SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Phase-locked loop (PLL)
                  By:
    Loren Schwappach & Crystal Brandy

              Prepared for:
               Dr. Jing Guo

    CTU – EE443 – Communications 1
            September 2010
Overview
•   What is a PLL?
•   Modeling a PLL
•   Properties of PLLs
•   Simulating and Testing a PLL
•   Other Applications of PLLs
•   Questions
•   References
What is a phase-locked loop?

• A negative feedback control system whose
  operation is closely linked to frequency
  modulation (FM).

• Automatically adjusts the frequency, and phase of
  a control signal to match a reference signal.

• Commonly used for carrier synchronization and
  indirect frequency demodulation.
What is a phase-locked loop? Continued...

• A change in the input signal shows up as a change
  in phase between the input signal and the VCO
  frequency.

• Consists of 3 major components
  – Voltage-controlled oscillator (VCO)
     • Performs frequency modulation on its own carrier signal
  – Phase Detector
     • Multiplies an incoming FM wave by the output of the VCO
  – Loop filter
     • Removes the high-frequency components contained in the
       multiplier’s output.
Modeling a PLL:
                                                        Phase-Locked Loop (PLL) for FM Demodulation:

                  FM                                               ed(t)                           ef(t)
                 wave                      Phase Detector                       Loop Filter                   Loop Amplifier      v(t)
                  s(t)


                                                      eo(t)
                                                                              Voltage Controlled            ev(t)
                                                                               Oscillator (VCO)
                                                                              Voltage Controlled
                                                                                  Oscillator

  s t = ������������ cos 2πfc t+ φ1 (t)
                            ������                                                                  • The error signal produced is proportional to
                                                                Phase Detector:
     ������1 ������ = 2������������������            ������ ������                                                          phase error.
                          0                             s(t)                         ed(t)

������������ ������ = ������������ ������������������ 2������������ ������ + ������2 (������)
                          ������
                                                                                                • The error signal also represents whether the
                                                                                                correction should increase or decrease the
                              ������                                      eo(t)
      ������2 ������ = 2������������������             ������ ������                                                        VCO frequency.
                           0


                                                      high-frequency component                  low-frequency component
                                                   1                                          1
                                       ������������ ������ =     ������������ ������������ ������������ sin 4πfc t+φ1 (t)+φ2 (t) + ������������ ������������ ������������ sin φ1 (t)-φ2 (t)
                                                   2                                          2
                                                                             1
                                                                 ������������ ������ ≈     ������ ������ ������ sin φ1 (t)-φ2 (t)
                                                                             2 ������ ������ ������
Modeling a PLL: Continued...
Why use a VCO?:
A VCO produces an output whose
                                           ������������������������������������������������������ = ������������ sin ������������ ������ + ������������
frequency deviation depends upon the
input voltage.                                     ������������(������)
                                                            = 2������������������ ������������ (������)
                                                     ������������
What does that sound like?
                                                                      ������
                                               ������(������) = 2������������������            ������������ (������) ������������
That’s right.. An FM signal. So you can                             0
model a VCO the same.
          Example of a commonly used VCO
                                              VCO’s can be implemented in
                                              numerous ways. Crystal
                                              Oscillators, RLC oscillators, etc
                                              are just the beginning.

                                                VCO time-domain equation:
                                                ftuning(t) = Kv * vin(t)
Modeling a PLL: Continued...
Non-Linear Mathematical Model of PLL:
                                                                                  ed(t)                        ef(t)
     ������1 ������                                                      1
                         ∑     Sin(α)                              ������ ������ ������                 Loop Filter
                                                                 2 ������ ������ ������

                                        ������                    ev(t)
               ������2 ������        2������������������         (������) ������������                                    Loop Amplifier
                                        0




 Assume PLL is locked, then: ������������ ������ = (������1 ������ − ������2 ������ ) = 0
 Now we can use a linearized model.


 Linearized Mathematical Model of PLL (Locked PLL): ������������ ������ = (������1 ������ − ������2 ������ ) = 0
      ������1 ������                                            1                 ed(t)                                   ef(t)
                         ∑                                ������ ������ ������                         Loop Filter, h(t)
                                                        2 ������ ������ ������

                                             ������                ev(t)
                ������2 ������        2������������������             (������) ������������                                Loop Amplifier
                                            0




                                                                      Demodulated             ������������1 (������)   ������������2 (������)
                                                                                                         =
                                                                         signal                  ������������         ������������
                                                                                          2������������������ ������������ ������ = 2������������������ ������ ������
Properties of phase-locked loops:

• Step response: ability to phase/frequency step on its
  input.

• Setting Time: amount of time needed to lock-on
  after receiving an input.

