SlideShare ist ein Scribd-Unternehmen logo
1 von 80
Downloaden Sie, um offline zu lesen
The all-electron GW method based on WIEN2k:
Implementation and applications.
Ricardo I. G´omez-Abal
Fritz-Haber-Institut of the Max-Planck-Society
Faradayweg 4-6, D-14195, Berlin, Germany
15th. WIEN2k-Workshop
March, 29th. 2008
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 1 / 54
Outline
Outline
1 Introduction
2 Implementation
GW@wien2k
Convergence Tests
3 Results
Bandgaps
Bandstructures
Macroscopic Dielectric Constant
4 Core-valence interaction
Bandgaps
Semicore States
5 f-electron systems
6 Conclusions
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 2 / 54
Introduction
Density Functional Theory
E ⇐⇒ ρ
Kohn-Sham scheme
interacting electrons fictious particles
non interacting
Condition:
n(r) =
occ
i
|Ψi (r)|2
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 3 / 54
Introduction
Density Functional Theory
Kohn-Sham equation
[T + Vext + VH + Vxc]Ψi = ǫi Ψi
Vxc
local
energy independent
hermitian
ǫi :
Lagrange multipliers
No physical meaning
Exception: Highest occupied ǫi = −I
Fast.
Good structural properties.
Excitation spectra??
E ⇐⇒ ρR. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 4 / 54
Introduction
The Bandgap Problem
LDA vs. experimental bandgaps
Si
GaAs
zGaN
ZnS
C
CaO
MgO
NaCl
0 2 4 6 8
Eg
exp
[eV]
0
2
4
6
8Eg
LDA
[eV]
Up to 50% underestimation
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 5 / 54
Introduction
Many-Body Theory
Quasiparticle equation
[T + Vext + VH]Ψi (r) + Σ(r, r′
; ǫi )Ψi (r′
)d3
r′
= ǫi Ψi (r)
Σ
non local
energy dependent
non hermitian
ǫi :
Poles of the Green’s Function
ǫi =
E(N) − E(N − 1, i) ǫi < EF
E(N + 1, i) − E(N) ǫi > EF
Formally correspond to the excitation spectra
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 6 / 54
Introduction
Many Body Theory (cont.)
The Self-Energy (Σ)
Hedin, 1965: Expansion in terms of the dynamically screened Coulomb
potential (W ).
Fast convergence.
First order:
Σ(r, t, r′
, t′
) = G(r, t, r′
, t′
)W (r, t, r′
, t′
)
Simplest approximation including dynamical correlation effects
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 7 / 54
Introduction
Many Body Theory (cont.)
The Screened Coulomb potential (W )
W (r1, r2; ω) = ε−1
(r1, r3; ω)v(r3, r2)dr3
ε(r1, r2; ω) =1 − v(r1, r3)P(r3, r2; ω)dr3
P(r1, r2; ω) = −
i
2π
G(r1, r2; ω + ω′
)G(r2, r1; ω‘)dω′
Requires selfconsistency with the QP equation!
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 8 / 54
Introduction
Perturbative treatment
G0W0
[T + Vext + VH]Ψi (r)+
Σ(r, r′
; ǫi ) Ψi (r′
)d3
r′
= ǫi Ψi (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
Introduction
Perturbative treatment
G0W0
[T + Vext + VH + Vxc]Ψi (r)+
Σ(r, r′
; ǫi ) − Vxc(r′
)δ(r − r′
) Ψi (r′
)d3
r′
= ǫi Ψi (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
Introduction
Perturbative treatment
G0W0
[T + Vext + VH + Vxc]Ψi (r)+
Σ(r, r′
; ǫi ) − Vxc(r′
)δ(r − r′
) Ψi (r′
)d3
r′
= ǫi Ψi (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
Introduction
Perturbative treatment
G0W0
[T + Vext + VH + Vxc]Ψi (r)+
Σ(r, r′
; ǫi ) − Vxc(r′
)δ(r − r′
) Ψi (r′
)d3
r′
= ǫi Ψi (r)
First order correction to ǫKS
nk :
ǫqp
nk = ǫKS
nk + ∆ǫnk
∆ǫnk = ℜ( Ψnk(r)|Σ(r, r′
, ǫqp
nk)|Ψnk(r′
) ) − Ψnk(r)|Vxc |Ψnk(r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
Introduction
Perturbative treatment
G0W0
[T + Vext + VH + Vxc]Ψi (r)+
Σ(r, r′
; ǫi ) − Vxc(r′
)δ(r − r′
) Ψi (r′
)d3
r′
= ǫi Ψi (r)
First order correction to ǫKS
nk :
ǫqp
nk = ǫKS
nk + ∆ǫnk
∆ǫnk = ℜ( Ψnk(r)|Σ(r, r′
, ǫqp
nk)|Ψnk(r′
) ) − Ψnk(r)|Vxc |Ψnk(r)
Σ calculated in the GW approximation.
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
Introduction
Introduction
G0W0 equations
G0(r1, r2; ω) =
occ
nk
Ψnk(r1)Ψ∗
nk(r2)
ω − ǫnk − iη
+
unocc
nk
Ψnk(r1)Ψ∗
nk(r2)
ω − ǫnk + iη
P(r1, r2; ω) = −
i
2π
G0(r1, r2; ω + ω′
)G0(r2, r1; ω‘)dω′
ε(r1, r2; ω) =1 − v(r1, r3)P(r3, r2; ω)dr3
W0(r1, r2; ω) = ε−1
(r1, r3; ω)v(r3, r2)dr3
Σ(r1, r2; ω) =
i
2π
G0(r1, r2; ω + ω′
)W0(r2, r1; ω‘)dω′
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 10 / 54
Implementation GW@wien2k
Implementation
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 11 / 54
Implementation Basis Functions
The Polarization
P(r1, r2, ω) =
X
n,m,k,k′
Ψnk(r1)Ψ∗
mk′ (r1)Ψ∗
nk(r2)Ψmk′ (r2)F(ǫnk, ǫmk′ ; ω)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 12 / 54
Implementation Basis Functions
The basis functions
P(r1, r2, ω) =
X
n,m,k,k′
Ψnk(r1)Ψ∗
mk′ (r1)Ψ∗
nk(r2)Ψmk′ (r2)F(ǫnk, ǫmk′ ; ω)
Definition
χq
i (r) =



