
+∞
∞−
tftfdtf ττδτ
If f (t) is continuous at t, i.e. f (t-0) = f (t+0)
This is true if (sufficient not necessary)
f (t) and f ’ (t) are piecewise continue in every finite interval1
2 and converge, i.e. f (t) is absolute integrable in (-∞,∞)( )∫
+∞
∞−
dttf
64
( )atf −
-1
F
F ( ) ( )ωω ajF −exp
Fourier TransformSOLO
( )tf
-1
F
F
( )ωFProperties of Fourier Transform (Summary)
Linearity1
( ) ( ){ } ( ) ( )[ ] ( ) ( ) ( )ωαωαωαααα 221122112211 exp: FFdttjtftftftf +=−+=+ ∫
+∞
∞−
F
Symmetry2
( )tF
-1
F
F
( )ωπ −f2
Conjugate Functions3 ( )tf *
-1
F
F
( )ω−*
F
Scaling4 ( )taf
-1
F
F






a
F
a
ω1
Derivatives5 ( ) ( )tftj
n
−
-1
F
F ( )ω
ω
F
d
d
n
n
( )tf
td
d
n
n
-1
F
F
( ) ( )ωω Fj
n
Convolution6
( ) ( )tftf 21
-1
F
F ( ) ( )ωω 21
* FF( ) ( ) ( ) ( )∫
+∞
∞−
−= τττ dtfftftf 2121
:*
-1
F
F ( ) ( )ωω 21
FF
( ) ( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
= ωωω dFFdttftf 2
*
12
*
1
Parseval’s Formula7
Shifting: for any a real8
( ) ( )tajtf exp
-1
F
F ( )aF −ω
Modulation9 ( ) ttf 0
cos ω -1
F
F
( ) ( )[ ]00
2
1
ωωωω −++ FF
( ) ( ) ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
−=−= ωωω
π
ωωω
π
dFFdFFdttftf 212121
2
1
2
1
65
Fourier Transform
( )tf
( ) ( )∑
∞
=
−=
0n
T Tntt δδ
( ) ( ) ( ) ( ) ( )∑
∞
=
−==
0
*
n
T
TntTnfttftf δδ
( )tf *
( )tf
T t
( ) ( ){ } ( ) σσ <== +∫
∞
−
f
ts
dtetftfsF
0
L
SOLO
Sampling and z-Transform
( ) ( ){ } ( ) σδδ <
−
==






−== −
∞
=
−
∞
=
∑∑ 0
1
1
00
sT
n
sTn
n
T
e
eTnttsS LL
( ) ( ){ }
( ) ( ) ( )
( ) ( ){ } ( ) ( )






<<
−
=
=






−
==
−
∞+
∞−
−−
∞
=
−
∞
=
+∫
∑∑
0
00
**
1
1
2
1
σσσξξ
π
δ
δ
ξ
σ
σ
ξ f
j
j
tsT
n
sTn
n
d
e
F
j
ttf
eTnfTntTnf
tfsF
L
L
L
( )
( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )













−
=
−
−
=
−
=
∑∫
∑∫
∑
−−
−
−−
Γ
−−
−−
Γ
−−
∞
=
−
ts
e
ofPoles
tsts
F
ofPoles
tsts
n
nsT
e
F
Resd
e
F
j
e
F
Resd
e
F
j
eTnf
sF
ξ
ξξ
ξ
ξξ
ξ
ξ
ξ
π
ξ
ξ
ξ
π
1
1
0
*
112
1
112
1
2
1
Poles of
( ) Ts
e ξ−−
−1
1
Poles of
( )ξF
planes
T
nsn
π
ξ
2
+=
ωj
ωσ j+
0=s
Laplace Transforms
The signal f (t) is sampled at a time period T.
1Γ
2
Γ
∞→R
∞→R
Poles of
( ) Ts
e ξ−−
−1
1
Poles of
( )ξF
planeξ
T
nsn
π
ξ
2
+=
ωj
ωσ j+
0=s
66
Fourier Transform
( )tf
( ) ( )∑
∞
=
−=
0n
T Tntt δδ
( ) ( ) ( ) ( ) ( )∑
∞
=
−==
0
*
n
T
TntTnfttftf δδ
( )tf *
( )tf
T t
SOLO
Sampling and z-Transform (continue – 1)
( ) ( )
( )
( )
( )
( ) ( ) ∑∑
∑∑
∞+
−∞=
∞+
−∞=
−−→
∞+
−∞=
−−
+→
+=
−
−−






+=
−






+
−=






+












−
−−
−=
−
−=
−−
−−
nn
Tse
n
ts
T
n
js
T
n
js
e
ofPoles
ts
T
n
jsF
TeT
T
n
jsF
T
n
jsF
e
T
n
js
e
F
RessF
ts
n
ts
π
π
π
π
ξ
ξ
ξ
ξπ
ξ
π
ξ
ξ
ξ
ξ
21
2
lim
2
1
2
lim
1
1
2
2
1
1
*
Poles of
( )ξF
ωj
σ
0=s
T
π2
T
π2
T
π2
Poles of
( )ξ*
F plane
js ωσ +=
The signal f (t) is sampled at a time period T.
The poles of are given by( )ts
e ξ−−
−1
1
( )
( )
T
n
jsnjTsee n
njTs π
ξπξπξ 2
21 2
+=⇒=−−⇒==−−
( ) ∑
+∞
−∞=






+=
n T
n
jsF
T
sF
π21*
67
Fourier Transform
( )tf
( ) ( )∑
∞
=
−=
0n
T Tntt δδ
( ) ( ) ( ) ( ) ( )∑
∞
=
−==
0
*
n
T
TntTnfttftf δδ
( )tf *
( )tf
T t
SOLO
Sampling and z-Transform (continue – 2)
0=z
planez
Poles of
( )zF
C
The signal f (t) is sampled at a time period T.
The z-Transform is defined as:
( ){ } ( ) ( )
( )
( ) ( )
( )








−
−===
∑
∑
=
−
→
∞
=
−
=
iF
iF
i
iF
Ts
FofPoles
T
F
n
n
ze
ze
F
zTnf
zFsFtf
ξξ
ξ
ξ
ξξ
ξξξ
1
0
*
1
lim:Z
( )
( )





<
>≥
= ∫
−
00
0
2
1 1
n
RzndzzzF
jTnf
fC
C
n
π
68
Fourier TransformSOLO
Sampling and z-Transform (continue – 3)
( ) ( ) ( )∑∑
∞
=
−
+∞
−∞=
=





+=
0
* 21
n
nsT
n
eTnf
T
n
jsF
T
sF
πWe found
The δ (t) function we have:
( ) 1=∫
+∞
∞−
dttδ ( ) ( ) ( )τδτ fdtttf =−∫
+∞
∞−
The following series is a periodic function: ( ) ( )∑ −=
n
Tnttd δ:
therefore it can be developed in a Fourier series:
( ) ( ) ∑∑ 





−=−=
n
n
n T
tn
jCTnttd πδ 2exp:
where: ( )
T
dt
T
tn
jt
T
C
T
T
n
1
2exp
1
2/
2/
=





= ∫
+
−
πδ
Therefore we obtain the following identity:
( )∑∑ −=





−
nn
TntT
T
tn
j δπ2exp
Second Way
69
Fourier Transform
( ) ( ){ } ( ) ( )∫
+∞
∞−
−== dttjtftfF νπνπ 2exp:2 F
( ) ( ) ( )∑∑
∞
=
−
+∞
−∞=
=





+=
0
* 21
n
nsT
n
eTnf
T
n
jsF
T
sF
π
( ) ( ){ } ( ) ( )∫
+∞
∞−
== ννπνπνπ dtjFFtf 2exp2:2-1
F
SOLO
Sampling and z-Transform (continue – 4)
We found
Using the definition of the Fourier Transform and it’s inverse:
we obtain ( ) ( ) ( )∫
+∞
∞−
= ννπνπ dTnjFTnf 2exp2
( ) ( ) ( ) ( ) ( ) ( )∑∫∑
∞
=
+∞
∞−
∞
=
−=−=
0
111
0
*
exp2exp2exp
nn
n
sTndTnjFsTTnfsF ννπνπ
( ) ( ) ( )[ ]∫ ∑
+∞
∞−
+∞
−∞=
−−== 111
*
2exp22 νννπνπνπ dTnjFjsF
n
( ) ( ) ∑∫ ∑
+∞
−∞=
+∞
∞−
+∞
−∞=












−=





−−==
nn T
n
F
T
d
T
n
T
FjsF νπνννδνπνπ 2
11
22 111
*
We recovered (with –n instead of n) ( ) ∑
+∞
−∞=






+=
n T
n
jsF
T
sF
π21*
Second Way (continue)
Making use of the identity: with 1/T instead of T
and ν - ν 1 instead of t we obtain: ( )[ ] ∑∑ 





−−=−−
nn T
n
T
Tnj 11
1
2exp ννδννπ
( )∑∑ −=





−
nn
TntT
T
tn
j δπ2exp
70
Fourier TransformSOLO
Henry Nyquist
1889 - 1976
http://en.wikipedia.org/wiki/Harry_Nyquist
Nyquist-Shannon Sampling Theorem
Claude Elwood Shannon
1916 – 2001
http://en.wikipedia.org/wiki/Claude_E._Shannon
The sampling theorem was implied by the work of Harry Nyquist in
1928 ("Certain topics in telegraph transmission theory"), in which
he showed that up to 2B independent pulse samples could be sent
through a system of bandwidth B; but he did not explicitly consider
the problem of sampling and reconstruction of continuous signals.
About the same time, Karl Küpfmüller showed a similar result, and
discussed the sinc-function impulse response of a band-limiting
filter, via its integral, the step response Integralsinus; this band-
limiting and reconstruction filter that is so central to the sampling
theorem is sometimes referred to as a Küpfmüller filter (but seldom
so in English).
The sampling theorem, essentially a dual of Nyquist's result,
was proved by Claude E. Shannon in 1949 ("Communication in
the presence of noise"). V. A. Kotelnikov published similar
results in 1933 ("On the transmission capacity of the 'ether' and
of cables in electrical communications", translation from the
Russian), as did the mathematician E. T. Whittaker in 1915
("Expansions of the Interpolation-Theory", "Theorie der
Kardinalfunktionen"), J. M. Whittaker in 1935 ("Interpolatory
function theory"), and Gabor in 1946 ("Theory of
communication").
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
71
SignalsSOLO
Signal Duration and Bandwidth
then
( ) ( )∫
+∞
∞−
−
= tdetsfS tfi π2
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
t
t∆2
t
( ) 2
ts
f
f
f∆2
( ) 2
fS
( ) ( )
( )
2/1
2
22
:














−
=∆
∫
∫
∞+
∞−
+∞
∞−
tdts
tdtstt
t
( )
( )∫
∫
∞+
∞−
+∞
∞−
=
tdts
tdtst
t
2
2
:
Signal Duration Signal Median
( ) ( )
( )
2/1
2
22
2
4
:














−
=∆
∫
∫
∞+
∞−
+∞
∞−
fdfS
fdfSff
f
π ( )
( )∫
∫
∞+
∞−
+∞
∞−
=
fdfS
fdfSf
f
2
2
2
:
π
Signal Bandwidth Frequency Median
Fourier
72
Signals
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
SOLO
Signal Duration and Bandwidth (continue – 1)
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
−
∞+
∞−
∞+
∞−
−
∞+
∞−
∞+
∞−
∞+
∞−
=







=








=







=
dffSfSdfdesfS
dfdefSsdfdefSsdss
tfi
tfitfi
ττ
τττττττ
π
ππ
2
22
( ) ( )∫
+∞
∞−
= fdefSts tfi π2 ( ) ( ) ( )∫
+∞
∞−
== fdefSfi
td
tsd
ts tfi π
π 2
2'
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∫∫ ∫
∫ ∫∫ ∫∫
∞+
∞−
∞+
∞−
∞+
∞−
−
+∞
∞−
+∞
∞−
−
+∞
∞−
+∞
∞−
−
+∞
∞−
=