• Phase Jitter: Short-term frequency instability causing
  small, rapid movements in phase. Often referred to
  as phase noise.
Simulating and Testing a PLL...
Testing a simple PLL Design (Using Simulink):
Suppose we are given a composite sinusoidal wave:
       s t = 5 cos 36 × 2πt + 2sin⁡    (180 × 2πt)
 And we would like to frequency modulate and demodulate this wave
with a 10kHz carrier, using a Phase-locked loop feed back system for
demodulation. The transmission bandwidth (BT) is not allowed to exceed
3 kHz.
Design Considerations:
                                                                  ∆������ = ������������ × ������������
Carrier frequency (fc) = 10e3 (Hz),
BT < 3e3 (Hz) so kf < 132 (Hz/V) {using max values},                        ∆������
Let kf = 1e2 (Hz/V) then Beta = approx 5.5 (wideband)                 ������ =
                                                                            ������
                                                                             ������
Let LP filter cutoff at approx 1e4 (Hz)
Things to test:                                                  ������������ = 2 × ∆������ + 2 × ������
                                                                                       ������

1. Initial Design                                             ������������ = 2 × ������������ × ������������ + 2 × ������
                                                                                            ������
2. What happens when kf << 1e2 (smaller bandwidth)
3. What happens when kf >> 1e2 (larger bandwidth)                              ������ × ������������
                                                                      ������������ =
4. What happens when LP Filter cutoff is < 1e4 (Hz)                               ������������
5. What happens when LP Filter cutoff is > 1e4 (Hz)
6. What happens when we use a 1st order Butterworth.
Simulating and Testing a PLL...
Test #1: Initial PLL Design
Simulating and Testing a PLL...
   Test #1: Initial PLL Design
Observations:
A: It worked! The FM signal was
successfully demodulated using phase-
locked loop feedback.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter produced a clean output
signal and removed the high frequency
component produced by the phase detector
(multiplier).
Simulating and Testing a PLL...
Test #2: kf << 1e2
Simulating and Testing a PLL...
  Test #2: kf << 1e2
Observations:
A: It failed! The FM signal was not
successfully demodulated.

B: The kf value of 1e1 (Hz/V) (B < .1), was
not sensitive enough to accurately
reproduce the message signal in the time
domain. Furthermore, the second message
component (180 Hz) displayed major
attenuation compared to the first message
component (36 Hz). (See previous slide for
comparison).

C: The Loop Filter produced a clean output
signal and removed the high frequency
components produced by the phase
detector (multiplier).
Simulating and Testing a PLL...
Test #3: kf >> 1e2
Simulating and Testing a PLL...
  Test #3: kf >> 1e2
Observations:
A: It failed! The FM signal was not
successfully demodulated.

B: The kf value of 1e3 (Hz/V) (B > 50), was
sensitive enough to accurately reproduce
the message signal in the time domain.
However, the increased value of kf pushed
the transmission bandwidth way above the
carrier frequency and exceeding our
bandwidth requirement.

C: The Loop Filter would need to be
adjusted (If the BT didn’t exceed the carrier,
which it did) to account for the increased
frequency components.
Simulating and Testing a PLL...
Test #4: Cutoff frequency < 1e4
Simulating and Testing a PLL...
   Test #4: Cutoff frequency < 1e4

Observations:
A: It failed! The FM signal was not
successfully demodulated.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter failed! The LP cutoff
frequency of 1 kHz was to low and removed
several of the pieces (starting at the carrier)
needed to accurately represent the
message.
Simulating and Testing a PLL...
Test #5: Cutoff frequency > 1e4
Simulating and Testing a PLL...
   Test #5: Cutoff frequency > 1e4

Observations:
A: It failed! The FM signal was not
successfully (cleanly) demodulated.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter failed! The LP cutoff
frequency of 1.5 kHz was to high and
allowed several of the unwanted high
frequency components into the system.
Simulating and Testing a PLL...
Test #6: Using a 1st order Butterworth
Simulating and Testing a PLL...
  Test #6: Using a 1st order Butterworth
Observations:
A: It failed! The FM signal was not
successfully (cleanly) demodulated.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter failed! The first order
Butterworth filter allowed several of the
unwanted high frequency components into
the system.
Other Applications of PLLs:

•   Control Systems
•   Frequency Synthesizers
•   Jitter reducers
•   Digital PLLs
•   Clock Generation
•   Zero Delay Buffers
•   Spread Spectrum Frequency Synthesizers
•   Demodulators (QPSK, QAM, FM, FSK, SSB)
Conclusion:
A phase locked loop is a negative feedback control system whose operation
can be used to demodulate an FM signal.

The phase-locked loop will automatically adjust it’s frequency and phase
based on an input error voltage and attempt to lock onto a reference signal.

