SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 42
ESTIMATION OF SYMBOL TIMING AND CARRIER
FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME
S.Selvabharathi1
and S.Nandhini2
1
Department of Electronics Communication Engineering, Nandha Engineering College,
Erode, Tamilnadu, India
2
Assistant Professor, Nandha Engineering College, Erode, Tamilnadu, India
ABSTRACT
OFDM/OQAM is preferred as multicarrier system which operates over a multipath channel. By using the
multipath channel the signal-to-noise ratio. In earlier, sub carriers are used to transmit the signals. Nowadays,
FFT and DFT are used for transmitting the signals based upon the bit values. AWGN is a channel used to
identify the noise produced at the output by adding the noise in the blind signal. By reducing subcarriers the
noise and timing are reduced. FFT bit value was increased which provides better performance. In the
multicarrier system, the error and noise was reduced by increasing the bit value.
KEYWORDS: OFDM, symbol timing, cyclic prefix, AWGN, signal-to-noise ratio, carrier frequency offset.
I. INTRODUCTION
The main objective of this project to estimate blind Symbol timing and carrier frequency offset
acceptable performances of system. In the last years, the interest for filter-bank multicarrier (FBMC)
systems is increased, [1] since they provide high spectral containment. Therefore, they have been
taken into account for high-data-rate transmissions over both wired and wireless frequency-selective
channels. One of the most famous multicarrier modulation techniques is orthogonal frequency
division multiplexing (OFDM), other known types of FBMC systems are filtered multi one systems
and OFDM based on offset QAM modulation (OQAM).
The FBMC approach complements the FFT with a set of digital filters called polyphase network
(PPN) while the OFDM approach inserts the cyclic prefix (CP) after the FFT. Unlike OFDM,
OFDM/OQAM systems do not require the presence of a CP in order to combat the effects of
frequency selective channels. The absence of the CP implies on the one hand the maximum spectral
efficiency and, on the other hand, an increased computational complexity. However, [2] since the sub
channel filters are obtained by complex modulation of a single filter; efficient polyphase
implementation is often considered.
Fundamental differences between OFDM and OFDM/OQAM systems concern the adoption (in the
OFDM/OQAM case) of pulse shaping filters very well localized in time and frequency and memory
effects between useful symbols and transmitted signal due to the PPN. OFDM/OQAM systems, as all
multicarrier systems, are more sensitive to synchronization errors than single-carrier systems. For this
reason, it is very important to derive efficient synchronization schemes. In the last years several
studies have been focused on [6] blind and data-aided carrier frequency offset (CFO) and symbol
timing (ST) synchronization for OFDM/OQAM systems.
New proposals aim at simplifying the structure of the preamble in order to be able to use it for
synchronization and visualization purposes. In synchronization scheme for preamble-based ST and
CFO estimation with robust acquisition properties in dispersive channels has been developed [4]. In a
new preamble structure has been proposed with useful properties that simplify the use of a one-tap
equalizer. The characteristics of the preamble derive from the need to simplify the procedures for
channel estimation.
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 43
The resulting synchronization algorithms become dependent on the particular preamble, whose
utilization is obviously conditioned by the availability of a proper synchronization method. Therefore,
[3] a general contribution to the development of synchronization algorithms requires the capability to
operate without any specific knowledge about the structure of the preamble. This not only represents a
preamble-independent contribution to the synchronization task, which allows a standard definition of
the preamble structure unconstrained by the requirements of the synchronization algorithms, but also
paves the way to an increase of the spectral efficiency to be achieved by avoiding the preamble. The
blind estimation algorithm proposed in is based on the exploitation of the second-order
cyclostationarity of the transmitted OFDM/OQAM signal; the convergence of such a method is
particularly slow (too many symbol periods have to be processed) so that it is not useful in practice,
unless severe signal-to-noise ratios are considered.
It is limited to the case where CFO is present but it is not dedicated to the joint CFO and timing offset
estimation, [5] considers the case where both the offsets are jointly estimated by exploiting the
cyclostationarity properties. In an algorithm for blind CFO estimation is also proposed according to an
approximate (for a large number of subcarriers) maximum-likelihood approach and it is shown its
superior performance in comparison with the cyclostationarity-based methods. A maximum likelihood
method for blind CFO estimation suited for scenarios of low signal-to-noise ratio is proposed. The
weak point of both proposed methods lies in their computational complexity. In this paper, we analyze
the conjugate-symmetry property that approximately holds in the beginning of a burst of
OFDM/OQAM symbols. Using such an approximate property, a blind method for joint ST and CFO
estimation is proposed.
The proposed method is derived with reference to an AWGN channel, it is analyzed by computer
simulation with reference to standard multipath channels, and the numerical results show that the
proposed method can represent a useful contribution to the blind timing synchronization when the
OFDM/OQAM system operates over a multipath channel. The same analysis shows that the proposed
method provides a useful contribution to the coarse CFO compensation only for adequate signal-to-
noise ratios. [8] Preliminary results about the analysis of the approximate conjugate-symmetry-
property in the beginning of a burst of OFDM/OQAM symbols and its exploitation for ST and CFO
estimation are reported in organized. The OFDM/OQAM system model is delineated. The conjugate
symmetry property (CSP) and the methods to detect it are recalled. It is derived the proposed blind ST
estimator exploiting the approximate CSP.
II. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
Orthogonal frequency-division multiplexing is a method of encoding digital data on multiple carrier
frequencies.[7] OFDM has developed into a popular scheme for wideband digital communication,
whether wireless or over copper wires, used in applications such as digital television and audio
broadcasting, DSL broadband internet access, wireless networks, and 4G mobile communications.
OFDM is essentially identical to coded OFDM (COFDM) and discrete multi-tone modulation, and is
a frequency-division multiplexing scheme used as a digital multi-carrier modulation method.
2.1. Basic Architecture of OFDM System
OFDM system block architecture can be divided into 3 main sections, shown in Figure 1, namely the
transmitter, the channel and the receiver. The model used in this thesis is tested without the using the
Forward Error Correction coding (Denoted in double-line box). The primary advantage of OFDM
over single-carrier schemes is its ability to cope with severe channel conditions (for
example, attenuation of high frequencies in a long copper wire, narrow band interference and
frequency-selective fading due to multipath) without complex equalization filters.
Channel equalization is simplified because OFDM may be viewed as using many slowly
modulated narrowband signals rather than one rapidly modulated wideband signal.
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 44
Transmitted Channel Orthogonalisation
Signal
Radio Channel
Received Signal
Figure 1. Basic Architecture of OFDM Systems
The low symbol rate makes the use of a guard interval between symbols affordable, making it
possible to eliminate intersymbol interference (ISI) and utilize echoes and time-spreading (on
analogue TV these are visible as ghosting and blurring, respectively) to achieve a diversity gain, i.e.
a signal-to-noise ratio improvement. This mechanism also facilitates the design of single frequency
networks (SFNs), where several adjacent transmitters send the same signal simultaneously at the same
frequency, as the signals from multiple distant transmitters may be combined constructively, rather
than interfering as would typically occur in a traditional single-carrier system.
2.2. Multicarrier System
Multicarrier transmission techniques based on FBMC were developed in the seventies to perform the
conversion between Pulse Code Modulation and Frequency Division Multiplexing systems. In the