−=








−=







−=
dffSfSfdfdesfSfi
dfdesfSfidfdefSfsidss
tfi
tfitfi
222
22
2'2
'2'2''
πττπ
ττπττπτττ
π
ππ
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSds
22
ττ
Parseval Theorem
From
From
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSfdtts
2222
4' π
73
Signals
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )∫
∫
∫
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
−
∞+
∞−
+∞
∞−
+∞
∞−
−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=====
dffS
fd
fd
fSd
fS
i
dffS
fdtdetstfS
dffS
tdfdefStst
dffS
tdtstst
tdts
tdtst
t
fifi
22
2
2
2
22
2
2
:
π
ππ
SOLO
Signal Duration and Bandwidth
( ) ( )∫
+∞
∞−
−
= tdetsfS tfi π2
( ) ( )∫
+∞
∞−
= fdefSts tfi π2
Fourier
( ) ( )∫
+∞
∞−
−
−= tdetsti
fd
fSd tfi π
π 2
2
( ) ( )∫
+∞
∞−
= fdefSfi
td
tsd tfi π
π 2
2
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )∫
∫
∫
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−
=








====
tdts
td
td
tsd
tsi
tdts
tdfdefSfts
tdts
fdtdetsfSf
tdts
fdfSfSf
fdfS
fdfSf
f
fifi
22
2
2
2
22
2
2222
:
ππ
ππππ
74
Signals
( ) ( ) ( ) ( ) ( )∫∫∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
+∞
∞−
=≤








dffSfdttstdttsdttstdtts
222222
2
2
4'
4
1
π
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSdts
22
τ
SOLO
Signal Duration and Bandwidth (continue – 1)
0&0 == ftChange time and frequency scale to get
From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttgdttfdttgtf
22
Choose ( ) ( ) ( ) ( ) ( )ts
td
tsd
tgtsttf ':& ===
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttsdttstdttstst
22
''we obtain
( ) ( )∫
+∞
∞−
dttstst 'Integrate by parts
( )



=
+=
→



=
=
sv
dtstsdu
dtsdv
stu '
'
( ) ( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
∞+
∞−
+∞
∞−
−−= dttststdttsstdttstst '' 2
0
2

( ) ( ) ( )∫∫
+∞
∞−
+∞
∞−
−= dttsdttstst 2
2
1
'
( ) ( )∫∫
+∞
∞−
+∞
∞−
= dffSfdtts
2222
4' π
( )
( )
( )
( )
( )
( )
( )
( )∫
∫
∫
∫
∫
∫
∫
∫
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
∞+
∞−
+∞
∞−
=≤
dffS
dffSf
dtts
dttst
dtts
dffSf
dtts
dttst
2
222
2
2
2
222
2
2
44
4
1
ππ
assume ( ) 0lim =
→∞
tst
t
75
SignalsSOLO
Signal Duration and Bandwidth (continue – 2)
( )
( )
( )
( )
( )
( )
    
22
2
222
2
2
4
4
1
ft
dffS
dffSf
dtts
dttst
∆
∞+
∞−
+∞
∞−
∆
∞+
∞−
+∞
∞−




























≤
∫
∫
∫
∫ π
Finally we obtain
( ) ( )ft ∆∆≤
2
1
0&0 == ftChange time and frequency scale to get
Since Schwarz Inequality: becomes an equality
if and only if g (t) = k f (t), then for:
( ) ( ) ( ) ( )∫∫∫
+∞
∞−
+∞
∞−
+∞
∞−
≤ dttgdttfdttgtf
22
( ) ( ) ( ) ( )tftsteAt
td
sd
tgeAts tt
ααα αα
222:
22
−=−=−==⇒= −−
we have ( ) ( )ft ∆∆=
2
1
76
SOLO
77
SOLO
78
SOLO

Weitere ähnliche Inhalte

Was ist angesagt?

Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
srkrishna341
 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
Agam Goel
 
Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)
Ridwanul Hoque
 

Was ist angesagt? (20)

Lecture 1 module 1 - radar
Lecture 1   module 1 - radarLecture 1   module 1 - radar
Lecture 1 module 1 - radar
 
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
RADAR
RADARRADAR
RADAR
 
A Tutorial on Radar System Engineering
A Tutorial on Radar System EngineeringA Tutorial on Radar System Engineering
A Tutorial on Radar System Engineering
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
Dft and its applications
Dft and its applicationsDft and its applications
Dft and its applications
 
Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
Radar Systems for NTU, 1 Nov 2014
Radar Systems for NTU, 1 Nov 2014Radar Systems for NTU, 1 Nov 2014
Radar Systems for NTU, 1 Nov 2014
 
Radar signal processing
Radar signal processingRadar signal processing
Radar signal processing
 
Gprs ppt
Gprs pptGprs ppt
Gprs ppt
 
Pulse Doppler Radar
Pulse Doppler RadarPulse Doppler Radar
Pulse Doppler Radar
 
DSP_FOEHU - Lec 05 - Frequency-Domain Representation of Discrete Time Signals
DSP_FOEHU - Lec 05 - Frequency-Domain Representation of Discrete Time SignalsDSP_FOEHU - Lec 05 - Frequency-Domain Representation of Discrete Time Signals
DSP_FOEHU - Lec 05 - Frequency-Domain Representation of Discrete Time Signals
 
Link budget calculation
Link budget calculationLink budget calculation
Link budget calculation
 
Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)
 

Andere mochten auch

Doppler effect experiment and applications
Doppler effect experiment and applicationsDoppler effect experiment and applications
Doppler effect experiment and applications
marina fayez
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
grssieee
 
2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt
grssieee
 

Andere mochten auch (20)

5 pulse compression waveform
5 pulse compression waveform5 pulse compression waveform
5 pulse compression waveform
 
1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part ii
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
Matched filter
Matched filterMatched filter
Matched filter
 
Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
 
Radar Powerpoint
Radar PowerpointRadar Powerpoint
Radar Powerpoint
 
Radar ppt
Radar pptRadar ppt
Radar ppt
 
ATI Laser RADAR and Applications Training for Advanced Students Course Sampler
ATI Laser RADAR and Applications Training for Advanced Students Course SamplerATI Laser RADAR and Applications Training for Advanced Students Course Sampler
ATI Laser RADAR and Applications Training for Advanced Students Course Sampler
 
CSEP Acquisition Preparation Technical Training Course Sampler
CSEP Acquisition Preparation Technical Training Course SamplerCSEP Acquisition Preparation Technical Training Course Sampler
CSEP Acquisition Preparation Technical Training Course Sampler
 
Doppler effect
Doppler effectDoppler effect
Doppler effect
 
ArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform GeneratorsArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform Generators
 
CFAR-m Presentation English
CFAR-m Presentation EnglishCFAR-m Presentation English
CFAR-m Presentation English
 
ECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound DriverECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound Driver
 
Doppler effect experiment and applications
Doppler effect experiment and applicationsDoppler effect experiment and applications
Doppler effect experiment and applications
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
 
The Most Effective Pain & Muscle Stimulation Units
The Most Effective Pain & Muscle Stimulation UnitsThe Most Effective Pain & Muscle Stimulation Units
The Most Effective Pain & Muscle Stimulation Units
 
Matched filter detection
Matched filter detectionMatched filter detection
Matched filter detection
 
Chapter 1-generality
Chapter 1-generalityChapter 1-generality
Chapter 1-generality
 
2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt
 

Ähnlich wie 4 matched filters and ambiguity functions for radar signals

Time reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkTime reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias Fink
Sébastien Popoff
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Chandrashekhar Padole
 

Ähnlich wie 4 matched filters and ambiguity functions for radar signals (20)

Signal & system
Signal & systemSignal & system
Signal & system
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
PAM
PAMPAM
PAM
 
Time reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkTime reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias Fink
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
 
Lecture13
Lecture13Lecture13
Lecture13
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63
 
FIR
 FIR FIR
FIR
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
 
Lecture1
Lecture1Lecture1
Lecture1
 
Characterization of the Wireless Channel
Characterization of the Wireless ChannelCharacterization of the Wireless Channel
Characterization of the Wireless Channel
 
Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm new
 
Calculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channelCalculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channel
 
M6.pdf
M6.pdfM6.pdf
M6.pdf
 
Nss fourier
Nss fourierNss fourier
Nss fourier
 
3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 

Mehr von Solo Hermelin

Mehr von Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 

Kürzlich hochgeladen

Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
Bhagirath Gogikar
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 

Kürzlich hochgeladen (20)

Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 

4 matched filters and ambiguity functions for radar signals

  • 1. 1 Matched Filters and Ambiguity Functions for RADAR Signals Part 1 SOLO HERMELIN Updated: 01.12.08http://www.solohermelin.com
  • 2. 2 SOLO Matched Filters and Ambiguity Functions for RADAR Signals Table of Content RADAR RF Signals Maximization of Signal-to-Noise Ratio Continuous Linear Systems The Matched Filter The Matched Filter Approximations 1.Single RF Pulse 2. Linear FM Modulated Pulse (Chirp) Discrete Linear Systems RADAR Signals Signal Duration and Bandwidth Complex Representation of Bandpass Signals Matched Filter Response to a Band Limited Radar Signal Matched Filter Response to Phase Coding Matched Filter Response to its Doppler-Shifted Signal
  • 3. 3 SOLO Matched Filters and Ambiguity Functions for RADAR Signals Table of Content (continue – 1) Ambiguity Function for RADAR Signals Definition of Ambiguity Function Ambiguity Function Properties Cuts Through the Ambiguity Function Ambiguity as a Measure of Range and Doppler Resolution Ambiguity Function Close to Origin Ambiguity Function for Single RF Pulse Ambiguity Function for Linear FM Modulation Pulse Ambiguity Function for a Coherent Pulse Train Ambiguity Function Examples (Rihaczek, A.W., “Principles of High Resolution Radar”) References A M B I G U I T Y F U N C T I O N S
  • 4. 4 SOLO The transmitted RADAR RF Signal is: ( ) ( ) ( )[ ]ttftEtEt 0000 2cos ϕπ += E0 – amplitude of the signal f0 – RF frequency of the signal φ0 –phase of the signal (possible modulated) The returned signal is delayed by the time that takes to signal to reach the target and to return back to the receiver. Since the electromagnetic waves travel with the speed of light c (much greater then RADAR and Target velocities), the received signal is delayed by c RR td 21 + ≅ The received signal is: ( ) ( ) ( ) ( )[ ] ( )tnoisettttfttEtE dddr +−+−⋅−= ϕπα 00 2cos To retrieve the range (and range-rate) information from the received signal the transmitted signal must be modulated in Amplitude or/and Frequency or/and Phase. ά < 1 represents the attenuation of the signal RADAR Signal Processing RADAR RF Signals
  • 5. 5 SOLO The received signal is: ( ) ( ) ( ) ( )[ ] ( )tnoisettttfttEtE dddr +−+−⋅−= ϕπα 00 2cos ( ) ( ) tRRtRtRRtR ⋅+=⋅+= 222111 &  We want to compute the delay time td due to the time td1 it takes the EM-wave to reach the target at a distance R1 (at t=0), from the transmitter, and to the time td2 it takes the EM-wave to return to the receiver, at a distance R2 (at t=0) from the target. 21 ddd ttt += According to the Special Theory of Relativity the EM wave will travel with a constant velocity c (independent of the relative velocities ).21 & RR  The EM wave that reached the target at time t was send at td1 ,therefore ( ) ( ) 111111 ddd tcttRRttR ⋅=−⋅+=−  ( ) 1 11 1 Rc tRR ttd   + ⋅+ = In the same way the EM wave received from the target at time t was reflected at td2 , therefore ( ) ( ) 222222 ddd tcttRRttR ⋅=−⋅+=−  ( ) 2 22 2 Rc tRR ttd   + ⋅+ = RADAR Signal Processing
  • 6. 6 SOLO The received signal is: ( ) ( ) ( ) ( )[ ] ( )tnoisettttfttEtE dddr +−+−⋅−= ϕπα 00 2cos 21 ddd ttt += ( ) 1 11 1 Rc tRR ttd   + ⋅+ = ( ) 2 22 2 Rc tRR ttd   + ⋅+ = ( ) ( ) 2 22 1 11 21 Rc tRR Rc tRR tttttttt ddd     + ⋅+ − + ⋅+ −=−−=−       + − + − +      + − + − =− 2 2 2 2 1 1 1 1 2 1 2 1 Rc R t Rc Rc Rc R t Rc Rc tt d     From which: or: Since in most applications we can approximate where they appear in the arguments of E0 (t-td), φ (t-td), however, because f0 is of order of 109 Hz=1 GHz, in radar applications, we must use: cRR <<21,  1, 2 2 1 1 ≈ + − + − Rc Rc Rc Rc     ( )         −⋅           ++      −⋅           +=      −⋅      −+      −⋅      −⋅≈− 2 . 201 . 10 22 0 11 00 2 1 2 1 2 12 1 2 12 1 21 D Ralong FreqDoppler DD Ralong FreqDoppler Dd ttffttff c R t c R f c R t c R fttf  ( ) ( ) ( ) ( ) ( )[ ] ( )tnoisettttffttEtE ddDdr +−+−⋅+−= ˆˆˆ2cosˆ 00 ϕπα where 21 2 2 1 121 2 02 1 01 ˆˆˆ,,,ˆˆˆ, 2ˆ, 2ˆ dddddDDDDD ttt c R t c R tfff c R ff c R ff +=≈≈+=−≈−≈  Finally Matched Filters in RADAR Systems Doppler Effect
  • 7. 7 SOLO The received signal model: ( ) ( ) ( ) ( ) ( )[ ] ( )tnoisettttffttEtE ddDdr +−+−⋅+−= ϕπα 00 2cos Matched Filters in RADAR Systems Delayed by two- way trip time Scaled down Amplitude Possible phase modulated Corrupted By noise Doppler effect We want to estimate: • delay td range c td/2 • amplitude reduction α • Doppler frequency fD • noise power n (relative to signal power) • phase modulation φ
  • 8. 8 Matched Filters in RADAR SystemsSOLO α MV R EV Target Transmitter& Receiver The transmitted RADAR RF Signal is: ( ) ( ) ( )[ ]ttftEtEt θπ += 00 2cos ( ) c tR td 02 ≅ Since the received signal preserve the envelope shape of the known transmitted signal we want to design a Matched Filter that will distinguish the signal from the receiver noise. ( ) ( ) λ λ 0 / 0 0 22 0 tR f c tR f fc D  −=−≅ = the received signal is: ( ) ( ) ( ) ( ) ( )[ ] ( )tnoisettttffttEtE ddDdr +−+−+−≈ θπα 00 2cos Scaled Down In Amplitude Two-Way Delay Possible Phase Modulation Doppler Frequency For R1 = R2 = R we obtain that Return to Table of Content
  • 9. 9 Matched Filters for RADAR Signals ( ) ( ) ( )tntstv ii += Linear Filter ( )thopt ( ) ( ) ( )tntsty oo += SOLO Maximization of Signal-to-Noise Ratio Consider the problem of choosing a linear time-invariant filter hopt (t) that maximizes the output signal-to-noise ratio at a predefined time t0. The input waveform is: ( ) ( ) ( )tntstv ii += ( )tsi - a known signal component ( )tni - noise (stationary random process) component The output waveform is: ( ) ( ) ( )tntsty oo += Assume that the linear filter has a finite time memory T, then ( ) ( ) ( )∫ −= T iopto dtshts 0 00 τττ ( ) ( ) ( )∫ −= T iopto dtnhtn 0 00 τττ The signal-to-noise ratio is defined as: ( ) ( )0 2 0 2 tn ts N S o o =      To find hopt (t) a variational technique is applied, by defining a non-optimal filter ( ) ( ) ( )tgthth opt ε+= ( ) ( ) 0 0 0 =−∫ T i dtsg τττwith: and ε any real. ( )0 2 tno - the mean square value of ( )0tno Continuous Linear Systems
  • 10. 10 Matched Filters for RADAR Signals ( ) ( ) ( )tntstv ii += Linear Filter ( ) ( )tgthopt ε+ ( ) ( ) ( )tntsty oo ''' += SOLO Maximization of Signal-to-Noise Ratio The output signal s’o (t) and noise n’o (t) at time t0 are: ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 00' tsdtsgdtsh dtsghts o T i T iopt T iopto =−+−= −+= ∫∫ ∫    τττετττ τττετ ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫∫ −+= −+−=−+= T io T i T iopt T iopto dtngtn dtngdtnhdtnghtn 0 00 0 0 0 0 0 00' τττε τττεττττττετ ( )[ ] ( )[ ] ( ) ( ) ( ) ( ) ( ) 2 0 0 2 0 00 2 0 2 0 2'       −+−+= ∫∫ T i T iooo dtngdtngtntntn τττετττε By the definition of the optimal filter ( )[ ] ( )[ ]2 0 2 0' tntn oo ≥ Therefore ( ) ( ) ( ) ( ) ( ) 02 2 0 0 2 0 00 ≥      −+− ∫∫ T i T io dtngdtngtn τττετττε Continuous Linear Systems (continue – 1(
  • 11. 11 Matched Filters for RADAR Signals ( ) ( ) ( )tntstv ii += Linear Filter ( ) ( )tgthopt ε+ ( ) ( ) ( )tntsty oo ''' += SOLO Maximization of Signal-to-Noise Ratio This inequality is satisfied for all values of ε if and only if the first term vanishes ( ) ( ) ( ) ( ) ( ) 02 2 0 0 2 0 00 ≥      −+− ∫∫ T i T io dtngdtngtn τττετττε ( ) ( ) 0 0 0 =−∫ T i dtsg τττ ( ) ( ) ( ) 02 0 00 =−∫ T io dtngtn τττ Using we obtain:( ) ( ) ( )∫ −= T iopto dtnhtn 0 00 τττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 00 0 0 00 =−−=−− ∫∫∫∫ T T iiopt T T iiopt ddtntnhgddtntnhg στστστστστστ where is the Autocorrelation Function of the input noise.( ) ( ) ( )στστ −−=− 00: tntnR iinn ii Continuous Linear Systems (continue – 2(
  • 12. 12 Matched Filters for RADAR Signals ( ) ( ) ( )tntstv ii += Linear Filter ( ) ( )tgthopt ε+ ( ) ( ) ( )tntsty oo ''' += SOLO Maximization of Signal-to-Noise Ratio Therefore the optimality condition is: ( ) ( ) ( ) 0 0 0 =      −∫ ∫ τσστστ ddRhg T T nnopt ii ( ) ( ) 0 0 0 =−∫ T i dtsg τττComparing with the condition: we obtain: ( ) ( ) ( ) TtskdRh i T nnopt ii ≤≤−=−∫ ττσστσ 00 0 k is obtained using: ( ) ( ) ( ) ( ) ( ) ( ) ( ) k tn ddRhh k dtshts o T T nnoptopt T iopto ii 0 2 0 00 00 1 =−=−= ∫∫∫ στστσττττ ( ) ( )0 0 2 ts tn k o o = For T → ∞ we can take the Fourier Transfer of the result: ( ) ( ) ( ) ( ) ( )[ ]τσστσ −=      −∫∞→ 0 0 0 2 0 lim ts ts tn dRh i o o T nnopt T ii FF Continuous Linear Systems (continue – 3(
  • 13. 13 Matched Filters for RADAR SignalsSOLO Maximization of Signal-to-Noise Ratio ( ) ( ) ( ) ( ) ( )[ ]τσστσ −=      −∫ ∞ 0 0 0 2 0 ts ts tn dRh i o o nnopt ii FF ( ) ( ) ( )tntstv ii += Linear Filter ( )thopt ( ) ( ) ( )tntsty oo += ( ) ( ) ( ) ( ) ( ) 0* 0 0 2 tj i o o nnopt eS ts tn H ii ω ωωω − =Φ ( ) ( ) ( ) ( ) ( )ω ω ω ω iinn tj i o o opt eS ts tn H Φ = − 0* 0 0 2 Continuous Linear Systems (continue – 4( Return to Table of Content
  • 14. 14 Matched Filters for RADAR Signals ( )tsi t T0 mt SOLO The Matched Filter Assume that the two-sided noise spectrum density is of a white noise, i.e. ( ) ( )στδστ −=− 2 0N R iinn ( ) ( )[ ] 2 0N R iiii nnnn ==Φ τω F then ( ) ( ) 0*2 tj i o opt eS N k H ω ωω − = ( ) ( ) Tttts N k th i o opt ≤≤−= 0 2 0 ( )tsi t t ( )tsi − T0 0 T− mt ( )tsi t t t ( )tsi − ( ) ( ) Ttttts N k th mmiopt ≤≤−= ,0 2 0 T0 0 T− 0 mtm tT − mt The optimal filter, that maximizes the Signal-to-Noise Ratio for a white noise is called a Matched Filter of the known Signal si (t). We can see that for a known input signal of finite duration T the optimal Matched Filter is also of finite duration T.
  • 15. 15 Matched Filters for RADAR Signals ( ) ( ) ( ) ( ) 0 2 0 0 2 tj iiopt eS N k SHS ω ωωωω − == SOLO The Matched Filter The signal and the noise at the output of the matched filter are found as follows: then ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ +∞ ∞− +∞ ∞− −− +∞ ∞− −       == π ω ω π ω ω ωωω 2 2 2 2 0*2 d dvevseS N kd eS N k ts vj i ttj i o ttj i o o m ( ) ( ) 0*2 tj i o opt eS N k H ω ωω − = ( ) ( ) ( ) ( ) ( )∫∫ ∫ +∞ ∞− +∞ ∞− +∞ ∞− −− +−== dvttvsvs N k dv d eSvs N k ii o vttj ii o 0 * 2 2 2 0 π ω ω ω The Autocorrelation Function of the input signal is defined as: ( ) ( ) ( )∫ +∞ ∞− −= dvvsvsR iiss ii ττ : therefore: ( ) ( )0 2 ttR N k ts iiss o o −= ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗       =Φ= ωω π ωωωω π d N S N k dHHtn o i o optnnopto ii 2 2 2 1 2 1 2 2 2 ( ) ( ) mtj i o opt eS N k H ω ωω − = *2 ( ) ( ) ( )[ ]∫ +∞ ∞− == dvvs N k R N k ts i o ss o o ii 2 0 2 0 2