Commonly used for carrier synchronization, indirect frequency demodulation,
clocking, buffering, and jitter removal.

Finally: If you would like to further enhance your understanding of phase-
locked loops, there is an excellent YouTube video by Professor Surendra
Prasad, Department of Electrical Engineering ,IIT Delhi. You can find it at:
http://www.youtube.com/watch?v=NeRdsWYqWFU
Questions:
References:

Haykin, S., “Analog and Digital Communications 2nd Edition” John
Wiley & Sons, Haboken, NJ, 2007.

Truxal, J. G., Automatic Feedback Control System Synthesis,
McGraw-Hill, New York, 1955.

Gardner, F. M., Phase Lock Techniques, Wiley, New York, Second
Edition, 1967.

Weitere ähnliche Inhalte

Was ist angesagt?

Optical network and architecture
Optical network and architectureOptical network and architecture
Optical network and architectureRadha Mahalle
 
Performance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSK
Performance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSKPerformance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSK
Performance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSKIlyas Majeed
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS tamil arasan
 
Ieee transfer schemes for M-T-M distribution systems
Ieee transfer schemes for M-T-M distribution systemsIeee transfer schemes for M-T-M distribution systems
Ieee transfer schemes for M-T-M distribution systemsVincent Wedelich, PE MBA
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniquessrkrishna341
 
13_DVD_Latch-up_prevention.pdf
13_DVD_Latch-up_prevention.pdf13_DVD_Latch-up_prevention.pdf
13_DVD_Latch-up_prevention.pdfUsha Mehta
 
Comparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptxComparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptxkeshav11845
 
Voltage Follower
Voltage Follower Voltage Follower
Voltage Follower Dr.Raja R
 
Element of switching system
Element of switching systemElement of switching system
Element of switching systemRCET
 
RELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfRELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfJayWin2
 

Was ist angesagt? (20)

Optical network and architecture
Optical network and architectureOptical network and architecture
Optical network and architecture
 
Performance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSK
Performance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSKPerformance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSK
Performance Analysis (BER vs Eb/N0) of BPSK,QPSK, DPSK and M-PSK
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
 
Eye diagram
Eye diagramEye diagram
Eye diagram
 
Ieee transfer schemes for M-T-M distribution systems
Ieee transfer schemes for M-T-M distribution systemsIeee transfer schemes for M-T-M distribution systems
Ieee transfer schemes for M-T-M distribution systems
 
Device isolation Techniques
Device isolation TechniquesDevice isolation Techniques
Device isolation Techniques
 
Ec 2-simulation-lab
Ec 2-simulation-labEc 2-simulation-lab
Ec 2-simulation-lab
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
 
13_DVD_Latch-up_prevention.pdf
13_DVD_Latch-up_prevention.pdf13_DVD_Latch-up_prevention.pdf
13_DVD_Latch-up_prevention.pdf
 
sheet resistivity
sheet resistivitysheet resistivity
sheet resistivity
 
Comparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptxComparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptx
 
Voltage Follower
Voltage Follower Voltage Follower
Voltage Follower
 
Logic Gate
Logic GateLogic Gate
Logic Gate
 
Basic protection and relaying
Basic protection and relayingBasic protection and relaying
Basic protection and relaying
 
Mode ppt.bmk
Mode ppt.bmkMode ppt.bmk
Mode ppt.bmk
 
Element of switching system
Element of switching systemElement of switching system
Element of switching system
 
RELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfRELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdf
 
Vlsi stick daigram (JCE)
Vlsi stick daigram (JCE)Vlsi stick daigram (JCE)
Vlsi stick daigram (JCE)
 
MOSFET....complete PPT
MOSFET....complete PPTMOSFET....complete PPT
MOSFET....complete PPT
 

Ähnlich wie Ee443 phase locked loop - presentation - schwappach and brandy

Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3Vin Voro
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterAsaad Drake
 
Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Sourjya Dutta
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systemsBabul Islam
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Signals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformSignals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformPraveen430329
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level codingsrkrishna341
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wedVin Voro
 
SP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxIffahSkmd
 

Ähnlich wie Ee443 phase locked loop - presentation - schwappach and brandy (20)

Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
 
Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
00e isi
00e isi00e isi
00e isi
 
Solved problems
Solved problemsSolved problems
Solved problems
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Signals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformSignals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and Transform
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
z transforms
z transformsz transforms
z transforms
 
lecture_16.ppt
lecture_16.pptlecture_16.ppt
lecture_16.ppt
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
 
Muri
MuriMuri
Muri
 
SP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptx
 

Mehr von Loren Schwappach

EE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers LabEE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers LabLoren Schwappach
 
