SlideShare ist ein Scribd-Unternehmen logo
1 von 115
REVISION
Contingency Plan
Motivation Word
What now?
3
More advanced circuit analysis!
Nodal Analysis
 Extension of KCL concepts
Loop Analysis
 Extension of KVL concepts
Thevenin / Norton equivalent circuits
 Ways to make complex circuits simple
NODAL ANALYSIS
Ref.
Node/point,
Datum Node,
ground node
NON-Ref.
Node/point
Apply kcl at
NON-Ref.
Node/point
1
2
SUMMARY
EXAMPLE
What Do You Think?
Test Yourself
`
Nodal Analysis
52
 How do we tackle a circuit like this?
 Not just one loop or one node 
 Simultaneous equations!
 Use node voltages as variables :
Nodal Analysis.
 If we can find the node voltages,
everything else is easy
 Ohm’s law etc
Nodal Analysis
53
 Choose one node as the reference.
 Usually the node with the most
connections.
 Commonly called ground.
 At ground-zero potential
 Might (should!) represent the chassis or
ground line in an actual circuit.
 Assume all voltages are positive with
respect to ground.
 For N nodes, we need N – 1 linearly
independent KCL equations to solve
(with respect to ground).
Nodal Analysis
Circuits with independent current sources
54
Consider the network shown.
There are three nodes, so we need two equations.
We can use the bottom node as the reference (ground), so we still need to
find v1 and v2.
Use KCL and Ohm’s law to write two
nodal equations.
N – 1 linearly independent KCL
Nodal Analysis
Circuits with independent current sources
55
Solution 1) Use Gaussian Elimination to find the unknowns, if
IA = 1 mA, R1 = 12 kΩ, R2 = 6 kΩ, IB = 4 mA and R3 = 6 kΩ.
Nodal Analysis
Circuits with independent current sources
56
Solution 2) Use Matrix Analysis to find the unknowns, if
IA = 1 mA, R1 = 12 kΩ, R2 = 6 kΩ, IB = 4 mA and R3 = 6 kΩ.
Example
57
Oh oh! We can’t write KCL for V1 or V2 (we don’t know the
current through the voltage source…)
Example
58
But we can write V1 – V2 = 6 V. There are 3 nodes, so we need 2
equations: now we have one equation, so we only need one
more.
Summary:
Problem Solving Strategy
59
Step 1)
Determine the number of nodes, select one as the
reference (ground). Assign voltage names to the
other nodes.
Step 2)
Write an equation for each voltage source (i.e.: V2 =
12 V, or V1 – V4 = -6 V). Each of these equations is
one of the linearly independent equations we will
use. Identify supernodes when a voltage source
connects between two non-reference nodes.
Step 3)
Use KCL to write the remaining equations. For N
nodes, you will need a total of N – 1 equations.
Solve to find the unknown voltages.
Chap 1 – Steady State Analysis
Sinusoidal Steady State Analysis
• Any steady state voltage or current in a linear circuit with a
sinusoidal source is a sinusoid
– All steady state voltages and currents have the same frequency
as the source
• In order to find a steady state voltage or current, all we need to
know is its magnitude and its phase relative to the source (we
already know its frequency)
• We do not have to find this differential equation from the circuit, nor
do we have to solve it
• Instead, we use the concepts of phasors and complex impedances
• Phasors and complex impedances convert problems involving
differential equations into circuit analysis problems
 Focus on steady state; Focus on sinusoids.
Characteristics of Sinusoidal
Key Words:
• Period: T ,
• Frequency: f , Radian frequency 
• Phase angle
• Amplitude: Vm Im
Sinusoidal Steady State Analysis
Characteristics of Sinusoidal
  tVv mt sin iI1
I1
I1 I1 I1 I1
R1
R1
R
5
5
+
_
IS 
E
I1
U1
+
-
U
I

iI1 I1 I1 I1
R1
R1
R
5
5
-
+
IS 
E
I1
U1
+
-
U
I

v、i
tt1 t20
Both the polarity and magnitude of voltage are changing.
Sinusoidal Steady State Analysis
Characteristics of Sinusoidal
Radian frequency(Angular frequency):  = 2f = 2/T (rad/s)
Period: T — Time necessary to go through one cycle. (s)
Frequency: f — Cycles per second. (Hz)
f = 1/T
Amplitude: Vm Im
i = Imsint, v =Vmsint
v、i
t 20
Vm、Im
Sinusoidal Steady State Analysis
Phasors
E.g. voltage response
A sinusoidal v/i
Complex transform
Phasor transform
By knowing angular
frequency ω rads/s.
Time domain
Frequency domain
  eR v t
Complex form:
   cosmv t V t  
Phasor form:
   j t
mv t V e  

