SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Downloaden Sie, um offline zu lesen
Swisscom's Journey into Data
Mesh
Mirela Navodaru, Enterprise and SolutionArchitect Data, Analytics and AI, Swisscom
Berner Architekten Treffen, 08.03.2024
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
2
Everyone is empowered to make Business Decisions based
on Information, Insights and Recommendation from DATA
I (still) have a dream
Data Democratization
Data Culture
+
Inspired by "I have a dream" speech of Martin Luther King
Fast Insights
Together,
We Make
Data Work
Data Driven
Culture
Value Driver
Data
Skills
SC Data
Community
Data-Driven
Experience
Data-Driven
Operational Excellence
Data-Driven
Innovation & Growth
Data Mgmt.
Platform
Data centric Roles &
Responsibilities
Data Security,
Compliance & Quality
Data
Literacy
One Data
Platform
Data
Products
Self-
Service
The Swisscom Data and Analytics Strategy
Generating Business Value from Data at Scale
Target
Picture
Best Data
Management
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
4
From the Starting Point to the Data Democratization
Data
as a Product
Federated Data Governance
Self-serve and domain-agnostic
Data Infrastructure as a Platform
Data Management Central Suite
Centralized Data, Analytics & AI
Delivery Organization
Data
as an Organizational Asset
Data managed
in Silos & Redundant mode
in an Overcomplex Landscape
Central Governance vs Delivery
Data, Analytics & AI
+
Decentralized Data Products Teams
?
Data Mesh enables Data Democratization
Data
Mesh
Pillars
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
5
Data Products – What it means for Swisscom
Value Proposition – a Must
Reusability
Interoperability
Use the Manifest to
document Data Products
Use the Data Contract(s)
Conditions for Sharing Data
Enable Data Protection &
Security by Design
The Output - Data Sets (low granularity data, aggregated data, transformed data, insights from
ML applied techniques, etc.) with a Value Proposition.
Principles
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
6
Data Products - Elements
Components
Data
Metadata
Code
Data Producers
Teams
Data Product
Owner
Business Roles
Data & Tech Roles
Policies
Types
Consumer-aligned
Data Products
Conformed
Data Products
Source-aligned
Data products
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
7
Data Products – Deep Dive into types
Data Sources Business cases
Customer-aligned
Data Products
Conformed
Data Products
Source-aligned
Data products
Characteristics:
• Lowest level of granularity
• Structure and Model from the
Data Sources
• Data cleaned according with
the data quality rules
• Target state OP –
(transactional system) cross-
functional teams with
business, data & tech skills
Characteristics:
• Conformed with enterprise
logical data model (SDM)
• Greenfield approach,
governance built-in
(TMForum);
• Target state OP –cross-
functional teams with
business, data & tech skills
(Organized by Domains)
Characteristics:
• Dimensional data model
• Created by merging two or
more Conformed DPs
• Already in place, to be
migrated to the new
platform (almost 1:1)
- Target state OP - cross
teams with business, data &
tech skills
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
8
ODP's Team
➢ Build,MaintainandAdministrate
theDataInfrastructure(hybrid)
➢ EnableDataProducersteamsto
easyandinself-servicemode:
• Build– Templates,patterns,standards,
bestpractices
• Deploy–Built-inPipelines
• Manage– Monitoring&Alerts
• DataProtectionandDataSecurityby
Design
Swisscom One Data Platform (ODP) – Data and Code
High Level Target Architecture
Consumer-aligned
Data Products
Conformed
Data products
Source-aligned
Data products
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
9
Swisscom Data Management – Metadata and Policies
A Central Meta Data Mgt
System provides information
on data properties, business
context and lineage
Meta Data is automatically discovered from data source
systems or obtained from decentral Meta Data Systems
The Swisscom Data Catalogue
enables transparency and fast
retrival of data and insights
Business, Quality, Security
and Compliance Data
Requirements are centrally
managed as rules
Data Product Cockpits
monitor security, compliance
and quality of the data
Data Governance processes can
proactively be triggered and partly be
automated based on data monitoring and
data catalogue information
Clearly defined data roles and
responsibilities enable efficient data
management and trust in data
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
10
Data Products – Metadata to Document and Share
Manifest
Documentation of Data Products
To be created together with the Data Product and maintained during
its lifecycle
Descriptive Elements
Compliance Aspects
Reference Metadata
Data Contract
Agreement between Data Producers and Data Consumers
It describe the Service's Interfaces and the Conditions to share the
Data Products
Exposure Patterns
Commitment Elements
Data Quality Checks
Ownership & Accountability
Measures & Rating
Federated Data Governance – Shared Responsibility
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
11
Governance
Board
Central Governance is
easy to implement
(Built-in/by Design)
Assessment of Risks and
Approval of Exceptions
Feedback Loop between
Governance Orgs and
Delivery Teams
Global Intradomains
Governance
Principles and Guardrails
Rules, Policies and
Regulations for
Compliance Purpose
Architectural References,
Standards and Patterns
Team with People from
both Governance Orgs
and Delivery Teams
Local Interdomains
Governance
Ownership and
Accountability for Data
Products Lifecycle
Ownership of Manifests
and Data Contracts
Intradomain Data
Quality and Operations
Conceptual and Logical
Data Model (SDM)
Accountable for the
Governance
Implementation
Global
Interoperability
needs Global
Governance
Autonomy,
Agility and
Flexibility of the
Domains
Next steps in our Journey on Data Mesh
✓ Pilots for e2e Data Products Value Chain
✓ Governance Body for Federated Data Governance
✓ Target Operating Model
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
12
Key Learnings from our Journey on Data Mesh
✓ Decentralize to bring more Power into Producing and Consuming Data
✓ No Value, no Party
✓ Collaboration over Data and Metadata is the glue for the Data Producers and Consumers
✓ Design the Governance Implementation to be a real Enabler to the Data Democratization
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
13
References
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
14
Data Mesh Learning community (YouTube)
https://data-mesh-learning.slack.com/
Data Mesh Radio (Scott Hirleman)
Books:
Implementing Data Mesh – J.G.Perrin, E. Broda
Data Management at Scale, 2nd Edition – P. Strengholt
Driving Data Quality with Data Contracts – A. Jones
Mirela
Navodaru,
Swisscom's
Journey
into
Data
Mesh,BAT52,
08.03.2024,
C1
Public
15
"If you want to build a ship, don’t drum up the men and women to
gather wood, divide the work, and give orders. Instead, teach them
to yearn for the vast and endless sea."
A. de Saint-Exupéry
Together we can make this
dream become our reality
Thank you
for your attention!
Q&A
16
Mirela Navodaru
mirelanavodaru