Ee325 cmos design lab 7 report - loren k schwappach
Ee325 cmos design   lab 7 report - loren k schwappachEe325 cmos design   lab 7 report - loren k schwappach
Ee325 cmos design lab 7 report - loren k schwappachLoren Schwappach
 
Ee325 cmos design lab 6 report - loren k schwappach
Ee325 cmos design   lab 6 report - loren k schwappachEe325 cmos design   lab 6 report - loren k schwappach
Ee325 cmos design lab 6 report - loren k schwappachLoren Schwappach
 
Ee325 cmos design lab 5 report - loren k schwappach
Ee325 cmos design   lab 5 report - loren k schwappachEe325 cmos design   lab 5 report - loren k schwappach
Ee325 cmos design lab 5 report - loren k schwappachLoren Schwappach
 
Ee325 cmos design lab 4 report - loren k schwappach
Ee325 cmos design   lab 4 report - loren k schwappachEe325 cmos design   lab 4 report - loren k schwappach
Ee325 cmos design lab 4 report - loren k schwappachLoren Schwappach
 
Ee325 cmos design lab 3 report - loren k schwappach
Ee325 cmos design   lab 3 report - loren k schwappachEe325 cmos design   lab 3 report - loren k schwappach
Ee325 cmos design lab 3 report - loren k schwappachLoren Schwappach
 
Loren k. schwappach ee331 - lab 4
Loren k. schwappach   ee331 - lab 4Loren k. schwappach   ee331 - lab 4
Loren k. schwappach ee331 - lab 4Loren Schwappach
 
Loren k. schwappach ee331 - lab 3
Loren k. schwappach   ee331 - lab 3Loren k. schwappach   ee331 - lab 3
Loren k. schwappach ee331 - lab 3Loren Schwappach
 
Ee343 signals and systems - lab 2 - loren schwappach
Ee343   signals and systems - lab 2 - loren schwappachEe343   signals and systems - lab 2 - loren schwappach
Ee343 signals and systems - lab 2 - loren schwappachLoren Schwappach
 
Ee343 signals and systems - lab 1 - loren schwappach
Ee343   signals and systems - lab 1 - loren schwappachEe343   signals and systems - lab 1 - loren schwappach
Ee343 signals and systems - lab 1 - loren schwappachLoren Schwappach
 
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09Loren Schwappach
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3Loren Schwappach
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1Loren Schwappach
 
Ee395 lab 2 - loren - victor - taylor
Ee395   lab 2 - loren - victor - taylorEe395   lab 2 - loren - victor - taylor
Ee395 lab 2 - loren - victor - taylorLoren Schwappach
 
Ee395 lab 1 - bjt - loren - victor - taylor
Ee395   lab 1 - bjt - loren - victor - taylorEe395   lab 1 - bjt - loren - victor - taylor
Ee395 lab 1 - bjt - loren - victor - taylorLoren Schwappach
 
5 ee415 - adv electronics - presentation - schwappach
5   ee415 - adv electronics - presentation - schwappach5   ee415 - adv electronics - presentation - schwappach
5 ee415 - adv electronics - presentation - schwappachLoren Schwappach
 
4 ee414 - adv electroncs - lab 3 - loren schwappach
4   ee414 - adv electroncs - lab 3 - loren schwappach4   ee414 - adv electroncs - lab 3 - loren schwappach
4 ee414 - adv electroncs - lab 3 - loren schwappachLoren Schwappach
 
3 ee414 - adv electroncs - lab 2 - loren schwappach
3   ee414 - adv electroncs - lab 2 - loren schwappach3   ee414 - adv electroncs - lab 2 - loren schwappach
3 ee414 - adv electroncs - lab 2 - loren schwappachLoren Schwappach
 
2 ee414 - adv electroncs - lab 1 - loren schwappach
2   ee414 - adv electroncs - lab 1 - loren schwappach2   ee414 - adv electroncs - lab 1 - loren schwappach
2 ee414 - adv electroncs - lab 1 - loren schwappachLoren Schwappach
 

Mehr von Loren Schwappach (20)

Ubuntu OS Presentation
Ubuntu OS PresentationUbuntu OS Presentation
Ubuntu OS Presentation
 
EE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers LabEE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers Lab
 
Ee325 cmos design lab 7 report - loren k schwappach
Ee325 cmos design   lab 7 report - loren k schwappachEe325 cmos design   lab 7 report - loren k schwappach
Ee325 cmos design lab 7 report - loren k schwappach
 
Ee325 cmos design lab 6 report - loren k schwappach
Ee325 cmos design   lab 6 report - loren k schwappachEe325 cmos design   lab 6 report - loren k schwappach
Ee325 cmos design lab 6 report - loren k schwappach
 