  • 16. 16 Matched Filters for RADAR SignalsSOLO The Matched Filter therefore: ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− ∗       =Φ= ωω π ωωωω π d N S N k dHHtn o i o optnnopto ii 2 2 2 1 2 1 2 2 2 ( ) ( ) ( )[ ]∫ +∞ ∞− == dvvs N k R N k ts i o ss o o ii 2 0 2 0 2 ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞−       =             ==      π ω ω π ω ω 2222 2 2 2 2 2 2 2 2 2 2 2 0 d S N dvvs dN S N k dvvs N k tn ts N S i o i o i o i o o o Max Since by Parseval’s relation: (E – input signal energy)( )[ ] ( ) E d Sdvvs ii == ∫∫ +∞ ∞− +∞ ∞− π ω ω 2 22 ( )[ ] ( ) oo o Max N E tn ts N S 2 2 2 0 ==      We have: ( ) ( ) ( )∫ +∞ ∞− +−= dvttvsvs N k ts ii o to 0 2 0 Independent of signal waveform
  • 17. 17 Matched Filters for RADAR Signals ( ) ( ) ( ) ( )   ≤≤−= = −∗ Ttttsth eSH tj 00 0ω ωω SOLO The Matched Filter (Summary( s (t) - Signal waveform S (ω) - Signal spectral density h (t) - Filter impulse response H (ω) - Filter transfer function t0 - Time filter output is sampled (for Radar signals this is the time the received returned signal is expected to arrive) n (t) - noise N (ω) - Noise spectral density Matched Filter is a linear time-invariant filter hopt (t) that maximizes the output signal-to-noise ratio at a predefined time t0, for a given signal s (t(. The Matched Filter output is: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 00 tj o eSSHSS dttssdthsts ω ωωωωω ττττττ −∗ +∞ ∞− +∞ ∞− ⋅=⋅= +−=−= ∫∫ Return to Table of Content
  • 18. 18 Matched Filters for RADAR SignalsSOLO Matched Filter Output for White Noise Spectrum s (t) - Signal waveform with energy E S (ω) - Signal spectral density h (t) - Filter impulse response H (ω) - Filter transfer function ( ) ( ) ( ) ( ) ( ) ( ) ( )0 * 0 2 1 2 1 ttRdeSSdeSHts ss ttjtj o −=== ∫∫ +∞ ∞− − +∞ ∞− ωωω π ωωω π ωω ( ) ( ) ( ) ( )0* ' 0 2 ss TheoremsParsevalT RdSSdttsE === ∫∫ +∞ ∞− ωωω so (t) - Filter output signal N (ω) - Noise spectral density η/2 Rnn (τ) - Noise Autocorrelation Function η/2 δ (τ) ( ) ( ) ( )∫− ∞→ += T T T nn dttntn T R ττ 1 lim Rss (τ) - Signal Autocorrelation Function ( ) ( ) ( )∫− ∞→ += T T T ss dttsts T R ττ 1 lim S/N - Output Power signal-to-noise ratio E/(η/2) t0 - Time filter output is sampled (for Radar signals this is the time the received returned signal is expected to arrive) Return to Table of Content
  • 19. 19 Matched Filters for RADAR Signals SOLO The Matched Filter Approximations 1.Single RF Pulse ( ) ( )     > ≤≤− = 2/0 2/2/cos 0 p pp i tt ttttA ts ω pt - pulse width ( ) ( ) ( ) ( ) ( ) ( )               −       − + +       +       = = ∫− − 2 2 sin 2 2 sin 2 cos 0 0 0 0 2/ 2/ 0 p p p p p t t tj i t t t t tA dtetAjS p p ωω ωω ωω ωω ωω ω Fourier Transform 0ω - carrier frequency We found: ( ) ( ) ( ) ( )∫ +∞ ∞− −=−= dvtvsvs N k ttR N k ts ii o tss o to ii 22 00 0 therefore: ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ttt N tkA ttt N kA tttvttt tttvttt N kA ttdvtvt ttdvtvt N kA ttdvtvAvA ttdvtvAvA N k tR N k ts p o p p o tt p tt tp p t ttp o p tt t p t tt o tt t p p t tt o ss o to p p p p p p p p p p p p p ii 0 2 0 2 1 1 2/ 2/0 0 0 2/ 2/0 0 02 2/ 2/ 00 2/ 2/ 00 2 2/ 2/ 00 2/ 2/ 00 0 cos/1cos 02sin 2 1 cos 02sin 2 1 cos 02coscos 02coscos 0coscos 0coscos 22 0 2 0 ωω ω ω ω ω ω ω ωω ωω ωω ωω ω −=−≈        <<−−++ <<−+− =         <<−−+ <<−+ =         <<−− <<− == << − + − − + − − + − − = ∫ ∫ ∫ ∫ ( ) ( ) ( )tntstv ii += Linear Filter ( )thopt ( ) ( ) ( )tntsty oo +=
  • 20. 20 Matched Filters for RADAR SignalsSOLO The Matched Filter Approximations 1.Single RF Pulse (continue – 1( ( ) ( )     > ≤≤− = 2/0 2/2/cos 0 p pp i tt ttttA ts ω pt - pulse width ( ) ( ) ( ) ( ) ( ) ( ) 0 0 2 2 sin 2 2 sin 2 0 0 0 0 * tj p p p p p tj iMF e t t t t tA ejSjS ω ω ωω ωω ωω ωω ωω − −               −       − + +       +       = = 0ω - carrier frequency We obtained: ( ) ( )      ≥ <− == p pp o p to tt ttttt N tkA ts 0 cos/1 0 2 00 ω ( ) ( ) ( )tntstv ii += Linear Filter ( )thopt ( ) ( ) ( )tntsty oo += t 2 τ 2 τ − ( )tso 0 2 N Ak τ ττ− 0=mt Return to Table of Content
  • 21. 21 Matched Filters for RADAR SignalsSOLO The Matched Filter Approximations 1.Single RF Pulse (continue – 2( ( ) ( )     > ≤≤− = 2/0 2/2/cos 0 p pp i tt ttttA ts ω pt - pulse width ( ) ( ) ( ) ( ) ( ) ( ) 0 0 2 2 sin 2 2 sin 2 0 0 0 0 * tj p p p p p tj iMF e t t t t tA ejSjS ω ω ωω ωω ωω ωω ωω − −               −       − + +       +       = = 0ω - carrier frequency We obtained: Return to Table of Content
  • 22. 22 SOLO 2. Linear FM Modulated Pulse (Chirp) ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω The Fourier Transform is: ( ) [ ] ( ) ( )∫∫ ∫ −− −             ++−+             +−= −      += 2/ 2/ 2 0 2/ 2/ 2 0 2/ 2/ 2 0 2 exp 2 1 2 exp 2 1 exp 2 cos p p p p p p t t t t t t i dt t tjAdt t tjA dttj t tAS µ ωω µ ωω ω µ ωω ∫∫ −−               + +−               + +               − −               − −= 2/ 2/ 2 0 2 0 2/ 2/ 2 0 2 0 2 exp 2 exp 22 exp 2 exp 2 p p p p t t t t dttjj A dttjj A µ ωωµ µ ωω µ ωωµ µ ωω  Change variables: xt =      − − µ ωω π µ 0 yt =      + + µ ωω π µ 0 ( ) ∫∫ −−       −               + +                     − −= 2 1 2 1 2 exp 2 exp 22 exp 2 exp 2 2 2 0 2 2 0 Y Y X X i dt y jj A dt x jj A S π µ ωωπ µ ωω ω       − −=      − += µ ωω π µ µ ωω π µ 0 2 0 1 2 & 2 pp t X t X       + −=      + += µ ωω π µ µ ωω π µ 0 2 0 1 2 & 2 pp t Y t Y Define: ( )f n tf p ∆=−=∆ πωωµ π 2 2 & 2 1 : 0 Matched Filters for RADAR Signals
  • 23. 23 SOLO 2. Linear FM Modulated Pulse (continue – 1) The Fourier Transform is: ( ) ( ) ( ) ∫∫ −−       −      + +             − −= 2 1 2 1 2 exp 2 exp 22 exp 2 exp 2 22 0 22 0 Y Y X X i dt y jj A dt x jj A S π µ ωωπ µ ωω ω The first part gives the spectrum around ω = ω0, and the second part around ω = -ω0 : where: are Fresnel Integrals, which have the properties: ( ) ( ) ∫∫ == UU dz z USdz z UC 0 2 0 2 2 sin& 2 cos ππ ( ) ( ) ( ) ( )USUSUCUC −=−−=− & ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )−+ ++−=−+−      − + +++      − −= ωωωω µ ωω µ π µ ωω µ π ω 002211 2 0 2211 2 0 2 exp 2 2 exp 2 ii i SSYSjYCYSjYCj A XSjXCXSjXCj A S Matched Filters for RADAR Signals ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p
  • 24. 24 SOLO Fresnel Integrals Augustin Jean Fresnel 1788-1827 Define Fresnel Integrals ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∑ ∑∫ ∞ = + ∞ = + + −=      = ++ −=      = α α αα π α αα π α 0 0 14 2 0 34 0 2 !214 1 2 sin: !1234 1 2 cos: n n n n n n nn x dS nn x dC ( ) ( )αααα πα SjCdj +=      ∫0 2 2 exp ( ) ( ) 5.0±=∞±=∞± SC ( ) ( ) ( ) ( )USUSUCUC −=−−=− & The Cornu Spiral is defined as the plot of S (u) versus C (u) duuSd duuCd       =       = 2 2 2 sin 2 cos π π ( ) ( ) duSdCd =+ 22 Therefore u may be thought as measuring arc length along the spiral.
  • 25. 25 SOLO 2. Linear FM Modulated Pulse (continue – 2) The Fourier Transform is: Define: ( ) ( ) ( )[ ] ( ) ( )[ ]{ }2 21 2 210 2 XSXSXCXC A Si +++=− + µ π ωωAmplitude Term: Square Law Phase Term: ( ) ( ) µ ωω ω 2 2 0 1 − −=Φ Residual Phase Term: ( ) ( ) ( ) ( ) ( ) 4 1tan 5.05.0 5.05.0 tantan 11 1 21 211 2 π ω τ == + + → + + =Φ −− >>∆ − f XCXC XSXS ( ) ( )n t fXn t fX pp −∆=+∆= 1 2 &1 2 21 ( )ω2Φ( ) + − ωω0iS ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )−+ ++−=−+−      − + +++      − −= ωωωω µ ωω µ π µ ωω µ π ω 002211 2 0 2211 2 0 2 exp 2 2 exp 2 ii i SSYSjYCYSjYCj A XSjXCXSjXCj A S Matched Filters for RADAR Signals ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p
  • 26. 26 SOLO 2. Linear FM Modulated Pulse (continue – 3) Matched Filters for RADAR Signals ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )−+ − −− ++−=−+−      − + +++      − −== ωωωω µ ωω µ π µ ωω µ π ωω ω ωω 002211 2 0 2211 2 0* 0 00 2 exp 2 2 exp 2 MFMF tj tjtj iMF SSeYSjYCYSjYCj A eXSjXCXSjXCj A eSS
  • 27. 27 SOLO 2. Linear FM Modulated Pulse (continue – 4) Matched Filters for RADAR Signals ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p The Matched Filter output is given by: ( ) ( ) ( ) ( )∫ +∞ ∞− −=−= dvtvsvs N k ttR N k ts ii o tss o to ii 22 00 0 ( ) ( ) ( ) ( ) ( )         <<−      − +−      + <<      − +−      + = ∫ ∫ + − + − 2/ 2/ 2 0 2 0 2/ 2/ 2 0 2 0 0 2 cos 2 cos 0 2 cos 2 cos 2 0 p p p p tt t p t tt p o to ttdv tv tv v v ttdv tv tv v v N k ts µ ω µ ω µ ω µ ω We discard the double frequency term, whose contribution to the value of integral is small for large ω0, ( ) ( ) ( )         <<−             −+ +−+      −+ <<             −+ +−+      −+ = ∫ ∫ + − + − 2/ 2/ 22 0 2 0 2/ 2/ 22 0 2 0 2 0 2 22 2cos 2 cos 0 2 22 2cos 2 cos 0 p p p p tt t p t tt p o to ttdv tvtv tv t tvt ttdv tvtv tv t tvt N Ak ts µµµ ω µ µω µµµ ω µ µω ( ) ( )                <<− −+       −+ +− +       +− << −+       −+ +− +       +− = + − + − + − + − 0 242 2 22 2sin 2 sin 0 242 2 22 2sin 2 sin 2/ 2/ 0 22 0 2/ 2/ 2 0 2/ 2/ 0 22 0 2/ 2/ 2 0 2 tt tv tvtv tv t tv t t tt tv tvtv tv t tv t t N Ak p tt t tt t p t tt t tt o p p p p p p p p µµω µµµω µ µµω µµω µµµω µ µµω Expanding the integrand trigonometrically
  • 28. 28 SOLO 2. Linear FM Modulated Pulse (continue – 5) Matched Filters for RADAR Signals Return to Table of Content ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p The Matched Filter output is given by: ( )          <<−      +− <<      +− ≈ + − + − 0 2 sin 0 2 sin 2/ 2/ 2 0 2/ 2/ 2 0 2 0 tttv t t tttv t t tN Ak ts p tt t p t tt o to p p p p µ µ ω µ µ ω µ ( ) ( )       <<−      −−−      ++− <<      −+−−      +− = 0 22 sin2/ 2 sin 02/ 2 sin 22 sin 2 0 2 0 2 0 2 02 tt ttt tttt t t ttttt t t ttt t tN Ak p p p pp p o µµ ωµ µ ω µ µ ω µµ ω µ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          > <               −       − − =        <<−      + <<      − = p p p p p p p o p pp pp o tt ttt tt tt tt tt tt N tAk ttttt t ttttt t tN Ak 0 cos /1 2 /1 2 sin /1 2 0cos 2 sin2 0cos 2 sin2 0 2 0 02 ω µ µ ω µ ω µ µ
  • 29. 29 SOLO 2. Linear FM Modulated Pulse (continue – 6) Matched Filters for RADAR Signals Return to Table of Content ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p The Matched Filter output is given by: ( ) ( ) ( ) ( ) ( )          > <               −       − − ≈ p p p p p p p o p to tt ttt tt tt tt tt tt N tAk ts 0 cos /1 2 /1 2 sin /1 0 2 0 ω µ µ o p N tAk 2 pt t µ π2 =∆ 1>>ptµ
  • 30. 30 SOLO 2. Linear FM Modulated Pulse (continue – 6) Matched Filters for RADAR Signals Return to Table of Content ( ) 222 cos 2 0 pp i t t tt tAts ≤≤−      += µ ω ωωωπωµ π ∆=−∆=∆=∆ 2 :&2: 2 1 : 0 n ftf p
  • 31. 31 Matched Filters for RADAR Signals ( ) ( ) ( )tntstv ii += Linear Filter ( )Tnhopt ( ) ( ) ( )tntsty oo += ( ) ( ) ( )TnnTnsTnv ii += T T ( ) ( ) ( )TnnTnsTny oo += SOLO Maximization of Signal-to-Noise Ratio Consider the problem of choosing a discrete linear time-invariant filter hopt (n T) that Maximizes the discrete output signal-to-noise ratio at a predefined time mT. The input waveform is: ( ) ( ) ( )tntstv ii += ( )tsi - a known signal component ( )tni - noise (stationary random process) component The output waveform is: ( ) ( ) ( )TnnTnsTny oo += The signal-to-noise ratio at discrete time mT is defined as: ( ) ( )Tmn Tms N S o o 2 2 =      ( )Tmno 2 - the mean square value of ( )Tmno Discrete Linear Systems The input and output of the discrete linear filter are synchronous discretized with a constant time period T. S (z) is the Z-transform of the discrete signal input si (nT) We have: ( ) ( ) ( )∫ + − = σ σ ωωω ω σ deeeTns TjTjTj o HS 2 1 ( ){ } ( ) ( )∫ + − = σ σ ω ωω σ deTnnE Tj o 22 2 1 HN
