SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Tachyon inflation in
DBI and RSII context
Based on:
M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Stojanovic, Dynamics of
tachyon fields and inflation - comparison of analytical and numerical results with
observation, Serbian Astron. J. (2016). doi:10.2298/SAJ160312003M.
N. Bilic, D. Dimitrijevic, G. Djordjevic, M. Milosevic, Tachyon Inflation in an AdS
Braneworld With Back-reaction, (2016) 19. http://arxiv.org/abs/1607.04524
Mini Workshop „Cosmology and String 2016“
Nis, November 2-5, 2016
Introduction and Motivation
 The inflationary universe scenario in which the early
universe undergoes a rapid expansion has been
generally accepted as a solution to the horizon
problem and some other related problems of the
standard big-bang cosmology
 Recent years - a lot of evidence from WMAP and
Planck observations of the CMB
 Quantum cosmology: probably the best way to
describe the evolution of the early universe.
Tachyons and Non-standard
Lagrangians
 Traditionally, the word tachyon was used to describe a
hypothetical particle which propagates faster than
light.
 In modern physics this meaning has been changed
 The field theory of tachyon matter proposed by A. Sen
 String theory: states of quantum fields with imaginary
mass (i.e. negative mass squared)
 It was believed: such fields permitted propagation faster
than light
 However it was realized that the imaginary mass creates
an instability and tachyons spontaneously decay through
the process known as tachyon condensation
Tachyion Fields
 No classical interpretation of the ”imaginary mass”
 The instability: The potential of the
tachyonic field is initially at a local
maximum rather than a local
minimum (like a ball at the top of
a hill)
 A small perturbation - forces the
field to roll down towards the
local minimum.
 Quanta are not tachyon any more, but rather an
”ordinary” particle with a positive mass.
 Tachyon potential:
 Dirack-Born-Infeld (DBI) Lagrangian
(0) , '( 0) 0, ( ) 0V V T V T
( ) 1V T g T T
Tachyon inflation
 Consider the tachyonic field T minimally coupled to Einstein's
gravity
 Where R is Ricci scalar, g – determinant of the metric tensor and
tachyon action
 Friedman equation:
 The energy-momentum conservation equation:
41
16 T
S gRd x S
G
4
( , ) , ( ) 1T
S g T T d x V T g T T
2
2
2 2 1/2
1
3 (1 )Pl
a V
H
a M T
2
3 ( )
3 0
1
H P
T V
HT
VT
2
2
( )
1
( ) 1
V T
T
P V T T
Energy density and pressure:
Nondimensionalization
 Rescaling field, potential and time
 The equation is transformed to
 The nondimensional Hubble parameter
 The nondimensional energy-momentum conservation equation
 The nondimensional Friedman equation
0
,
T
x
T 0
1 ( )
( ) .
T V x
U x V
T 0
,
t
t
3 2
0
'( ) '( )
3 3 0.
( ) ( )o
U x U x
x HT x x HT x
U x U x
0
.H T H
2
'( )
3 0.
( )1
x U x
Hx
U xx
22
2 0
2 2 2 1/22
0
1 ( ) ( )
33 (1 )1pl
XH U x U x
H
T M xx
Tachyon inflation
 Parameters:
 The system of dimensionless equations
 In addition, the Friedman acceleration equation
2 4
0
0 2 3
wher,
(2 )
e s
Pl s
T M
X
M g
2
2 0
2
2
2 3/2
0
( )
3 1
(1 ) ( )
3 ( )(1 ) 0
( )
X U x
H
x
x dU x
x X U x x x
U x dx
2
0
( )
2
X
H P 2
2
( )
1
( ) 1
U T
x
P U x x
Tachyon inflation
 The slow-roll parameters
 Number of e-folds
 In the slow-roll aproximation
 Observational parameters
 The scalar spectral index
 The tensor-to-scalar ratio
*
1 0
ln | |
, 0,i
i
d H
i
dN H
1 2 12
2
1 2
1
, 2
3
, 2
2
H H
H HH
x
H
x
x
1
(16 )i
r x
1 2
1 2 ( ) ( )is i
x xn
( ) ( )
e
i
t
t
N t H t dt
2
2
0 1
( )
where ( ) 1( ) ,
| ( ) |
e
ix
e
x U x
N x X dx x
U x
2
2 0
2
2
2 3/2
0
2
20
2
( )
3 1
(1 ) ( )
3 ( )(1 ) 0
( )
( )
( ( ) 1 )
2 1
X U x
H
x
x dU x
x X U x x x
U x dx
X U T
H U x x
x
Tachyon inflation
 Numerical results
0
4
60 120, 1 12
1
( ) (left)
1
( ) (right)
cosh( )
N X
U x
x
U x
x
Tachyon inflation in an AdS
braneworld
 Randall–Sundrum models imagine that the real world is
a higher-dimensional universe described by warped
geometry. More concretely, our universe is a five-
dimensional anti-de Sitter space and the elementary
particles except for the graviton are localized on a
(3+1)-dimensional brane or branes.
 Proposed in 1999 by Lisa Randal and Raman Sundrum
 A simple cosmological model of this kind is based on
the second Randall-Sundrum (RSII) model
 Inflation is driven by the tachyon field originating in
string theory
The RSI Model
 The model was originally proposed
as a possible mechanism for
localizing gravity on the 3+1
universe embedded in a 4+1
dimensional space-time without
compactification of the extra
dimension.
 Observer – negative tension brane;
separation - such that the strength
of gravity on observer’s brane is
equal to the observed four-
dimensional Newtonian gravity.