Ee325 cmos design lab 5 report - loren k schwappach
Ee325 cmos design   lab 5 report - loren k schwappachEe325 cmos design   lab 5 report - loren k schwappach
Ee325 cmos design lab 5 report - loren k schwappach
 
Ee325 cmos design lab 4 report - loren k schwappach
Ee325 cmos design   lab 4 report - loren k schwappachEe325 cmos design   lab 4 report - loren k schwappach
Ee325 cmos design lab 4 report - loren k schwappach
 
Ee325 cmos design lab 3 report - loren k schwappach
Ee325 cmos design   lab 3 report - loren k schwappachEe325 cmos design   lab 3 report - loren k schwappach
Ee325 cmos design lab 3 report - loren k schwappach
 
Loren k. schwappach ee331 - lab 4
Loren k. schwappach   ee331 - lab 4Loren k. schwappach   ee331 - lab 4
Loren k. schwappach ee331 - lab 4
 
Loren k. schwappach ee331 - lab 3
Loren k. schwappach   ee331 - lab 3Loren k. schwappach   ee331 - lab 3
Loren k. schwappach ee331 - lab 3
 
Ee343 signals and systems - lab 2 - loren schwappach
Ee343   signals and systems - lab 2 - loren schwappachEe343   signals and systems - lab 2 - loren schwappach
Ee343 signals and systems - lab 2 - loren schwappach
 
Ee343 signals and systems - lab 1 - loren schwappach
Ee343   signals and systems - lab 1 - loren schwappachEe343   signals and systems - lab 1 - loren schwappach
Ee343 signals and systems - lab 1 - loren schwappach
 
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
 
Ee395 lab 2 - loren - victor - taylor
Ee395   lab 2 - loren - victor - taylorEe395   lab 2 - loren - victor - taylor
Ee395 lab 2 - loren - victor - taylor
 
Ee395 lab 1 - bjt - loren - victor - taylor
Ee395   lab 1 - bjt - loren - victor - taylorEe395   lab 1 - bjt - loren - victor - taylor
Ee395 lab 1 - bjt - loren - victor - taylor
 
5 ee415 - adv electronics - presentation - schwappach
5   ee415 - adv electronics - presentation - schwappach5   ee415 - adv electronics - presentation - schwappach
5 ee415 - adv electronics - presentation - schwappach
 
4 ee414 - adv electroncs - lab 3 - loren schwappach
4   ee414 - adv electroncs - lab 3 - loren schwappach4   ee414 - adv electroncs - lab 3 - loren schwappach
4 ee414 - adv electroncs - lab 3 - loren schwappach
 
3 ee414 - adv electroncs - lab 2 - loren schwappach
3   ee414 - adv electroncs - lab 2 - loren schwappach3   ee414 - adv electroncs - lab 2 - loren schwappach
3 ee414 - adv electroncs - lab 2 - loren schwappach
 
2 ee414 - adv electroncs - lab 1 - loren schwappach
2   ee414 - adv electroncs - lab 1 - loren schwappach2   ee414 - adv electroncs - lab 1 - loren schwappach
2 ee414 - adv electroncs - lab 1 - loren schwappach
 

Kürzlich hochgeladen

TriStar Gold Corporate Presentation May 2024
TriStar Gold Corporate Presentation May 2024TriStar Gold Corporate Presentation May 2024
TriStar Gold Corporate Presentation May 2024Adnet Communications
 
The Truth About Dinesh Bafna's Situation.pdf
The Truth About Dinesh Bafna's Situation.pdfThe Truth About Dinesh Bafna's Situation.pdf
The Truth About Dinesh Bafna's Situation.pdfMont Surfaces
 
Constitution of Company Article of Association
Constitution of Company Article of AssociationConstitution of Company Article of Association
Constitution of Company Article of Associationseri bangash
 
Creative Ideas for Interactive Team Presentations
Creative Ideas for Interactive Team PresentationsCreative Ideas for Interactive Team Presentations
Creative Ideas for Interactive Team PresentationsSlidesAI
 
Event Report - IBM Think 2024 - It is all about AI and hybrid
Event Report - IBM Think 2024 - It is all about AI and hybridEvent Report - IBM Think 2024 - It is all about AI and hybrid
Event Report - IBM Think 2024 - It is all about AI and hybridHolger Mueller
 
tekAura | Desktop Procedure Template (2016)
tekAura | Desktop Procedure Template (2016)tekAura | Desktop Procedure Template (2016)
tekAura | Desktop Procedure Template (2016)Norah Medlin
 
How Do Venture Capitalists Make Decisions?
How Do Venture Capitalists Make Decisions?How Do Venture Capitalists Make Decisions?
How Do Venture Capitalists Make Decisions?Alejandro Cremades
 
Toyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsToyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsStefan Wolpers
 