Angular frequency ω is
known in the circuit.
Sinusoidal Steady State Analysis
 || mVV
 || mVV
Phasors
Complex Numbers
jbaA  — Rectangular Coordinates
  sincos jAA 
j
eAA  — Polar Coordinates
j
eAAjbaA 
conversion: 22
baA 
a
b
arctg
jbaeA j

cosAa 
sinAb 

a
b
real axis
imaginary axis
jjje j

090sin90cos90 
Sinusoidal Steady State Analysis
Phasors
Phasors
A phasor is a complex number that represents the magnitude and
phase of a sinusoid:
  tim cos  mII
Phasor Diagrams
• A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).
• A phasor diagram helps to visualize the relationships between
currents and voltages.
Sinusoidal Steady State Analysis
68
.Steady-State Sinusoidal Analysis – Complex Impedances
Phasor Relationships for R, L and C
Resistor:
Q , , R=10,Find i and P。tv 314sin311
 V
V
V m
220
2
311
2

 A
R
V
I 22
10
220

ti 314sin222  WIVP 484022220 
Sinusoidal Steady State Analysis
Phasor Relationships for R, L and C
Inductor:
Q,L = 10mH,v = 100sint,Find iL when f = 50Hz and 50kHz.
  
14.310105022 3
fLX L
 
   Atti
A
X
V
I
L
L

90sin25.22
5.22
14.3
2/100
50



  
31401010105022 33
fLX L
 
   mAtti
mA
X
V
I
L
L
k

90sin25.22
5.22
14.3
2/100
50



Sinusoidal Steady State Analysis
Phasor Relationships for R, L and C
Capacitor:
Q,Suppose C=20F,AC source v=100sint,Find XC and I forf = 50Hz, 50kHz。
 159
2
11
Hz50
fCC
Xf c

A38.1
2

c
m
c X
V
X
V
I
  159.0
2
11
KHz50
fCC
Xf c

 A1380
2

c
m
c X
V
X
V
I
Sinusoidal Steady State Analysis
Phasor Relationships for R, L and C
Review (v-I relationship)
Time domain Frequency domain
iRv  IRV  
I
Cj
V  

1
ILjV   
dt
di
LvL 
dt
dv
CiC 
C
XC

1

LXL ,
,
, v and i are in phase.
, v leads i by 90°.
, v lags i by 90°.
R
C
L
Sinusoidal Steady State Analysis
Phasor Relationships for R, L and C
Summary
 R: RX R  0
L: ffLLXL   2
2

  iv
C:
ffcc
XC
1
2
11

 2

  iv
 IXV 
 Frequency characteristics of an Ideal Inductor and Capacitor:
A capacitor is an open circuit to DC currents;
A Inducter is a short circuit to DC currents.
Sinusoidal Steady State Analysis
Impedance
Complex Impedance
Phasors and complex impedance allow us to use Ohm’s law with
complex numbers to compute current from voltage and voltage
from current
20k
+
-
1F10V  0 VC
+
-
 = 377
Find VC
Q.
• How do we find VC?
• First compute impedances for resistor and capacitor:
ZR = 20k = 20k  0
ZC = 1/j (377 *1F) = 2.65k  -90
Sinusoidal Steady State Analysis
Impedance
Complex Impedance
20k
+
-
1F10V  0 VC
+
-
 = 377
Find VC
Q.
20k  0
+
-
2.65k  -9010V  0 VC
+
-
Now use the voltage divider to find VC:




46.82V31.1
54.717.20
9065.2
010VCV
)
0209065.2
9065.2
(010 





kk
k
VVC
Sinusoidal Steady State Analysis
Impedance
Impedance allows us to use the same solution techniques
for AC steady state as we use for DC steady state.
• All the analysis techniques we have learned for the linear circuits are
applicable to compute phasors
– KCL & KVL
– node analysis / loop analysis
– superposition
– Thevenin equivalents / Norton equivalents
– source exchange
• The only difference is that now complex numbers are used.
Complex Impedance
Sinusoidal Steady State Analysis
Impedance
Phasor Diagrams
• A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).
• A phasor diagram helps to visualize the relationships between
currents and voltages.
2mA  40
–
1F VC
+
–
1k VR
+
+
–
V
I = 2mA  40, VR = 2V  40
VC = 5.31V  -50, V = 5.67V  -29.37
Real Axis
Imaginary Axis
VR
VC
V
Sinusoidal Steady State Analysis
Q1
• Find the time-domain voltage over the
capacitor using phasor domain techniques.
The voltage and current source are both AC
(sine) sources with frequency of 1MHz.
ANS:
Q2
• 2. Write the time-domain (differential) node
voltage equations for the circuit shown. Do
not solve.
ANS:
Q3
• Set-up the phasor-domain node-voltage equations
for the following circuit. Do not solve.
ANS:
Q4
• In the circuit shown below, find the current flowing down
through the inductor. The frequency of the source is 2
Mrads/sec and the phase is 0 degrees. You must use phasor
analysis, but your final answer must be converted back to
time-domain.
ANS:
Q5
• Write the time-domain (integral-differential) node-
voltage equations for the circuit shown, using the
ground (0) node as your reference. Do not solve.
Ans:
Examples for Sinusoidal Circuits Analysis
v1=120sint v2

i3
 i1  i2
Q., Find 1I
2I 3I
2V in the circuit of the following fig.
Complex Numbers Analysis
Sinusoidal Steady State Analysis
89
Additional Example:
represent the circuit shown in the
frequency domain using impedances
and phasors.
90
Additional Example: represent the
circuit shown in the frequency domain
using impedances and phasors.
91
Example – Steady-State AC Analysis of a Series Circuit
* Find the steady-state current, the phasor voltage across each element, and
construct a phasor diagram.
   