nineties, OFDM was preferred as multicarrier scheme because it was considered simpler in concept,
less complex and it had minimum latency. The Figure 2 shows the multicarrier system. OFDM and its
variant the OFDMA scheme are the basic communication scheme for the nowadays standards
(WLAN, WiMAX, LTE, etc.).
OFDM
. . . . . . . . .
OFDM Carrier Frequency (Carriers)
Figure 2. Multicarrier system
2.3. Prototype
Prototype filters are electronic filter designs that are used as a template to produce a modified filter
design for a particular application. They are an example of a non-dimensionalised design from which
the desired filter can be scaled or transformed. They are most often seen in regards to electronic
filters and especially linear analogue passive filters. However, in principle, the method can be applied
to any kind of linear filter or signal processing, including mechanical, acoustic and optical filters.
Filters are required to operate at many different frequencies, bandwidth and impedances. The utility of
a prototype filter comes from the property that all these other filters can be derived from it by
applying a scaling factor to the components of the prototype. The filter design need thus only be
carried out once in full, with other filters being obtained by simply applying a scaling factor.
FEC
QAM
Modulation
OFDM
Symbol
mapping
Sub-
carrier
allocation
CarrierIFFT
De-FEC
Demodulation
Channel De-Orthogonalisation
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 45
2.4. Synchronization
Synchronization refers to one of two distinct but related concepts: synchronization of processes, and
synchronization of data. Process synchronization refers to the idea that multiple processes are to join
up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of
action. Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence
with one another, or to maintain data integrity. Process synchronization primitives are commonly used
to implement data synchronization.
2.5. Signal-to-Noise Ratio
Signal-to-noise ratio is a measure used in science and engineering that compares the level of a
desired signal to the level of background noise. It is defined as the ratio of signal power to the noise
power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal
than noise. While SNR is commonly quoted for electrical signals, it can be applied to any form of
signal (such as isotope levels in an ice core or biochemical signaling between cells).
Signal-to-noise ratio is defined as the power ratio between a signal (meaningful information) and the
background noise (unwanted signal)
SNR=Psignal/Pavg
Where P is average power.
Both signal and noise power must be measured at the same and equivalent points in a system, and
within the same system bandwidth. If the signal and the noise are measured across the
same impedance, then the SNR can be obtained by calculating the square of the amplitude ratio:
SNR=Psignal/Pnoise=(Asignal/Anoise)2
Where, A is root mean square (RMS) amplitude (for example, RMS voltage). Because many signals
have a very wide dynamic range, SNRs are often expressed using the logarithmic decibel scale. In
decibels, the SNR is defined as
SNRdB=10log10(Psignal/Pnoise) = Psignal,dB-Pnoise,dB
Which may equivalently be written using amplitude ratios as
SNRdB=10log10(Asignal/Anoise)2
= 20log10(Asignal/Anoise)2
The concepts of signal-to-noise ratio and dynamic range are closely related. Dynamic range measures
the ratio between the strongest un-distorted signal on a channel and the minimum discernable signal,
which for most purposes is the noise level. SNR measures the ratio between an arbitrary signal level
(not necessarily the most powerful signal possible) and noise. Measuring signal-to-noise ratios
requires the selection of a representative or reference signal. In audio engineering, the reference signal
is usually a sine wave at a standardized nominal or alignment level, such as 1 kHz at +4 dBu1.228
VRMS).SNR is usually taken to indicate an average signal-to-noise ratio, as it is possible that (near)
instantaneous signal-to-noise ratios will be considerably different. The concept can be understood as
normalizing the noise level to 1 (0 dB).
2.6. Root Mean Square Error (RMSE)
The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a frequently used
measure of the differences between values predicted by a model or an estimator and values actually
observed. These individual differences are called residuals when the calculations are performed over
the data sample that was used for estimation, and are called prediction errors when computed out-of-
sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various times
into a single measure of predictive power. RMSD is a good measure of accuracy, but only to compare
forecasting errors of different models for a particular variable and not between variables, as it is scale-
dependent.
III. EXISTING METHOD
Additive white Gaussian noise (AWGN) shown in Figure 3 is a channel model in which the only
impairment to communication is a linear addition of wideband or white noise with a constant spectral
density(expressed as watts per hertz of bandwidth) and a Gaussian distribution of amplitude. The
model does not account for fading, frequency selectivity, interference, nonlinearity or dispersion. It
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 46
produces simple and tractable mathematical models which are useful for gaining insight into the
underlying behaviour of a system before these other phenomena are considered. Wideband Gaussian
noise comes from many natural sources, such as the thermal vibrations of atoms in conductors
(referred to as thermal noise or Johnson-Nyquist noise), shot noise, black body radiation from the
earth and other warm objects, and from celestial sources.
nw(t)
m s(t) r(t)=nw(t)+s(t)
{P[mi]} {si[t]}
{mi}
Figure 3. Additive White Gaussian Noise
The AWGN channel is a good model for many satellite and deep space communication links. It is not
a good model for most terrestrial links because of multipath, terrain blocking, interference, etc.
However, for terrestrial path modeling, AWGN is commonly used to simulate background noise of
the channel under study, in addition to multipath, terrain blocking, interference, ground clutter and
self interference that modern radio systems encounter in terrestrial operation.
3.1. Filter Bank Multicarrier (FBMC)
Filter bank Multicarrier in the system, the efficiency of present OFDM based solutions can be
increased while conserving high degree of compatibility with the existing equipment. Filter bank
Multicarrier Technology avoids spectral waste and provided better frequency localization by
introducing an efficient pulse shaping in the modulation scheme, avoiding distortion from non-
synchronous signals in adjacent bands. In order to enable the use of accurately nonrectangular pulse-
shaping, the different subcarriers need to be modulated using staggered offset QAM modulation. The
application of this modulation presents an additional advantage. The filter bank multicarrier is less
sensitivity to frequency offsets. Filter bank Multicarrier Technology increases the data rate since it
does not use any cyclic prefix to combat channel effects. Filter bank Multicarrier Technology is a
strong candidate envisioned for high speed PLC due to its high spectral efficiency in terms of bps/Hz,
frequency properties, which fits the stringent frequency masks imposed for PLC links and high level
of compatibility with the OFDM based physical layer defined in the standard.
3.2. ITU Channel
The International Telecommunication Union (ITU) is an agency of the United Nations (UN) whose
purpose is to coordinate telecommunication operations and services throughout the world. Originally
founded in 1865, as the International Telegraph Union, the ITU is the oldest existing international
organization. ITU headquarters are in Geneva, Switzerland.
The ITU consists of three sectors:
 Radio communication (ITU-R) -- ensures optimal, fair and rational use of the radio
frequency (RF) spectrum.
 Telecommunication Standardization ( ITU-T ) - formulates recommendations for standardizing
telecommunication operations worldwide.
 Telecommunication Development (ITU-D) -- assists countries in developing and maintaining
internal communication operations.
The ITU sets and publishes regulations and standards relevant to electronic communication and
broadcasting technologies of all kinds including radio, television, satellite, telephone and the Internet.
The organization conducts working parties, study groups and meetings to address current and future
issues and to resolve disputes. The ITU organizes and holds an exhibition and forum known as the
Global TELECOM every four years. Another important aspect of the ITU's mandate is helping