Weitere ähnliche Inhalte

Was ist angesagt?

Graphs in Retail: Know Your Customers and Make Your Recommendations Engine Learn
Graphs in Retail: Know Your Customers and Make Your Recommendations Engine LearnGraphs in Retail: Know Your Customers and Make Your Recommendations Engine Learn
Graphs in Retail: Know Your Customers and Make Your Recommendations Engine LearnNeo4j
 
أعطال الكمبيوتر
أعطال الكمبيوترأعطال الكمبيوتر
أعطال الكمبيوترEssam din
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksJeremy Nixon
 
“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse
“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse
“The Data-Driven Engineering Revolution,” a Presentation from Edge ImpulseEdge AI and Vision Alliance
 
Internet of things - Business Opportunities in the Connected World
Internet of things - Business Opportunities in the Connected WorldInternet of things - Business Opportunities in the Connected World
Internet of things - Business Opportunities in the Connected WorldJag Randhawa
 
The Path To Success With Graph Database and Analytics
The Path To Success With Graph Database and AnalyticsThe Path To Success With Graph Database and Analytics
The Path To Success With Graph Database and AnalyticsNeo4j
 
How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...
How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...
How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...Neo4j
 
[PR12] Inception and Xception - Jaejun Yoo
[PR12] Inception and Xception - Jaejun Yoo[PR12] Inception and Xception - Jaejun Yoo
[PR12] Inception and Xception - Jaejun YooJaeJun Yoo
 
Fraud detection with Machine Learning
Fraud detection with Machine LearningFraud detection with Machine Learning
Fraud detection with Machine LearningScaleway
 
Computer Vision Applications - White Paper
Computer Vision Applications - White Paper Computer Vision Applications - White Paper
Computer Vision Applications - White Paper Addepto
 
Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...
Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...
Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...Carlos Eduardo Pantoja
 
000 introduction to big data analytics 2021
000   introduction to big data analytics  2021000   introduction to big data analytics  2021
000 introduction to big data analytics 2021Dendej Sawarnkatat
 