Ra
eik·(R+ra)
υNL(r)YLM (ˆr) r ∈ MT-spheres
1
√
V G
Si,Gei(q+G)·r
r ∈ Interstitial
1 F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
2 T. Kotani and M. van Schilfgaarde, Sol. State. Comm. 121, 461 (2002).
MT
Sphere
Interstitial
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 12 / 54
Implementation Basis Functions
The basis functions
Obtaining the radial functions
For each L take ul (r)ul′ (r) such that |l − l′| ≤ L ≤ l + l′
Calculate the overlap matrix:
Oa
ll′,l1l′
1
=
RMT
0
ul (r)ul′ (r)ul1
(r)ul′
1
(r)r2
dr
Solve the secular equation:
Oa
ll′,l1l′
1
− λnδll1
δl′l′
1
cn,l1l′
1
= 0
If λn ≥ λtol then:
υnL(r) =
ll′
cn,ll′ ul (r)ul′ (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 13 / 54
Implementation Basis Functions
The basis functions
The matrix elements
Mi
nm(k, q) ≡
Ω
˜χq
i (r)Ψm,k−q(r)
∗
Ψnk(r)d3
r
Tests
Visual
Ψn,k(r)Ψ∗
m,k−q(r) =
i
Mi
nm(k, q)˜χq
i (r)
Completeness
∆ =
R
|Ψn,k(r)Ψ∗
m,k−q(r)−
P
i Mi
nm(k,q)˜χq
i (r)|2d3r
R
|Ψn,k(r)Ψ∗
m,k−q(r)|2d3r
∆ = 1 − i |Mi
nm(k, q)|2
|Ψn,k(r)Ψ∗
m,k−q(r)|2d3r
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 14 / 54
Implementation Basis Functions
Basis Functions: Tests
k = Γ, k′
= X, n = 4 m = 5
At1
RMT1
RMT2
At2
r
-0.04
-0.02
0
0.02
Ψnk
Ψmk’
Exact
Fit
Ψn,k(r)Ψ∗
m,k−q(r) =
X
i
Mi
nm(k, q)˜χq
i (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
Implementation Basis Functions
Basis Functions: Tests
k = Γ, k′
= π
a (1, 0, 0), n = 2 m = 6
At1
RMT1
RMT2
At2
r
-0.01
0
0.01
Ψnk
Ψmk’
Exact
Fit
Ψn,k(r)Ψ∗
m,k−q(r) =
X
i
Mi
nm(k, q)˜χq
i (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
Implementation Basis Functions
Basis Functions: Tests
k = 3π
2a (1, 1, −1), k′
= π
2a (1, −1, 1), n = 2, m =
6
At1
RMT1
RMT2
At2
r
-0.1
-0.05
0
0.05
0.1
Ψnk
Ψmk’
Exact
Fit
Ψn,k(r)Ψ∗
m,k−q(r) =
X
i
Mi
nm(k, q)˜χq
i (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
Implementation Basis Functions
Basis Functions: Tests
k = Γ, k′
= π
a (1, 0, 0), n = 1, m = 5
At1
RMT1
RMT2
At2
r
0
0.5
1Ψnk
Ψmk’
Exact
Fit
Ψn,k(r)Ψ∗
m,k−q(r) =
X
i
Mi
nm(k, q)˜χq
i (r)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
Implementation Basis Functions
Basis Functions: Completeness test.
MT-Spheres
20 40 60 80 100 120 140 160 180
Number of spherical basis functions per atom
1e-06
1e-05
1e-04
0.001
0.01
0.1
Relativeerror
tol.=1e-2
tol.=1e-3
tol.=1e-4
tol.=1e-5
tol.=1e-7
tol.=1e-2
tol.=1e-3
tol.=1e-4
tol.=1e-5
lmax=2 lmax=3lmax=1
tol.=1e-2
tol.=1e-3
tol.=1e-5
Minimum
Maximum
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
Implementation Basis Functions
Basis Functions: Completeness test.
MT-Spheres
20 40 60 80 100 120 140 160 180
Number of spherical basis functions per atom
1e-06
1e-05
1e-04
0.001
0.01
0.1
Relativeerror
tol.=1e-2
tol.=1e-3
tol.=1e-4
tol.=1e-5
tol.=1e-7
tol.=1e-2
tol.=1e-3
tol.=1e-4
tol.=1e-5
lmax=2 lmax=3lmax=1
tol.=1e-2
tol.=1e-3
tol.=1e-5
Minimum
Maximum
Remarks
Decreases with lmax .
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
Implementation Basis Functions
Basis Functions: Completeness test.
MT-Spheres
20 40 60 80 100 120 140 160 180
Number of spherical basis functions per atom
1e-06
1e-05
1e-04
0.001
0.01
0.1
Relativeerror
tol.=1e-2
tol.=1e-3
tol.=1e-4
tol.=1e-5
tol.=1e-7
tol.=1e-2
tol.=1e-3
tol.=1e-4
tol.=1e-5
lmax=2 lmax=3lmax=1
tol.=1e-2
tol.=1e-3
tol.=1e-5
Minimum
Maximum
Remarks
Decreases with lmax.
Saturates with ǫtol
for a given lmax .
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
Implementation Basis Functions
Basis Functions: Completeness test.
Interstitial
150 200 250 300 350
Number of interstitial basis functions
1e-08
1e-07
1e-06
1e-05
1e-04
0.001
Relativeerror
LAPWbasis
Minimum
Maximum
Remarks
Decreases with lmax.
Saturates with ǫtol for
a given lmax .
Decreases with
|Gmax|.
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
Implementation Basis Functions
Basis Functions: Completeness test.
Interstitial
150 200 250 300 350
Number of interstitial basis functions
1e-08
1e-07
1e-06
1e-05
1e-04
0.001
Relativeerror
LAPWbasis
Minimum
Maximum
Remarks
Decreases with lmax.
Saturates with ǫtol for
a given lmax .
Decreases with |Gmax|.
Recipe
Choose max(ǫtol ) that
saturates
Choose |Gmax| so that
∆i ≈ ∆MT
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
Implementation Brillouin Zone Integration
The Polarization
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 17 / 54
Implementation Brillouin Zone Integration
Brillouin Zone Integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 17 / 54
Implementation Brillouin Zone Integration
Brillouin Zone Integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
Linear Tetrahedron Method
P(q, ω) =
Z
BZ
X(k, q)
f (ǫk)[1 − f (ǫk−q)]
ω − ∆ǫ
d3
k
wT
ki ,q =
Z
ΩT
wi (k)
f (ǫk)[1 − f (ǫk−q)]
ω − ∆ǫ
d3
k wki ,q =
X
T∋ki
wT
ki ,q
P(q, ω) =
X
nm
X
i
X(ki , q)wnm(ki , q; ω)
J. Rath and A. J. Freeman, Phys. Rev. B 11, 2109 (1975)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 17 / 54
Implementation Brillouin Zone Integration
Brillouin Zone Integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 18 / 54
Implementation Brillouin Zone Integration
Brillouin Zone Integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
q
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 18 / 54
Implementation Brillouin Zone Integration
Brillouin Zone Integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
q
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 18 / 54
Implementation Brillouin Zone Integration
Brillouin Zone Integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 19 / 54
Implementation Brillouin Zone Integration
Brillouin Zone integration
Pij (q, ω) =
Z
BZ
X
nm

Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫmk−q+ǫnk+iη
−
Mi
nm(k,q)[Mj
nm(k,q)]∗
ω−ǫnk+ǫmk−q−iη
ff
f (ǫk)[1 − f (ǫk−q)]d3
k
q-dependent Linear Tetrahedron Method
4 nodes 6 nodes 8 nodes 8 nodes
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 20 / 54
Implementation Brillouin Zone Integration
q-dependent Linear Tetrahedron Method
Test: Free electron gas
0 0.5 1 1.5 2 2.5 3 3.5
q/kF
0
0.2
0.4
0.6
0.8
1
Lindhardtfunction
exact
364 k-pts
540 k-pts
1368 k-pts
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 21 / 54
Implementation Brillouin Zone Integration
q-dependent Linear Tetrahedron Method
Test: Cu bandstructure
W L Γ X Z W K
-10
EF
10 LDA
GW
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 22 / 54
Implementation Brillouin Zone Integration
q-dependent Linear Tetrahedron Method
Test: Cu DOS
-8 -6 -4 -2 EF
2 4
Energy [eV]
0
1
2
3
4
5
6DOS
LDA
GW
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 23 / 54
Implementation Brillouin Zone Integration
q-dependent Linear Tetrahedron Method
Test: Al bandstructure
W L Γ X Z W K
-10
EF
10
LDA
GW
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 24 / 54
Implementation The Γ-point singularity
The Γ point singularity
The symmetrized dielectric matrix
Definition
˜εij (q, ω) =
lm
v
1
2
il (q)Plm(q, ω)v
1
2
mj (q)
The screened potential
Wij (q, ω) =
lm
v
1
2
il (q)˜ε−1
lm (q, ω)v
1
2
mj (q)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 25 / 54
Implementation The Γ-point singularity
The Γ point singularity
The screened Coulomb potential
v
1
2
ij (q → 0) =
v
s 1
2
ij
|q|
+ ˜v
1
2
ij (q)
Wij (q, ω) =
1
|q|2
W s2
ij (q, ω) +
1
|q|
W s1
ij (q, ω) + ˜Wij (q, ω)
Diverges!
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 26 / 54
Implementation The Γ-point singularity
The Γ point singularity
The screened Coulomb potential
v
1
2
ij (q → 0) =
v
s 1
2
ij
|q|
+ ˜v
1
2
ij (q)
Wij (q, ω) =
1
|q|2
W s2
ij (q, ω) +
1
|q|
W s1
ij (q, ω) + ˜Wij (q, ω)
But can be integrated
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 26 / 54
Implementation Frequency convolution
Implementation
Frequency convolution
Σ(r1, r2; ω) =
i
2π
Z
G0(r1, r2; ω + ω′
)W0(r2, r1; ω‘)dω′
⇓ Analytic continuation
Σ(r1, r2; iω) =
i
2π
Z
G0(r1, r2; iω + iω′
)W0(r2, r1; iω‘)diω′
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 27 / 54
Implementation Frequency convolution
Implementation
Frequency convolution
Σ(r1, r2; ω) =
i
2π
Z
G0(r1, r2; ω + ω′
)W0(r2, r1; ω‘)dω′
⇓ Analytic continuation
Σ(r1, r2; iω) =
i
2π
Z
G0(r1, r2; iω + iω′
)W0(r2, r1; iω‘)diω′
Σnk(iω) = −
X
q
X
ij
X
n′
Mi
nn′ (k, q)
1
π
∞Z
0
Wij (q; iω′)dω′
(iω − ǫn,k′ )2 + ω′2
M∗j
n′n
(k, q)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 27 / 54
Implementation Frequency convolution
Implementation
Frequency convolution
Σ(r1, r2; ω) =
i
2π
Z
G0(r1, r2; ω + ω′
)W0(r2, r1; ω‘)dω′
⇓ Analytic continuation
Σ(r1, r2; iω) =
i
2π
Z
G0(r1, r2; iω + iω′
)W0(r2, r1; iω‘)diω′
Σnk(iω) = −
X
q
X
ij
X
n′
Mi
nn′ (k, q)
1
π
∞Z
0
Wij (q; iω′)dω′
(iω − ǫn,k′ )2 + ω′2
M∗j
n′n
(k, q)
Pad´e Approximant
Σnk(iω) =
PN
j=0 aj (iω)j
PN+1
j=0 bj (iω)j
⇓ Analytic continuation
Σnk(ω) =
PN
j=0 aj ωj
PN+1
j=0 bj ωj
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 27 / 54
Implementation Summary
G0W0@Wien2k: A FP-(L)APW+lo + G0W0 code
Flowchart
Wien2k Begin
ψkn χiq
ǫDFT
kn Mi
nm(k, q) vij (q)
Pij (q, ω)
εij (q, ω)
Wij (q, ω)
V xc
k,n Σnn(k, ω)
ǫ
qp
k,n
End
Code keywords
Based on FP-(L)APW+lo
Mixed Basis
Linear Tetrahedron
Method
Reciprocal space
Imaginary frequencies
Excelent results
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 28 / 54
Implementation Convergence Tests
Silicon: Convergence tests
Number of frequencies
10 15 20 25
Nr. of frequencies
0.878
0.879
0.88
0.881
0.882
0.883
0.884
Eg
[eV]
Used paremeters
16 frequencies
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 29 / 54
Implementation Convergence Tests
Silicon: Convergence tests
Number of excited states
8 27 64 125
Nr. of k-points
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
∆Eg
[eV]
Used paremeters
16 frequencies
64 k-points
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 29 / 54
Implementation Convergence Tests
Silicon: Convergence tests
Number of k-points
0 50 100 150 200 250
Number of unoccupied bands
0.95
1
1.05
1.1
BandGap
Used paremeters
16 frequencies
64 k-points
∼ 200 unocc. bands
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 29 / 54
Results Bandgaps
Results I:
Bandgaps Si
GaAs
zGaN
ZnS
C
MgO
NaCl
CaO
0 2 4 6 8
Experimental Eg
[eV]
0
2
4
6
8
10
CalculatedEg
[eV]
G0
W0
All electron
G0
W0
Pseudopotentials
G0
W0
@Wien2k
LDA
- F. Aryasetiawan and O.
Gunnarson, Rep. Prog. Phys.
61, 237 (1998).(and Refs.)
- T. Kotani and M. van
Schilfgaarde, Solid State Comm.
121, 461 (2002).
- C. Friedrich et al, Phys. Rev. B
74, 045104 (2006).
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 30 / 54
Results Bandstructures
Results II:
Band diagrams: Silicon
W ΓL Λ ∆ X Z W K
-10
-5
εF
5
10
1
LDA
GW
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 31 / 54
Core-valence interaction Motivation
Motivation
G0W0 Si bandgap
1990 2000
Publication year
0
0.5
1
1.5
Eg
[eV]
Pseudopotentials
All electron
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 32 / 54
Core-valence interaction Motivation
Motivation
G0W0 Si bandgap
1990 2000
Publication year
0
0.5
1
1.5
Eg
[eV]
Pseudopotentials
All electron
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 32 / 54
Core-valence interaction Motivation
Debate
G0W0 Si bandgap
1990 2000 2010
Publication year
0
0.5
1
1.5
Eg
[eV]
Pseudopotentials
All electron
?
- M. Tiago et al, Phys. Rev. B 69, 125212 (2004).
- C. Friedrich et al, Phys. Rev. B 74, 045104 (2006).
Pseudopotentials
systematically larger
gaps
in better agreement
with expeeriment
All electron
Benchmark for ab-initio
calculations
- A. Fleszar, Phys. Rev. B 64, 245204
(2001).
- T. Kotani and M. van Schilfgaarde,
Solid State Comm. 121, 461 (2002).
- W. Ku and A. Eguiluz, Phys. Rev. Lett.
89,126401 (2002).
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 33 / 54
Core-valence interaction Core-valence Partitioning
Core-valence partitioning
Kohn-Sham equation
HKS Ψnk = ǫnkΨnk
All electron
HKS = T + Vnuc + Vh + Vxc[n]
Pseudopotentials
HKS = T + Vps + Vh + Vxc[˜nv + ˜nc]
Vxc[n] = Vxc[˜nv + ˜nc] + Vxc[ncore − ˜nc] ⊂ Veff
G0W0 correction
ǫqp
nk = ǫKS
nk + ∆ǫnk
All electron
∆ǫnk = ℜ (Σnk [{Ψnk; Ψc}]) − V xc
nk [n]
Pseudopotentials
∆ǫnk = ℜ(Σnk[{˜Ψnk}])−V xc
nk [˜nv +˜nc]
ℜ (Σnk [{Ψnk; Ψc}]) = ℜ(Σnk[{˜Ψnk}]) + V xc
nk [ncore − ˜nc] ⊂ Veff
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 34 / 54
Core-valence interaction Different Approaches
Different Approaches
G0W0 correction
All electron:
ǫqp
nk = ǫKS
nk + ℜ (Σnk [{Ψnk; Ψcore}]) − V xc
nk [n]
Pseudopotentials:
ǫqp
nk = ǫKS
nk + ℜ(Σnk[{˜Ψnk}]) − V xc
nk [˜nval ]
Valence only:
ǫqp
nk = ǫKS
nk + ℜ (Σnk [{Ψnk}]) − V xc
nk [nval ]
Separated terms
Σnk = Σx
nk + Σc
nk
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 35 / 54
Core-valence interaction Silicon
Results
Si: Matrix elements
Highest occ. state at Γ Lowest unocc. state at X
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 36 / 54
Core-valence interaction Silicon
Results
Si: Matrix elements
Remarks
ΣC : PP ≈ Val ≈ AE
ΣX : PP ≈ Val = AE
VXC : PP ≈ Val = AE
Core-valence lin.
ΣC : Small effect
ΣX : Large effect
VXC : Large effect
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 37 / 54
Core-valence interaction Silicon
Results
Si: Matrix elements
Remarks
ΣC : PP ≈ Val ≈ AE
ΣX : PP ≈ Val = AE
VXC : PP ≈ Val = AE
ΣX − VXC : PP ≈ Val ≈
AE
Core-valence lin.
ΣC : Small effect
ΣX : Large effect
VXC : Large effect
ΣX − VXC :Small effect
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 37 / 54
Core-valence interaction Silicon
Results
Si gap: G0W0 correction
Remarks
∆Eg : PP > Val > AE
Core-valence lin.
∆Eg : Small effect.
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 38 / 54
Core-valence interaction GaAs
Results
GaAs: Matrix elements
Highest occ. state at Γ Lowest unocc. state at Γ
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 39 / 54
Core-valence interaction GaAs
Results
GaAs: Matrix elements
Remarks
ΣC : PP ≈ Val ≈ AE
ΣX : PP ≈ Val = AE
VXC : PP ≈ Val = AE
Core-valence lin.
ΣC : Small effect
ΣX : Large effect
VXC : Large effect
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 40 / 54
Core-valence interaction GaAs
Results
GaAs: Matrix elements
Remarks
ΣC : PP ≈ Val ≈ AE
ΣX : PP ≈ Val = AE
VXC : PP ≈ Val = AE
ΣX − VXC : PP ≈ Val =
AE
Core-valence lin.
ΣC : Small effect
ΣX : Large effect
VXC : Large effect
ΣX − VXC :Large effect
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 40 / 54
Core-valence interaction GaAs
Results
GaAs gap: G0W0 correction
Remarks
∆Eg : PP < Val < AE
Core-valence lin.
∆Eg : Large effect.
Reduces the correction!!
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 41 / 54
Core-valence interaction GaAs
Conclusions
Core-valence partitioning:
Strong changes in ΣX and VXC
Small changes in ΣC
∆Eg : Small changes in Si. Large in GaAs
Does NOT systematically increase the G0W0-correction.
“Pseudoization” also plays an important role.
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 42 / 54
Core-valence interaction Semicore States
Semicore states
Semicore states binding energies
MgO 6p-5p1s transition energy
TotalW L Λ Γ ∆ X ZW K
-50
-40
-30
-20
-10
EF
10
Energy[eV]
sMg
pMg
s0
pO
LDA:=43.55eV
GW:=52.41eV
Excitation energy [eV]
ROHF(∆SCF)1
54.6
CASTP21
53.8
LDA2
43.5
G0W 2
0 52.4
Experiment3
53.4
1.- C. Sousa et al. Phys. Rev. B 62,
10013 (2000).
2.- This work.
3.- W. L. OBrien et al. Phys. Rev. B
44, 1013 (1991).
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 43 / 54
f-electron systems
f-electron systems
Motivation
Two strongly interrelated subsystems
itinerant spd states
strongly localized f states
Intriguing physics
Heavy fermion
Kondo effect
Etc...
Challenge to first-principle calculations:
LDA/GGA good for itinerant electrons
Fails for f -electrons
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 44 / 54
f-electron systems
(no)f-electron systems
CeO2
-6 -4 -2 0 2 4 6 8 10 12
Energy [eV]
0
5
10
15
DOS LDA
LDA-G0
W0
XPS+BIS
XPS+XAS
E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984)
D. R. Mullins et al. Surf. Sci. 409, 307 (1998)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 45 / 54
f-electron systems
(no)f-electron systems
Bandgaps
ZrO2
HfO2
CeO2
p-f
CeO2
p-d
ThO2
0
1
2
3
4
5
6
7
Eg
[eV]
LDA
G0
W0
Expt.
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 46 / 54
f-electron systems
f-electron systems
Ce2O3
-10 -8 -6 -4 -2 0 2 4 6 8 10
Energy [eV]
0
5
10
DOS
Expt.
LDA
XPS XAS
E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 47 / 54
f-electron systems
f-electron systems
Ce2O3
-10 -8 -6 -4 -2 0 2 4 6 8 10
Energy [eV]
0
5
10
DOS
Expt.
LDA
LDA+U
XPS XAS
E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 47 / 54
f-electron systems
f-electron systems
Ce2O3
-10 -8 -6 -4 -2 0 2 4 6 8 10
Energy [eV]
0
5
10
DOS
Expt.
LDA
LDA+U
LDA+U+G0
W0
XPS XAS
E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984)
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 47 / 54
f-electron systems
f-electron systems
Bandgaps
La2
O3
Ce2
O3
Pr2
O3
Nd2
O3
0
1
2
3
4
5
6Eg
[eV]
Expt.
LDA+U
G0
W0
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 48 / 54
Conclusions
Ongoing work: Spin polarized metals
Test: Ni
W L Γ X ZW K
-10
-5
EF
5
Energy[eV]
W L Γ X ZW K
UP DOWN
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 49 / 54
Conclusions
Conclusions
GW@Wien2k
Reliable results.
Wide range of materials.
sp semiconductors
f -electron systems with empty or full f -shells
metals
spin polarized materials
LDA+U+G0W0
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 50 / 54
Conclusions
Conclusions
Most important
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 51 / 54
Conclusions
Conclusions
Most important
Now we are enjoying it!!!
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 51 / 54
Conclusions
Last but not least
Future plans
Anisotropy of εmacro
Half metals
Efficiency Improvement
COHSEX@Wien2k + GW
BSE
QPscGW
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 52 / 54
Conclusions
Acknowledgements
Xinzheng Li (FHI, Berlin): Code development, LTM library.
Dr. Hong Jiang (FHI, Berlin): Code improvement, Spin polarization,
LDA+U.
Prof. Claudia Ambrosch-Draxl (MUL; Austria): Wien2k interface and
more...
Christian Meisenbichler (MUL; Austria): MPI Paralelization
Patrick Rinke and Christoph Freysoldt (FHI, Berlin):
Pseudopotentials, etc..
The boss
Matthias Scheffler
R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 53 / 54