emerging countries to establish and develop telecommunication systems of their own. Although the
Transmitter Receiver
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 47
recommendations of the ITU are non-binding, most countries adhere to them in the interest of
maintaining an effective international electronic communication environment.
IV. PROPOSED METHOD
In a typical wireless communication system, the signal to be transmitted is up converted to a carrier
frequency prior to transmission. The receiver is expected to tune to the same carrier frequency for
down converting the signal to baseband, prior to demodulation. The block diagram of carrier
frequency offset is shown in Figure 4.
Figure 4. Block Diagram of Carrier Frequency Offset
4.1. Fast Fourier Transform
A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT) and
it’s inverse. A Fourier transform converts time (or space) to frequency and vice versa; an FFT rapidly
computes such transformations. As a result, fast Fourier transforms are widely used for many
applications in engineering, science, and mathematics. Fast Fourier transforms have been described as
"the most important numerical algorithm of our lifetime.
The DFT is obtained by decomposing a sequence of values into components of different frequencies.
This operation is useful in many fields (see discrete Fourier transform for properties and applications
of the transform) but computing it directly from the definition is often too slow to be practical. An
FFT is a way to compute the same result more quickly: computing the DFT of N points in the naive
way, using the definition, takes O(N2
) arithmetical operations, while a FFT can compute the same
DFT in only O(N log N) operations. The difference in speed can be enormous, especially for long data
sets where N may be in the thousands or millions. In practice, the computation time can be reduced by
several orders of magnitude in such cases, and the improvement is roughly proportional to N / log(N).
This huge improvement made the calculation of the DFT practical; FFTs are of great importance to a
wide variety of applications, from digital signal processing and solving partial differential equations
to algorithms for quick multiplication of large integers.
The best-known FFT algorithms depend upon the factorization of N, but there are FFTs with
O(N log N) complexity for all N, even for prime N. Many FFT algorithms only depend on the fact
that e-2πi/N
is an N-th primitive root of unity, and thus can be applied to analogous transforms over
any finite field, such as number-theoretic transforms. Since the inverse DFT is the same as the DFT,
but with the opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily be adapted
for it.
4.2. Cyclic Prefix
Cyclic prefix is often used in conjunction with modulation in order to retain sinusoids properties
in multipath channels. It is well known that sinusoidal signals are eigen functions of linear and time-
invariant systems. Therefore, if the channel is assumed to be linear and time-invariant, then a sinusoid
of infinite duration would be an eigen function. However, in practice, this cannot be achieved, as real
signals are always time-limited. So, to mimic the infinite behavior, prefixing the end of the symbol to
Symbol
mapping
S/P Adding CP FFT
P/S
AWGN
channel
CFO
estimationP/SIFFTS/PDe mapping
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 48
the beginning makes the linear convolution of the channel appear as though it were circular
convolution and thus, preserve this property in the part of the symbol after the cyclic prefix.
Cyclic Prefixes are used in OFDM in order to combat multipath by making channel estimation easy.
As an example, consider an OFDM system which has subcarriers. The message symbol can be
written as:
d = [d0,d1,…dN-1]
The OFDM symbol is constructed by taking the inverse discrete Fourier transform (IDFT) of the
message symbol, followed by a cyclic prefixing. Let the symbol obtained by the IDFT be denoted by
X=[x[0],x[1],…x[N-1]]T
Prefixing it with a cyclic prefix of length, L-1 the OFDM symbol obtained
X = [x[]N-L+1],.x[N-2],x[N-1],x[0],x[1],…x[N-1]]T
Assume that the channel is represented using
h = [h0,h1,….hL-1]T
So, taking the Discrete Fourier Transform, we get
y[k] = H[k] . X[k]
Where X[k] is the discrete Fourier transform of X. Thus, a multipath channel is converted into scalar
parallel sub-channels in frequency domain, thereby simplifying the receiver design considerably. The
task of channel estimation is simplified, as we just need to estimate the scalar coefficients H[k] for
each sub-channel and once the values of are estimated, for the duration in which the channel does not
vary significantly, merely multiplying the received demodulated symbols by the inverse of yields the
estimates of and hence, the estimate of actual symbols.
4.3. Inverse Fast Fourier Transform
The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided
the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case
of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial
with simple zeros on the unit circle, then this method can be extended.
4.4. Symbol Timing
The symbol timing (also known as baud or modulation rate) is the number of symbol changes
(waveform changes or signaling events) made to the transmission medium per second using a
digitally modulated signal or a line code. The Symbol rate is measured in baud rate or
symbols/second. In the case of a line code, the symbol rate is the pulse rate in pulses/second. Each
symbol can represent or convey one or several bits of data. The symbol rate is related to, but should
not be confused with, the gross bit rate expressed in bit/second.
A symbol can be described as either a pulse (in digital baseband transmission) or a "tone" (in pass
band transmission using modems) representing an integer number of bits. A theoretical definition of a
symbol is a waveform, a state or a significant condition of the communication channel that persists for
a fixed period of time. A sending device places symbols on the channel at a fixed and known symbol
rate, and the receiving device has the job of detecting the sequence of symbols in order to reconstruct
the transmitted data. There may be a direct correspondence between a symbol and a small unit
of data (for example, each a symbol may encode one or several binary digits or 'bits') or the data may
be represented by the transitions between symbols or even by a sequence of many symbols.
The symbol duration time, also known as unit interval, can be directly measured as the time between
transitions by looking into an eye diagram of an oscilloscope. The symbol duration time Ts can be
calculated as:
Ts = 1/fs
Where, fs is the symbol rate.
V. OUTPUT OF PROPOSED METHOD
The output of OQAM modulation is shown in Figure 5.
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 49
Figure 5. Output of OQAM
The output for estimating CFO in OQAM modulation in AWGN channel is shown in Figure 6.
Figure 6. Output of estimating CFO
VI. CONCLUSIONS
The problem of blind synchronization for OFDM/OQAM systems has been considered. Specifically, a
new method for blind ST and CFO synchronization has been proposed by exploiting the approximate
CSP of the beginning of a burst of OFDM/OQAM symbols due to the presence of the time offset. The
results of the performance analysis with reference to the considered OFDM/OQAM system show that
the proposed blind ST and CFO estimators, complemented by a simpler coarse ST estimator, achieve
acceptable performance for realistic values of Eb/N0.
REFERENCES
[1]. Bellanger. M, “Efficiency of filter bank multicarrier techniques in burst radio transmission,” in Proc.
IEEE Global Commun..conf., pp.1-4
[2]. Cherubini. G, Eleftheriou. E, Oker. S, and Cioffi. J, (2000) “Filter bank modulation techniques for very
high speed digital subscriber lines,”IEEECommun. Mag…vol.38, pp. 98-104.
[3]. Ciblat. P and Serpedin. E, (2004) “A fine blind frequency offset estimator for OFDM/OQAM
systems,” IEEE Trans. Signal Process..vol.52, pp.291-296.
International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 50
[4]. DavideMattera and Mario Tanda“Blind Symbol Timing and CFO Estimation for OFDM/OQAM
Systems”IEEE transactions on wireless communications,.
[5]. Fusco. T and Tanda. M, (2007) “Blind frequency-offset estimation for OFDM/OQAM systems,” IEEE
Trans. Signal Process..vol.55, pp.1828-1838.
[6]. Fusco. T, Petrella. A, and Tanda. M, (2009) “Data-aided symbol timing and CFO synchronization for
filter-bank multicarrier systems,”IEEETrans.WirelessCommun..vol.8, pp.2705-2715.
[7]. Le Floch. B, Alard. M, and Berrou. C, “Coded orthogonal frequency division multiplex,” Proc.
IEEEvol. 83, pp. 982–996.
[8]. Mattera. D and Tanda.M, “A new method for blind synchronization for OFDM/OQAM systems,” in
Proc.,International Symp.Image Signal Process,. Analysis.