Neo4j Graph Use Cases, Bruno Ungermann, Neo4j
Neo4j Graph Use Cases, Bruno Ungermann, Neo4jNeo4j Graph Use Cases, Bruno Ungermann, Neo4j
Neo4j Graph Use Cases, Bruno Ungermann, Neo4jNeo4j
 
Iot internet-of-things-ppt
Iot internet-of-things-pptIot internet-of-things-ppt
Iot internet-of-things-pptSonalSharnam
 
Deep learning - what is it and why now?
Deep learning - what is it and why now?Deep learning - what is it and why now?
Deep learning - what is it and why now?Natalia Konstantinova
 
Internet of things (IOT) | Future Trends
Internet of things (IOT) | Future TrendsInternet of things (IOT) | Future Trends
Internet of things (IOT) | Future TrendsDevanand Hariperumal
 

Was ist angesagt? (20)

Graphs in Retail: Know Your Customers and Make Your Recommendations Engine Learn
Graphs in Retail: Know Your Customers and Make Your Recommendations Engine LearnGraphs in Retail: Know Your Customers and Make Your Recommendations Engine Learn
Graphs in Retail: Know Your Customers and Make Your Recommendations Engine Learn
 
أعطال الكمبيوتر
أعطال الكمبيوترأعطال الكمبيوتر
أعطال الكمبيوتر
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural Networks
 
“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse
“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse
“The Data-Driven Engineering Revolution,” a Presentation from Edge Impulse
 
Internet of things - Business Opportunities in the Connected World
Internet of things - Business Opportunities in the Connected WorldInternet of things - Business Opportunities in the Connected World
Internet of things - Business Opportunities in the Connected World
 
Big data security
Big data securityBig data security
Big data security
 
The Path To Success With Graph Database and Analytics
The Path To Success With Graph Database and AnalyticsThe Path To Success With Graph Database and Analytics
The Path To Success With Graph Database and Analytics
 
How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...
How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...
How Dell Used Neo4j Graph Database to Redesign Their Pricing-as-a-Service Pla...
 
[PR12] Inception and Xception - Jaejun Yoo
[PR12] Inception and Xception - Jaejun Yoo[PR12] Inception and Xception - Jaejun Yoo
[PR12] Inception and Xception - Jaejun Yoo
 
Digital Twin: Starting the journey
Digital Twin: Starting the journeyDigital Twin: Starting the journey
Digital Twin: Starting the journey
 
Fraud detection with Machine Learning
Fraud detection with Machine LearningFraud detection with Machine Learning
Fraud detection with Machine Learning
 
Computer Vision Applications - White Paper
Computer Vision Applications - White Paper Computer Vision Applications - White Paper
Computer Vision Applications - White Paper
 
Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...
Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...
Integrating Multi-Agent Systems and Internet of Things To Support Ambient Int...
 
000 introduction to big data analytics 2021
000   introduction to big data analytics  2021000   introduction to big data analytics  2021
000 introduction to big data analytics 2021
 
Neo4j Graph Use Cases, Bruno Ungermann, Neo4j
Neo4j Graph Use Cases, Bruno Ungermann, Neo4jNeo4j Graph Use Cases, Bruno Ungermann, Neo4j
Neo4j Graph Use Cases, Bruno Ungermann, Neo4j
 
Iot internet-of-things-ppt
Iot internet-of-things-pptIot internet-of-things-ppt
Iot internet-of-things-ppt
 
Deep learning - what is it and why now?
Deep learning - what is it and why now?Deep learning - what is it and why now?
Deep learning - what is it and why now?
 
AI meets Big Data
AI meets Big DataAI meets Big Data
AI meets Big Data
 
Internet of things (IOT) | Future Trends
Internet of things (IOT) | Future TrendsInternet of things (IOT) | Future Trends
Internet of things (IOT) | Future Trends
 
Big data and analytics
Big data and analyticsBig data and analytics
Big data and analytics
 

Ähnlich wie BATbern52 Swisscom's Journey into Data Mesh

Data and Application Modernization in the Age of the Cloud
Data and Application Modernization in the Age of the CloudData and Application Modernization in the Age of the Cloud
Data and Application Modernization in the Age of the Cloudredmondpulver
 
Building the Artificially Intelligent Enterprise
Building the Artificially Intelligent EnterpriseBuilding the Artificially Intelligent Enterprise
Building the Artificially Intelligent EnterpriseDatabricks
 
KASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
KASHTECH AND DENODO: ROI and Economic Value of Data VirtualizationKASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
KASHTECH AND DENODO: ROI and Economic Value of Data VirtualizationDenodo
 
Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Denodo
 
ADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture MaturityADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture MaturityDATAVERSITY
 
Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!Jeffrey T. Pollock
 
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)Denodo
 
Modernizing Integration with Data Virtualization
Modernizing Integration with Data VirtualizationModernizing Integration with Data Virtualization
Modernizing Integration with Data VirtualizationDenodo
 
Hadoop Migration to databricks cloud project plan.pptx
Hadoop Migration to databricks cloud project plan.pptxHadoop Migration to databricks cloud project plan.pptx
Hadoop Migration to databricks cloud project plan.pptxyashodhannn
 
Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...
Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...
Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...Denodo
 
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?Denodo
 
Democratized Data & Analytics for the Cloud​
Democratized Data & Analytics for the Cloud​Democratized Data & Analytics for the Cloud​
Democratized Data & Analytics for the Cloud​Precisely
 
A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)Denodo
 
PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service
PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service
PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service Stefan Schwarz
 
Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)Nathan Bijnens
 
Semantix Data Platform - 2022.pdf
Semantix Data Platform - 2022.pdfSemantix Data Platform - 2022.pdf
Semantix Data Platform - 2022.pdfLucas Panchorra
 
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...DATAVERSITY
 
Accelerate Cloud Migrations and Architecture with Data Virtualization
Accelerate Cloud Migrations and Architecture with Data VirtualizationAccelerate Cloud Migrations and Architecture with Data Virtualization
Accelerate Cloud Migrations and Architecture with Data VirtualizationDenodo
 
SG Data Mgt - Findings and Recommendations.pptx
SG Data Mgt - Findings and Recommendations.pptxSG Data Mgt - Findings and Recommendations.pptx
SG Data Mgt - Findings and Recommendations.pptxssuser57f752
 
Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...
Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...
Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...Matt Stubbs
 

Ähnlich wie BATbern52 Swisscom's Journey into Data Mesh (20)

Data and Application Modernization in the Age of the Cloud
Data and Application Modernization in the Age of the CloudData and Application Modernization in the Age of the Cloud
Data and Application Modernization in the Age of the Cloud
 
Building the Artificially Intelligent Enterprise
Building the Artificially Intelligent EnterpriseBuilding the Artificially Intelligent Enterprise
Building the Artificially Intelligent Enterprise
 
KASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
KASHTECH AND DENODO: ROI and Economic Value of Data VirtualizationKASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
KASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
 
Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)
 
ADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture MaturityADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture Maturity
 
Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!Klarna Tech Talk - Mind the Data!
Klarna Tech Talk - Mind the Data!
 
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
 
Modernizing Integration with Data Virtualization
Modernizing Integration with Data VirtualizationModernizing Integration with Data Virtualization
Modernizing Integration with Data Virtualization
 
Hadoop Migration to databricks cloud project plan.pptx
Hadoop Migration to databricks cloud project plan.pptxHadoop Migration to databricks cloud project plan.pptx
Hadoop Migration to databricks cloud project plan.pptx
 
Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...
Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...
Implementar una estrategia eficiente de gobierno y seguridad del dato con la ...
 
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?¿En qué se parece el Gobierno del Dato a un parque de atracciones?
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
 
Democratized Data & Analytics for the Cloud​
Democratized Data & Analytics for the Cloud​Democratized Data & Analytics for the Cloud​
Democratized Data & Analytics for the Cloud​
 
A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)A Logical Architecture is Always a Flexible Architecture (ASEAN)
A Logical Architecture is Always a Flexible Architecture (ASEAN)
 
PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service
PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service
PARTNERS 2013 - Dr. Stefan Schwarz - Big Data Analytics as a Service
 
Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)
 
Semantix Data Platform - 2022.pdf
Semantix Data Platform - 2022.pdfSemantix Data Platform - 2022.pdf
Semantix Data Platform - 2022.pdf
 
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
 
Accelerate Cloud Migrations and Architecture with Data Virtualization
Accelerate Cloud Migrations and Architecture with Data VirtualizationAccelerate Cloud Migrations and Architecture with Data Virtualization
Accelerate Cloud Migrations and Architecture with Data Virtualization
 
SG Data Mgt - Findings and Recommendations.pptx
SG Data Mgt - Findings and Recommendations.pptxSG Data Mgt - Findings and Recommendations.pptx
SG Data Mgt - Findings and Recommendations.pptx
 
Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...
Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...
Big Data LDN 2018: DATA MANAGEMENT AUTOMATION AND THE INFORMATION SUPPLY CHAI...
 