Weitere ähnliche Inhalte

Was ist angesagt?

Engineering physics 6(Band theory of solids)
Engineering physics 6(Band theory of solids)Engineering physics 6(Band theory of solids)
Engineering physics 6(Band theory of solids)
Nexus
 
Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)
Nexus
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
Rawat DA Greatt
 
Physics barriers and tunneling
Physics barriers and tunnelingPhysics barriers and tunneling
Physics barriers and tunneling
Mohamed Anwar
 
Particle physics - Standard Model
Particle physics - Standard ModelParticle physics - Standard Model
Particle physics - Standard Model
David Young
 
Principle and working of a semiconductor laser
Principle and working of a semiconductor laserPrinciple and working of a semiconductor laser
Principle and working of a semiconductor laser
KHEMRAJPRAJAPATI1
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)
David David
 

Was ist angesagt? (20)

DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)
DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)
DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)
 
superconductivity
 superconductivity superconductivity
superconductivity
 
BCS THEORY NEW
BCS THEORY NEWBCS THEORY NEW
BCS THEORY NEW
 
Problems on fermi part 2
Problems on fermi part 2Problems on fermi part 2
Problems on fermi part 2
 
Engineering physics 6(Band theory of solids)
Engineering physics 6(Band theory of solids)Engineering physics 6(Band theory of solids)
Engineering physics 6(Band theory of solids)
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Introduction to DFT Part 2
Introduction to DFT Part 2Introduction to DFT Part 2
Introduction to DFT Part 2
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHG
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Physics barriers and tunneling
Physics barriers and tunnelingPhysics barriers and tunneling
Physics barriers and tunneling
 
BCS theory
BCS theoryBCS theory
BCS theory
 
Fabry perot etalon
Fabry perot etalonFabry perot etalon
Fabry perot etalon
 
Particle physics - Standard Model
Particle physics - Standard ModelParticle physics - Standard Model
Particle physics - Standard Model
 
Principle and working of a semiconductor laser
Principle and working of a semiconductor laserPrinciple and working of a semiconductor laser
Principle and working of a semiconductor laser
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
Statics presentation ppt(1)
Statics presentation ppt(1)Statics presentation ppt(1)
Statics presentation ppt(1)
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
 

Ähnlich wie The all-electron GW method based on WIEN2k: Implementation and applications.

Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
Jose Miguel Moreno
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
BRNSS Publication Hub
 
MarcoCeze_defense
MarcoCeze_defenseMarcoCeze_defense
MarcoCeze_defense
Marco Ceze
 
Optimizing the parameters of wavelets for pattern matching using ga
Optimizing the parameters of wavelets for pattern matching using gaOptimizing the parameters of wavelets for pattern matching using ga
Optimizing the parameters of wavelets for pattern matching using ga
iaemedu
 
Optimizing the parameters of wavelets for pattern matching using ga no restri...
Optimizing the parameters of wavelets for pattern matching using ga no restri...Optimizing the parameters of wavelets for pattern matching using ga no restri...
Optimizing the parameters of wavelets for pattern matching using ga no restri...
iaemedu
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductors
IAEME Publication
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductors
IAEME Publication
 

Ähnlich wie The all-electron GW method based on WIEN2k: Implementation and applications. (20)

Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
BSE and TDDFT at work
BSE and TDDFT at workBSE and TDDFT at work
BSE and TDDFT at work
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow models
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 
Polynomial Matrix Decompositions
Polynomial Matrix DecompositionsPolynomial Matrix Decompositions
Polynomial Matrix Decompositions
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
 
MarcoCeze_defense
MarcoCeze_defenseMarcoCeze_defense
MarcoCeze_defense
 
Optimizing the parameters of wavelets for pattern matching using ga
Optimizing the parameters of wavelets for pattern matching using gaOptimizing the parameters of wavelets for pattern matching using ga
Optimizing the parameters of wavelets for pattern matching using ga
 
Optimizing the parameters of wavelets for pattern matching using ga no restri...
Optimizing the parameters of wavelets for pattern matching using ga no restri...Optimizing the parameters of wavelets for pattern matching using ga no restri...
Optimizing the parameters of wavelets for pattern matching using ga no restri...
 
Finite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S formFinite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S form
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductors
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductors
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
CS-ChapterI.pdf
CS-ChapterI.pdfCS-ChapterI.pdf
CS-ChapterI.pdf
 
Non-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsNon-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developments
 

Mehr von ABDERRAHMANE REGGAD

Mehr von ABDERRAHMANE REGGAD (20)

Presentation de mon mémoire de magister
Presentation de mon mémoire de magisterPresentation de mon mémoire de magister
Presentation de mon mémoire de magister
 
Présentation de thèse de doctorat
Présentation de thèse de doctoratPrésentation de thèse de doctorat
Présentation de thèse de doctorat
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical Lattices
 
The metal-insulator transition of VO2 revisited
The metal-insulator transition of VO2revisitedThe metal-insulator transition of VO2revisited
The metal-insulator transition of VO2 revisited
 
Mean field Green function solution of the two-band Hubbard model in cuprates
Mean field Green function solution of the two-band Hubbard model in cupratesMean field Green function solution of the two-band Hubbard model in cuprates
Mean field Green function solution of the two-band Hubbard model in cuprates
 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
 
Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.Anisimov
 
Electronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovElectronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.Anisimov
 
Electronic structure of strongly correlated materials
Electronic structure of strongly correlated materialsElectronic structure of strongly correlated materials
Electronic structure of strongly correlated materials
 
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMSELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
 
Strongly correlated electrons: LDA+U in practice
Strongly correlated electrons: LDA+U in practiceStrongly correlated electrons: LDA+U in practice
Strongly correlated electrons: LDA+U in practice
 
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theory
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
Diluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsDiluted Magnetic Semiconductors
Diluted Magnetic Semiconductors
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Phase Transitions in VO2 – Nikita Butakov
Phase Transitions in VO2 – Nikita ButakovPhase Transitions in VO2 – Nikita Butakov
Phase Transitions in VO2 – Nikita Butakov
 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
 

Kürzlich hochgeladen

Mitosis...............................pptx
Mitosis...............................pptxMitosis...............................pptx
Mitosis...............................pptx
Cherry
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
GOWTHAMIM22
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
Sérgio Sacani
 
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynypptAerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
sreddyrahul
 

Kürzlich hochgeladen (20)

Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdf
 
family therapy psychotherapy types .pdf
family therapy psychotherapy types  .pdffamily therapy psychotherapy types  .pdf
family therapy psychotherapy types .pdf
 
GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)
 
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesGBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
 
Lec 1.b Totipotency and birth of tissue culture.ppt
Lec 1.b Totipotency and birth of tissue culture.pptLec 1.b Totipotency and birth of tissue culture.ppt
Lec 1.b Totipotency and birth of tissue culture.ppt
 
Mitosis...............................pptx
Mitosis...............................pptxMitosis...............................pptx
Mitosis...............................pptx
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyan
 
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana LahariERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
 
A Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthA Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on Earth
 
Cell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptxCell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptx
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
 
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanPlasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere University
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
 
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdfMODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
 
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynypptAerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
 

The all-electron GW method based on WIEN2k: Implementation and applications.

  • 1. The all-electron GW method based on WIEN2k: Implementation and applications. Ricardo I. G´omez-Abal Fritz-Haber-Institut of the Max-Planck-Society Faradayweg 4-6, D-14195, Berlin, Germany 15th. WIEN2k-Workshop March, 29th. 2008 R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 1 / 54
  • 2. Outline Outline 1 Introduction 2 Implementation GW@wien2k Convergence Tests 3 Results Bandgaps Bandstructures Macroscopic Dielectric Constant 4 Core-valence interaction Bandgaps Semicore States 5 f-electron systems 6 Conclusions R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 2 / 54
  • 3. Introduction Density Functional Theory E ⇐⇒ ρ Kohn-Sham scheme interacting electrons fictious particles non interacting Condition: n(r) = occ i |Ψi (r)|2 R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 3 / 54
  • 4. Introduction Density Functional Theory Kohn-Sham equation [T + Vext + VH + Vxc]Ψi = ǫi Ψi Vxc local energy independent hermitian ǫi : Lagrange multipliers No physical meaning Exception: Highest occupied ǫi = −I Fast. Good structural properties. Excitation spectra?? E ⇐⇒ ρR. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 4 / 54
  • 5. Introduction The Bandgap Problem LDA vs. experimental bandgaps Si GaAs zGaN ZnS C CaO MgO NaCl 0 2 4 6 8 Eg exp [eV] 0 2 4 6 8Eg LDA [eV] Up to 50% underestimation R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 5 / 54
  • 6. Introduction Many-Body Theory Quasiparticle equation [T + Vext + VH]Ψi (r) + Σ(r, r′ ; ǫi )Ψi (r′ )d3 r′ = ǫi Ψi (r) Σ non local energy dependent non hermitian ǫi : Poles of the Green’s Function ǫi = E(N) − E(N − 1, i) ǫi < EF E(N + 1, i) − E(N) ǫi > EF Formally correspond to the excitation spectra R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 6 / 54
  • 7. Introduction Many Body Theory (cont.) The Self-Energy (Σ) Hedin, 1965: Expansion in terms of the dynamically screened Coulomb potential (W ). Fast convergence. First order: Σ(r, t, r′ , t′ ) = G(r, t, r′ , t′ )W (r, t, r′ , t′ ) Simplest approximation including dynamical correlation effects R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 7 / 54
  • 8. Introduction Many Body Theory (cont.) The Screened Coulomb potential (W ) W (r1, r2; ω) = ε−1 (r1, r3; ω)v(r3, r2)dr3 ε(r1, r2; ω) =1 − v(r1, r3)P(r3, r2; ω)dr3 P(r1, r2; ω) = − i 2π G(r1, r2; ω + ω′ )G(r2, r1; ω‘)dω′ Requires selfconsistency with the QP equation! R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 8 / 54
  • 9. Introduction Perturbative treatment G0W0 [T + Vext + VH]Ψi (r)+ Σ(r, r′ ; ǫi ) Ψi (r′ )d3 r′ = ǫi Ψi (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
  • 10. Introduction Perturbative treatment G0W0 [T + Vext + VH + Vxc]Ψi (r)+ Σ(r, r′ ; ǫi ) − Vxc(r′ )δ(r − r′ ) Ψi (r′ )d3 r′ = ǫi Ψi (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
  • 11. Introduction Perturbative treatment G0W0 [T + Vext + VH + Vxc]Ψi (r)+ Σ(r, r′ ; ǫi ) − Vxc(r′ )δ(r − r′ ) Ψi (r′ )d3 r′ = ǫi Ψi (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
  • 12. Introduction Perturbative treatment G0W0 [T + Vext + VH + Vxc]Ψi (r)+ Σ(r, r′ ; ǫi ) − Vxc(r′ )δ(r − r′ ) Ψi (r′ )d3 r′ = ǫi Ψi (r) First order correction to ǫKS nk : ǫqp nk = ǫKS nk + ∆ǫnk ∆ǫnk = ℜ( Ψnk(r)|Σ(r, r′ , ǫqp nk)|Ψnk(r′ ) ) − Ψnk(r)|Vxc |Ψnk(r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
  • 13. Introduction Perturbative treatment G0W0 [T + Vext + VH + Vxc]Ψi (r)+ Σ(r, r′ ; ǫi ) − Vxc(r′ )δ(r − r′ ) Ψi (r′ )d3 r′ = ǫi Ψi (r) First order correction to ǫKS nk : ǫqp nk = ǫKS nk + ∆ǫnk ∆ǫnk = ℜ( Ψnk(r)|Σ(r, r′ , ǫqp nk)|Ψnk(r′ ) ) − Ψnk(r)|Vxc |Ψnk(r) Σ calculated in the GW approximation. R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 9 / 54
  • 14. Introduction Introduction G0W0 equations G0(r1, r2; ω) = occ nk Ψnk(r1)Ψ∗ nk(r2) ω − ǫnk − iη + unocc nk Ψnk(r1)Ψ∗ nk(r2) ω − ǫnk + iη P(r1, r2; ω) = − i 2π G0(r1, r2; ω + ω′ )G0(r2, r1; ω‘)dω′ ε(r1, r2; ω) =1 − v(r1, r3)P(r3, r2; ω)dr3 W0(r1, r2; ω) = ε−1 (r1, r3; ω)v(r3, r2)dr3 Σ(r1, r2; ω) = i 2π G0(r1, r2; ω + ω′ )W0(r2, r1; ω‘)dω′ R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 10 / 54
  • 15. Implementation GW@wien2k Implementation R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 11 / 54
  • 16. Implementation Basis Functions The Polarization P(r1, r2, ω) = X n,m,k,k′ Ψnk(r1)Ψ∗ mk′ (r1)Ψ∗ nk(r2)Ψmk′ (r2)F(ǫnk, ǫmk′ ; ω) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 12 / 54
  • 17. Implementation Basis Functions The basis functions P(r1, r2, ω) = X n,m,k,k′ Ψnk(r1)Ψ∗ mk′ (r1)Ψ∗ nk(r2)Ψmk′ (r2)F(ǫnk, ǫmk′ ; ω) Definition χq i (r) =    Ra eik·(R+ra) υNL(r)YLM (ˆr) r ∈ MT-spheres 1 √ V G Si,Gei(q+G)·r r ∈ Interstitial 1 F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998). 2 T. Kotani and M. van Schilfgaarde, Sol. State. Comm. 121, 461 (2002). MT Sphere Interstitial R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 12 / 54
  • 18. Implementation Basis Functions The basis functions Obtaining the radial functions For each L take ul (r)ul′ (r) such that |l − l′| ≤ L ≤ l + l′ Calculate the overlap matrix: Oa ll′,l1l′ 1 = RMT 0 ul (r)ul′ (r)ul1 (r)ul′ 1 (r)r2 dr Solve the secular equation: Oa ll′,l1l′ 1 − λnδll1 δl′l′ 1 cn,l1l′ 1 = 0 If λn ≥ λtol then: υnL(r) = ll′ cn,ll′ ul (r)ul′ (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 13 / 54
  • 19. Implementation Basis Functions The basis functions The matrix elements Mi nm(k, q) ≡ Ω ˜χq i (r)Ψm,k−q(r) ∗ Ψnk(r)d3 r Tests Visual Ψn,k(r)Ψ∗ m,k−q(r) = i Mi nm(k, q)˜χq i (r) Completeness ∆ = R |Ψn,k(r)Ψ∗ m,k−q(r)− P i Mi nm(k,q)˜χq i (r)|2d3r R |Ψn,k(r)Ψ∗ m,k−q(r)|2d3r ∆ = 1 − i |Mi nm(k, q)|2 |Ψn,k(r)Ψ∗ m,k−q(r)|2d3r R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 14 / 54
  • 20. Implementation Basis Functions Basis Functions: Tests k = Γ, k′ = X, n = 4 m = 5 At1 RMT1 RMT2 At2 r -0.04 -0.02 0 0.02 Ψnk Ψmk’ Exact Fit Ψn,k(r)Ψ∗ m,k−q(r) = X i Mi nm(k, q)˜χq i (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
  • 21. Implementation Basis Functions Basis Functions: Tests k = Γ, k′ = π a (1, 0, 0), n = 2 m = 6 At1 RMT1 RMT2 At2 r -0.01 0 0.01 Ψnk Ψmk’ Exact Fit Ψn,k(r)Ψ∗ m,k−q(r) = X i Mi nm(k, q)˜χq i (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
  • 22. Implementation Basis Functions Basis Functions: Tests k = 3π 2a (1, 1, −1), k′ = π 2a (1, −1, 1), n = 2, m = 6 At1 RMT1 RMT2 At2 r -0.1 -0.05 0 0.05 0.1 Ψnk Ψmk’ Exact Fit Ψn,k(r)Ψ∗ m,k−q(r) = X i Mi nm(k, q)˜χq i (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
  • 23. Implementation Basis Functions Basis Functions: Tests k = Γ, k′ = π a (1, 0, 0), n = 1, m = 5 At1 RMT1 RMT2 At2 r 0 0.5 1Ψnk Ψmk’ Exact Fit Ψn,k(r)Ψ∗ m,k−q(r) = X i Mi nm(k, q)˜χq i (r) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 15 / 54
  • 24. Implementation Basis Functions Basis Functions: Completeness test. MT-Spheres 20 40 60 80 100 120 140 160 180 Number of spherical basis functions per atom 1e-06 1e-05 1e-04 0.001 0.01 0.1 Relativeerror tol.=1e-2 tol.=1e-3 tol.=1e-4 tol.=1e-5 tol.=1e-7 tol.=1e-2 tol.=1e-3 tol.=1e-4 tol.=1e-5 lmax=2 lmax=3lmax=1 tol.=1e-2 tol.=1e-3 tol.=1e-5 Minimum Maximum R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
  • 25. Implementation Basis Functions Basis Functions: Completeness test. MT-Spheres 20 40 60 80 100 120 140 160 180 Number of spherical basis functions per atom 1e-06 1e-05 1e-04 0.001 0.01 0.1 Relativeerror tol.=1e-2 tol.=1e-3 tol.=1e-4 tol.=1e-5 tol.=1e-7 tol.=1e-2 tol.=1e-3 tol.=1e-4 tol.=1e-5 lmax=2 lmax=3lmax=1 tol.=1e-2 tol.=1e-3 tol.=1e-5 Minimum Maximum Remarks Decreases with lmax . R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