Weitere ähnliche Inhalte

Was ist angesagt?

Ofdm performance analysis
Ofdm performance analysisOfdm performance analysis
Ofdm performance analysisSaroj Dhakal
 
Frequency Domain Equalization(FDE) OFDM system
Frequency Domain Equalization(FDE) OFDM system Frequency Domain Equalization(FDE) OFDM system
Frequency Domain Equalization(FDE) OFDM system Chamara Salgado
 
OFDM based baseband Receiver
OFDM based baseband ReceiverOFDM based baseband Receiver
OFDM based baseband Receivernaveen sunnam
 
Concept of Flip OFDM and its applications
Concept of Flip OFDM and its applicationsConcept of Flip OFDM and its applications
Concept of Flip OFDM and its applicationsDarshan Bhatt
 
Multi Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMCMulti Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMCVetrivel Chelian
 
OFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingOFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingAbdullaziz Tagawy
 
Ncc2004 ofdm tutorial part i-rvr
Ncc2004 ofdm tutorial   part i-rvrNcc2004 ofdm tutorial   part i-rvr
Ncc2004 ofdm tutorial part i-rvrArpan Pal
 
Final presentation
Final presentationFinal presentation
Final presentationRohan Lad
 
OFDM (Orthogonal Frequency Division Multiplexing )
OFDM (Orthogonal Frequency Division Multiplexing �)OFDM (Orthogonal Frequency Division Multiplexing �)
OFDM (Orthogonal Frequency Division Multiplexing )Juan Camilo Sacanamboy
 
Perfomance Evaluation of FBMC for an Underwater Acoustic Channel
Perfomance Evaluation of FBMC for an Underwater Acoustic ChannelPerfomance Evaluation of FBMC for an Underwater Acoustic Channel
Perfomance Evaluation of FBMC for an Underwater Acoustic ChannelCommunication Systems & Networks
 
Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Fuyun Ling
 
Ncc2004 ofdm tutorial part ii-apal
Ncc2004 ofdm tutorial   part ii-apalNcc2004 ofdm tutorial   part ii-apal
Ncc2004 ofdm tutorial part ii-apalArpan Pal
 
OFDM transmission step-by-step
OFDM transmission step-by-stepOFDM transmission step-by-step
OFDM transmission step-by-stepErwin Riederer
 
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Rupesh Sharma
 
2015 08-31 kofidis
2015 08-31 kofidis2015 08-31 kofidis
2015 08-31 kofidisSCEE Team
 

Was ist angesagt? (20)

OFDM
OFDMOFDM
OFDM
 
Ofdm performance analysis
Ofdm performance analysisOfdm performance analysis
Ofdm performance analysis
 
Ofdma
OfdmaOfdma
Ofdma
 
Frequency Domain Equalization(FDE) OFDM system
Frequency Domain Equalization(FDE) OFDM system Frequency Domain Equalization(FDE) OFDM system
Frequency Domain Equalization(FDE) OFDM system
 
OFDM based baseband Receiver
OFDM based baseband ReceiverOFDM based baseband Receiver
OFDM based baseband Receiver
 
Concept of Flip OFDM and its applications
Concept of Flip OFDM and its applicationsConcept of Flip OFDM and its applications
Concept of Flip OFDM and its applications
 
OFDM Final
OFDM FinalOFDM Final
OFDM Final
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
 
Ofdm for wireless
Ofdm for wirelessOfdm for wireless
Ofdm for wireless
 
Multi Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMCMulti Carrier Modulation OFDM & FBMC
Multi Carrier Modulation OFDM & FBMC
 
OFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingOFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division Multiplexing
 
Ncc2004 ofdm tutorial part i-rvr
Ncc2004 ofdm tutorial   part i-rvrNcc2004 ofdm tutorial   part i-rvr
Ncc2004 ofdm tutorial part i-rvr
 
Final presentation
Final presentationFinal presentation
Final presentation
 
OFDM (Orthogonal Frequency Division Multiplexing )
OFDM (Orthogonal Frequency Division Multiplexing �)OFDM (Orthogonal Frequency Division Multiplexing �)
OFDM (Orthogonal Frequency Division Multiplexing )
 
Perfomance Evaluation of FBMC for an Underwater Acoustic Channel
Perfomance Evaluation of FBMC for an Underwater Acoustic ChannelPerfomance Evaluation of FBMC for an Underwater Acoustic Channel
Perfomance Evaluation of FBMC for an Underwater Acoustic Channel
 
Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1
 
Ncc2004 ofdm tutorial part ii-apal
Ncc2004 ofdm tutorial   part ii-apalNcc2004 ofdm tutorial   part ii-apal
Ncc2004 ofdm tutorial part ii-apal
 
OFDM transmission step-by-step
OFDM transmission step-by-stepOFDM transmission step-by-step
OFDM transmission step-by-step
 
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
 
2015 08-31 kofidis
2015 08-31 kofidis2015 08-31 kofidis
2015 08-31 kofidis
 

Ähnlich wie ESTIMATION OF SYMBOL TIMING AND CARRIER FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME

Minimization Of Inter Symbol Interference Based Error in OFDM System Using A...
Minimization Of Inter Symbol Interference Based Error in  OFDM System Using A...Minimization Of Inter Symbol Interference Based Error in  OFDM System Using A...
Minimization Of Inter Symbol Interference Based Error in OFDM System Using A...IJMER
 
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...ijwmn
 
Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...
Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...
Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...ijcnes
 
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...IJERA Editor
 
CHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMS
CHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMSCHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMS
CHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMSIAEME Publication
 
Wireless communication system with frequency selective channel OFDM modulatio...
Wireless communication system with frequency selective channel OFDM modulatio...Wireless communication system with frequency selective channel OFDM modulatio...
Wireless communication system with frequency selective channel OFDM modulatio...TELKOMNIKA JOURNAL
 
An adaptive channel estimation scheme based on redundancy minimization for fi...
An adaptive channel estimation scheme based on redundancy minimization for fi...An adaptive channel estimation scheme based on redundancy minimization for fi...
An adaptive channel estimation scheme based on redundancy minimization for fi...TELKOMNIKA JOURNAL
 
Spatial multiplexing ofdmoqam systems with time reversal technique
Spatial multiplexing ofdmoqam systems with time reversal techniqueSpatial multiplexing ofdmoqam systems with time reversal technique
Spatial multiplexing ofdmoqam systems with time reversal techniqueijwmn
 
Performance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath FadingPerformance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath FadingIOSR Journals
 
Performance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath FadingPerformance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath FadingIOSR Journals
 
Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...
Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...
Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...ijcsse
 
OFDM synchronization system using wavelet transform for symbol rate detection
OFDM synchronization system using wavelet transform for symbol rate detectionOFDM synchronization system using wavelet transform for symbol rate detection
OFDM synchronization system using wavelet transform for symbol rate detectionTELKOMNIKA JOURNAL
 
Single Mode Optical Fiber in Rof System Using DWDM
Single Mode Optical Fiber in Rof System Using DWDMSingle Mode Optical Fiber in Rof System Using DWDM
Single Mode Optical Fiber in Rof System Using DWDMIJERA Editor
 
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...Tamilarasan N
 
Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...
Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...
Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...IRJET Journal
 

Ähnlich wie ESTIMATION OF SYMBOL TIMING AND CARRIER FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME (20)

Minimization Of Inter Symbol Interference Based Error in OFDM System Using A...
Minimization Of Inter Symbol Interference Based Error in  OFDM System Using A...Minimization Of Inter Symbol Interference Based Error in  OFDM System Using A...
Minimization Of Inter Symbol Interference Based Error in OFDM System Using A...
 