Mehr von BATbern

BATbern52 Moderation Berner Architekten Treffen zu Data Mesh
BATbern52 Moderation Berner Architekten Treffen zu Data MeshBATbern52 Moderation Berner Architekten Treffen zu Data Mesh
BATbern52 Moderation Berner Architekten Treffen zu Data MeshBATbern
 
BATbern52 SBB zu Data Products und Knacknüsse
BATbern52 SBB zu Data Products und KnacknüsseBATbern52 SBB zu Data Products und Knacknüsse
BATbern52 SBB zu Data Products und KnacknüsseBATbern
 
BATbern52 Mobiliar zu Skalierte Datenprodukte mit Data Mesh
BATbern52 Mobiliar zu Skalierte Datenprodukte mit Data MeshBATbern52 Mobiliar zu Skalierte Datenprodukte mit Data Mesh
BATbern52 Mobiliar zu Skalierte Datenprodukte mit Data MeshBATbern
 
BATbern52 InnoQ on Data Mesh 2019 2023 2024++
BATbern52 InnoQ on Data Mesh 2019 2023 2024++BATbern52 InnoQ on Data Mesh 2019 2023 2024++
BATbern52 InnoQ on Data Mesh 2019 2023 2024++BATbern
 
Embracing Serverless: reengineering a real-estate digital marketplace
Embracing Serverless: reengineering a real-estate digital marketplaceEmbracing Serverless: reengineering a real-estate digital marketplace
Embracing Serverless: reengineering a real-estate digital marketplaceBATbern
 
Serverless und Event-Driven Architecture
Serverless und Event-Driven ArchitectureServerless und Event-Driven Architecture
Serverless und Event-Driven ArchitectureBATbern
 
Serverless Dev(Ops) in der Praxis
Serverless Dev(Ops) in der PraxisServerless Dev(Ops) in der Praxis
Serverless Dev(Ops) in der PraxisBATbern
 
Serverless at Lifestage
Serverless at LifestageServerless at Lifestage
Serverless at LifestageBATbern
 
Keynote Gregor Hohpe - Serverless Architectures
Keynote Gregor Hohpe - Serverless ArchitecturesKeynote Gregor Hohpe - Serverless Architectures
Keynote Gregor Hohpe - Serverless ArchitecturesBATbern
 
BATbern51 Serverless?!
BATbern51 Serverless?!BATbern51 Serverless?!
BATbern51 Serverless?!BATbern
 
Ein Rückblick anlässlich des 50. BAT aus Sicht eines treuen Partners
Ein Rückblick anlässlich des 50. BAT aus Sicht eines treuen PartnersEin Rückblick anlässlich des 50. BAT aus Sicht eines treuen Partners
Ein Rückblick anlässlich des 50. BAT aus Sicht eines treuen PartnersBATbern
 
MLOps journey at Swisscom: AI Use Cases, Architecture and Future Vision
MLOps journey at Swisscom: AI Use Cases, Architecture and Future VisionMLOps journey at Swisscom: AI Use Cases, Architecture and Future Vision
MLOps journey at Swisscom: AI Use Cases, Architecture and Future VisionBATbern
 
From Ideation to Production in 7 days: The Scoring Factory at Raiffeisen
From Ideation to Production in 7 days: The Scoring Factory at RaiffeisenFrom Ideation to Production in 7 days: The Scoring Factory at Raiffeisen
From Ideation to Production in 7 days: The Scoring Factory at RaiffeisenBATbern
 
The Future of Coaching in Sport with AI/ML
The Future of Coaching in Sport with AI/MLThe Future of Coaching in Sport with AI/ML
The Future of Coaching in Sport with AI/MLBATbern
 
Klassifizierung von Versicherungsschäden – AI und MLOps bei der Mobiliar
Klassifizierung von Versicherungsschäden – AI und MLOps bei der MobiliarKlassifizierung von Versicherungsschäden – AI und MLOps bei der Mobiliar
Klassifizierung von Versicherungsschäden – AI und MLOps bei der MobiliarBATbern
 