  • 32. 32 Matched Filters for RADAR Signals ( ) ( ) ( )tntstv ii += Linear Filter ( )Tnhopt ( ) ( ) ( )tntsty oo += ( ) ( ) ( )TnnTnsTnv ii += T T ( ) ( ) ( )TnnTnsTny oo += SOLO Maximization of Signal-to-Noise Ratio Consider the problem of choosing a discrete linear time-invariant filter hopt (n T) that Maximizes the discrete output signal-to-noise ratio at a predefined time mT. Like in the continuous case the optimal H (z) is: ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ + − + − ==      σ σ ω σ σ ω ωω σ ωω σ de de Tmn Tms N S Tj Tj i o o 2 2 2 2 2 1 2 1 HN HS Discrete Linear Systems (continue – 1( If N (ω) = N0 we have: ( ) ( ) ( )∫ + − = σ σ ωωω ω σ deeeTns TjTjTj o HSi 2 1 ( ){ } ( ) ( )∫ + − = σ σ ω ωω σ deTnnE Tj o 22 2 1 HN ( ) ( ) ( ) mTj Tj iTj e e ke ω ω ω ω − = N S H ( ) [ ] [ ]nms N k nhz zN k z i m i −=⇔      = − 00 1 SH Return to Table of Content
  • 33. 33 RADAR SignalsSOLO Waveforms ( ) ( ) ( )[ ]tttats θω += 0cos a (t) – nonnegative function that represents any amplitude modulation (AM) θ (t) – phase angle associated with any frequency modulation (FM) ω0 – nominal carrier angular frequency ω0 = 2 π f0 f0 – nominal carrier frequency Transmitted Signal ( ) ( ) ( )[ ]{ }ttjtats θω += 0exp Phasor (complex) Transmitted Signal
  • 34. 34 RADAR SignalsSOLO Quadrature Form ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( )tttattta tttats 00 0 sinsincoscos cos ωθωθ θω −= += where: ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ttats ttats Q I θ θ sin cos = = ( ) ( ) ( ) ( ) ( )ttsttsts QI 00 sincos ωω −= One other form: ( ) ( ) ( )[ ] ( ) ( ) ( ) [ ]tjtjtjtj ee ta tttats θωθω θω −−+ +=+= 00 2 cos 0 ( ) ( ) ( )[ ]tjtj etgetgts 00 * 2 1 ωω − += ( ) ( ) ( ) ( ) ( )tj QI etatsjtstg θ =+=: Envelope of the signal ( ) ( ) tj etgts 0ω = Phasor (complex) Transmitted Signal
  • 35. 35 RADAR SignalsSOLO Spectrum Define the Fourier Transfer F ( ) ( ){ } ( ) ( )∫ +∞ ∞− −== dttjtstsS ωω exp:F ( ) ( ){ } ( ) ( )∫ +∞ ∞− == π ω ωωω 2 exp: d tjSSts -1 F ( ) ( ) ( )[ ]tjtj etgetgts 00 * 2 1 ωω − += ( ) ( ) ( )[ ]0 * 0 2 1 ωωωωω −−+−= GGS-1 F F -1 F F ( ) ( ) ( ) ( ) ( )tj QI etatsjtstg θ =+=: ( ) ( ) ( )[ ]tttats θω += 0cos Inverse Fourier Transfer F -1 Envelope of the signalWe defined:
  • 36. 36 RADAR SignalsSOLO Energy ( ) ( ) ( )[ ]tttats θω += 0cos ( ) ( ) ( )[ ]{ } ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≈++== dttadttttadttsEs 2 0 22 2 1 22cos1 2 1 : θω Parseval’s Formula Proof: ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− = ωωω π dFFdttftf 2 * 12 * 1 2 1 ( ) ( ) ( )∫ +∞ ∞− −= dttjtfF ωω exp11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫ ∫∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− =−=−= π ω ωω π ω ωω π ω ωω 22 exp 2 exp 2 * 112 * 2 * 12 * 1 d FF d dttjtfFdt d tjFtfdttftf ( ) ( ) ( )∫ +∞ ∞− −= π ω ωω 2 exp * 2 * 2 d tjFtf If s (t) is real, than s (t) = s*(t) and ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− === ωω π dSdttsdttsEs 222 2 1 :
  • 37. 37 RADAR SignalsSOLO Energy (continue – 1) ( ) ( ) ( )[ ]tttats θω += 0cos ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− === ωω π dSdttsdttsEs 222 2 1 : ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )       −−−+−−−+ −−−−+−− = −−+−−−+−= − −− 00 0000 0 * 0 *2 00 0 * 00 * 0 00 * 0 * 0 * 4 1 4 1 ϕϕ ϕϕϕϕ ωωωωωωωω ωωωωωωωω ωωωωωωωωωω jj jjjj eGGeGG GGGG eGeGeGeGSS For finite band (W << ω0 ) signals (see Figure) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− − +∞ ∞− =−−−−=−− ≈−−−=−−− ωωωωωωωωωωωωω ωωωωωωωωωω ϕϕ dGGdGGdGG deGGdeGG jj * 0 * 00 * 0 2 0 * 0 *2 00 000 ( ) ( ) gs EdGdSE 2 2 1 2 1 2 1 : 22 =≈= ∫∫ +∞ ∞− +∞ ∞− ωω π ωω π Return to Table of Content
  • 38. 38 Signals ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 SOLO Signal Duration and Bandwidth ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− − ∞+ ∞− ∞+ ∞− − ∞+ ∞− ∞+ ∞− ∞+ ∞− =        =         =        = dffSfSdfdesfS dfdefSsdfdefSsdss tfi tfitfi ττ τττττττ π ππ 2 22 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 ( ) ( ) ( )∫ +∞ ∞− == fdefSfi td tsd ts tfi π π 2 2' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− − +∞ ∞− +∞ ∞− − +∞ ∞− +∞ ∞− − +∞ ∞− =        −=         −=        −= dffSfSfdfdesfSfi dfdesfSfidfdefSfsidss tfi tfitfi 222 22 2'2 '2'2'' πττπ ττπττπτττ π ππ ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSds 22 ττ Parseval Theorem From From ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSfdtts 2222 4' π
  • 39. 39 Signals ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− − ∞+ ∞− +∞ ∞− +∞ ∞− − ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ===== dffS fd fd fSd fS i dffS fdtdetstfS dffS tdfdefStst dffS tdtstst tdts tdtst t fifi 22 2 2 2 22 2 2 : π ππ SOLO Signal Duration and Bandwidth (continue – 1) ( ) ( )∫ +∞ ∞− − = tdetsfS tfi π2 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 Fourier ( ) ( )∫ +∞ ∞− − −= tdetsti fd fSd tfi π π 2 2 ( ) ( )∫ +∞ ∞− = fdefSfi td tsd tfi π π 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− − =         ==== tdts td td tsd tsi tdts tdfdefSfts tdts fdtdetsfSf tdts fdfSfSf fdfS fdfSf f fifi 22 2 2 2 22 2 2222 : ππ ππππ
  • 40. 40 Signals ( ) ( ) ( ) ( ) ( )∫∫∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− =≤         dffSfdttstdttsdttstdtts 222222 2 2 4' 4 1 π ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSdts 22 τ SOLO Signal Duration and Bandwidth (continue – 2) 0&0 == ftChange time and frequency scale to get From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttgdttfdttgtf 22 Choose ( ) ( ) ( ) ( ) ( )ts td tsd tgtsttf ':& === ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttsdttstdttstst 22 ''we obtain ( ) ( )∫ +∞ ∞− dttstst 'Integrate by parts ( )    = += →    = = sv dtstsdu dtsdv stu ' ' ( ) ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− −−= dttststdttsstdttstst '' 2 0 2  ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− −= dttsdttstst 2 2 1 ' ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSfdtts 2222 4' π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− =≤ dffS dffSf dtts dttst dtts dffSf dtts dttst 2 222 2 2 2 222 2 2 44 4 1 ππ assume ( ) 0lim = →∞ tst t
  • 41. 41 SignalsSOLO Signal Duration and Bandwidth (continue – 3) ( ) ( ) ( ) ( ) ( ) ( )      22 2 222 2 2 4 4 1 ft dffS dffSf dtts dttst ∆ ∞+ ∞− +∞ ∞− ∆ ∞+ ∞− +∞ ∞−                             ≤ ∫ ∫ ∫ ∫ π Finally we obtain ( ) ( )ft ∆∆≤ 2 1 0&0 == ftChange time and frequency scale to get Since Schwarz Inequality: becomes an equality if and only if g (t) = k f (t), then for: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttgdttfdttgtf 22 ( ) ( ) ( ) ( )tftsteAt td sd tgeAts tt ααα αα 222: 22 −=−=−==⇒= −− we have ( ) ( )ft ∆∆= 2 1
  • 42. 42 Signals t t∆2 t ( ) 2 ts f f f∆2 ( ) 2 fS SOLO Signal Duration and Bandwidth – Summary then ( ) ( )∫ +∞ ∞− − = tdetsfS tfi π2 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 ( ) ( ) ( ) 2/1 2 22 :               − =∆ ∫ ∫ ∞+ ∞− +∞ ∞− tdts tdtstt t ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = tdts tdtst t 2 2 : Signal Duration Signal Median ( ) ( ) ( ) 2/1 2 22 2 4 :               − =∆ ∫ ∫ ∞+ ∞− +∞ ∞− fdfS fdfSff f π ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = fdfS fdfSf f 2 2 2 : π Signal Bandwidth Frequency Median Fourier ( ) ( )ft ∆∆≤ 2 1 Return to Table of Content
  • 43. 43 Matched Filters for RADAR Signals ( ) ( ) ( )[ ]tttats θω += 0cos SOLO Complex Representation of Bandpass Signals The majority of radar signals are narrow band signals, whose Fourier transform is limited to an angular-frequency bandwidth of W centered about a carrier angular frequency of ±ω0. Another form of s (t) is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttstts tttatttats QI tsts QI 00 00 sincos sinsincoscos ωω ωθωθ −= −=  sI (t) – in phase component sQ (t) – quadrature component 1 2 Define the signal complex envelope: ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]tjta tjttatsjtstg QI θ θθ exp sincos: = +=+= Therefore: ( ) ( ) ( )[ ] ( )[ ]tstjtgts ReexpRe 0 == ω ( ) ( ) ( ) ( ) ( ) ( ) ( )tststjtgtjtgts * 2 1 2 1 exp 2 1 exp 2 1 00 +=−+= ∗ ωω or: 3 4 ( ) ( ) ( )[ ]tjtjtats θω += 0exp Analytic (complex) signal
  • 44. 44 Matched Filters for RADAR Signals ( ) ( ) ( )[ ]tttats θω += 0cos SOLO Autocorrelation The Autocorrelation Function is extensively used in Radar Signal Processing ( ) ( ) ( )∫ +∞ ∞− −= tdtstsRss ττ : Real signalFor The Autocorrelation Function is defined as: Properties of the Autocorrelation Function: 2 ( ) ( )ττ ssss RR =− ( ) ( ) ( ) ( ) ( ) ( )ττττ τ ss tt ss RtdtststdtstsR =−=+=− ∫∫ +∞ ∞− +=+∞ ∞− ''' ' 1 ( ) ( ) ( ) ( ) ( ) sss EfdfSfStdtstsR === ∫∫ +∞ ∞− +∞ ∞− *0 Es – signal energy 3 ( ) ( ) ( ) ( ) ( ) ( )2222 2 2 0sss EE Inequality Schwarz ss REtdtstdtstdtstsR ss ==−≤−= ∫∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞−    τττ ( ) ( )0ssss RR ≤τ Autocorrelation is a mathematical tool for finding specific patterns, such as the presence of a known signal which has been buried under noise.
  • 45. 45 Matched Filters for RADAR SignalsSOLO Autocorrelation (continue – 1( The Autocorrelation Function is extensively used in Radar Signal Processing ( ) ( ) ( )∫ +∞ ∞− −= tdtgtgRgg ττ *: Signal complex envelopeFor The Autocorrelation Function is defined as: Properties of the Autocorrelation Function: 2 ( ) ( )ττ *gggg RR =− ( ) ( ) ( ) ( ) ( ) ( )ττττ τ *''*'* ' gg tt gg RtdtgtgtdtgtgR =−=+=− ∫∫ +∞ ∞− +=+∞ ∞− 1 ( ) ( ) ( ) ( ) ( ) sgg EfdfGfGtdtgtgR 2**0 === ∫∫ +∞ ∞− +∞ ∞− Es – signal energy 3 ( ) ( ) ( ) ( ) ( ) ( )22 2 2 2 2 2 2 04** ggs EE Inequality Schwarz gg REtdtgtdtgtdtgtgR ss ==−≤−= ∫∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞−    τττ ( ) ( )0gggg RR ≤τ ( ) ( ) ( )[ ]tjtatg θexp:=
  • 46. 46 Matched Filters for RADAR SignalsSOLO Autocorrelation (continue – 2( The Autocorrelation Function is extensively used in Radar Signal Processing ( ) ( ) ( )∫ +∞ ∞− −= tdtgtgRgg ττ *: Signal complex envelopeFor The Autocorrelation Function is defined as: 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫∫ ∫ ∫ ∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− = +∞ ∞− +∞ ∞− ∂ ∂ + ∂ ∂ =       −− ∂ ∂ == ∂ ∂ =      0 11122 2 2 0 22211 1 1 0 212211 2 **** **00 gggg RR gg tdtgtgtdtg t tgtdtgtgtdtg t tg tdtdtgtgtgtgR τ ττ τ τ τ ( ) ( )0gggg RR ≤τ ( ) ( ) ( )[ ]tjtatg θexp:= (continue – 1) Since Rgg (0) is a maximum of a continuous function at τ=0, we must have ( ) 00 2 == ∂ ∂ τ τ ggR Therefore ( ) ( ) ( ) ( ) 0** = ∂ ∂ + ∂ ∂ ∫∫ +∞ ∞− +∞ ∞− tdtg t tgtdtg t tg