B033206014
B033206014B033206014
B033206014
 
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
 
D010231821
D010231821D010231821
D010231821
 
Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...
Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...
Optimal Channel and Relay Assignment in Ofdmbased Multi-Relay Multi-Pair Two-...
 
Ijetr042334
Ijetr042334Ijetr042334
Ijetr042334
 
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
A Review: Significant Research on Time And Frequency Synchronization In MIMO ...
 
CHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMS
CHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMSCHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMS
CHANNEL ESTIMATION IN MOBILE WIRELESS SYSTEMS
 
Wireless communication system with frequency selective channel OFDM modulatio...
Wireless communication system with frequency selective channel OFDM modulatio...Wireless communication system with frequency selective channel OFDM modulatio...
Wireless communication system with frequency selective channel OFDM modulatio...
 
An adaptive channel estimation scheme based on redundancy minimization for fi...
An adaptive channel estimation scheme based on redundancy minimization for fi...An adaptive channel estimation scheme based on redundancy minimization for fi...
An adaptive channel estimation scheme based on redundancy minimization for fi...
 
Spatial multiplexing ofdmoqam systems with time reversal technique
Spatial multiplexing ofdmoqam systems with time reversal techniqueSpatial multiplexing ofdmoqam systems with time reversal technique
Spatial multiplexing ofdmoqam systems with time reversal technique
 
Performance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath FadingPerformance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath Fading
 
Performance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath FadingPerformance Analysis of OFDM in Combating Multipath Fading
Performance Analysis of OFDM in Combating Multipath Fading
 
Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...
Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...
Performance Evaluation of PAPR Reduction with SER and BER by Modified Clippin...
 
OFDM synchronization system using wavelet transform for symbol rate detection
OFDM synchronization system using wavelet transform for symbol rate detectionOFDM synchronization system using wavelet transform for symbol rate detection
OFDM synchronization system using wavelet transform for symbol rate detection
 
Single Mode Optical Fiber in Rof System Using DWDM
Single Mode Optical Fiber in Rof System Using DWDMSingle Mode Optical Fiber in Rof System Using DWDM
Single Mode Optical Fiber in Rof System Using DWDM
 
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
 
6 chapter 1,2,3,4,5 (15%) M.TECH ( M S WORD FILE )
6 chapter 1,2,3,4,5 (15%) M.TECH ( M S WORD FILE )6 chapter 1,2,3,4,5 (15%) M.TECH ( M S WORD FILE )
6 chapter 1,2,3,4,5 (15%) M.TECH ( M S WORD FILE )
 
6 chapter 1,2,3,4,5 (15%) M.TECH ( PDF FILE )
6 chapter 1,2,3,4,5 (15%) M.TECH ( PDF FILE )6 chapter 1,2,3,4,5 (15%) M.TECH ( PDF FILE )
6 chapter 1,2,3,4,5 (15%) M.TECH ( PDF FILE )
 
Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...
Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...
Enhancing Performance for Orthogonal Frequency Division Multiplexing in Wirel...
 

Mehr von Michael George

A REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEM
A REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEMA REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEM
A REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEMMichael George
 
FINGERPRINT BASED LOCKER WITH IMAGE CAPTURE
FINGERPRINT BASED LOCKER WITH IMAGE CAPTUREFINGERPRINT BASED LOCKER WITH IMAGE CAPTURE
FINGERPRINT BASED LOCKER WITH IMAGE CAPTUREMichael George
 
SOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODESOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODEMichael George
 
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...Michael George
 
DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/...
 DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/... DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/...
DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/...Michael George
 
WOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTS
WOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTSWOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTS
WOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTSMichael George
 
DESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINK
DESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINKDESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINK
DESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINKMichael George
 
Modelling the Kinetic of UV Water Disinfection
Modelling the Kinetic of UV Water DisinfectionModelling the Kinetic of UV Water Disinfection
Modelling the Kinetic of UV Water DisinfectionMichael George
 
TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...
TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...
TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...Michael George
 
SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...
SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...
SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...Michael George
 
A LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGIC
A LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGICA LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGIC
A LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGICMichael George
 
DETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEME
DETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEMEDETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEME
DETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEMEMichael George
 
ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI
 ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI
ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSIMichael George
 
AUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEM
AUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEMAUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEM
AUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEMMichael George
 
SOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODESOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODEMichael George
 

Mehr von Michael George (17)

A REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEM
A REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEMA REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEM
A REVIEW PAPER ON AIR QUALITY METER WITH WARNING SYSTEM
 
FINGERPRINT BASED LOCKER WITH IMAGE CAPTURE
FINGERPRINT BASED LOCKER WITH IMAGE CAPTUREFINGERPRINT BASED LOCKER WITH IMAGE CAPTURE
FINGERPRINT BASED LOCKER WITH IMAGE CAPTURE
 
SOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODESOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODE
 
Ijsrms novemb
Ijsrms novembIjsrms novemb
Ijsrms novemb
 
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
 
DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/...
 DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/... DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/...
DISINFECTION OF WATER CONTAINING E. COLI BY PHOTOCATALYTIC ROUTE USING TIO2/...
 
WOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTS
WOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTSWOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTS
WOMEN ENTREPRENEURSHIP IN INDIA: PRESENT STATUS, PROBLEMS AND PROSPECTS
 
DESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINK
DESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINKDESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINK
DESIGN AND MODELLING OF STANDALONE HYBRID POWER SYSTEM WITH MATLAB/SIMULINK
 
Modelling the Kinetic of UV Water Disinfection
Modelling the Kinetic of UV Water DisinfectionModelling the Kinetic of UV Water Disinfection
Modelling the Kinetic of UV Water Disinfection
 
TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...
TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...
TO ENHANCE THE SLEEP EXPERIENCE OF THE GUESTS IN THE HOTELS (A Study on the F...
 
Call for paper
Call for paperCall for paper
Call for paper
 
SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...
SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...
SINGLE PHASING, PHASE REVERSAL, OVERVOLTAGE, UNDER VOLTAGE AND OVERHEATING PR...
 
A LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGIC
A LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGICA LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGIC
A LOW POWER BASED ASYNCHRONOUS CIRCUIT DESIGN USING POWER GATED LOGIC
 
DETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEME
DETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEMEDETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEME
DETECTING DOUBLY COMPRESSED H.264/AVC VIDEOS USING MARKOV STATISTICS SCHEME
 
ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI
 ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI
ESTIMATING PAPER IN VARIABLE GAIN RELAYING ON IMPERFECT CSI
 
AUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEM
AUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEMAUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEM
AUTOMATIC FAULT TOLERANCE USING SELF ADAPTIVE SYSTEM
 
SOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODESOLAR PANEL CONTROL USING SLIDING MODE
SOLAR PANEL CONTROL USING SLIDING MODE
 

Kürzlich hochgeladen

Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Kürzlich hochgeladen (20)

Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

ESTIMATION OF SYMBOL TIMING AND CARRIER FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME

  • 1. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 42 ESTIMATION OF SYMBOL TIMING AND CARRIER FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME S.Selvabharathi1 and S.Nandhini2 1 Department of Electronics Communication Engineering, Nandha Engineering College, Erode, Tamilnadu, India 2 Assistant Professor, Nandha Engineering College, Erode, Tamilnadu, India ABSTRACT OFDM/OQAM is preferred as multicarrier system which operates over a multipath channel. By using the multipath channel the signal-to-noise ratio. In earlier, sub carriers are used to transmit the signals. Nowadays, FFT and DFT are used for transmitting the signals based upon the bit values. AWGN is a channel used to identify the noise produced at the output by adding the noise in the blind signal. By reducing subcarriers the noise and timing are reduced. FFT bit value was increased which provides better performance. In the multicarrier system, the error and noise was reduced by increasing the bit value. KEYWORDS: OFDM, symbol timing, cyclic prefix, AWGN, signal-to-noise ratio, carrier frequency offset. I. INTRODUCTION The main objective of this project to estimate blind Symbol timing and carrier frequency offset acceptable performances of system. In the last years, the interest for filter-bank multicarrier (FBMC) systems is increased, [1] since they provide high spectral containment. Therefore, they have been taken into account for high-data-rate transmissions over both wired and wireless frequency-selective channels. One of the most famous multicarrier modulation techniques is orthogonal frequency division multiplexing (OFDM), other known types of FBMC systems are filtered multi one systems and OFDM based on offset QAM modulation (OQAM). The FBMC approach complements the FFT with a set of digital filters called polyphase network (PPN) while the OFDM approach inserts the cyclic prefix (CP) after the FFT. Unlike OFDM, OFDM/OQAM systems do not require the presence of a CP in order to combat the effects of frequency selective channels. The absence of the CP implies on the one hand the maximum spectral efficiency and, on the other hand, an increased computational complexity. However, [2] since the sub channel filters are obtained by complex modulation of a single filter; efficient polyphase implementation is often considered. Fundamental differences between OFDM and OFDM/OQAM systems concern the adoption (in the OFDM/OQAM case) of pulse shaping filters very well localized in time and frequency and memory effects between useful symbols and transmitted signal due to the PPN. OFDM/OQAM systems, as all multicarrier systems, are more sensitive to synchronization errors than single-carrier systems. For this reason, it is very important to derive efficient synchronization schemes. In the last years several studies have been focused on [6] blind and data-aided carrier frequency offset (CFO) and symbol timing (ST) synchronization for OFDM/OQAM systems. New proposals aim at simplifying the structure of the preamble in order to be able to use it for synchronization and visualization purposes. In synchronization scheme for preamble-based ST and CFO estimation with robust acquisition properties in dispersive channels has been developed [4]. In a new preamble structure has been proposed with useful properties that simplify the use of a one-tap equalizer. The characteristics of the preamble derive from the need to simplify the procedures for channel estimation.
  • 2. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 43 The resulting synchronization algorithms become dependent on the particular preamble, whose utilization is obviously conditioned by the availability of a proper synchronization method. Therefore, [3] a general contribution to the development of synchronization algorithms requires the capability to operate without any specific knowledge about the structure of the preamble. This not only represents a preamble-independent contribution to the synchronization task, which allows a standard definition of the preamble structure unconstrained by the requirements of the synchronization algorithms, but also paves the way to an increase of the spectral efficiency to be achieved by avoiding the preamble. The blind estimation algorithm proposed in is based on the exploitation of the second-order cyclostationarity of the transmitted OFDM/OQAM signal; the convergence of such a method is particularly slow (too many symbol periods have to be processed) so that it is not useful in practice, unless severe signal-to-noise ratios are considered. It is limited to the case where CFO is present but it is not dedicated to the joint CFO and timing offset estimation, [5] considers the case where both the offsets are jointly estimated by exploiting the cyclostationarity properties. In an algorithm for blind CFO estimation is also proposed according to an approximate (for a large number of subcarriers) maximum-likelihood approach and it is shown its superior performance in comparison with the cyclostationarity-based methods. A maximum likelihood method for blind CFO estimation suited for scenarios of low signal-to-noise ratio is proposed. The weak point of both proposed methods lies in their computational complexity. In this paper, we analyze the conjugate-symmetry property that approximately holds in the beginning of a burst of OFDM/OQAM symbols. Using such an approximate property, a blind method for joint ST and CFO estimation is proposed. The proposed method is derived with reference to an AWGN channel, it is analyzed by computer simulation with reference to standard multipath channels, and the numerical results show that the proposed method can represent a useful contribution to the blind timing synchronization when the OFDM/OQAM system operates over a multipath channel. The same analysis shows that the proposed method provides a useful contribution to the coarse CFO compensation only for adequate signal-to- noise ratios. [8] Preliminary results about the analysis of the approximate conjugate-symmetry- property in the beginning of a burst of OFDM/OQAM symbols and its exploitation for ST and CFO estimation are reported in organized. The OFDM/OQAM system model is delineated. The conjugate symmetry property (CSP) and the methods to detect it are recalled. It is derived the proposed blind ST estimator exploiting the approximate CSP. II. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING Orthogonal frequency-division multiplexing is a method of encoding digital data on multiple carrier frequencies.[7] OFDM has developed into a popular scheme for wideband digital communication, whether wireless or over copper wires, used in applications such as digital television and audio broadcasting, DSL broadband internet access, wireless networks, and 4G mobile communications. OFDM is essentially identical to coded OFDM (COFDM) and discrete multi-tone modulation, and is a frequency-division multiplexing scheme used as a digital multi-carrier modulation method. 2.1. Basic Architecture of OFDM System OFDM system block architecture can be divided into 3 main sections, shown in Figure 1, namely the transmitter, the channel and the receiver. The model used in this thesis is tested without the using the Forward Error Correction coding (Denoted in double-line box). The primary advantage of OFDM over single-carrier schemes is its ability to cope with severe channel conditions (for example, attenuation of high frequencies in a long copper wire, narrow band interference and frequency-selective fading due to multipath) without complex equalization filters. Channel equalization is simplified because OFDM may be viewed as using many slowly modulated narrowband signals rather than one rapidly modulated wideband signal.