BATbern48_ZeroTrust-Konzept und Realität.pdf
BATbern48_ZeroTrust-Konzept und Realität.pdfBATbern48_ZeroTrust-Konzept und Realität.pdf
BATbern48_ZeroTrust-Konzept und Realität.pdfBATbern
 
BATbern48_How Zero Trust can help your organisation keep safe.pdf
BATbern48_How Zero Trust can help your organisation keep safe.pdfBATbern48_How Zero Trust can help your organisation keep safe.pdf
BATbern48_How Zero Trust can help your organisation keep safe.pdfBATbern
 
BATbern48_Zero Trust Architektur des ISC-EJPD.pdf
BATbern48_Zero Trust Architektur des ISC-EJPD.pdfBATbern48_Zero Trust Architektur des ISC-EJPD.pdf
BATbern48_Zero Trust Architektur des ISC-EJPD.pdfBATbern
 
Why did the shift-left end up in the cloud for Bank Julius Baer?
Why did the shift-left end up in the cloud for Bank Julius Baer?Why did the shift-left end up in the cloud for Bank Julius Baer?
Why did the shift-left end up in the cloud for Bank Julius Baer?BATbern
 
Creating a Product through DevOps: The Story of APPUiO Cloud
Creating a Product through DevOps: The Story of APPUiO CloudCreating a Product through DevOps: The Story of APPUiO Cloud
Creating a Product through DevOps: The Story of APPUiO CloudBATbern
 

Mehr von BATbern (20)

BATbern52 Moderation Berner Architekten Treffen zu Data Mesh
BATbern52 Moderation Berner Architekten Treffen zu Data MeshBATbern52 Moderation Berner Architekten Treffen zu Data Mesh
BATbern52 Moderation Berner Architekten Treffen zu Data Mesh
 
BATbern52 SBB zu Data Products und Knacknüsse
BATbern52 SBB zu Data Products und KnacknüsseBATbern52 SBB zu Data Products und Knacknüsse
BATbern52 SBB zu Data Products und Knacknüsse
 
BATbern52 Mobiliar zu Skalierte Datenprodukte mit Data Mesh
BATbern52 Mobiliar zu Skalierte Datenprodukte mit Data MeshBATbern52 Mobiliar zu Skalierte Datenprodukte mit Data Mesh
BATbern52 Mobiliar zu Skalierte Datenprodukte mit Data Mesh
 
BATbern52 InnoQ on Data Mesh 2019 2023 2024++
BATbern52 InnoQ on Data Mesh 2019 2023 2024++BATbern52 InnoQ on Data Mesh 2019 2023 2024++
BATbern52 InnoQ on Data Mesh 2019 2023 2024++
 
Embracing Serverless: reengineering a real-estate digital marketplace
Embracing Serverless: reengineering a real-estate digital marketplaceEmbracing Serverless: reengineering a real-estate digital marketplace
Embracing Serverless: reengineering a real-estate digital marketplace
 
Serverless und Event-Driven Architecture
Serverless und Event-Driven ArchitectureServerless und Event-Driven Architecture
Serverless und Event-Driven Architecture
 
Serverless Dev(Ops) in der Praxis
Serverless Dev(Ops) in der PraxisServerless Dev(Ops) in der Praxis
Serverless Dev(Ops) in der Praxis
 
Serverless at Lifestage
Serverless at LifestageServerless at Lifestage
Serverless at Lifestage
 
Keynote Gregor Hohpe - Serverless Architectures
Keynote Gregor Hohpe - Serverless ArchitecturesKeynote Gregor Hohpe - Serverless Architectures
Keynote Gregor Hohpe - Serverless Architectures
 
BATbern51 Serverless?!
BATbern51 Serverless?!BATbern51 Serverless?!
BATbern51 Serverless?!
 