x
5
x z
0z  z l
5( )d x
z  
N. Bilic, “Space and Time in Modern Cosmology”
The RS II Model
 Observers reside on the
positive tension brane and
the negative tension brane
is pushed off to infinity.
 The Planck mass scale is
determined by the
curvature of the AdS space-
time rather than by the size
of the fifth dimension.
 Radion – massless scalar
field; fluctuation of
interbrane distance along
extra dimension
z   z  0z 
N. Bilic, “Space and Time in Modern Cosmology”
Randal-Sundrum model and
tachyon-like inflation
 Cosmology on the brane is obtained by allowing the
brane to move in the bulk. Equivalently, the brane is
kept fixed at z=0 while making the metric in the bulk
time dependent.
 The fluctuation of the interbrane distance along the
extra dimension implies the existence of the radion.
 Radion - a massless scalar field that causes a distortion
of the bulk geometry.
 The bulk spacetime of the extended RSII model in
Fefferman-Graham coordinates is described by the
metric
 
 
2 2 2 2
(5) 22 2 2 2
1 1
1 ( )
1 ( )
a b
abds G dX dX k z x g dx dx dz
k z k z x
  


 
    
  
The bulk space-time metric
The spatially flat FRW metric
Randal-Sundrum model and
tachyon-like inflation

, ,4 4 2 2 2
, , 4 4 2 2 3
1
(1 ) 1
16 2 (1 )
gR
S d x g g d x g k
G k k

 
 


 
  
           
    
1/k   2
sinh 4 / 3 G  
br
S
(0) 4
br , ,4
1S d x g g
2
, ,
, , 4 3
1
1
2
g
g

 
 


 
    
 4
k

  2 2
1 k   
the brane tension
2
8 2
1
3 3
a G G
H
a k
  
   
 
Hamilton’s Equations
 The Hamiltonian density
 Hamilton’s equations
 Nondimensionalization
2
2 2 8 2
4
1
1 / ( )
2
H
3
3
H
H
H
H
H
H
2
4
/ ,
/ ( ), / ( )),
, / ( )
h H k
k k
k k
Randal-Sundrum model
 The dimensionless Hamiltonian’s equations are
obtained
4
8 2
8 2
2 8 2
10 2
5 8 2
1 /
4 3 /
3
2 1 /
4 3 /
3
1 /
h
h




 


 

 
 

  
  
  
   
  
 
   




  


  

2 2
2 2
8
1
3 12
Gk
a
h
a
 
 
 

 
   
 
2
2
2
2 2
2
2 2 3
4
2
2
4 2 3
1 ,
sinh ,
6
2
sinh ,
6 3
1
1 / ,
2
1 1
2 1 /
d
d
p
  

 
  
 


  


 
  

 
 
   
 
 
    
 
  
 

A combined dimensionless coupling
The Hubble
expansion rate
preassure
energy density
2 2
( ) 1
2 6
h p
N h
 