15t500cos707.0ti
15707.0
454.141
30100
Z
454.141100j10050j150j100ZZRZ
50j
C
1
jZ,150jLjZ,30100
s
CLeq
CLs
V
I
V 





1054.3515707.09050
C
1
j
751.10615707.090150Lj
157.7015707.0100R
C
L
R
IV
IV
IV


92
Example – Series/Parallel Combination of Complex Impedances
* Find the voltage across the capacitor, the phasor current through each
element, and construct a phasor diagram
     




































901.0
90100
18010
100j
18010
Z
V
1801.0
100
18010
R
V
1351414.0
50j50
9010
50j50100j
9010
ZZ
t1000cos10180t1000cos10tv
18010
50j50100j
4571.70
9010
ZZ
Z
50j50Z
4571.70
4501414.0
01
)100j(11001
1
Z1R1
1
Z
100j
C
1
jZ,100jLjZ,90-10
C
C
C
C
R
RCL
s
C
RCL
RC
sC
RC
C
RC
CLs
I
I
V
I
VV
V 


93
Circuit Analysis
Example – Steady-State AC Node-Voltage Analysis
* Find the voltage at node 1 using nodal analysis
 
   







7.29t100cos1.16tvor7.291.16
:forSolve
5.11.0j2.0j
2j2.0j2.0j1.0
05.1
5j10j
90-2
j5-
-
10
2nodeandnode1atKCLWrite
11
1
21
21
122
211
V
V
VV
VV
VVV
VVV
94
Circuit Analysis
Exercise – Steady-State AC Mesh-Current Analysis
* Solve for the mesh currents
Chap 2 – Mutual Inductance
• Dot Convention
In Practical
• Mutual inductance can exist even in places where we would
rather it not. Take for instance the situation of a "heavy"
(high-current) AC electric load, where each conductor is
routed through its own metal conduit.
• The oscillating magnetic field around each conductor induces
currents in the metal conduits, causing them to resistively
heat (Joule's Law, P = I2 R):
• It is standard industry practice to avoid running the
conductors of a large AC load in separate metal
conduits. Rather, the conductors should be run in the
same conduit to avoid inductive heating:
Explain why this wiring technique
eliminates inductive heating of the
conduit.
• Now, suppose two empty metal conduits stretch between the location of a
large electric motor, and the motor control center (MCC) where the circuit
breaker and on/off "contactor" equipment is located.
• Each conduit is too small to hold both motor conductors, but we know
we're not supposed to run each conductor in its own conduit, let the
conduits heat up from induction.
• What do we do, then?
Answer
• Use terminal blocks to split up" the
conductors from one pair into two pairs:
Example 1
• Calculate the phasor currents I1 and I2.
Solution
Example 2
• Determine V0 in the circuit below.
I2= 0.06 -90 degree x 10ohm
Example 3
• Determine the phasor currents I1 and I2 in the
circuit below.
I1=0.132 – j2.136 , I2=0.193+j3.214
Ex 4
• Determine the phasor currents I1 and I2 in the
circuit below.
-j8 ohm
Ex 5
• Calculate Vo.
Ex 5 : Ans
Ex 6
• Calculate I1 and I2.
• (Note that j1 and j2 are reactances and not
inductances.
Ex 6:Ans
Chap 3 - Laplace
• Q1. Evaluate the Vo(t) by using Nodal Analysis.
Show all the steps to solve this problem.
Ans:
• Q2. Solve for i(t) for the circuit, given that
V(t) = 10 sin5t V, R = 4 Ω and L = 2 H.
Assume i0=i(0)=0.
i(t)
Ans
• Q3. Evaluate the Vth(s) and Zth(s) by using
Tevenin Theorem. Show all the steps to solve
this problem.
Vth
Ans:

Weitere ähnliche Inhalte

Was ist angesagt?