  • 47. 47 Matched Filters for RADAR Signals ( ) ( ) ( )[ ]tttats θω += 0cos SOLO Matched Filter for Received Radar Signals The majority of radar signals are narrow band signals, whose Fourier transform is limited to an angular-frequency bandwidth of W centered about a carrier angular frequency of ±ω0. The received signal will be: 1 • attenuated by a factor α • retarded by a time t0 = 2 R/c • affected by the Doppler effect c RR c f c D  22 2 0 2 00 ω λ πω ω π λ −=−= == ( ) ( ) ( )( ) ( )[ ]0000 cos ttttttats Dr −+−+−= θωωα2 Since the range and range-rate (t0, ωD) are not known exactly in advance, the matched filter is designed to match the received signal at any time t0 assuming zero Doppler ωD=0. Return to Table of Content
  • 48. 48 Matched Filters for RADAR Signals ( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp 2 1 exp 2 1 ωω −+= ∗ ( ) ( ) ( ) ( )   ≤≤−= = −∗ Ttttsth eSH tj 00 0ω ωω ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]∫ ∫∫ ∞+ ∞− ∗∗ +∞ ∞− +∞ ∞−       +−−+−++−+−      −+= +−=−= 00000000 0 exp 2 1 exp 2 1 exp 2 1 exp 2 1 ttjttgttjttgjgjg dttssdthstso τωττωττωττωτ ττττττ SOLO The Matched Filter is a linear time-invariant filter hopt (t) that maximizes the output signal-to-noise ratio at a predefined time t0, for a known transmitted signal s (t(. Assuming no Doppler let find the Matched Filter for the received radar signal at a time t0: ( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp 2 1 exp 2 1 ωω −+= ∗ ( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫∫ +∞ ∞− ∗ +∞ ∞− ∗ +−−−++−−= τττωτττω dttggttjdttggttj 000000 exp 4 1 exp 4 1 ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )∫∫ +∞ ∞− ∗ +∞ ∞− ∗ +−−−+−+−−+ τωττωτωττω dtjttggttjdtjttggttj 00000000 2expexp 4 1 2expexp 4 1 Matched Filter Response to a Band Limited Radar Signal
  • 49. 49 Matched Filter output envelope Matched Filters for RADAR Signals ( ) ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− +−=−= ττττττ dttssdthstso 0 SOLO Matched Filter Response to a Band Limited Radar Signal (continue – 1( The transmitted radar signal: ( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp 2 1 exp 2 1 ωω −+= ∗ ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )       −+−−+       +−−= ∫∫ +∞ ∞− ∗ +∞ ∞− ∗ τωττωτττω dtjttggttjdttggttj 0000000 2expexpRe 2 1 expRe 2 1 The integral in the second term on the r.h.s. is the Fourier transform of evaluated at ω = 2 ω0. Since the spectrum of is limited by ω = W << ω0, this second term can be neglected, therefore: ( ) ( )[ ]0ttgg +−∗ ττ ( )τg ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]tjtgdttggttjts o filtermatchedsignal o 0000 expRe 2 1 expRe 2 1 ωτττω =         +−−≈ ∫ ∞+ ∞− ∗  ( ) [ ] ( ) ( ) [ ] ( )000000 exp 2 1 exp 2 1 ttRtjdttggtjtg gg filtermatchedsignal o −−=+−−= ∫ +∞ ∞− ∗ ωτττω  ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]tjta tjttatsjtstg QI θ θθ exp sincos: = +=+= Constant Phase Matched Filter (for time t0) output is: Autocorrelation Function of ( )tg Return to Table of Content
  • 50. 50 Matched Filters for RADAR SignalsSOLO Matched Filter Response to Phase Coding ( ) ( ) ( )    ∆<< =∆−= ∑ − = elsewhere tt tftptfctg M p p 0 011 0 Let the signal be a phase-modulated carrier, in which the modulation is in discrete and equal steps Δt. The complex envelope of the signal can be described by a sequence of complex numbers , such thatkc ( ) [ ] ( ) ( )∫ +∞ ∞− ∗ +−−= dtttgtgtjgo 000exp 2 1 τωτ Constant Phase Matched Filter output envelope (change t ↔τ): ( )ttk ∆<≤+∆→ τττ 0 ( ) [ ] ( ) ( )[ ] [ ] ( )[ ] ( ) ∑ ∫ ∫∑ − = ∆+ ∆ ∗ +∞ ∞− ∗ − = ∆−+−∆−= ∆−+−∆−∆−=+∆ 1 0 1 0 1 0 0 exp 2 1 exp 2 1 M p tp tp p M p po dttkMtgctMj dttkMtgtptfctMjtkg τω τωτ Change variable of integration to t1 = t – τ + (M - k) Δt ( ) [ ] ( ) ( ) ( ) ∑ ∫ − = −∆+−+ −∆−+ ∗ ∆−=+∆ 1 0 1 110exp 2 1 M p tkMp tkMp po dttgctMjtkg τ τ ωτ tMt ∆=0 (expected receiving time) ( ) ( ) ( ) ( ) ( )tjtgtjtgts 00 exp 2 1 exp 2 1 ωω −+= ∗ The signal:
  • 51. 51 Matched Filters for RADAR SignalsSOLO Matched Filter Response to Phase Coding (continue – 1( Matched Filter output envelope for a Phase Coding is: ( ) [ ] ( )[ ] ( ) ∑ ∫ − = ∆+ ∆ ∗ ∆−+−∆−=+∆ 1 0 1 0exp 2 1 M p tp tp po dttkMtgctMjtkg τωτ Change variable of integration to t1 = t – τ + (M - k) Δt ( ) [ ] ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∫∫∑ ∫ − = −∆+−+ ∆−+ ∗ ∆−+ −∆−+ ∗ − = −∆+−+ −∆−+ ∗         +∆−=∆−=+∆ 1 0 1 11110 1 0 1 110 exp 2 1 exp 2 1 M p tkMp tkMp tkMp tkMp p M p tkMp tkMp po dttgdttgctMjdttgctMjtkg τ τ τ τ ωωτ ( ) ( ) ( ) ( ) ( ) ( ) τ τ −∆+−+<<∆−+= ∆−+<<−∆−+= −+ ∗ −−+ ∗ tkMpttkMpctg tkMpttkMpctg kMp kMp 11 * 1 11 * 1 ( ) [ ] ∑ ∫∫ − = −∆ −+ − −−+         +∆−=+∆ 1 0 0 1 * 0 11 * 0exp 2 1 M p t kMpkMppo dtcdtcctMjtkg τ τ ωτ ( ) [ ] ∑ − = −+−−+             ∆ −+      ∆ ∆− ∆ =+∆ 1 0 * 1 * 0 1exp 2 1 M p kMpkMppo t c t cctMj t tkg ττ ωτ This equation describes straight lines in the complex plane, that can have corners only at τ = 0. At those corners ( ) [ ] ∑ − = −+∆− ∆ =∆ 1 0 * 0exp 2 1 M p kMppo cctMj t tkg ω Constant Phase
  • 52. 52 Matched Filters for RADAR SignalsSOLO Matched Filter Response to Phase Coding (continue – 2( Matched Filter output envelope for a Phase Coding is: ( ) [ ] ∑ − = −+−−+             ∆ −+      ∆ ∆− ∆ =+∆ 1 0 * 1 * 0 1exp 2 1 M p kMpkMppo t c t cctMj t tkg ττ ωτ This equation describes straight lines in the complex plane, that can have corners only at τ = 0. At those corners ( ) [ ] ∑ − = −+∆− ∆ =∆ 1 0 * 0exp 2 1 M p kMppo cctMj t tkg ω Constant Phase We can see that is the Discrete Autocorrelation Function for the observation time t0 = M Δt (the time the received Radar signal return is expected) ∑ − = −+ 1 0 * M p kMpp cc
  • 53. 53 Matched Filters for RADAR SignalsSOLO Matched Filter Response to Phase Coding (continue – 3( Example: Pulse poly-phase coded of length 4 Given the sequence: { } 1,,,1 −−++= jjck which corresponds to the sequence of phases 0◦, 90◦, 270◦ and 180◦, the matched filter is given in Figure bellow. { } 1,,,1 * −+−+= jjck
  • 54. 54 Pulse poly-phase coded of length 4 At the Receiver the coded pulse enters a 4 cells delay lane (from left to right), a bin at each clock. The signals in the cells are multiplied by -1,+j,-j or +1 and summed. clock SOLO Poly-Phase Modulation -1 = -11 1+ -j +j = 02 1+j+ +j -1-j = -13 1+j+j− +1 +1+1+1 = 44 1+j+j−1− -j-1+j = -1 5 j+j−1− +j - j = 0 6 j−1− 7 1− -1 = -1 8 0 Σ { } 1,,,1 −−++= jjck 1− 1+j+ j− {ck*} 0 = 00 0 1 2 3 4 5 6 7 { } 1,,,1* −+−+= jjck
  • 55. 55 -1 Pulse bi-phase Barker coded of length 3 Digital Correlation At the Receiver the coded pulse enters a 3 cells delay lane (from left to right), a bin at each clock. The signals in the cells are multiplied according to ck* sign and summed. clock -1 = -11 +1 -1 = 02 -( +1) = -15 0 = 06 +1 +1-( -1) = 33 +1-( +1) = 04 SOLO Pulse Compression Techniques 1 2 3 4 5 6 0 +1+1 0 = 00
  • 56. 56 Pulse bi-phase Barker coded of length 5 Digital Correlation At the Receiver the coded pulse enters a 7 cells delay lane (from left to right), a bin at each clock. The signals in the cells are multiplied by ck* and summed. clock SOLO Pulse Compression Techniques +1-1+1+1+1 { }* kc +1 = +11 +1 = 19 0 = 010 2 -1 +1 = 0 +1 +1 -1-( +1) = 04 +1 +1 +1 –(-1)+1 = 55 0 = 00 3 +1-1 +1 = 1 +1 +1 -(+1) -1 = 06 +1-( +1) +1 = 17 –(+1) +1 = 08 Return to Table of Content
  • 57. 57 Matched Filters for RADAR Signals ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]tjta tjttatsjtstg QI θ θθ exp sincos: = +=+= SOLO Matched Filter Response to its Doppler-Shifted Signal Matched Filter for the transmitted radar signal: The received radar signal has the form: ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tjtgtjtg tttats 00 0 exp 2 1 exp 2 1 cos ωω θω −+= += ∗ ( ) ( ) ( ) ( )[ ]000 cos tttttakts Dr −++−= θωω ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( )tjtjtgtjtjtg k tttakts DD Dtr 0 * 0 00 expexp 2 1 expexp 2 cos 0 ωωωω θωω −+= ++== ( ) ( ) ( )∫ +∞ ∞− ∗ = −= τττ dtggtg filtersignal to 2 1 00 Matched Filter output envelope (designed under zero Doppler assumption) was found to be: ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ = −= τττωτω dtgjgtg filtersignal DtDo    exp 2 1 , 00 For a nonzero Doppler (ωD ≠ 0) the Matched Filter output envelope is:
  • 58. 58 Matched Filters for RADAR Signals ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]tjta tjttatsjtstg QI θ θθ exp sincos: = +=+= SOLO Matched Filter Response to its Doppler-Shifted Signal (continue – 1( For a nonzero Doppler (ωD ≠ 0) the Matched Filter output complex envelope is: ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ = −= τττωτω dtgjgtg filtersignal DtDo    exp 2 1 , 00 Change between t and τ and define: ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, The magnitude of the complex envelope ,is called the Ambiguity Function.( )DfX ,τ The name is sometimes used for , and sometimes even for .( )DfX ,τ ( ) 2 , DfX τ
  • 59. 59 Matched Filters for RADAR SignalsSOLO Matched Filter Response to its Doppler-Shifted Signal (continue – 2( Properties of: ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− ∗ +∞ ∞− +∞ ∞− ∗ === dffGfGdttgdttgtgX 2 :0,01 2 ( ) ( ) ( )DDD fXfjfX ,*2exp, ττπτ =−− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) [ ] ( ) ( )DDDD tt DD DD fXfjdttfjtgtgfj dttfjtgtgfj dttfjtgtgfX ,*2exp''2exp''*2exp 2exp2exp 2exp, * ' ττππττπ τπττπ πττ τ =       −= +−+= =−+=−− ∫ ∫ ∫ ∞+ ∞− += ∞+ ∞− ∗ +∞ ∞− ∗ ( ) ( ) ( )DDD fXfjfX −−=− ,*2exp, ττπτ3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )DDDD tt DD DD fXfjdttfjtgtgfj dttfjtgtgfj dttfjtgtgfX −−=       −−−= ++−= =+=− ∫ ∫ ∫ ∞+ ∞− += ∞+ ∞− ∗ +∞ ∞− ∗ ,*2exp''2exp''*2exp 2exp2exp 2exp, * ' ττππττπ τπττπ πττ τ
  • 60. 60 Matched Filters for RADAR SignalsSOLO Matched Filter Response to its Doppler-Shifted Signal (continue – 3( Properties of: ( ) ( ) ( ) ( )∫ +∞ ∞− ∗ −= dttfjtgtgfX DD πττ 2exp:, 4 5 ( ) ( ) ( ) ( )τττ ggRdttgtgX =−= ∫ +∞ ∞− ∗ :0, ( ) ( ) ( ) ( ) ( ) ( ) ( )fRdfffGfGdttfjtgtgfX GGDDD =+== ∫∫ +∞ ∞− +∞ ∞− ∗ * 2exp,0 π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )fRdfffGfG dfdttffjtgfGdfdttffjtgfG dttfjtgdftfjfGdttfjtgtgfX GGD DD DDD =+=       +−=+= == ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− ∞+ ∞− ∗ +∞ ∞− ∗ +∞ ∞− +∞ ∞− ∗ * * 2exp2exp 2exp2exp2exp,0 ππ πππ Return to Table of Content ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( )0,exp 2 1 exp 2 1 exp 2 1 000000000 ttXtjttRtjdttggtjtg gg filtermatchedsignal o −−=−−=+−−= ∫ +∞ ∞− ∗ ωωτττω  Autocorrelation Function of the Signal Complex Envelope ( )tg We found that the Matched Filter Output Complex Envelope is:( )tgo