How to refresh to be fit for the future world
How to refresh to be fit for the future worldHow to refresh to be fit for the future world
How to refresh to be fit for the future worldChris Skinner
 
PitchBook’s Guide to VC Funding for Startups
PitchBook’s Guide to VC Funding for StartupsPitchBook’s Guide to VC Funding for Startups
PitchBook’s Guide to VC Funding for StartupsAlejandro Cremades
 
Raising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesRaising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesAlejandro Cremades
 
Elevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO ServicesElevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO ServicesHaseebBashir5
 
Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...
Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...
Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...Rahul Bedi
 
Equinox Gold Corporate Deck May 24th 2024
Equinox Gold Corporate Deck May 24th 2024Equinox Gold Corporate Deck May 24th 2024
Equinox Gold Corporate Deck May 24th 2024Equinox Gold Corp.
 
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdfبروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdfomnme1
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportDubai Multi Commodity Centre
 
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdfDaftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdfAgusHalim9
 
HAL Financial Performance Analysis and Future Prospects
HAL Financial Performance Analysis and Future ProspectsHAL Financial Performance Analysis and Future Prospects
HAL Financial Performance Analysis and Future ProspectsRajesh Gupta
 
Engagement Rings vs Promise Rings | Detailed Guide
Engagement Rings vs Promise Rings | Detailed GuideEngagement Rings vs Promise Rings | Detailed Guide
Engagement Rings vs Promise Rings | Detailed GuideCharleston Alexander
 
Special Purpose Vehicle (Purpose, Formation & examples)
Special Purpose Vehicle (Purpose, Formation & examples)Special Purpose Vehicle (Purpose, Formation & examples)
Special Purpose Vehicle (Purpose, Formation & examples)linciy03
 

Kürzlich hochgeladen (20)

TriStar Gold Corporate Presentation May 2024
TriStar Gold Corporate Presentation May 2024TriStar Gold Corporate Presentation May 2024
TriStar Gold Corporate Presentation May 2024
 
The Truth About Dinesh Bafna's Situation.pdf
The Truth About Dinesh Bafna's Situation.pdfThe Truth About Dinesh Bafna's Situation.pdf
The Truth About Dinesh Bafna's Situation.pdf
 
Constitution of Company Article of Association
Constitution of Company Article of AssociationConstitution of Company Article of Association
Constitution of Company Article of Association
 
Creative Ideas for Interactive Team Presentations
Creative Ideas for Interactive Team PresentationsCreative Ideas for Interactive Team Presentations
Creative Ideas for Interactive Team Presentations
 
Event Report - IBM Think 2024 - It is all about AI and hybrid
Event Report - IBM Think 2024 - It is all about AI and hybridEvent Report - IBM Think 2024 - It is all about AI and hybrid
Event Report - IBM Think 2024 - It is all about AI and hybrid
 
tekAura | Desktop Procedure Template (2016)
tekAura | Desktop Procedure Template (2016)tekAura | Desktop Procedure Template (2016)
tekAura | Desktop Procedure Template (2016)
 
How Do Venture Capitalists Make Decisions?
How Do Venture Capitalists Make Decisions?How Do Venture Capitalists Make Decisions?
How Do Venture Capitalists Make Decisions?
 
Toyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsToyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & Transformations
 
How to refresh to be fit for the future world
How to refresh to be fit for the future worldHow to refresh to be fit for the future world
How to refresh to be fit for the future world
 
PitchBook’s Guide to VC Funding for Startups
PitchBook’s Guide to VC Funding for StartupsPitchBook’s Guide to VC Funding for Startups
PitchBook’s Guide to VC Funding for Startups
 
Raising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesRaising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE Ventures
 
Elevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO ServicesElevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO Services
 
Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...
Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...
Unleash Data Power with EnFuse Solutions' Comprehensive Data Management Servi...
 
Equinox Gold Corporate Deck May 24th 2024
Equinox Gold Corporate Deck May 24th 2024Equinox Gold Corporate Deck May 24th 2024
Equinox Gold Corporate Deck May 24th 2024
 
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdfبروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
بروفايل شركة ميار الخليج للاستشارات الهندسية.pdf
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
 
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdfDaftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
Daftar Rumpun, Pohon, dan Cabang Ilmu (2024).pdf
 
HAL Financial Performance Analysis and Future Prospects
HAL Financial Performance Analysis and Future ProspectsHAL Financial Performance Analysis and Future Prospects
HAL Financial Performance Analysis and Future Prospects
 
Engagement Rings vs Promise Rings | Detailed Guide
Engagement Rings vs Promise Rings | Detailed GuideEngagement Rings vs Promise Rings | Detailed Guide
Engagement Rings vs Promise Rings | Detailed Guide
 