 
 
    
 

Additional equations,
solved in parallel
Randal-Sundrum model
 Slow-roll parameters are
 Observational parameters: the tensor-to-scalar
ration (r) and scalar spectral index (ns)
*
0
1ln | |
, 1i
i
H
H
d
i
Hdt


 
*-Hubble rate at an arbitrarily chosen timeH
1 i 1 i 2 i
2
s 1 i 2 i 1 i 1 i 2 i 2 i 3 i
1
16 ( ) 1 ( ) ( )
6
8
1 2 ( ) ( ) 2 ( ) 2 ( ) ( ) ( ) ( )
3
r C
n C C
  
      
 
    
  
        
  
Numerical solution
 Initial values:
 Tachyion field: inverse quartic tachyon potential
 No a priori reason to restrict possible initial values of the
radion field; a range of initial values based on the natural
scale dictated by observations.
 Conjugate momenta
 After the system of equation is solved, the slow-roll
parameters are calculated
 Conditions:
0 0
0
1
( ) 1
( ) ( )
f
f i
N N N
6
1 4
1 0
2 1
1, 192
3 ( )
N
Numerical results
Numerical results
0
60 120
1 12
0.05 0.5
N
Numerical results
Numerical results
Numerical results
0
0
60 120, 1 12 and 0 0.5 (left)
115 120, 0.05, 1.25 (right)
N
N
Conclusion
 We have investigated a model of inflation based on the
dynamics of a D3-brane in the AdS5 bulk of the RSII
model. The bulk metric is extended to include the back
reaction of the radion excitations.
 The slow-roll equations of the tachyon inflation are quite
distinct to those of the standard tachyon inflation with the
same potential.
 The ns-r relation in our model is substantially different from
the standard one and is closer to the best observational
value.
 The agreement with observations is not ideal and it is fair
to say that the present model is disfavoured but not
excluded.
 However, the model is based on the brane dynamics
which results in a definite potential with one free
parameter only.
 We have analysed the simplest tachyon model. In
principle, the same mechanism could lead to a more
general tachyon potential if the AdS5 background metric
is deformed by the presence of matter in the bulk
References
 D. Steer, F. Vernizzi, Tachyon inflation: Tests and comparison with single scalar
field inflation, Phys. Rev. D. 70 (2004) 43527.
 N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys. 12
(2014) 147–159.
 P.A.R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, et al.,
Planck 2015 results: XX. Constraints on inflation, Astron. Astrophys. 594 (2016)
A20.
 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)
 N. Bilic, D. Dimitrijevic, G. Djordjevic, M. Milosevic, Tachyon inflation in an AdS
braneworld with back-reaction, (2016) 19. http://arxiv.org/abs/1607.04524.
 M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Sto- janovic, Serb. Astron.
J. 192, 1-8 (2016).
 N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, M. Stojanovic, AIP Conf.
Proc. 1722, 050002 (2016);

Weitere ähnliche Inhalte

Was ist angesagt?

Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
Rene Kotze
 
Quality factor of seismic coda waves in garhwal himalayas 2
Quality factor of seismic coda waves in garhwal himalayas 2Quality factor of seismic coda waves in garhwal himalayas 2
Quality factor of seismic coda waves in garhwal himalayas 2
IAEME Publication
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
Alexander Tsupko
 
A review of time­‐frequency methods
A review of time­‐frequency methodsA review of time­‐frequency methods
A review of time­‐frequency methods
UT Technology
 

Was ist angesagt? (19)

pRO
pROpRO
pRO
 
Note chapter9 0708-edit-1
Note chapter9 0708-edit-1Note chapter9 0708-edit-1
Note chapter9 0708-edit-1
 
Talk in BayesComp 2018
Talk in BayesComp 2018Talk in BayesComp 2018
Talk in BayesComp 2018
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
on Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameteron Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameter
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Seismic velocity analysis in Anisotropic media
Seismic velocity analysis in Anisotropic mediaSeismic velocity analysis in Anisotropic media
Seismic velocity analysis in Anisotropic media
 
CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...
CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...
CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
 
Galalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo Potential
Galalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo PotentialGalalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo Potential
Galalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo Potential
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
 