  • 61. 61 SOLO Continue to Ambiguity Functions Matched Filters and Ambiguity Functions for RADAR Signals
  • 62. January 18, 2015 62 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA
  • 63. 63 Fourier Transform ( ) ( ){ } ( ) ( )∫ +∞ ∞− −== dttjtftfF ωω exp:F SOLO Jean Baptiste Joseph Fourier 1768-1830 F (ω) is known as Fourier Integral or Fourier Transform and is in general complex ( ) ( ) ( ) ( ) ( )[ ]ωφωωωω jAFjFF expImRe =+= Using the identities ( ) ( )t d tj δ π ω ω =∫ +∞ ∞− 2 exp we can find the Inverse Fourier Transform ( ) ( ){ }ωFtf -1 F= ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[ ]00 2 1 2 exp 2 expexp 2 exp ++−=−=−=     −= ∫∫ ∫ ∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− +∞ ∞− tftfdtfd d tjf d tjdjf d tjF ττδττ π ω τωτ π ω ωττωτ π ω ωω ( ) ( ){ } ( ) ( )∫ +∞ ∞− == π ω ωωω 2 exp: d tjFFtf -1 F ( ) ( ) ( ) ( )[ ]00 2 1 ++−=−∫ +∞ ∞− tftfdtf ττδτ If f (t) is continuous at t, i.e. f (t-0) = f (t+0) This is true if (sufficient not necessary) f (t) and f ’ (t) are piecewise continue in every finite interval1 2 and converge, i.e. f (t) is absolute integrable in (-∞,∞)( )∫ +∞ ∞− dttf
  • 64. 64 ( )atf − -1 F F ( ) ( )ωω ajF −exp Fourier TransformSOLO ( )tf -1 F F ( )ωFProperties of Fourier Transform (Summary) Linearity1 ( ) ( ){ } ( ) ( )[ ] ( ) ( ) ( )ωαωαωαααα 221122112211 exp: FFdttjtftftftf +=−+=+ ∫ +∞ ∞− F Symmetry2 ( )tF -1 F F ( )ωπ −f2 Conjugate Functions3 ( )tf * -1 F F ( )ω−* F Scaling4 ( )taf -1 F F       a F a ω1 Derivatives5 ( ) ( )tftj n − -1 F F ( )ω ω F d d n n ( )tf td d n n -1 F F ( ) ( )ωω Fj n Convolution6 ( ) ( )tftf 21 -1 F F ( ) ( )ωω 21 * FF( ) ( ) ( ) ( )∫ +∞ ∞− −= τττ dtfftftf 2121 :* -1 F F ( ) ( )ωω 21 FF ( ) ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− = ωωω dFFdttftf 2 * 12 * 1 Parseval’s Formula7 Shifting: for any a real8 ( ) ( )tajtf exp -1 F F ( )aF −ω Modulation9 ( ) ttf 0 cos ω -1 F F ( ) ( )[ ]00 2 1 ωωωω −++ FF ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− −=−= ωωω π ωωω π dFFdFFdttftf 212121 2 1 2 1
  • 65. 65 Fourier Transform ( )tf ( ) ( )∑ ∞ = −= 0n T Tntt δδ ( ) ( ) ( ) ( ) ( )∑ ∞ = −== 0 * n T TntTnfttftf δδ ( )tf * ( )tf T t ( ) ( ){ } ( ) σσ <== +∫ ∞ − f ts dtetftfsF 0 L SOLO Sampling and z-Transform ( ) ( ){ } ( ) σδδ < − ==       −== − ∞ = − ∞ = ∑∑ 0 1 1 00 sT n sTn n T e eTnttsS LL ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ } ( ) ( )       << − = =       − == − ∞+ ∞− −− ∞ = − ∞ = +∫ ∑∑ 0 00 ** 1 1 2 1 σσσξξ π δ δ ξ σ σ ξ f j j tsT n sTn n d e F j ttf eTnfTntTnf tfsF L L L ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )              − = − − = − = ∑∫ ∑∫ ∑ −− − −− Γ −− −− Γ −− ∞ = − ts e ofPoles tsts F ofPoles tsts n nsT e F Resd e F j e F Resd e F j eTnf sF ξ ξξ ξ ξξ ξ ξ ξ π ξ ξ ξ π 1 1 0 * 112 1 112 1 2 1 Poles of ( ) Ts e ξ−− −1 1 Poles of ( )ξF planes T nsn π ξ 2 += ωj ωσ j+ 0=s Laplace Transforms The signal f (t) is sampled at a time period T. 1Γ 2 Γ ∞→R ∞→R Poles of ( ) Ts e ξ−− −1 1 Poles of ( )ξF planeξ T nsn π ξ 2 += ωj ωσ j+ 0=s
  • 66. 66 Fourier Transform ( )tf ( ) ( )∑ ∞ = −= 0n T Tntt δδ ( ) ( ) ( ) ( ) ( )∑ ∞ = −== 0 * n T TntTnfttftf δδ ( )tf * ( )tf T t SOLO Sampling and z-Transform (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑ ∑∑ ∞+ −∞= ∞+ −∞= −−→ ∞+ −∞= −− +→ += − −−       += −       + −=       +             − −− −= − −= −− −− nn Tse n ts T n js T n js e ofPoles ts T n jsF TeT T n jsF T n jsF e T n js e F RessF ts n ts π π π π ξ ξ ξ ξπ ξ π ξ ξ ξ ξ 21 2 lim 2 1 2 lim 1 1 2 2 1 1 * Poles of ( )ξF ωj σ 0=s T π2 T π2 T π2 Poles of ( )ξ* F plane js ωσ += The signal f (t) is sampled at a time period T. The poles of are given by( )ts e ξ−− −1 1 ( ) ( ) T n jsnjTsee n njTs π ξπξπξ 2 21 2 +=⇒=−−⇒==−− ( ) ∑ +∞ −∞=       += n T n jsF T sF π21*
  • 67. 67 Fourier Transform ( )tf ( ) ( )∑ ∞ = −= 0n T Tntt δδ ( ) ( ) ( ) ( ) ( )∑ ∞ = −== 0 * n T TntTnfttftf δδ ( )tf * ( )tf T t SOLO Sampling and z-Transform (continue – 2) 0=z planez Poles of ( )zF C The signal f (t) is sampled at a time period T. The z-Transform is defined as: ( ){ } ( ) ( ) ( ) ( ) ( ) ( )         − −=== ∑ ∑ = − → ∞ = − = iF iF i iF Ts FofPoles T F n n ze ze F zTnf zFsFtf ξξ ξ ξ ξξ ξξξ 1 0 * 1 lim:Z ( ) ( )      < >≥ = ∫ − 00 0 2 1 1 n RzndzzzF jTnf fC C n π
  • 68. 68 Fourier TransformSOLO Sampling and z-Transform (continue – 3) ( ) ( ) ( )∑∑ ∞ = − +∞ −∞= =      += 0 * 21 n nsT n eTnf T n jsF T sF πWe found The δ (t) function we have: ( ) 1=∫ +∞ ∞− dttδ ( ) ( ) ( )τδτ fdtttf =−∫ +∞ ∞− The following series is a periodic function: ( ) ( )∑ −= n Tnttd δ: therefore it can be developed in a Fourier series: ( ) ( ) ∑∑       −=−= n n n T tn jCTnttd πδ 2exp: where: ( ) T dt T tn jt T C T T n 1 2exp 1 2/ 2/ =      = ∫ + − πδ Therefore we obtain the following identity: ( )∑∑ −=      − nn TntT T tn j δπ2exp Second Way
  • 69. 69 Fourier Transform ( ) ( ){ } ( ) ( )∫ +∞ ∞− −== dttjtftfF νπνπ 2exp:2 F ( ) ( ) ( )∑∑ ∞ = − +∞ −∞= =      += 0 * 21 n nsT n eTnf T n jsF T sF π ( ) ( ){ } ( ) ( )∫ +∞ ∞− == ννπνπνπ dtjFFtf 2exp2:2-1 F SOLO Sampling and z-Transform (continue – 4) We found Using the definition of the Fourier Transform and it’s inverse: we obtain ( ) ( ) ( )∫ +∞ ∞− = ννπνπ dTnjFTnf 2exp2 ( ) ( ) ( ) ( ) ( ) ( )∑∫∑ ∞ = +∞ ∞− ∞ = −=−= 0 111 0 * exp2exp2exp nn n sTndTnjFsTTnfsF ννπνπ ( ) ( ) ( )[ ]∫ ∑ +∞ ∞− +∞ −∞= −−== 111 * 2exp22 νννπνπνπ dTnjFjsF n ( ) ( ) ∑∫ ∑ +∞ −∞= +∞ ∞− +∞ −∞=             −=      −−== nn T n F T d T n T FjsF νπνννδνπνπ 2 11 22 111 * We recovered (with –n instead of n) ( ) ∑ +∞ −∞=       += n T n jsF T sF π21* Second Way (continue) Making use of the identity: with 1/T instead of T and ν - ν 1 instead of t we obtain: ( )[ ] ∑∑       −−=−− nn T n T Tnj 11 1 2exp ννδννπ ( )∑∑ −=      − nn TntT T tn j δπ2exp
  • 70. 70 Fourier TransformSOLO Henry Nyquist 1889 - 1976 http://en.wikipedia.org/wiki/Harry_Nyquist Nyquist-Shannon Sampling Theorem Claude Elwood Shannon 1916 – 2001 http://en.wikipedia.org/wiki/Claude_E._Shannon The sampling theorem was implied by the work of Harry Nyquist in 1928 ("Certain topics in telegraph transmission theory"), in which he showed that up to 2B independent pulse samples could be sent through a system of bandwidth B; but he did not explicitly consider the problem of sampling and reconstruction of continuous signals. About the same time, Karl Küpfmüller showed a similar result, and discussed the sinc-function impulse response of a band-limiting filter, via its integral, the step response Integralsinus; this band- limiting and reconstruction filter that is so central to the sampling theorem is sometimes referred to as a Küpfmüller filter (but seldom so in English). The sampling theorem, essentially a dual of Nyquist's result, was proved by Claude E. Shannon in 1949 ("Communication in the presence of noise"). V. A. Kotelnikov published similar results in 1933 ("On the transmission capacity of the 'ether' and of cables in electrical communications", translation from the Russian), as did the mathematician E. T. Whittaker in 1915 ("Expansions of the Interpolation-Theory", "Theorie der Kardinalfunktionen"), J. M. Whittaker in 1935 ("Interpolatory function theory"), and Gabor in 1946 ("Theory of communication"). http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
  • 71. 71 SignalsSOLO Signal Duration and Bandwidth then ( ) ( )∫ +∞ ∞− − = tdetsfS tfi π2 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 t t∆2 t ( ) 2 ts f f f∆2 ( ) 2 fS ( ) ( ) ( ) 2/1 2 22 :               − =∆ ∫ ∫ ∞+ ∞− +∞ ∞− tdts tdtstt t ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = tdts tdtst t 2 2 : Signal Duration Signal Median ( ) ( ) ( ) 2/1 2 22 2 4 :               − =∆ ∫ ∫ ∞+ ∞− +∞ ∞− fdfS fdfSff f π ( ) ( )∫ ∫ ∞+ ∞− +∞ ∞− = fdfS fdfSf f 2 2 2 : π Signal Bandwidth Frequency Median Fourier
  • 72. 72 Signals ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 SOLO Signal Duration and Bandwidth (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− − ∞+ ∞− ∞+ ∞− − ∞+ ∞− ∞+ ∞− ∞+ ∞− =        =         =        = dffSfSdfdesfS dfdefSsdfdefSsdss tfi tfitfi ττ τττττττ π ππ 2 22 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 ( ) ( ) ( )∫ +∞ ∞− == fdefSfi td tsd ts tfi π π 2 2' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ ∫∫ ∫∫ ∞+ ∞− ∞+ ∞− ∞+ ∞− − +∞ ∞− +∞ ∞− − +∞ ∞− +∞ ∞− − +∞ ∞− =        −=         −=        −= dffSfSfdfdesfSfi dfdesfSfidfdefSfsidss tfi tfitfi 222 22 2'2 '2'2'' πττπ ττπττπτττ π ππ ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSds 22 ττ Parseval Theorem From From ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSfdtts 2222 4' π
  • 73. 73 Signals ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− − ∞+ ∞− +∞ ∞− +∞ ∞− − ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ===== dffS fd fd fSd fS i dffS fdtdetstfS dffS tdfdefStst dffS tdtstst tdts tdtst t fifi 22 2 2 2 22 2 2 : π ππ SOLO Signal Duration and Bandwidth ( ) ( )∫ +∞ ∞− − = tdetsfS tfi π2 ( ) ( )∫ +∞ ∞− = fdefSts tfi π2 Fourier ( ) ( )∫ +∞ ∞− − −= tdetsti fd fSd tfi π π 2 2 ( ) ( )∫ +∞ ∞− = fdefSfi td tsd tfi π π 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− − =         ==== tdts td td tsd tsi tdts tdfdefSfts tdts fdtdetsfSf tdts fdfSfSf fdfS fdfSf f fifi 22 2 2 2 22 2 2222 : ππ ππππ
  • 74. 74 Signals ( ) ( ) ( ) ( ) ( )∫∫∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− +∞ ∞− =≤         dffSfdttstdttsdttstdtts 222222 2 2 4' 4 1 π ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSdts 22 τ SOLO Signal Duration and Bandwidth (continue – 1) 0&0 == ftChange time and frequency scale to get From Schwarz Inequality: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttgdttfdttgtf 22 Choose ( ) ( ) ( ) ( ) ( )ts td tsd tgtsttf ':& === ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttsdttstdttstst 22 ''we obtain ( ) ( )∫ +∞ ∞− dttstst 'Integrate by parts ( )    = += →    = = sv dtstsdu dtsdv stu ' ' ( ) ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− −−= dttststdttsstdttstst '' 2 0 2  ( ) ( ) ( )∫∫ +∞ ∞− +∞ ∞− −= dttsdttstst 2 2 1 ' ( ) ( )∫∫ +∞ ∞− +∞ ∞− = dffSfdtts 2222 4' π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− ∞+ ∞− +∞ ∞− =≤ dffS dffSf dtts dttst dtts dffSf dtts dttst 2 222 2 2 2 222 2 2 44 4 1 ππ assume ( ) 0lim = →∞ tst t
  • 75. 75 SignalsSOLO Signal Duration and Bandwidth (continue – 2) ( ) ( ) ( ) ( ) ( ) ( )      22 2 222 2 2 4 4 1 ft dffS dffSf dtts dttst ∆ ∞+ ∞− +∞ ∞− ∆ ∞+ ∞− +∞ ∞−                             ≤ ∫ ∫ ∫ ∫ π Finally we obtain ( ) ( )ft ∆∆≤ 2 1 0&0 == ftChange time and frequency scale to get Since Schwarz Inequality: becomes an equality if and only if g (t) = k f (t), then for: ( ) ( ) ( ) ( )∫∫∫ +∞ ∞− +∞ ∞− +∞ ∞− ≤ dttgdttfdttgtf 22 ( ) ( ) ( ) ( )tftsteAt td sd tgeAts tt ααα αα 222: 22 −=−=−==⇒= −− we have ( ) ( )ft ∆∆= 2 1