電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法Simen Li
 
Diode bridge rectifier_ppt
Diode bridge rectifier_pptDiode bridge rectifier_ppt
Diode bridge rectifier_pptnawafino
 
Kirchhoff’s laws
Kirchhoff’s lawsKirchhoff’s laws
Kirchhoff’s lawsamckaytghs
 

Was ist angesagt? (8)

Thevenin theorem
Thevenin theoremThevenin theorem
Thevenin theorem
 
KMOC ASIA Ltd.
KMOC ASIA Ltd.KMOC ASIA Ltd.
KMOC ASIA Ltd.
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
 
electrical-safety.pptx
electrical-safety.pptxelectrical-safety.pptx
electrical-safety.pptx
 
Diode bridge rectifier_ppt
Diode bridge rectifier_pptDiode bridge rectifier_ppt
Diode bridge rectifier_ppt
 
KVL and KCL
KVL and KCLKVL and KCL
KVL and KCL
 
Passm0 r0500
Passm0 r0500Passm0 r0500
Passm0 r0500
 
Kirchhoff’s laws
Kirchhoff’s lawsKirchhoff’s laws
Kirchhoff’s laws
 

Ähnlich wie Given:v1 = 120sin(ωt) Step 1) Write the node voltage equations:Node 1: 120sin(ωt) - i1R1 - i2R2 = 0Node 2: i1R1 - i2R2 - i3R3 = 0 Step 2) Write the impedance of each component:Z1 = R1Z2 = R2 Z3 = R3Step 3) Use ohm's law to write the current equations: I1 = V1/Z1I2 = (V1 - V2)/Z2I3 = V2/Z3Step 4) Replace the

Circuitlaws i-120122051920-phpapp01
Circuitlaws i-120122051920-phpapp01Circuitlaws i-120122051920-phpapp01
Circuitlaws i-120122051920-phpapp01Abrar Mirza
 
Unit 3 - Steady state Analysis.pptx
Unit 3 - Steady state Analysis.pptxUnit 3 - Steady state Analysis.pptx
Unit 3 - Steady state Analysis.pptxvimala elumalai
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualChirag Shetty
 
Unit_1_Lecture 1_baduc introduction jan 2024.pptx
Unit_1_Lecture 1_baduc introduction jan 2024.pptxUnit_1_Lecture 1_baduc introduction jan 2024.pptx
Unit_1_Lecture 1_baduc introduction jan 2024.pptxnoosdysharma
 
Topic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theoremTopic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theoremGabriel O'Brien
 
BEEE-UNIT 1.pptx
BEEE-UNIT 1.pptxBEEE-UNIT 1.pptx
BEEE-UNIT 1.pptxGigi203211
 
DC Network - Comprehending Theorems
DC Network - Comprehending TheoremsDC Network - Comprehending Theorems
DC Network - Comprehending TheoremsAakash Yellapantulla
 
Circuit laws & network theorems
Circuit laws  & network theoremsCircuit laws  & network theorems
Circuit laws & network theoremsHimanshu Batra
 
Active filters
Active filtersActive filters
Active filtersfaisal_18
 
Network theorems for electrical engineering
Network theorems for electrical engineeringNetwork theorems for electrical engineering
Network theorems for electrical engineeringKamil Hussain
 
Analogue electronics lec (2)
Analogue electronics lec (2)Analogue electronics lec (2)
Analogue electronics lec (2)Dr. Abeer Kamal
 
Sinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL CircuitsSinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL CircuitsSachin Mehta
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Sachin Mehta
 

Ähnlich wie Given:v1 = 120sin(ωt) Step 1) Write the node voltage equations:Node 1: 120sin(ωt) - i1R1 - i2R2 = 0Node 2: i1R1 - i2R2 - i3R3 = 0 Step 2) Write the impedance of each component:Z1 = R1Z2 = R2 Z3 = R3Step 3) Use ohm's law to write the current equations: I1 = V1/Z1I2 = (V1 - V2)/Z2I3 = V2/Z3Step 4) Replace the (20)

Circuitlaws i-120122051920-phpapp01
Circuitlaws i-120122051920-phpapp01Circuitlaws i-120122051920-phpapp01
Circuitlaws i-120122051920-phpapp01
 
Unit 3 - Steady state Analysis.pptx
Unit 3 - Steady state Analysis.pptxUnit 3 - Steady state Analysis.pptx
Unit 3 - Steady state Analysis.pptx
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
Unit_1_Lecture 1_baduc introduction jan 2024.pptx
Unit_1_Lecture 1_baduc introduction jan 2024.pptxUnit_1_Lecture 1_baduc introduction jan 2024.pptx
Unit_1_Lecture 1_baduc introduction jan 2024.pptx
 
Topic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theoremTopic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theorem
 
BEEE-UNIT 1.pptx
BEEE-UNIT 1.pptxBEEE-UNIT 1.pptx
BEEE-UNIT 1.pptx
 
Chapter32A.ppt
Chapter32A.pptChapter32A.ppt
Chapter32A.ppt
 
DC Network - Comprehending Theorems
DC Network - Comprehending TheoremsDC Network - Comprehending Theorems
DC Network - Comprehending Theorems
 