Transport in the Solar System
Transport in the Solar SystemTransport in the Solar System
Transport in the Solar System
 
Quality factor of seismic coda waves in garhwal himalayas 2
Quality factor of seismic coda waves in garhwal himalayas 2Quality factor of seismic coda waves in garhwal himalayas 2
Quality factor of seismic coda waves in garhwal himalayas 2
 
Modelling galaxy close encounters by a parabolic problem
Modelling galaxy close encounters by a parabolic problemModelling galaxy close encounters by a parabolic problem
Modelling galaxy close encounters by a parabolic problem
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
 
A review of time­‐frequency methods
A review of time­‐frequency methodsA review of time­‐frequency methods
A review of time­‐frequency methods
 
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
 

Andere mochten auch (7)

Sunce - zvezda iz komšiluka
Sunce - zvezda iz komšilukaSunce - zvezda iz komšiluka
Sunce - zvezda iz komšiluka
 
Fizika sunca
Fizika suncaFizika sunca
Fizika sunca
 
Kompjuterski softver i simulacije u nastavi fizike
Kompjuterski softver i simulacije u nastavi fizikeKompjuterski softver i simulacije u nastavi fizike
Kompjuterski softver i simulacije u nastavi fizike
 
The Sun Activity and Genesis of Energy
The Sun Activity and Genesis of EnergyThe Sun Activity and Genesis of Energy
The Sun Activity and Genesis of Energy
 
Nukleosinteza u zvezdama
Nukleosinteza u zvezdamaNukleosinteza u zvezdama
Nukleosinteza u zvezdama
 
Fizika mobilnog telefona
Fizika mobilnog telefonaFizika mobilnog telefona
Fizika mobilnog telefona
 
Godina Fizike
Godina FizikeGodina Fizike
Godina Fizike
 

Ähnlich wie Tachyon inflation in DBI and RSII context

N. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reactionN. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reaction
SEENET-MTP
 

Ähnlich wie Tachyon inflation in DBI and RSII context (20)

N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Presentation1
Presentation1Presentation1
Presentation1
 
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
 
Specific aspects of the evolution of antimatter globular clusters domains
Specific aspects of the evolution of antimatter globular clusters domainsSpecific aspects of the evolution of antimatter globular clusters domains
Specific aspects of the evolution of antimatter globular clusters domains
 
Nevenko Bilić "Tachyon inflation on the holographic braneworld"
Nevenko Bilić "Tachyon inflation on the holographic braneworld"Nevenko Bilić "Tachyon inflation on the holographic braneworld"
Nevenko Bilić "Tachyon inflation on the holographic braneworld"
 
Observational Parameters in a Braneworld Inlationary Scenario
Observational Parameters in a Braneworld Inlationary ScenarioObservational Parameters in a Braneworld Inlationary Scenario
Observational Parameters in a Braneworld Inlationary Scenario
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
 
Quantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesQuantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holes
 
N. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reactionN. Bilić: AdS Braneworld with Back-reaction
N. Bilić: AdS Braneworld with Back-reaction
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equation
 
Further discriminatory signature of inflation
Further discriminatory signature of inflationFurther discriminatory signature of inflation
Further discriminatory signature of inflation
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
Serie de dyson
Serie de dysonSerie de dyson
Serie de dyson
 
Observational parameters of Inflation in Holographic cosmology
Observational parameters of Inflation in Holographic cosmologyObservational parameters of Inflation in Holographic cosmology
Observational parameters of Inflation in Holographic cosmology
 
K0457278
K0457278K0457278
K0457278
 

Mehr von Milan Milošević

Mehr von Milan Milošević (20)

Inflacija, crne rupe i Fizika u Nišu
Inflacija, crne rupe i Fizika u NišuInflacija, crne rupe i Fizika u Nišu
Inflacija, crne rupe i Fizika u Nišu
 
Observational tests of Tachyonic and Holographic Models of Inflation
Observational tests of Tachyonic and Holographic Models of InflationObservational tests of Tachyonic and Holographic Models of Inflation
Observational tests of Tachyonic and Holographic Models of Inflation
 
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuKako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
 
Sunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaSunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistema
 
Numerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersNumerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parameters
 
Od crne rupe do Nobelove nagrade za fiziku
Od crne rupe do Nobelove nagrade za fizikuOd crne rupe do Nobelove nagrade za fiziku
Od crne rupe do Nobelove nagrade za fiziku
 
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinu
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinuOd velikog praska do Nobelove nagrade za fiziku za 2019. godinu
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinu
 
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivoEvolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
 
Kako videti nevidljivo? - prva fotografija crne rupe
Kako videti nevidljivo? - prva fotografija crne rupeKako videti nevidljivo? - prva fotografija crne rupe
Kako videti nevidljivo? - prva fotografija crne rupe
 
Kako preživeti internet?
Kako preživeti internet?Kako preživeti internet?
Kako preživeti internet?
 