Hinweis der Redaktion

  1. DiFranco, J.V., Rubin, W.I., “Radar Detection”, Artech House, 1969, Appendix A, pp. 623-625 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 1, “Elementary Concepts”, pp.11-17
  2. DiFranco, J.V., Rubin, W.I., “Radar Detection”, Artech House, 1969, Appendix A, pp. 623-625 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 1, “Elementary Concepts”, pp.11-17
  3. DiFranco, J.V., Rubin, W.I., “Radar Detection”, Artech House, 1969, Appendix A, pp. 623-625 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 1, “Elementary Concepts”, pp.11-17
  4. DiFranco, J.V., Rubin, W.I., “Radar Detection”, Artech House, 1969, Appendix A, pp. 623-625 Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 1, “Elementary Concepts”, pp.11-17
  5. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  6. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  7. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  8. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  9. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  10. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  11. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  12. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  13. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 D. Curtis Schleher Ed., “Automatic Detection and Radar Data Processing”,
  14. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 D. Curtis Schleher Ed., “Automatic Detection and Radar Data Processing”,
  15. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  16. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  17. J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  18. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  19. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  20. Reference in J. Meyer-Arendt, “Introduction to Classical &amp; Modern Optics”, 3th Ed.,Prentince Hall, 1989, pg. 258 http://en.wikipedia.org/wiki/Fresnel_integral http://mathworld.wolfram.com/FresnelIntegrals.html
  21. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  22. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  23. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  24. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  25. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  26. Cook, C.E., Barnfeld, M., “Radar Signals: An Introduction to Theory and Applications”, Artech House, 1993, Ch.6, “The Linear FM Waveform and Matched Filter”, pp.130-172
  27. Papoulis, A., “Signal Analysis”, McGraw Hill, 1977, pp.328-329 J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  28. Papoulis, A., “Signal Analysis”, McGraw Hill, 1977, pp.328-329 J.V.DiFranco, W.I. Rubin, “RADAR Detection”, Artech House, 1981, Ch.5, pp.143-201 W.B. Davenport,jr., W.L. Root,”An Introduction to the Theory of Random Signals and Noise”, McGraw Hill, 1958, pp. 244-246
  29. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286
  30. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286
  31. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286
  32. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286
  33. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286
  34. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  35. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75 Ralph Deutsch, “System Analysis Techniques”, Prentice-Hall, Inc., 1969, § 4.7, “Effective Bandwidth”, pp.126-138
  36. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  37. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  38. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75 Ralph Deutsch, “System Analysis Techniques”, Prentice-Hall, Inc., 1969, § 4.7, “Effective Bandwidth”, pp.126-138 Athanasios Papoulis, “signal Analysis”, McGraw-Hill, 1977, § 8-2, Uncertainty Principle and Sophisticated Signals, pp.273-278
  39. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286 N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.111-113
  40. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286 N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.111-113
  41. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286 N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.111-113
  42. Peeble, P.Z. Jr, “Radar Principles”, John Wiley &amp; Sons, 1998, Ch. 6, “Radar Signals and Networks”, pp.250-286 N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.111-113
  43. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.113-117
  44. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.113-117
  45. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.113-117
  46. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.113-117
  47. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118
  48. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118
  49. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118
  50. N. Levanon, “Radar Principles”, John Wiley &amp; Sons, 1988, pp.117-118
  51. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75 Ralph Deutsch, “System Analysis Techniques”, Prentice-Hall, Inc., 1969, § 4.7, “Effective Bandwidth”, pp.126-138 Athanasios Papoulis, “signal Analysis”, McGraw-Hill, 1977, § 8-2, Uncertainty Principle and Sophisticated Signals, pp.273-278
  52. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  53. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75 Ralph Deutsch, “System Analysis Techniques”, Prentice-Hall, Inc., 1969, § 4.7, “Effective Bandwidth”, pp.126-138
  54. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75
  55. Minkoff, J., “Signals, Noise, and Active Sensors”, John Wiley &amp; Sons, 1992, pp.72-74 François Le Chevalier, “Principes De Traitement Des Signaux Radar et Sonar”, Masson, 1989, pp.39 et 75