Ein Rückblick anlässlich des 50. BAT aus Sicht eines treuen Partners
Ein Rückblick anlässlich des 50. BAT aus Sicht eines treuen PartnersEin Rückblick anlässlich des 50. BAT aus Sicht eines treuen Partners
Ein Rückblick anlässlich des 50. BAT aus Sicht eines treuen Partners
 
MLOps journey at Swisscom: AI Use Cases, Architecture and Future Vision
MLOps journey at Swisscom: AI Use Cases, Architecture and Future VisionMLOps journey at Swisscom: AI Use Cases, Architecture and Future Vision
MLOps journey at Swisscom: AI Use Cases, Architecture and Future Vision
 
From Ideation to Production in 7 days: The Scoring Factory at Raiffeisen
From Ideation to Production in 7 days: The Scoring Factory at RaiffeisenFrom Ideation to Production in 7 days: The Scoring Factory at Raiffeisen
From Ideation to Production in 7 days: The Scoring Factory at Raiffeisen
 
The Future of Coaching in Sport with AI/ML
The Future of Coaching in Sport with AI/MLThe Future of Coaching in Sport with AI/ML
The Future of Coaching in Sport with AI/ML
 
Klassifizierung von Versicherungsschäden – AI und MLOps bei der Mobiliar
Klassifizierung von Versicherungsschäden – AI und MLOps bei der MobiliarKlassifizierung von Versicherungsschäden – AI und MLOps bei der Mobiliar
Klassifizierung von Versicherungsschäden – AI und MLOps bei der Mobiliar
 
BATbern48_ZeroTrust-Konzept und Realität.pdf
BATbern48_ZeroTrust-Konzept und Realität.pdfBATbern48_ZeroTrust-Konzept und Realität.pdf
BATbern48_ZeroTrust-Konzept und Realität.pdf
 
BATbern48_How Zero Trust can help your organisation keep safe.pdf
BATbern48_How Zero Trust can help your organisation keep safe.pdfBATbern48_How Zero Trust can help your organisation keep safe.pdf
BATbern48_How Zero Trust can help your organisation keep safe.pdf
 
BATbern48_Zero Trust Architektur des ISC-EJPD.pdf
BATbern48_Zero Trust Architektur des ISC-EJPD.pdfBATbern48_Zero Trust Architektur des ISC-EJPD.pdf
BATbern48_Zero Trust Architektur des ISC-EJPD.pdf
 
Why did the shift-left end up in the cloud for Bank Julius Baer?
Why did the shift-left end up in the cloud for Bank Julius Baer?Why did the shift-left end up in the cloud for Bank Julius Baer?
Why did the shift-left end up in the cloud for Bank Julius Baer?
 
Creating a Product through DevOps: The Story of APPUiO Cloud
Creating a Product through DevOps: The Story of APPUiO CloudCreating a Product through DevOps: The Story of APPUiO Cloud
Creating a Product through DevOps: The Story of APPUiO Cloud
 