CERN mesto gde je nastao "internet"
CERN mesto gde je nastao "internet"CERN mesto gde je nastao "internet"
CERN mesto gde je nastao "internet"
 
Kako je svet postao globalno selo?
Kako je svet postao globalno selo?Kako je svet postao globalno selo?
Kako je svet postao globalno selo?
 
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacijaNETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
 
NETCHEM CPD: Video konferencijsko povezivanje
NETCHEM CPD: Video konferencijsko povezivanjeNETCHEM CPD: Video konferencijsko povezivanje
NETCHEM CPD: Video konferencijsko povezivanje
 
Fizika mobilnog telefona
Fizika mobilnog telefonaFizika mobilnog telefona
Fizika mobilnog telefona
 
30 godina World Wide Web-a
30 godina World Wide Web-a30 godina World Wide Web-a
30 godina World Wide Web-a
 
"Svet nauke" o svetu nauke
"Svet nauke" o svetu nauke"Svet nauke" o svetu nauke
"Svet nauke" o svetu nauke
 
NETCHEM Forum
NETCHEM ForumNETCHEM Forum
NETCHEM Forum
 
Overview of collected WARIAL data from NETCHEM consortium
Overview of collected WARIAL data from NETCHEM consortiumOverview of collected WARIAL data from NETCHEM consortium
Overview of collected WARIAL data from NETCHEM consortium
 
Agreement of protection of intellectual property
Agreement of protection of intellectual propertyAgreement of protection of intellectual property
Agreement of protection of intellectual property
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Kürzlich hochgeladen (20)

UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Tachyon inflation in DBI and RSII context