Special Purpose Vehicle (Purpose, Formation & examples)
Special Purpose Vehicle (Purpose, Formation & examples)Special Purpose Vehicle (Purpose, Formation & examples)
Special Purpose Vehicle (Purpose, Formation & examples)
 

Ee443 phase locked loop - presentation - schwappach and brandy

  • 1. Phase-locked loop (PLL) By: Loren Schwappach & Crystal Brandy Prepared for: Dr. Jing Guo CTU – EE443 – Communications 1 September 2010
  • 2. Overview • What is a PLL? • Modeling a PLL • Properties of PLLs • Simulating and Testing a PLL • Other Applications of PLLs • Questions • References
  • 3. What is a phase-locked loop? • A negative feedback control system whose operation is closely linked to frequency modulation (FM). • Automatically adjusts the frequency, and phase of a control signal to match a reference signal. • Commonly used for carrier synchronization and indirect frequency demodulation.
  • 4. What is a phase-locked loop? Continued... • A change in the input signal shows up as a change in phase between the input signal and the VCO frequency. • Consists of 3 major components – Voltage-controlled oscillator (VCO) • Performs frequency modulation on its own carrier signal – Phase Detector • Multiplies an incoming FM wave by the output of the VCO – Loop filter • Removes the high-frequency components contained in the multiplier’s output.
  • 5. Modeling a PLL: Phase-Locked Loop (PLL) for FM Demodulation: FM ed(t) ef(t) wave Phase Detector Loop Filter Loop Amplifier v(t) s(t) eo(t) Voltage Controlled ev(t) Oscillator (VCO) Voltage Controlled Oscillator s t = ������������ cos 2πfc t+ φ1 (t) ������ • The error signal produced is proportional to Phase Detector: ������1 ������ = 2������������������ ������ ������ phase error. 0 s(t) ed(t) ������������ ������ = ������������ ������������������ 2������������ ������ + ������2 (������) ������ • The error signal also represents whether the correction should increase or decrease the ������ eo(t) ������2 ������ = 2������������������ ������ ������ VCO frequency. 0 high-frequency component low-frequency component 1 1 ������������ ������ = ������������ ������������ ������������ sin 4πfc t+φ1 (t)+φ2 (t) + ������������ ������������ ������������ sin φ1 (t)-φ2 (t) 2 2 1 ������������ ������ ≈ ������ ������ ������ sin φ1 (t)-φ2 (t) 2 ������ ������ ������
  • 6. Modeling a PLL: Continued... Why use a VCO?: A VCO produces an output whose ������������������������������������������������������ = ������������ sin ������������ ������ + ������������ frequency deviation depends upon the input voltage. ������������(������) = 2������������������ ������������ (������) ������������ What does that sound like? ������ ������(������) = 2������������������ ������������ (������) ������������ That’s right.. An FM signal. So you can 0 model a VCO the same. Example of a commonly used VCO VCO’s can be implemented in numerous ways. Crystal Oscillators, RLC oscillators, etc are just the beginning. VCO time-domain equation: ftuning(t) = Kv * vin(t)
  • 7. Modeling a PLL: Continued... Non-Linear Mathematical Model of PLL: ed(t) ef(t) ������1 ������ 1 ∑ Sin(α) ������ ������ ������ Loop Filter 2 ������ ������ ������ ������ ev(t) ������2 ������ 2������������������ (������) ������������ Loop Amplifier 0 Assume PLL is locked, then: ������������ ������ = (������1 ������ − ������2 ������ ) = 0 Now we can use a linearized model. Linearized Mathematical Model of PLL (Locked PLL): ������������ ������ = (������1 ������ − ������2 ������ ) = 0 ������1 ������ 1 ed(t) ef(t) ∑ ������ ������ ������ Loop Filter, h(t) 2 ������ ������ ������ ������ ev(t) ������2 ������ 2������������������ (������) ������������ Loop Amplifier 0 Demodulated ������������1 (������) ������������2 (������) = signal ������������ ������������ 2������������������ ������������ ������ = 2������������������ ������ ������
  • 8. Properties of phase-locked loops: • Step response: ability to phase/frequency step on its input. • Setting Time: amount of time needed to lock-on after receiving an input. • Phase Jitter: Short-term frequency instability causing small, rapid movements in phase. Often referred to as phase noise.