BATbern52 Swisscom's Journey into Data Mesh

  • 1. Swisscom's Journey into Data Mesh Mirela Navodaru, Enterprise and SolutionArchitect Data, Analytics and AI, Swisscom Berner Architekten Treffen, 08.03.2024
  • 2. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 2 Everyone is empowered to make Business Decisions based on Information, Insights and Recommendation from DATA I (still) have a dream Data Democratization Data Culture + Inspired by "I have a dream" speech of Martin Luther King
  • 3. Fast Insights Together, We Make Data Work Data Driven Culture Value Driver Data Skills SC Data Community Data-Driven Experience Data-Driven Operational Excellence Data-Driven Innovation & Growth Data Mgmt. Platform Data centric Roles & Responsibilities Data Security, Compliance & Quality Data Literacy One Data Platform Data Products Self- Service The Swisscom Data and Analytics Strategy Generating Business Value from Data at Scale Target Picture Best Data Management
  • 4. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 4 From the Starting Point to the Data Democratization Data as a Product Federated Data Governance Self-serve and domain-agnostic Data Infrastructure as a Platform Data Management Central Suite Centralized Data, Analytics & AI Delivery Organization Data as an Organizational Asset Data managed in Silos & Redundant mode in an Overcomplex Landscape Central Governance vs Delivery Data, Analytics & AI + Decentralized Data Products Teams ? Data Mesh enables Data Democratization Data Mesh Pillars
  • 5. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 5 Data Products – What it means for Swisscom Value Proposition – a Must Reusability Interoperability Use the Manifest to document Data Products Use the Data Contract(s) Conditions for Sharing Data Enable Data Protection & Security by Design The Output - Data Sets (low granularity data, aggregated data, transformed data, insights from ML applied techniques, etc.) with a Value Proposition. Principles
  • 6. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 6 Data Products - Elements Components Data Metadata Code Data Producers Teams Data Product Owner Business Roles Data & Tech Roles Policies Types Consumer-aligned Data Products Conformed Data Products Source-aligned Data products
  • 7. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 7 Data Products – Deep Dive into types Data Sources Business cases Customer-aligned Data Products Conformed Data Products Source-aligned Data products Characteristics: • Lowest level of granularity • Structure and Model from the Data Sources • Data cleaned according with the data quality rules • Target state OP – (transactional system) cross- functional teams with business, data & tech skills Characteristics: • Conformed with enterprise logical data model (SDM) • Greenfield approach, governance built-in (TMForum); • Target state OP –cross- functional teams with business, data & tech skills (Organized by Domains) Characteristics: • Dimensional data model • Created by merging two or more Conformed DPs • Already in place, to be migrated to the new platform (almost 1:1) - Target state OP - cross teams with business, data & tech skills
  • 8. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 8 ODP's Team ➢ Build,MaintainandAdministrate theDataInfrastructure(hybrid) ➢ EnableDataProducersteamsto easyandinself-servicemode: • Build– Templates,patterns,standards, bestpractices • Deploy–Built-inPipelines • Manage– Monitoring&Alerts • DataProtectionandDataSecurityby Design Swisscom One Data Platform (ODP) – Data and Code High Level Target Architecture Consumer-aligned Data Products Conformed Data products Source-aligned Data products
  • 9. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 9 Swisscom Data Management – Metadata and Policies A Central Meta Data Mgt System provides information on data properties, business context and lineage Meta Data is automatically discovered from data source systems or obtained from decentral Meta Data Systems The Swisscom Data Catalogue enables transparency and fast retrival of data and insights Business, Quality, Security and Compliance Data Requirements are centrally managed as rules Data Product Cockpits monitor security, compliance and quality of the data Data Governance processes can proactively be triggered and partly be automated based on data monitoring and data catalogue information Clearly defined data roles and responsibilities enable efficient data management and trust in data
  • 10. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 10 Data Products – Metadata to Document and Share Manifest Documentation of Data Products To be created together with the Data Product and maintained during its lifecycle Descriptive Elements Compliance Aspects Reference Metadata Data Contract Agreement between Data Producers and Data Consumers It describe the Service's Interfaces and the Conditions to share the Data Products Exposure Patterns Commitment Elements Data Quality Checks Ownership & Accountability Measures & Rating
  • 11. Federated Data Governance – Shared Responsibility Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 11 Governance Board Central Governance is easy to implement (Built-in/by Design) Assessment of Risks and Approval of Exceptions Feedback Loop between Governance Orgs and Delivery Teams Global Intradomains Governance Principles and Guardrails Rules, Policies and Regulations for Compliance Purpose Architectural References, Standards and Patterns Team with People from both Governance Orgs and Delivery Teams Local Interdomains Governance Ownership and Accountability for Data Products Lifecycle Ownership of Manifests and Data Contracts Intradomain Data Quality and Operations Conceptual and Logical Data Model (SDM) Accountable for the Governance Implementation Global Interoperability needs Global Governance Autonomy, Agility and Flexibility of the Domains
  • 12. Next steps in our Journey on Data Mesh ✓ Pilots for e2e Data Products Value Chain ✓ Governance Body for Federated Data Governance ✓ Target Operating Model Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 12
  • 13. Key Learnings from our Journey on Data Mesh ✓ Decentralize to bring more Power into Producing and Consuming Data ✓ No Value, no Party ✓ Collaboration over Data and Metadata is the glue for the Data Producers and Consumers ✓ Design the Governance Implementation to be a real Enabler to the Data Democratization Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 13
  • 14. References Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 14 Data Mesh Learning community (YouTube) https://data-mesh-learning.slack.com/ Data Mesh Radio (Scott Hirleman) Books: Implementing Data Mesh – J.G.Perrin, E. Broda Data Management at Scale, 2nd Edition – P. Strengholt Driving Data Quality with Data Contracts – A. Jones
  • 15. Mirela Navodaru, Swisscom's Journey into Data Mesh,BAT52, 08.03.2024, C1 Public 15 "If you want to build a ship, don’t drum up the men and women to gather wood, divide the work, and give orders. Instead, teach them to yearn for the vast and endless sea." A. de Saint-Exupéry Together we can make this dream become our reality
  • 16. Thank you for your attention! Q&A 16 Mirela Navodaru mirelanavodaru