  • 1. Tachyon inflation in DBI and RSII context Based on: M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Stojanovic, Dynamics of tachyon fields and inflation - comparison of analytical and numerical results with observation, Serbian Astron. J. (2016). doi:10.2298/SAJ160312003M. N. Bilic, D. Dimitrijevic, G. Djordjevic, M. Milosevic, Tachyon Inflation in an AdS Braneworld With Back-reaction, (2016) 19. http://arxiv.org/abs/1607.04524 Mini Workshop „Cosmology and String 2016“ Nis, November 2-5, 2016
  • 2. Introduction and Motivation  The inflationary universe scenario in which the early universe undergoes a rapid expansion has been generally accepted as a solution to the horizon problem and some other related problems of the standard big-bang cosmology  Recent years - a lot of evidence from WMAP and Planck observations of the CMB  Quantum cosmology: probably the best way to describe the evolution of the early universe.
  • 3. Tachyons and Non-standard Lagrangians  Traditionally, the word tachyon was used to describe a hypothetical particle which propagates faster than light.  In modern physics this meaning has been changed  The field theory of tachyon matter proposed by A. Sen  String theory: states of quantum fields with imaginary mass (i.e. negative mass squared)  It was believed: such fields permitted propagation faster than light  However it was realized that the imaginary mass creates an instability and tachyons spontaneously decay through the process known as tachyon condensation
  • 4. Tachyion Fields  No classical interpretation of the ”imaginary mass”  The instability: The potential of the tachyonic field is initially at a local maximum rather than a local minimum (like a ball at the top of a hill)  A small perturbation - forces the field to roll down towards the local minimum.  Quanta are not tachyon any more, but rather an ”ordinary” particle with a positive mass.  Tachyon potential:  Dirack-Born-Infeld (DBI) Lagrangian (0) , '( 0) 0, ( ) 0V V T V T ( ) 1V T g T T
  • 5. Tachyon inflation  Consider the tachyonic field T minimally coupled to Einstein's gravity  Where R is Ricci scalar, g – determinant of the metric tensor and tachyon action  Friedman equation:  The energy-momentum conservation equation: 41 16 T S gRd x S G 4 ( , ) , ( ) 1T S g T T d x V T g T T 2 2 2 2 1/2 1 3 (1 )Pl a V H a M T 2 3 ( ) 3 0 1 H P T V HT VT 2 2 ( ) 1 ( ) 1 V T T P V T T Energy density and pressure:
  • 6. Nondimensionalization  Rescaling field, potential and time  The equation is transformed to  The nondimensional Hubble parameter  The nondimensional energy-momentum conservation equation  The nondimensional Friedman equation 0 , T x T 0 1 ( ) ( ) . T V x U x V T 0 , t t 3 2 0 '( ) '( ) 3 3 0. ( ) ( )o U x U x x HT x x HT x U x U x 0 .H T H 2 '( ) 3 0. ( )1 x U x Hx U xx 22 2 0 2 2 2 1/22 0 1 ( ) ( ) 33 (1 )1pl XH U x U x H T M xx
  • 7. Tachyon inflation  Parameters:  The system of dimensionless equations  In addition, the Friedman acceleration equation 2 4 0 0 2 3 wher, (2 ) e s Pl s T M X M g 2 2 0 2 2 2 3/2 0 ( ) 3 1 (1 ) ( ) 3 ( )(1 ) 0 ( ) X U x H x x dU x x X U x x x U x dx 2 0 ( ) 2 X H P 2 2 ( ) 1 ( ) 1 U T x P U x x
  • 8. Tachyon inflation  The slow-roll parameters  Number of e-folds  In the slow-roll aproximation  Observational parameters  The scalar spectral index  The tensor-to-scalar ratio * 1 0 ln | | , 0,i i d H i dN H 1 2 12 2 1 2 1 , 2 3 , 2 2 H H H HH x H x x 1 (16 )i r x 1 2 1 2 ( ) ( )is i x xn ( ) ( ) e i t t N t H t dt 2 2 0 1 ( ) where ( ) 1( ) , | ( ) | e ix e x U x N x X dx x U x 2 2 0 2 2 2 3/2 0 2 20 2 ( ) 3 1 (1 ) ( ) 3 ( )(1 ) 0 ( ) ( ) ( ( ) 1 ) 2 1 X U x H x x dU x x X U x x x U x dx X U T H U x x x
  • 9. Tachyon inflation  Numerical results 0 4 60 120, 1 12 1 ( ) (left) 1 ( ) (right) cosh( ) N X U x x U x x
  • 10. Tachyon inflation in an AdS braneworld  Randall–Sundrum models imagine that the real world is a higher-dimensional universe described by warped geometry. More concretely, our universe is a five- dimensional anti-de Sitter space and the elementary particles except for the graviton are localized on a (3+1)-dimensional brane or branes.  Proposed in 1999 by Lisa Randal and Raman Sundrum  A simple cosmological model of this kind is based on the second Randall-Sundrum (RSII) model  Inflation is driven by the tachyon field originating in string theory
  • 11. The RSI Model  The model was originally proposed as a possible mechanism for localizing gravity on the 3+1 universe embedded in a 4+1 dimensional space-time without compactification of the extra dimension.  Observer – negative tension brane; separation - such that the strength of gravity on observer’s brane is equal to the observed four- dimensional Newtonian gravity.  x 5 x z 0z  z l 5( )d x z   N. Bilic, “Space and Time in Modern Cosmology”