  • 26. Implementation Basis Functions Basis Functions: Completeness test. MT-Spheres 20 40 60 80 100 120 140 160 180 Number of spherical basis functions per atom 1e-06 1e-05 1e-04 0.001 0.01 0.1 Relativeerror tol.=1e-2 tol.=1e-3 tol.=1e-4 tol.=1e-5 tol.=1e-7 tol.=1e-2 tol.=1e-3 tol.=1e-4 tol.=1e-5 lmax=2 lmax=3lmax=1 tol.=1e-2 tol.=1e-3 tol.=1e-5 Minimum Maximum Remarks Decreases with lmax. Saturates with ǫtol for a given lmax . R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
  • 27. Implementation Basis Functions Basis Functions: Completeness test. Interstitial 150 200 250 300 350 Number of interstitial basis functions 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 Relativeerror LAPWbasis Minimum Maximum Remarks Decreases with lmax. Saturates with ǫtol for a given lmax . Decreases with |Gmax|. R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
  • 28. Implementation Basis Functions Basis Functions: Completeness test. Interstitial 150 200 250 300 350 Number of interstitial basis functions 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 Relativeerror LAPWbasis Minimum Maximum Remarks Decreases with lmax. Saturates with ǫtol for a given lmax . Decreases with |Gmax|. Recipe Choose max(ǫtol ) that saturates Choose |Gmax| so that ∆i ≈ ∆MT R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 16 / 54
  • 29. Implementation Brillouin Zone Integration The Polarization Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 17 / 54
  • 30. Implementation Brillouin Zone Integration Brillouin Zone Integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 17 / 54
  • 31. Implementation Brillouin Zone Integration Brillouin Zone Integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method Linear Tetrahedron Method P(q, ω) = Z BZ X(k, q) f (ǫk)[1 − f (ǫk−q)] ω − ∆ǫ d3 k wT ki ,q = Z ΩT wi (k) f (ǫk)[1 − f (ǫk−q)] ω − ∆ǫ d3 k wki ,q = X T∋ki wT ki ,q P(q, ω) = X nm X i X(ki , q)wnm(ki , q; ω) J. Rath and A. J. Freeman, Phys. Rev. B 11, 2109 (1975) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 17 / 54
  • 32. Implementation Brillouin Zone Integration Brillouin Zone Integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 18 / 54
  • 33. Implementation Brillouin Zone Integration Brillouin Zone Integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method q R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 18 / 54
  • 34. Implementation Brillouin Zone Integration Brillouin Zone Integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method q R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 18 / 54
  • 35. Implementation Brillouin Zone Integration Brillouin Zone Integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 19 / 54
  • 36. Implementation Brillouin Zone Integration Brillouin Zone integration Pij (q, ω) = Z BZ X nm  Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫmk−q+ǫnk+iη − Mi nm(k,q)[Mj nm(k,q)]∗ ω−ǫnk+ǫmk−q−iη ff f (ǫk)[1 − f (ǫk−q)]d3 k q-dependent Linear Tetrahedron Method 4 nodes 6 nodes 8 nodes 8 nodes R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 20 / 54
  • 37. Implementation Brillouin Zone Integration q-dependent Linear Tetrahedron Method Test: Free electron gas 0 0.5 1 1.5 2 2.5 3 3.5 q/kF 0 0.2 0.4 0.6 0.8 1 Lindhardtfunction exact 364 k-pts 540 k-pts 1368 k-pts R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 21 / 54
  • 38. Implementation Brillouin Zone Integration q-dependent Linear Tetrahedron Method Test: Cu bandstructure W L Γ X Z W K -10 EF 10 LDA GW R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 22 / 54
  • 39. Implementation Brillouin Zone Integration q-dependent Linear Tetrahedron Method Test: Cu DOS -8 -6 -4 -2 EF 2 4 Energy [eV] 0 1 2 3 4 5 6DOS LDA GW R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 23 / 54
  • 40. Implementation Brillouin Zone Integration q-dependent Linear Tetrahedron Method Test: Al bandstructure W L Γ X Z W K -10 EF 10 LDA GW R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 24 / 54
  • 41. Implementation The Γ-point singularity The Γ point singularity The symmetrized dielectric matrix Definition ˜εij (q, ω) = lm v 1 2 il (q)Plm(q, ω)v 1 2 mj (q) The screened potential Wij (q, ω) = lm v 1 2 il (q)˜ε−1 lm (q, ω)v 1 2 mj (q) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 25 / 54
  • 42. Implementation The Γ-point singularity The Γ point singularity The screened Coulomb potential v 1 2 ij (q → 0) = v s 1 2 ij |q| + ˜v 1 2 ij (q) Wij (q, ω) = 1 |q|2 W s2 ij (q, ω) + 1 |q| W s1 ij (q, ω) + ˜Wij (q, ω) Diverges! R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 26 / 54
  • 43. Implementation The Γ-point singularity The Γ point singularity The screened Coulomb potential v 1 2 ij (q → 0) = v s 1 2 ij |q| + ˜v 1 2 ij (q) Wij (q, ω) = 1 |q|2 W s2 ij (q, ω) + 1 |q| W s1 ij (q, ω) + ˜Wij (q, ω) But can be integrated R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 26 / 54
  • 44. Implementation Frequency convolution Implementation Frequency convolution Σ(r1, r2; ω) = i 2π Z G0(r1, r2; ω + ω′ )W0(r2, r1; ω‘)dω′ ⇓ Analytic continuation Σ(r1, r2; iω) = i 2π Z G0(r1, r2; iω + iω′ )W0(r2, r1; iω‘)diω′ R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 27 / 54
  • 45. Implementation Frequency convolution Implementation Frequency convolution Σ(r1, r2; ω) = i 2π Z G0(r1, r2; ω + ω′ )W0(r2, r1; ω‘)dω′ ⇓ Analytic continuation Σ(r1, r2; iω) = i 2π Z G0(r1, r2; iω + iω′ )W0(r2, r1; iω‘)diω′ Σnk(iω) = − X q X ij X n′ Mi nn′ (k, q) 1 π ∞Z 0 Wij (q; iω′)dω′ (iω − ǫn,k′ )2 + ω′2 M∗j n′n (k, q) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 27 / 54
  • 46. Implementation Frequency convolution Implementation Frequency convolution Σ(r1, r2; ω) = i 2π Z G0(r1, r2; ω + ω′ )W0(r2, r1; ω‘)dω′ ⇓ Analytic continuation Σ(r1, r2; iω) = i 2π Z G0(r1, r2; iω + iω′ )W0(r2, r1; iω‘)diω′ Σnk(iω) = − X q X ij X n′ Mi nn′ (k, q) 1 π ∞Z 0 Wij (q; iω′)dω′ (iω − ǫn,k′ )2 + ω′2 M∗j n′n (k, q) Pad´e Approximant Σnk(iω) = PN j=0 aj (iω)j PN+1 j=0 bj (iω)j ⇓ Analytic continuation Σnk(ω) = PN j=0 aj ωj PN+1 j=0 bj ωj R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 27 / 54
  • 47. Implementation Summary G0W0@Wien2k: A FP-(L)APW+lo + G0W0 code Flowchart Wien2k Begin ψkn χiq ǫDFT kn Mi nm(k, q) vij (q) Pij (q, ω) εij (q, ω) Wij (q, ω) V xc k,n Σnn(k, ω) ǫ qp k,n End Code keywords Based on FP-(L)APW+lo Mixed Basis Linear Tetrahedron Method Reciprocal space Imaginary frequencies Excelent results R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 28 / 54
  • 48. Implementation Convergence Tests Silicon: Convergence tests Number of frequencies 10 15 20 25 Nr. of frequencies 0.878 0.879 0.88 0.881 0.882 0.883 0.884 Eg [eV] Used paremeters 16 frequencies R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 29 / 54
  • 49. Implementation Convergence Tests Silicon: Convergence tests Number of excited states 8 27 64 125 Nr. of k-points 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 ∆Eg [eV] Used paremeters 16 frequencies 64 k-points R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 29 / 54
  • 50. Implementation Convergence Tests Silicon: Convergence tests Number of k-points 0 50 100 150 200 250 Number of unoccupied bands 0.95 1 1.05 1.1 BandGap Used paremeters 16 frequencies 64 k-points ∼ 200 unocc. bands R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 29 / 54
  • 51. Results Bandgaps Results I: Bandgaps Si GaAs zGaN ZnS C MgO NaCl CaO 0 2 4 6 8 Experimental Eg [eV] 0 2 4 6 8 10 CalculatedEg [eV] G0 W0 All electron G0 W0 Pseudopotentials G0 W0 @Wien2k LDA - F. Aryasetiawan and O. Gunnarson, Rep. Prog. Phys. 61, 237 (1998).(and Refs.) - T. Kotani and M. van Schilfgaarde, Solid State Comm. 121, 461 (2002). - C. Friedrich et al, Phys. Rev. B 74, 045104 (2006). R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 30 / 54