Circuit laws & network theorems
Circuit laws  & network theoremsCircuit laws  & network theorems
Circuit laws & network theorems
 
rangkaian am dan fm
rangkaian am dan fmrangkaian am dan fm
rangkaian am dan fm
 
Active filters
Active filtersActive filters
Active filters
 
Network theorems for electrical engineering
Network theorems for electrical engineeringNetwork theorems for electrical engineering
Network theorems for electrical engineering
 
Analogue electronics lec (2)
Analogue electronics lec (2)Analogue electronics lec (2)
Analogue electronics lec (2)
 
Sinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL CircuitsSinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL Circuits
 
Ch-2 AC.pdf
Ch-2 AC.pdfCh-2 AC.pdf
Ch-2 AC.pdf
 
Circuit theorem
Circuit theoremCircuit theorem
Circuit theorem
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits
 
1st course
1st course1st course
1st course
 
Manual 2
Manual 2Manual 2
Manual 2
 
circuit theory.pptx
 circuit theory.pptx circuit theory.pptx
circuit theory.pptx
 

Mehr von Sporsho

From Circuit Theory to System Theory
From Circuit Theory to System Theory From Circuit Theory to System Theory
From Circuit Theory to System Theory Sporsho
 
Midterm review
Midterm reviewMidterm review
Midterm reviewSporsho
 
parents/kids and pencil/eraser
parents/kids and pencil/eraserparents/kids and pencil/eraser
parents/kids and pencil/eraserSporsho
 
Tutorial 1a
Tutorial 1aTutorial 1a
Tutorial 1aSporsho
 
Lecture 1a [compatibility mode]
Lecture 1a [compatibility mode]Lecture 1a [compatibility mode]
Lecture 1a [compatibility mode]Sporsho
 
Transferofheat 100521093623-phpapp01
Transferofheat 100521093623-phpapp01Transferofheat 100521093623-phpapp01
Transferofheat 100521093623-phpapp01Sporsho
 
Em208 203 assignment_3_with_solution
Em208 203 assignment_3_with_solutionEm208 203 assignment_3_with_solution
Em208 203 assignment_3_with_solutionSporsho
 
Em208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solutionEm208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solutionSporsho
 
Em208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solutionEm208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solutionSporsho
 
Em 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solutionEm 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solutionSporsho
 
Success in life
Success in lifeSuccess in life
Success in lifeSporsho
 
Don't Worry
Don't WorryDon't Worry
Don't WorrySporsho
 
Friendship
FriendshipFriendship
FriendshipSporsho
 
10 things that erase 10 things
10 things that erase 10 things10 things that erase 10 things
10 things that erase 10 thingsSporsho
 
What is life
What is lifeWhat is life
What is lifeSporsho
 
Final -jan-apr_2013
Final  -jan-apr_2013Final  -jan-apr_2013
Final -jan-apr_2013Sporsho
 
Me13achapter1and2 090428030757-phpapp02
Me13achapter1and2 090428030757-phpapp02Me13achapter1and2 090428030757-phpapp02
Me13achapter1and2 090428030757-phpapp02Sporsho
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiationSporsho
 
Ee107 sp 06_mock_test1_q_s_ok_3p_
Ee107 sp 06_mock_test1_q_s_ok_3p_Ee107 sp 06_mock_test1_q_s_ok_3p_
Ee107 sp 06_mock_test1_q_s_ok_3p_Sporsho
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlSporsho
 

Mehr von Sporsho (20)

From Circuit Theory to System Theory
From Circuit Theory to System Theory From Circuit Theory to System Theory
From Circuit Theory to System Theory
 
Midterm review
Midterm reviewMidterm review
Midterm review
 
parents/kids and pencil/eraser
parents/kids and pencil/eraserparents/kids and pencil/eraser
parents/kids and pencil/eraser
 
Tutorial 1a
Tutorial 1aTutorial 1a
Tutorial 1a
 
Lecture 1a [compatibility mode]
Lecture 1a [compatibility mode]Lecture 1a [compatibility mode]
Lecture 1a [compatibility mode]
 
Transferofheat 100521093623-phpapp01
Transferofheat 100521093623-phpapp01Transferofheat 100521093623-phpapp01
Transferofheat 100521093623-phpapp01
 
Em208 203 assignment_3_with_solution
Em208 203 assignment_3_with_solutionEm208 203 assignment_3_with_solution
Em208 203 assignment_3_with_solution
 
Em208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solutionEm208 203 assignment_2_with_solution
Em208 203 assignment_2_with_solution
 
Em208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solutionEm208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solution
 
Em 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solutionEm 203 em208_-_midterm_test_solution
Em 203 em208_-_midterm_test_solution
 
Success in life
Success in lifeSuccess in life
Success in life
 
Don't Worry
Don't WorryDon't Worry
Don't Worry
 
Friendship
FriendshipFriendship
Friendship
 
10 things that erase 10 things
10 things that erase 10 things10 things that erase 10 things
10 things that erase 10 things
 