  • 9. Simulating and Testing a PLL... Testing a simple PLL Design (Using Simulink): Suppose we are given a composite sinusoidal wave: s t = 5 cos 36 × 2πt + 2sin⁡ (180 × 2πt) And we would like to frequency modulate and demodulate this wave with a 10kHz carrier, using a Phase-locked loop feed back system for demodulation. The transmission bandwidth (BT) is not allowed to exceed 3 kHz. Design Considerations: ∆������ = ������������ × ������������ Carrier frequency (fc) = 10e3 (Hz), BT < 3e3 (Hz) so kf < 132 (Hz/V) {using max values}, ∆������ Let kf = 1e2 (Hz/V) then Beta = approx 5.5 (wideband) ������ = ������ ������ Let LP filter cutoff at approx 1e4 (Hz) Things to test: ������������ = 2 × ∆������ + 2 × ������ ������ 1. Initial Design ������������ = 2 × ������������ × ������������ + 2 × ������ ������ 2. What happens when kf << 1e2 (smaller bandwidth) 3. What happens when kf >> 1e2 (larger bandwidth) ������ × ������������ ������������ = 4. What happens when LP Filter cutoff is < 1e4 (Hz) ������������ 5. What happens when LP Filter cutoff is > 1e4 (Hz) 6. What happens when we use a 1st order Butterworth.
  • 10. Simulating and Testing a PLL... Test #1: Initial PLL Design
  • 11. Simulating and Testing a PLL... Test #1: Initial PLL Design Observations: A: It worked! The FM signal was successfully demodulated using phase- locked loop feedback. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter produced a clean output signal and removed the high frequency component produced by the phase detector (multiplier).
  • 12. Simulating and Testing a PLL... Test #2: kf << 1e2
  • 13. Simulating and Testing a PLL... Test #2: kf << 1e2 Observations: A: It failed! The FM signal was not successfully demodulated. B: The kf value of 1e1 (Hz/V) (B < .1), was not sensitive enough to accurately reproduce the message signal in the time domain. Furthermore, the second message component (180 Hz) displayed major attenuation compared to the first message component (36 Hz). (See previous slide for comparison). C: The Loop Filter produced a clean output signal and removed the high frequency components produced by the phase detector (multiplier).
  • 14. Simulating and Testing a PLL... Test #3: kf >> 1e2
  • 15. Simulating and Testing a PLL... Test #3: kf >> 1e2 Observations: A: It failed! The FM signal was not successfully demodulated. B: The kf value of 1e3 (Hz/V) (B > 50), was sensitive enough to accurately reproduce the message signal in the time domain. However, the increased value of kf pushed the transmission bandwidth way above the carrier frequency and exceeding our bandwidth requirement. C: The Loop Filter would need to be adjusted (If the BT didn’t exceed the carrier, which it did) to account for the increased frequency components.
  • 16. Simulating and Testing a PLL... Test #4: Cutoff frequency < 1e4
  • 17. Simulating and Testing a PLL... Test #4: Cutoff frequency < 1e4 Observations: A: It failed! The FM signal was not successfully demodulated. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter failed! The LP cutoff frequency of 1 kHz was to low and removed several of the pieces (starting at the carrier) needed to accurately represent the message.
  • 18. Simulating and Testing a PLL... Test #5: Cutoff frequency > 1e4
  • 19. Simulating and Testing a PLL... Test #5: Cutoff frequency > 1e4 Observations: A: It failed! The FM signal was not successfully (cleanly) demodulated. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter failed! The LP cutoff frequency of 1.5 kHz was to high and allowed several of the unwanted high frequency components into the system.
  • 20. Simulating and Testing a PLL... Test #6: Using a 1st order Butterworth
  • 21. Simulating and Testing a PLL... Test #6: Using a 1st order Butterworth Observations: A: It failed! The FM signal was not successfully (cleanly) demodulated. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter failed! The first order Butterworth filter allowed several of the unwanted high frequency components into the system.
  • 22. Other Applications of PLLs: • Control Systems • Frequency Synthesizers • Jitter reducers • Digital PLLs • Clock Generation • Zero Delay Buffers • Spread Spectrum Frequency Synthesizers • Demodulators (QPSK, QAM, FM, FSK, SSB)
  • 23. Conclusion: A phase locked loop is a negative feedback control system whose operation can be used to demodulate an FM signal. The phase-locked loop will automatically adjust it’s frequency and phase based on an input error voltage and attempt to lock onto a reference signal. Commonly used for carrier synchronization, indirect frequency demodulation, clocking, buffering, and jitter removal. Finally: If you would like to further enhance your understanding of phase- locked loops, there is an excellent YouTube video by Professor Surendra Prasad, Department of Electrical Engineering ,IIT Delhi. You can find it at: http://www.youtube.com/watch?v=NeRdsWYqWFU
  • 25. References: Haykin, S., “Analog and Digital Communications 2nd Edition” John Wiley & Sons, Haboken, NJ, 2007. Truxal, J. G., Automatic Feedback Control System Synthesis, McGraw-Hill, New York, 1955. Gardner, F. M., Phase Lock Techniques, Wiley, New York, Second Edition, 1967.