  • 3. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 44 Transmitted Channel Orthogonalisation Signal Radio Channel Received Signal Figure 1. Basic Architecture of OFDM Systems The low symbol rate makes the use of a guard interval between symbols affordable, making it possible to eliminate intersymbol interference (ISI) and utilize echoes and time-spreading (on analogue TV these are visible as ghosting and blurring, respectively) to achieve a diversity gain, i.e. a signal-to-noise ratio improvement. This mechanism also facilitates the design of single frequency networks (SFNs), where several adjacent transmitters send the same signal simultaneously at the same frequency, as the signals from multiple distant transmitters may be combined constructively, rather than interfering as would typically occur in a traditional single-carrier system. 2.2. Multicarrier System Multicarrier transmission techniques based on FBMC were developed in the seventies to perform the conversion between Pulse Code Modulation and Frequency Division Multiplexing systems. In the nineties, OFDM was preferred as multicarrier scheme because it was considered simpler in concept, less complex and it had minimum latency. The Figure 2 shows the multicarrier system. OFDM and its variant the OFDMA scheme are the basic communication scheme for the nowadays standards (WLAN, WiMAX, LTE, etc.). OFDM . . . . . . . . . OFDM Carrier Frequency (Carriers) Figure 2. Multicarrier system 2.3. Prototype Prototype filters are electronic filter designs that are used as a template to produce a modified filter design for a particular application. They are an example of a non-dimensionalised design from which the desired filter can be scaled or transformed. They are most often seen in regards to electronic filters and especially linear analogue passive filters. However, in principle, the method can be applied to any kind of linear filter or signal processing, including mechanical, acoustic and optical filters. Filters are required to operate at many different frequencies, bandwidth and impedances. The utility of a prototype filter comes from the property that all these other filters can be derived from it by applying a scaling factor to the components of the prototype. The filter design need thus only be carried out once in full, with other filters being obtained by simply applying a scaling factor. FEC QAM Modulation OFDM Symbol mapping Sub- carrier allocation CarrierIFFT De-FEC Demodulation Channel De-Orthogonalisation
  • 4. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 45 2.4. Synchronization Synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. Process synchronization refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization. 2.5. Signal-to-Noise Ratio Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. It is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. While SNR is commonly quoted for electrical signals, it can be applied to any form of signal (such as isotope levels in an ice core or biochemical signaling between cells). Signal-to-noise ratio is defined as the power ratio between a signal (meaningful information) and the background noise (unwanted signal) SNR=Psignal/Pavg Where P is average power. Both signal and noise power must be measured at the same and equivalent points in a system, and within the same system bandwidth. If the signal and the noise are measured across the same impedance, then the SNR can be obtained by calculating the square of the amplitude ratio: SNR=Psignal/Pnoise=(Asignal/Anoise)2 Where, A is root mean square (RMS) amplitude (for example, RMS voltage). Because many signals have a very wide dynamic range, SNRs are often expressed using the logarithmic decibel scale. In decibels, the SNR is defined as SNRdB=10log10(Psignal/Pnoise) = Psignal,dB-Pnoise,dB Which may equivalently be written using amplitude ratios as SNRdB=10log10(Asignal/Anoise)2 = 20log10(Asignal/Anoise)2 The concepts of signal-to-noise ratio and dynamic range are closely related. Dynamic range measures the ratio between the strongest un-distorted signal on a channel and the minimum discernable signal, which for most purposes is the noise level. SNR measures the ratio between an arbitrary signal level (not necessarily the most powerful signal possible) and noise. Measuring signal-to-noise ratios requires the selection of a representative or reference signal. In audio engineering, the reference signal is usually a sine wave at a standardized nominal or alignment level, such as 1 kHz at +4 dBu1.228 VRMS).SNR is usually taken to indicate an average signal-to-noise ratio, as it is possible that (near) instantaneous signal-to-noise ratios will be considerably different. The concept can be understood as normalizing the noise level to 1 (0 dB). 2.6. Root Mean Square Error (RMSE) The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a frequently used measure of the differences between values predicted by a model or an estimator and values actually observed. These individual differences are called residuals when the calculations are performed over the data sample that was used for estimation, and are called prediction errors when computed out-of- sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various times into a single measure of predictive power. RMSD is a good measure of accuracy, but only to compare forecasting errors of different models for a particular variable and not between variables, as it is scale- dependent. III. EXISTING METHOD Additive white Gaussian noise (AWGN) shown in Figure 3 is a channel model in which the only impairment to communication is a linear addition of wideband or white noise with a constant spectral density(expressed as watts per hertz of bandwidth) and a Gaussian distribution of amplitude. The model does not account for fading, frequency selectivity, interference, nonlinearity or dispersion. It
  • 5. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 46 produces simple and tractable mathematical models which are useful for gaining insight into the underlying behaviour of a system before these other phenomena are considered. Wideband Gaussian noise comes from many natural sources, such as the thermal vibrations of atoms in conductors (referred to as thermal noise or Johnson-Nyquist noise), shot noise, black body radiation from the earth and other warm objects, and from celestial sources. nw(t) m s(t) r(t)=nw(t)+s(t) {P[mi]} {si[t]} {mi} Figure 3. Additive White Gaussian Noise The AWGN channel is a good model for many satellite and deep space communication links. It is not a good model for most terrestrial links because of multipath, terrain blocking, interference, etc. However, for terrestrial path modeling, AWGN is commonly used to simulate background noise of the channel under study, in addition to multipath, terrain blocking, interference, ground clutter and self interference that modern radio systems encounter in terrestrial operation. 3.1. Filter Bank Multicarrier (FBMC) Filter bank Multicarrier in the system, the efficiency of present OFDM based solutions can be increased while conserving high degree of compatibility with the existing equipment. Filter bank Multicarrier Technology avoids spectral waste and provided better frequency localization by introducing an efficient pulse shaping in the modulation scheme, avoiding distortion from non- synchronous signals in adjacent bands. In order to enable the use of accurately nonrectangular pulse- shaping, the different subcarriers need to be modulated using staggered offset QAM modulation. The application of this modulation presents an additional advantage. The filter bank multicarrier is less sensitivity to frequency offsets. Filter bank Multicarrier Technology increases the data rate since it does not use any cyclic prefix to combat channel effects. Filter bank Multicarrier Technology is a strong candidate envisioned for high speed PLC due to its high spectral efficiency in terms of bps/Hz, frequency properties, which fits the stringent frequency masks imposed for PLC links and high level of compatibility with the OFDM based physical layer defined in the standard. 3.2. ITU Channel The International Telecommunication Union (ITU) is an agency of the United Nations (UN) whose purpose is to coordinate telecommunication operations and services throughout the world. Originally founded in 1865, as the International Telegraph Union, the ITU is the oldest existing international organization. ITU headquarters are in Geneva, Switzerland. The ITU consists of three sectors:  Radio communication (ITU-R) -- ensures optimal, fair and rational use of the radio frequency (RF) spectrum.  Telecommunication Standardization ( ITU-T ) - formulates recommendations for standardizing telecommunication operations worldwide.  Telecommunication Development (ITU-D) -- assists countries in developing and maintaining internal communication operations. The ITU sets and publishes regulations and standards relevant to electronic communication and broadcasting technologies of all kinds including radio, television, satellite, telephone and the Internet. The organization conducts working parties, study groups and meetings to address current and future issues and to resolve disputes. The ITU organizes and holds an exhibition and forum known as the Global TELECOM every four years. Another important aspect of the ITU's mandate is helping emerging countries to establish and develop telecommunication systems of their own. Although the Transmitter Receiver