  • 12. The RS II Model  Observers reside on the positive tension brane and the negative tension brane is pushed off to infinity.  The Planck mass scale is determined by the curvature of the AdS space- time rather than by the size of the fifth dimension.  Radion – massless scalar field; fluctuation of interbrane distance along extra dimension z   z  0z  N. Bilic, “Space and Time in Modern Cosmology”
  • 13. Randal-Sundrum model and tachyon-like inflation  Cosmology on the brane is obtained by allowing the brane to move in the bulk. Equivalently, the brane is kept fixed at z=0 while making the metric in the bulk time dependent.  The fluctuation of the interbrane distance along the extra dimension implies the existence of the radion.  Radion - a massless scalar field that causes a distortion of the bulk geometry.  The bulk spacetime of the extended RSII model in Fefferman-Graham coordinates is described by the metric     2 2 2 2 (5) 22 2 2 2 1 1 1 ( ) 1 ( ) a b abds G dX dX k z x g dx dx dz k z k z x                The bulk space-time metric The spatially flat FRW metric
  • 14. Randal-Sundrum model and tachyon-like inflation  , ,4 4 2 2 2 , , 4 4 2 2 3 1 (1 ) 1 16 2 (1 ) gR S d x g g d x g k G k k                              1/k   2 sinh 4 / 3 G   br S (0) 4 br , ,4 1S d x g g 2 , , , , 4 3 1 1 2 g g                4 k    2 2 1 k    the brane tension 2 8 2 1 3 3 a G G H a k         
  • 15. Hamilton’s Equations  The Hamiltonian density  Hamilton’s equations  Nondimensionalization 2 2 2 8 2 4 1 1 / ( ) 2 H 3 3 H H H H H H 2 4 / , / ( ), / ( )), , / ( ) h H k k k k k
  • 16. Randal-Sundrum model  The dimensionless Hamiltonian’s equations are obtained 4 8 2 8 2 2 8 2 10 2 5 8 2 1 / 4 3 / 3 2 1 / 4 3 / 3 1 / h h                                                    2 2 2 2 8 1 3 12 Gk a h a                2 2 2 2 2 2 2 2 3 4 2 2 4 2 3 1 , sinh , 6 2 sinh , 6 3 1 1 / , 2 1 1 2 1 / d d p                                                  A combined dimensionless coupling The Hubble expansion rate preassure energy density 2 2 ( ) 1 2 6 h p N h               Additional equations, solved in parallel
  • 17. Randal-Sundrum model  Slow-roll parameters are  Observational parameters: the tensor-to-scalar ration (r) and scalar spectral index (ns) * 0 1ln | | , 1i i H H d i Hdt     *-Hubble rate at an arbitrarily chosen timeH 1 i 1 i 2 i 2 s 1 i 2 i 1 i 1 i 2 i 2 i 3 i 1 16 ( ) 1 ( ) ( ) 6 8 1 2 ( ) ( ) 2 ( ) 2 ( ) ( ) ( ) ( ) 3 r C n C C                                
  • 18. Numerical solution  Initial values:  Tachyion field: inverse quartic tachyon potential  No a priori reason to restrict possible initial values of the radion field; a range of initial values based on the natural scale dictated by observations.  Conjugate momenta  After the system of equation is solved, the slow-roll parameters are calculated  Conditions: 0 0 0 1 ( ) 1 ( ) ( ) f f i N N N 6 1 4 1 0 2 1 1, 192 3 ( ) N
  • 23. Numerical results 0 0 60 120, 1 12 and 0 0.5 (left) 115 120, 0.05, 1.25 (right) N N
  • 24. Conclusion  We have investigated a model of inflation based on the dynamics of a D3-brane in the AdS5 bulk of the RSII model. The bulk metric is extended to include the back reaction of the radion excitations.  The slow-roll equations of the tachyon inflation are quite distinct to those of the standard tachyon inflation with the same potential.  The ns-r relation in our model is substantially different from the standard one and is closer to the best observational value.  The agreement with observations is not ideal and it is fair to say that the present model is disfavoured but not excluded.  However, the model is based on the brane dynamics which results in a definite potential with one free parameter only.  We have analysed the simplest tachyon model. In principle, the same mechanism could lead to a more general tachyon potential if the AdS5 background metric is deformed by the presence of matter in the bulk
  • 25. References  D. Steer, F. Vernizzi, Tachyon inflation: Tests and comparison with single scalar field inflation, Phys. Rev. D. 70 (2004) 43527.  N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys. 12 (2014) 147–159.  P.A.R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, et al., Planck 2015 results: XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20.  L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)  N. Bilic, D. Dimitrijevic, G. Djordjevic, M. Milosevic, Tachyon inflation in an AdS braneworld with back-reaction, (2016) 19. http://arxiv.org/abs/1607.04524.  M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Sto- janovic, Serb. Astron. J. 192, 1-8 (2016).  N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, M. Stojanovic, AIP Conf. Proc. 1722, 050002 (2016);