What is life
What is lifeWhat is life
What is life
 
Final -jan-apr_2013
Final  -jan-apr_2013Final  -jan-apr_2013
Final -jan-apr_2013
 
Me13achapter1and2 090428030757-phpapp02
Me13achapter1and2 090428030757-phpapp02Me13achapter1and2 090428030757-phpapp02
Me13achapter1and2 090428030757-phpapp02
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
 
Ee107 sp 06_mock_test1_q_s_ok_3p_
Ee107 sp 06_mock_test1_q_s_ok_3p_Ee107 sp 06_mock_test1_q_s_ok_3p_
Ee107 sp 06_mock_test1_q_s_ok_3p_
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khl
 

Kürzlich hochgeladen

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 

Kürzlich hochgeladen (20)

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 

Given:v1 = 120sin(ωt) Step 1) Write the node voltage equations:Node 1: 120sin(ωt) - i1R1 - i2R2 = 0Node 2: i1R1 - i2R2 - i3R3 = 0 Step 2) Write the impedance of each component:Z1 = R1Z2 = R2 Z3 = R3Step 3) Use ohm's law to write the current equations: I1 = V1/Z1I2 = (V1 - V2)/Z2I3 = V2/Z3Step 4) Replace the

  • 3. What now? 3 More advanced circuit analysis! Nodal Analysis  Extension of KCL concepts Loop Analysis  Extension of KVL concepts Thevenin / Norton equivalent circuits  Ways to make complex circuits simple
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29. 1 2
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 42.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48. What Do You Think?
  • 50.
  • 51. `
  • 52. Nodal Analysis 52  How do we tackle a circuit like this?  Not just one loop or one node   Simultaneous equations!  Use node voltages as variables : Nodal Analysis.  If we can find the node voltages, everything else is easy  Ohm’s law etc
  • 53. Nodal Analysis 53  Choose one node as the reference.  Usually the node with the most connections.  Commonly called ground.  At ground-zero potential  Might (should!) represent the chassis or ground line in an actual circuit.  Assume all voltages are positive with respect to ground.  For N nodes, we need N – 1 linearly independent KCL equations to solve (with respect to ground).
  • 54. Nodal Analysis Circuits with independent current sources 54 Consider the network shown. There are three nodes, so we need two equations. We can use the bottom node as the reference (ground), so we still need to find v1 and v2. Use KCL and Ohm’s law to write two nodal equations. N – 1 linearly independent KCL
  • 55. Nodal Analysis Circuits with independent current sources 55 Solution 1) Use Gaussian Elimination to find the unknowns, if IA = 1 mA, R1 = 12 kΩ, R2 = 6 kΩ, IB = 4 mA and R3 = 6 kΩ.
  • 56. Nodal Analysis Circuits with independent current sources 56 Solution 2) Use Matrix Analysis to find the unknowns, if IA = 1 mA, R1 = 12 kΩ, R2 = 6 kΩ, IB = 4 mA and R3 = 6 kΩ.
  • 57. Example 57 Oh oh! We can’t write KCL for V1 or V2 (we don’t know the current through the voltage source…)
  • 58. Example 58 But we can write V1 – V2 = 6 V. There are 3 nodes, so we need 2 equations: now we have one equation, so we only need one more.
  • 59. Summary: Problem Solving Strategy 59 Step 1) Determine the number of nodes, select one as the reference (ground). Assign voltage names to the other nodes. Step 2) Write an equation for each voltage source (i.e.: V2 = 12 V, or V1 – V4 = -6 V). Each of these equations is one of the linearly independent equations we will use. Identify supernodes when a voltage source connects between two non-reference nodes. Step 3) Use KCL to write the remaining equations. For N nodes, you will need a total of N – 1 equations. Solve to find the unknown voltages.
  • 60. Chap 1 – Steady State Analysis
  • 61. Sinusoidal Steady State Analysis • Any steady state voltage or current in a linear circuit with a sinusoidal source is a sinusoid – All steady state voltages and currents have the same frequency as the source • In order to find a steady state voltage or current, all we need to know is its magnitude and its phase relative to the source (we already know its frequency) • We do not have to find this differential equation from the circuit, nor do we have to solve it • Instead, we use the concepts of phasors and complex impedances • Phasors and complex impedances convert problems involving differential equations into circuit analysis problems  Focus on steady state; Focus on sinusoids.
  • 62. Characteristics of Sinusoidal Key Words: • Period: T , • Frequency: f , Radian frequency  • Phase angle • Amplitude: Vm Im Sinusoidal Steady State Analysis