  • 52. Results Bandstructures Results II: Band diagrams: Silicon W ΓL Λ ∆ X Z W K -10 -5 εF 5 10 1 LDA GW R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 31 / 54
  • 53. Core-valence interaction Motivation Motivation G0W0 Si bandgap 1990 2000 Publication year 0 0.5 1 1.5 Eg [eV] Pseudopotentials All electron R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 32 / 54
  • 54. Core-valence interaction Motivation Motivation G0W0 Si bandgap 1990 2000 Publication year 0 0.5 1 1.5 Eg [eV] Pseudopotentials All electron R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 32 / 54
  • 55. Core-valence interaction Motivation Debate G0W0 Si bandgap 1990 2000 2010 Publication year 0 0.5 1 1.5 Eg [eV] Pseudopotentials All electron ? - M. Tiago et al, Phys. Rev. B 69, 125212 (2004). - C. Friedrich et al, Phys. Rev. B 74, 045104 (2006). Pseudopotentials systematically larger gaps in better agreement with expeeriment All electron Benchmark for ab-initio calculations - A. Fleszar, Phys. Rev. B 64, 245204 (2001). - T. Kotani and M. van Schilfgaarde, Solid State Comm. 121, 461 (2002). - W. Ku and A. Eguiluz, Phys. Rev. Lett. 89,126401 (2002). R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 33 / 54
  • 56. Core-valence interaction Core-valence Partitioning Core-valence partitioning Kohn-Sham equation HKS Ψnk = ǫnkΨnk All electron HKS = T + Vnuc + Vh + Vxc[n] Pseudopotentials HKS = T + Vps + Vh + Vxc[˜nv + ˜nc] Vxc[n] = Vxc[˜nv + ˜nc] + Vxc[ncore − ˜nc] ⊂ Veff G0W0 correction ǫqp nk = ǫKS nk + ∆ǫnk All electron ∆ǫnk = ℜ (Σnk [{Ψnk; Ψc}]) − V xc nk [n] Pseudopotentials ∆ǫnk = ℜ(Σnk[{˜Ψnk}])−V xc nk [˜nv +˜nc] ℜ (Σnk [{Ψnk; Ψc}]) = ℜ(Σnk[{˜Ψnk}]) + V xc nk [ncore − ˜nc] ⊂ Veff R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 34 / 54
  • 57. Core-valence interaction Different Approaches Different Approaches G0W0 correction All electron: ǫqp nk = ǫKS nk + ℜ (Σnk [{Ψnk; Ψcore}]) − V xc nk [n] Pseudopotentials: ǫqp nk = ǫKS nk + ℜ(Σnk[{˜Ψnk}]) − V xc nk [˜nval ] Valence only: ǫqp nk = ǫKS nk + ℜ (Σnk [{Ψnk}]) − V xc nk [nval ] Separated terms Σnk = Σx nk + Σc nk R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 35 / 54
  • 58. Core-valence interaction Silicon Results Si: Matrix elements Highest occ. state at Γ Lowest unocc. state at X R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 36 / 54
  • 59. Core-valence interaction Silicon Results Si: Matrix elements Remarks ΣC : PP ≈ Val ≈ AE ΣX : PP ≈ Val = AE VXC : PP ≈ Val = AE Core-valence lin. ΣC : Small effect ΣX : Large effect VXC : Large effect R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 37 / 54
  • 60. Core-valence interaction Silicon Results Si: Matrix elements Remarks ΣC : PP ≈ Val ≈ AE ΣX : PP ≈ Val = AE VXC : PP ≈ Val = AE ΣX − VXC : PP ≈ Val ≈ AE Core-valence lin. ΣC : Small effect ΣX : Large effect VXC : Large effect ΣX − VXC :Small effect R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 37 / 54
  • 61. Core-valence interaction Silicon Results Si gap: G0W0 correction Remarks ∆Eg : PP > Val > AE Core-valence lin. ∆Eg : Small effect. R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 38 / 54
  • 62. Core-valence interaction GaAs Results GaAs: Matrix elements Highest occ. state at Γ Lowest unocc. state at Γ R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 39 / 54
  • 63. Core-valence interaction GaAs Results GaAs: Matrix elements Remarks ΣC : PP ≈ Val ≈ AE ΣX : PP ≈ Val = AE VXC : PP ≈ Val = AE Core-valence lin. ΣC : Small effect ΣX : Large effect VXC : Large effect R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 40 / 54
  • 64. Core-valence interaction GaAs Results GaAs: Matrix elements Remarks ΣC : PP ≈ Val ≈ AE ΣX : PP ≈ Val = AE VXC : PP ≈ Val = AE ΣX − VXC : PP ≈ Val = AE Core-valence lin. ΣC : Small effect ΣX : Large effect VXC : Large effect ΣX − VXC :Large effect R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 40 / 54
  • 65. Core-valence interaction GaAs Results GaAs gap: G0W0 correction Remarks ∆Eg : PP < Val < AE Core-valence lin. ∆Eg : Large effect. Reduces the correction!! R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 41 / 54
  • 66. Core-valence interaction GaAs Conclusions Core-valence partitioning: Strong changes in ΣX and VXC Small changes in ΣC ∆Eg : Small changes in Si. Large in GaAs Does NOT systematically increase the G0W0-correction. “Pseudoization” also plays an important role. R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 42 / 54
  • 67. Core-valence interaction Semicore States Semicore states Semicore states binding energies MgO 6p-5p1s transition energy TotalW L Λ Γ ∆ X ZW K -50 -40 -30 -20 -10 EF 10 Energy[eV] sMg pMg s0 pO LDA:=43.55eV GW:=52.41eV Excitation energy [eV] ROHF(∆SCF)1 54.6 CASTP21 53.8 LDA2 43.5 G0W 2 0 52.4 Experiment3 53.4 1.- C. Sousa et al. Phys. Rev. B 62, 10013 (2000). 2.- This work. 3.- W. L. OBrien et al. Phys. Rev. B 44, 1013 (1991). R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 43 / 54
  • 68. f-electron systems f-electron systems Motivation Two strongly interrelated subsystems itinerant spd states strongly localized f states Intriguing physics Heavy fermion Kondo effect Etc... Challenge to first-principle calculations: LDA/GGA good for itinerant electrons Fails for f -electrons R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 44 / 54
  • 69. f-electron systems (no)f-electron systems CeO2 -6 -4 -2 0 2 4 6 8 10 12 Energy [eV] 0 5 10 15 DOS LDA LDA-G0 W0 XPS+BIS XPS+XAS E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984) D. R. Mullins et al. Surf. Sci. 409, 307 (1998) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 45 / 54
  • 71. f-electron systems f-electron systems Ce2O3 -10 -8 -6 -4 -2 0 2 4 6 8 10 Energy [eV] 0 5 10 DOS Expt. LDA XPS XAS E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 47 / 54
  • 72. f-electron systems f-electron systems Ce2O3 -10 -8 -6 -4 -2 0 2 4 6 8 10 Energy [eV] 0 5 10 DOS Expt. LDA LDA+U XPS XAS E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 47 / 54
  • 73. f-electron systems f-electron systems Ce2O3 -10 -8 -6 -4 -2 0 2 4 6 8 10 Energy [eV] 0 5 10 DOS Expt. LDA LDA+U LDA+U+G0 W0 XPS XAS E. Wuilloud et al. Phys. Rev. Lett 53, 202 (1984) R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 47 / 54
  • 75. Conclusions Ongoing work: Spin polarized metals Test: Ni W L Γ X ZW K -10 -5 EF 5 Energy[eV] W L Γ X ZW K UP DOWN R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 49 / 54
  • 76. Conclusions Conclusions GW@Wien2k Reliable results. Wide range of materials. sp semiconductors f -electron systems with empty or full f -shells metals spin polarized materials LDA+U+G0W0 R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 50 / 54
  • 77. Conclusions Conclusions Most important R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 51 / 54
  • 78. Conclusions Conclusions Most important Now we are enjoying it!!! R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 51 / 54
  • 79. Conclusions Last but not least Future plans Anisotropy of εmacro Half metals Efficiency Improvement COHSEX@Wien2k + GW BSE QPscGW R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 52 / 54
  • 80. Conclusions Acknowledgements Xinzheng Li (FHI, Berlin): Code development, LTM library. Dr. Hong Jiang (FHI, Berlin): Code improvement, Spin polarization, LDA+U. Prof. Claudia Ambrosch-Draxl (MUL; Austria): Wien2k interface and more... Christian Meisenbichler (MUL; Austria): MPI Paralelization Patrick Rinke and Christoph Freysoldt (FHI, Berlin): Pseudopotentials, etc.. The boss Matthias Scheffler R. G´omez-Abal (FHI-Berlin) GW@Wien2k Vienna 2008 53 / 54