  • 6. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 47 recommendations of the ITU are non-binding, most countries adhere to them in the interest of maintaining an effective international electronic communication environment. IV. PROPOSED METHOD In a typical wireless communication system, the signal to be transmitted is up converted to a carrier frequency prior to transmission. The receiver is expected to tune to the same carrier frequency for down converting the signal to baseband, prior to demodulation. The block diagram of carrier frequency offset is shown in Figure 4. Figure 4. Block Diagram of Carrier Frequency Offset 4.1. Fast Fourier Transform A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT) and it’s inverse. A Fourier transform converts time (or space) to frequency and vice versa; an FFT rapidly computes such transformations. As a result, fast Fourier transforms are widely used for many applications in engineering, science, and mathematics. Fast Fourier transforms have been described as "the most important numerical algorithm of our lifetime. The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields (see discrete Fourier transform for properties and applications of the transform) but computing it directly from the definition is often too slow to be practical. An FFT is a way to compute the same result more quickly: computing the DFT of N points in the naive way, using the definition, takes O(N2 ) arithmetical operations, while a FFT can compute the same DFT in only O(N log N) operations. The difference in speed can be enormous, especially for long data sets where N may be in the thousands or millions. In practice, the computation time can be reduced by several orders of magnitude in such cases, and the improvement is roughly proportional to N / log(N). This huge improvement made the calculation of the DFT practical; FFTs are of great importance to a wide variety of applications, from digital signal processing and solving partial differential equations to algorithms for quick multiplication of large integers. The best-known FFT algorithms depend upon the factorization of N, but there are FFTs with O(N log N) complexity for all N, even for prime N. Many FFT algorithms only depend on the fact that e-2πi/N is an N-th primitive root of unity, and thus can be applied to analogous transforms over any finite field, such as number-theoretic transforms. Since the inverse DFT is the same as the DFT, but with the opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily be adapted for it. 4.2. Cyclic Prefix Cyclic prefix is often used in conjunction with modulation in order to retain sinusoids properties in multipath channels. It is well known that sinusoidal signals are eigen functions of linear and time- invariant systems. Therefore, if the channel is assumed to be linear and time-invariant, then a sinusoid of infinite duration would be an eigen function. However, in practice, this cannot be achieved, as real signals are always time-limited. So, to mimic the infinite behavior, prefixing the end of the symbol to Symbol mapping S/P Adding CP FFT P/S AWGN channel CFO estimationP/SIFFTS/PDe mapping
  • 7. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 48 the beginning makes the linear convolution of the channel appear as though it were circular convolution and thus, preserve this property in the part of the symbol after the cyclic prefix. Cyclic Prefixes are used in OFDM in order to combat multipath by making channel estimation easy. As an example, consider an OFDM system which has subcarriers. The message symbol can be written as: d = [d0,d1,…dN-1] The OFDM symbol is constructed by taking the inverse discrete Fourier transform (IDFT) of the message symbol, followed by a cyclic prefixing. Let the symbol obtained by the IDFT be denoted by X=[x[0],x[1],…x[N-1]]T Prefixing it with a cyclic prefix of length, L-1 the OFDM symbol obtained X = [x[]N-L+1],.x[N-2],x[N-1],x[0],x[1],…x[N-1]]T Assume that the channel is represented using h = [h0,h1,….hL-1]T So, taking the Discrete Fourier Transform, we get y[k] = H[k] . X[k] Where X[k] is the discrete Fourier transform of X. Thus, a multipath channel is converted into scalar parallel sub-channels in frequency domain, thereby simplifying the receiver design considerably. The task of channel estimation is simplified, as we just need to estimate the scalar coefficients H[k] for each sub-channel and once the values of are estimated, for the duration in which the channel does not vary significantly, merely multiplying the received demodulated symbols by the inverse of yields the estimates of and hence, the estimate of actual symbols. 4.3. Inverse Fast Fourier Transform The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial with simple zeros on the unit circle, then this method can be extended. 4.4. Symbol Timing The symbol timing (also known as baud or modulation rate) is the number of symbol changes (waveform changes or signaling events) made to the transmission medium per second using a digitally modulated signal or a line code. The Symbol rate is measured in baud rate or symbols/second. In the case of a line code, the symbol rate is the pulse rate in pulses/second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to, but should not be confused with, the gross bit rate expressed in bit/second. A symbol can be described as either a pulse (in digital baseband transmission) or a "tone" (in pass band transmission using modems) representing an integer number of bits. A theoretical definition of a symbol is a waveform, a state or a significant condition of the communication channel that persists for a fixed period of time. A sending device places symbols on the channel at a fixed and known symbol rate, and the receiving device has the job of detecting the sequence of symbols in order to reconstruct the transmitted data. There may be a direct correspondence between a symbol and a small unit of data (for example, each a symbol may encode one or several binary digits or 'bits') or the data may be represented by the transitions between symbols or even by a sequence of many symbols. The symbol duration time, also known as unit interval, can be directly measured as the time between transitions by looking into an eye diagram of an oscilloscope. The symbol duration time Ts can be calculated as: Ts = 1/fs Where, fs is the symbol rate. V. OUTPUT OF PROPOSED METHOD The output of OQAM modulation is shown in Figure 5.
  • 8. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 49 Figure 5. Output of OQAM The output for estimating CFO in OQAM modulation in AWGN channel is shown in Figure 6. Figure 6. Output of estimating CFO VI. CONCLUSIONS The problem of blind synchronization for OFDM/OQAM systems has been considered. Specifically, a new method for blind ST and CFO synchronization has been proposed by exploiting the approximate CSP of the beginning of a burst of OFDM/OQAM symbols due to the presence of the time offset. The results of the performance analysis with reference to the considered OFDM/OQAM system show that the proposed blind ST and CFO estimators, complemented by a simpler coarse ST estimator, achieve acceptable performance for realistic values of Eb/N0. REFERENCES [1]. Bellanger. M, “Efficiency of filter bank multicarrier techniques in burst radio transmission,” in Proc. IEEE Global Commun..conf., pp.1-4 [2]. Cherubini. G, Eleftheriou. E, Oker. S, and Cioffi. J, (2000) “Filter bank modulation techniques for very high speed digital subscriber lines,”IEEECommun. Mag…vol.38, pp. 98-104. [3]. Ciblat. P and Serpedin. E, (2004) “A fine blind frequency offset estimator for OFDM/OQAM systems,” IEEE Trans. Signal Process..vol.52, pp.291-296.
  • 9. International Journal of Scientific Research and Management Studies (IJSRMS) Volume 1 Issue 1, pg: 42-50 http://www.ijsrms.com All Rights Reserved pg. 50 [4]. DavideMattera and Mario Tanda“Blind Symbol Timing and CFO Estimation for OFDM/OQAM Systems”IEEE transactions on wireless communications,. [5]. Fusco. T and Tanda. M, (2007) “Blind frequency-offset estimation for OFDM/OQAM systems,” IEEE Trans. Signal Process..vol.55, pp.1828-1838. [6]. Fusco. T, Petrella. A, and Tanda. M, (2009) “Data-aided symbol timing and CFO synchronization for filter-bank multicarrier systems,”IEEETrans.WirelessCommun..vol.8, pp.2705-2715. [7]. Le Floch. B, Alard. M, and Berrou. C, “Coded orthogonal frequency division multiplex,” Proc. IEEEvol. 83, pp. 982–996. [8]. Mattera. D and Tanda.M, “A new method for blind synchronization for OFDM/OQAM systems,” in Proc.,International Symp.Image Signal Process,. Analysis.