  • 63. Characteristics of Sinusoidal   tVv mt sin iI1 I1 I1 I1 I1 I1 R1 R1 R 5 5 + _ IS  E I1 U1 + - U I  iI1 I1 I1 I1 R1 R1 R 5 5 - + IS  E I1 U1 + - U I  v、i tt1 t20 Both the polarity and magnitude of voltage are changing. Sinusoidal Steady State Analysis
  • 64. Characteristics of Sinusoidal Radian frequency(Angular frequency):  = 2f = 2/T (rad/s) Period: T — Time necessary to go through one cycle. (s) Frequency: f — Cycles per second. (Hz) f = 1/T Amplitude: Vm Im i = Imsint, v =Vmsint v、i t 20 Vm、Im Sinusoidal Steady State Analysis
  • 65. Phasors E.g. voltage response A sinusoidal v/i Complex transform Phasor transform By knowing angular frequency ω rads/s. Time domain Frequency domain   eR v t Complex form:    cosmv t V t   Phasor form:    j t mv t V e    Angular frequency ω is known in the circuit. Sinusoidal Steady State Analysis  || mVV  || mVV
  • 66. Phasors Complex Numbers jbaA  — Rectangular Coordinates   sincos jAA  j eAA  — Polar Coordinates j eAAjbaA  conversion: 22 baA  a b arctg jbaeA j  cosAa  sinAb   a b real axis imaginary axis jjje j  090sin90cos90  Sinusoidal Steady State Analysis
  • 67. Phasors Phasors A phasor is a complex number that represents the magnitude and phase of a sinusoid:   tim cos  mII Phasor Diagrams • A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes). • A phasor diagram helps to visualize the relationships between currents and voltages. Sinusoidal Steady State Analysis
  • 68. 68 .Steady-State Sinusoidal Analysis – Complex Impedances
  • 69. Phasor Relationships for R, L and C Resistor: Q , , R=10,Find i and P。tv 314sin311  V V V m 220 2 311 2   A R V I 22 10 220  ti 314sin222  WIVP 484022220  Sinusoidal Steady State Analysis
  • 70. Phasor Relationships for R, L and C Inductor: Q,L = 10mH,v = 100sint,Find iL when f = 50Hz and 50kHz.    14.310105022 3 fLX L      Atti A X V I L L  90sin25.22 5.22 14.3 2/100 50       31401010105022 33 fLX L      mAtti mA X V I L L k  90sin25.22 5.22 14.3 2/100 50    Sinusoidal Steady State Analysis
  • 71. Phasor Relationships for R, L and C Capacitor: Q,Suppose C=20F,AC source v=100sint,Find XC and I forf = 50Hz, 50kHz。  159 2 11 Hz50 fCC Xf c  A38.1 2  c m c X V X V I   159.0 2 11 KHz50 fCC Xf c   A1380 2  c m c X V X V I Sinusoidal Steady State Analysis
  • 72. Phasor Relationships for R, L and C Review (v-I relationship) Time domain Frequency domain iRv  IRV   I Cj V    1 ILjV    dt di LvL  dt dv CiC  C XC  1  LXL , , , v and i are in phase. , v leads i by 90°. , v lags i by 90°. R C L Sinusoidal Steady State Analysis
  • 73. Phasor Relationships for R, L and C Summary  R: RX R  0 L: ffLLXL   2 2    iv C: ffcc XC 1 2 11   2    iv  IXV   Frequency characteristics of an Ideal Inductor and Capacitor: A capacitor is an open circuit to DC currents; A Inducter is a short circuit to DC currents. Sinusoidal Steady State Analysis
  • 74. Impedance Complex Impedance Phasors and complex impedance allow us to use Ohm’s law with complex numbers to compute current from voltage and voltage from current 20k + - 1F10V  0 VC + -  = 377 Find VC Q. • How do we find VC? • First compute impedances for resistor and capacitor: ZR = 20k = 20k  0 ZC = 1/j (377 *1F) = 2.65k  -90 Sinusoidal Steady State Analysis
  • 75. Impedance Complex Impedance 20k + - 1F10V  0 VC + -  = 377 Find VC Q. 20k  0 + - 2.65k  -9010V  0 VC + - Now use the voltage divider to find VC:     46.82V31.1 54.717.20 9065.2 010VCV ) 0209065.2 9065.2 (010       kk k VVC Sinusoidal Steady State Analysis
  • 76. Impedance Impedance allows us to use the same solution techniques for AC steady state as we use for DC steady state. • All the analysis techniques we have learned for the linear circuits are applicable to compute phasors – KCL & KVL – node analysis / loop analysis – superposition – Thevenin equivalents / Norton equivalents – source exchange • The only difference is that now complex numbers are used. Complex Impedance Sinusoidal Steady State Analysis
  • 77. Impedance Phasor Diagrams • A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes). • A phasor diagram helps to visualize the relationships between currents and voltages. 2mA  40 – 1F VC + – 1k VR + + – V I = 2mA  40, VR = 2V  40 VC = 5.31V  -50, V = 5.67V  -29.37 Real Axis Imaginary Axis VR VC V Sinusoidal Steady State Analysis
  • 78. Q1 • Find the time-domain voltage over the capacitor using phasor domain techniques. The voltage and current source are both AC (sine) sources with frequency of 1MHz.
  • 79. ANS:
  • 80. Q2 • 2. Write the time-domain (differential) node voltage equations for the circuit shown. Do not solve.
  • 81. ANS:
  • 82. Q3 • Set-up the phasor-domain node-voltage equations for the following circuit. Do not solve.
  • 83. ANS:
  • 84. Q4 • In the circuit shown below, find the current flowing down through the inductor. The frequency of the source is 2 Mrads/sec and the phase is 0 degrees. You must use phasor analysis, but your final answer must be converted back to time-domain.
  • 85. ANS:
  • 86. Q5 • Write the time-domain (integral-differential) node- voltage equations for the circuit shown, using the ground (0) node as your reference. Do not solve.
  • 87. Ans:
  • 88. Examples for Sinusoidal Circuits Analysis v1=120sint v2  i3  i1  i2 Q., Find 1I 2I 3I 2V in the circuit of the following fig. Complex Numbers Analysis Sinusoidal Steady State Analysis
  • 89. 89 Additional Example: represent the circuit shown in the frequency domain using impedances and phasors.
  • 90. 90 Additional Example: represent the circuit shown in the frequency domain using impedances and phasors.
  • 91. 91 Example – Steady-State AC Analysis of a Series Circuit * Find the steady-state current, the phasor voltage across each element, and construct a phasor diagram.           15t500cos707.0ti 15707.0 454.141 30100 Z 454.141100j10050j150j100ZZRZ 50j C 1 jZ,150jLjZ,30100 s CLeq CLs V I V       1054.3515707.09050 C 1 j 751.10615707.090150Lj 157.7015707.0100R C L R IV IV IV  
  • 92. 92 Example – Series/Parallel Combination of Complex Impedances * Find the voltage across the capacitor, the phasor current through each element, and construct a phasor diagram                                           901.0 90100 18010 100j 18010 Z V 1801.0 100 18010 R V 1351414.0 50j50 9010 50j50100j 9010 ZZ t1000cos10180t1000cos10tv 18010 50j50100j 4571.70 9010 ZZ Z 50j50Z 4571.70 4501414.0 01 )100j(11001 1 Z1R1 1 Z 100j C 1 jZ,100jLjZ,90-10 C C C C R RCL s C RCL RC sC RC C RC CLs I I V I VV V   
  • 93. 93 Circuit Analysis Example – Steady-State AC Node-Voltage Analysis * Find the voltage at node 1 using nodal analysis              7.29t100cos1.16tvor7.291.16 :forSolve 5.11.0j2.0j 2j2.0j2.0j1.0 05.1 5j10j 90-2 j5- - 10 2nodeandnode1atKCLWrite 11 1 21 21 122 211 V V VV VV VVV VVV
  • 94. 94 Circuit Analysis Exercise – Steady-State AC Mesh-Current Analysis * Solve for the mesh currents
  • 95. Chap 2 – Mutual Inductance • Dot Convention
  • 96.
  • 97. In Practical • Mutual inductance can exist even in places where we would rather it not. Take for instance the situation of a "heavy" (high-current) AC electric load, where each conductor is routed through its own metal conduit. • The oscillating magnetic field around each conductor induces currents in the metal conduits, causing them to resistively heat (Joule's Law, P = I2 R):
  • 98. • It is standard industry practice to avoid running the conductors of a large AC load in separate metal conduits. Rather, the conductors should be run in the same conduit to avoid inductive heating:
  • 99. Explain why this wiring technique eliminates inductive heating of the conduit. • Now, suppose two empty metal conduits stretch between the location of a large electric motor, and the motor control center (MCC) where the circuit breaker and on/off "contactor" equipment is located. • Each conduit is too small to hold both motor conductors, but we know we're not supposed to run each conductor in its own conduit, let the conduits heat up from induction. • What do we do, then?
  • 100. Answer • Use terminal blocks to split up" the conductors from one pair into two pairs:
  • 101. Example 1 • Calculate the phasor currents I1 and I2.
  • 103. Example 2 • Determine V0 in the circuit below. I2= 0.06 -90 degree x 10ohm
  • 104. Example 3 • Determine the phasor currents I1 and I2 in the circuit below. I1=0.132 – j2.136 , I2=0.193+j3.214
  • 105. Ex 4 • Determine the phasor currents I1 and I2 in the circuit below. -j8 ohm
  • 107. Ex 5 : Ans
  • 108. Ex 6 • Calculate I1 and I2. • (Note that j1 and j2 are reactances and not inductances.
  • 110. Chap 3 - Laplace • Q1. Evaluate the Vo(t) by using Nodal Analysis. Show all the steps to solve this problem.
  • 111. Ans:
  • 112. • Q2. Solve for i(t) for the circuit, given that V(t) = 10 sin5t V, R = 4 Ω and L = 2 H. Assume i0=i(0)=0. i(t)
  • 113. Ans
  • 114. • Q3. Evaluate the Vth(s) and Zth(s) by using Tevenin Theorem. Show all the steps to solve this problem. Vth
  • 115. Ans: