SlideShare ist ein Scribd-Unternehmen logo
Resolving the Structure of Chromatin at the Centromere
in Saccharomyces Cerevisiae
Julian Haase
Bloom Lab
• Cohesin enriched approximately 3-fold in a 50kb region flanking the centromere
(Weber et al., PLOS, 2006)
How is successful chromosome segregation achieved?
• Faithful segregation of chromosomes to daughter cells is essential; failure
leads to aneuploidy, which can lead to cancer and diseases such as Down’s
syndrome (trisomy 21) and Edward’s syndrome (trisomy 18).
• The centromere is a chromosomal locus that is required for mitosis and acts as
the site of kinetochore formation. The histone H3 variant CENPA (Cse4) is
incorporated here.
• The kinetochore is large multi-protein complex consisting of over 70 proteins
that are recruited to the centromere. This then serves to mechanically link the
chromosomes to microtubules, through microtubule binding components
such as Ndc80.
• Once sister chromatids are properly attached to opposite poles via
microtubules, tension is generated across the spindle. This tension fulfills
checkpoints that allow segregation to continue.
• Tension is achieved by holding sister chromatids together prior to anaphase.
• The cohesin complex holds sisters together.
Are centromere proximal lacO arrays bound together during metaphase?
How do we reconcile the 3-fold enrichment of cohesin at centromeres
with separated centromere proximal lacO arrays?
Does this model accurately portray live cell imaging of
centromeres and centromere proximal DNA?
Outer Spots – Spindle pole bodies
Inner spots – CEN3 proximal lacO arrays
(1.1kb from Cen3)
Pearson et al., Journal Cell Biol., 2001
1 um
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
Chromosome Conformation Capture (3C)
A method to detect the interaction frequency between two points in the genome. This
can be used to infer the spatial arrangement and physical structure of a chromatin fiber.
1) Crosslink
2) Digest
3) Ligate
4) Reverse Crosslinks
5) PCR
1) Crosslink
2) Digest
3) Ligate
4) Reverse Crosslinks
5) PCR
Cen3
Cen3
15kb 23kb
50kb
50kb
Decker et al., Science, 2002
What is the conformation of chromatin near centromeres?
Yeh and Haase et al., Current Biology, 2008
WT ChrIII 15kb
(2.41)
WT ChrIII 23kb
(1.64)
WT ChrIII 50kb
(0.25)
mcd1-1 ChrIII 15kb
(1.54)
nuf2-60 ChrIII 15kb
(2.25)
galCen3 ChrIII 15kb
(1.18)
WT ChrXI 12.3kb
(2.49)
Uncrosslinked
(1.15)
0
0.5
1
1.5
2
2.5
0 0.5 1 1.5 2 2.5 3
Pericentricvsarmexperimentalratio
Pericentric vs arm control ratio
Chromosomal Interaction Frequency
Intra-strand cohesin
Inter-strand cohesin
C-loop
Kinetochore attachment
Proposed path of centromeric DNA: the C-loop
• Accounts for cohesin
enrichment at pericentric
DNA
• Predicts centromere
proximal lacO separation
seen in live cells
• Predicts the increase in
chromosomal looping at
pericentric DNA seen by 3C
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
What is the structure and function of the cohesin complex?
Intra-strand cohesin
Inter-strand cohesin
• Four protein complex
• Holds sister chromatids together
•Cleaved at anaphase onset
Can we detect cohesin enrichment at pericentric chromatin by fluorescence?
Yeh and Haase et al., Current Biology, 2008
End on view
Smc3 Spc29
Ndc80Smc3
Side on view
Spc29Smc3
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
What are some limitations of light microscopy?
Verdaasdonk et al., Journal of Cellular Physiology, 2014
Airy discs
and rings
The blurring of
light by a
microscope,
the point
spread
function (PSF),
can be
approximated
by a Gaussian
distribution
Abbe
diffraction
limit
Spots within
the Abbe
limit appear
as a single
diffraction
limited spot.
How do we overcome the blurring of light?
Verdaasdonk et al., Journal of Cellular Physiology, 2014
Deconvolution
restores light blurred
by the point spread
function to the
original point source
without loss of data.
Smc3-GFP
Original Deconvolved
Smc3-GFP before
and after the
application of
nonlinear iterative
deconvolution
Can we get a clearer picture of the organization of cohesin using deconvolution?
Smc3 GFP side on view
deconvolvedoriginal
Smc3 GFP end on view
deconvolvedoriginal
How is cohesin organized in the mitotic spindle?
Smc3
Ndc80
Spc29
Smc3
Spc29 Smc3
By generating surface renders from deconvolved images stepping through the spindle, we expect cohesin is confined
to a hollow barrel shaped region encompassing the spindle.
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
Populate geometric shape
with fluorophores
Convolve with
experimental PSF
Analyze and compare experimental
and modelled imagesExperimental PSF
What is model convolution?
Model convolution provides subpixel accuracy of the position of fluorescently labelled proteins.
Stephens et al., MBoC, 2013
• Takes the opposite approach of deconvolution. It generates an understanding of the
possible fluorophore distributions that give rise to an experimental image.
• This can be used to gain insight to the number of molecules,
the distribution of molecules, dynamics, and more.
Can model convolution be used to predict the structure of spindle components?
Winey et al., 1995;
Gardner et al., 2005
Stephens et al., MBoC, 2013
Stephens et al., MBoC, 2013
Can model convolution be used to predict the structure of spindle components?
Stephens et al., MBoC, 2013
Can model convolution be used to predict the structure of spindle components?
550nm
500 nm
What is the structural organization of cohesin in the mitotic spindle?
• Cohesin is enriched 3-fold along pericentric chromatin
• Imaging tells us cohesin is organized along the spindle axis
• Using deconvolution, model convolution and surface rendering we conclude
cohesin is arrayed as a hollow cylinder encompassing the spindle during metaphase.
Yeh and Haase et al., Current Biology, 2008
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
Can we determine localization with sub pixel accuracy using large population data sets?
Using large population data sets (n>200), we can generate positional density
maps which show the frequency with which something can be found at a given
location.
Haase and Mishra et al., Current Biology, 2013
How do we validate heatmaps as a method we trust?
Use heatmaps to measure known values from in vivo measurements of kinetochore components.
• Average discrepancy between heatmap
and SHREC values is 5.3 nm.
• Heatmaps faithfully reproduce
measurements from high localization
accuracy techniques.
Joglekar et al., Current Biology, 2009
Haase et al., Current Biology, 2012
• SHREC - Single molecule High Resolution
Colocalization: two dimensional (XY)
measurement with high localization
accuracy (10nm).
10 nm
• Compare SHREC measurements of intra-
kinetochore distances to heatmap
measurements to validate.
Heatmap
values
SHREC
values
How do chromatin heatmaps compare to cohesin localization?
LacO 1.1kb from Cen3 WT
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 285.1nm ± 68.9nm
X= 354.5nm ± 74.1nm
n= 240
lacO 1.1kb from Cen3 LacO 1.8kb from Cen15 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 257.3nm ± 76.8nm
X= 405.2nm ± 136.4nm
n= 228
lacO 6.8kb from Cen15 LacO 3.8kb from Cen3 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 326.2nm ± 110nm
X= 420.6nm ± 175.3nm
n= 208
lacO 8.8kb from Cen3
Centromere proximal chromatin fills a volumetric space similar to that predicted by cohesin visualization
-Width of cohesin barrel encompasses the spread in the Y dimension of chromatin heatmaps
-Both cohesin and chromatin show decreased localization at the spindle axis
Stephens et al., JCB, 2011
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
Do inner and outer kinetochore components have the same degree of anisotropy?
Ndc80 Metaphase
Ndc80 Anaphase
C-Ndc80
575.56
N-Cse4
659.95
400
450
500
550
600
650
700
750
800
Spot “Height” in Metaphase
C-Ndc80
1.09
N-Cse4
1.23
1
1.1
1.2
1.3
Spot Anisotropy in Anaphase
(spot “height”/spot “width”)
Broad Cse4 localization pattern similar to that observed by Wisniewski, et al., eLife, 2014
Haase et al., Current Biology, 2012
Cse4 Metaphase
Cse4 Anaphase
Is kinetochore anisotropy the result of light blurring?
• Broad non diffraction limited footprint of Cse4 remains distinct after deconvolution when compared to Ndc80
• Unlikely to be an imaging artifact
Metaphase Anaphase
Ndc80Spc29 Ndc80
deconvolvedoriginal
Ndc80Spc29 Ndc80
deconvolvedoriginal
Ndc80Spc29 Ndc80 Ndc80Spc29 Ndc80
Cse4Spc29 Cse4 Cse4Spc29 Cse4
Cse4Spc29 Cse4 Cse4Spc29 Cse4
Y= 94.6nm ± 94.3nm
X= 219.3nm ± 76.0nm
n=1032
Y= 116.2nm ± 102.95nm
X= 258.9nm ± 106.4nm
n=268
Y= 180.92nm ± 155.92nm
X= 286.85nm ± 120.9nm
n=1064
Do heatmaps give any insight into the anisotropy of kinetochores?
Cse4 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
C terminal Ndc80 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
N term Ndc80 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
What is the path of DNA at the centromere?
Can we visualize cohesin enrichment at the centromere?
How do we resolve the organization of cohesin at the centromere?
• Deconvolution
• Model Convolution
What is the spatial confinement of pericentric chromatin?
What is the significance of kinetochore anisotropy?
Are there any mutants that regulate kinetochore anisotropy?
What makes Pat1 a candidate for anisotropy regulation at the kinetochore?
Wang et al., , 1996
Pilkington et al., , 2008
Mishra et al., Genetics, 2013
• Structural component of the kinetochore, and has a conserved region which
mediates CEN association
• Associates with centromeres in an NDC10 dependent manner
• Loss of Pat1 delays sister chromatid separation, causes errors in segregation,
and leads to defects in structural integrity of chromatin near the centromere.
• Protein Associated with Topoisomerase II
• Involved in P-body assembly (non translating mRNAs and decapping factors)
More recently, Pat1 was found to have a role in chromosome segregation
independent of its function in P-body assembly and translation repression
Does Pat1 play a role in kinetochore anisotropy?
Ndc80 Metaphase Ndc80 pat1D Metaphase
Ndc80 Anaphase Ndc80 pat1D Anaphase
C-Ndc80
1.09
C-Ndc80
pat1D
1.09
N-Cse4
1.23
N-Cse4
pat1D
1.06
1
1.1
1.2
1.3
Spot Anisotropy in Anaphase
(spot “height”/spot “width”)
C-Ndc80
3,958.76
C-Ndc80
pat1D
3,321.30
N-Cse4
955.18
N-Cse4
pat1D
595.25
400
900
1400
1900
2400
2900
3400
3900
4400
Integrated Spot Intensity
C-Ndc80
575.56
C-Ndc80
pat1D
571.17
N-Cse4
659.95
N-Cse4
pat1D
569.87
400
450
500
550
600
650
700
750
800
Spot "Height" in Metaphase
Haase and Mishra et al., Current Biology, 2013
Absence of Pat1 decreases Cse4 footprint to that of Ndc80
Cse4 Metaphase Cse4 pat1D Metaphase
Cse4 Anaphase Cse4 pat1D Anaphase
Can deconvolution confirm the Pat1 dependent nature of kinetochore anisotropy?
Ndc80 GFP
deconvolved
Metaphase Anaphase
Ndc80Spc29 Ndc80
deconvolvedoriginal deconvolvedoriginal
Ndc80Spc29 Ndc80
Cse4Spc29 Cse4 Cse4Spc29 Cse4
Ndc80
pat1DSpc29
Ndc80
pat1D
Ndc80
pat1DSpc29
Ndc80
pat1D
Cse4
pat1DSpc29
Cse4
pat1D
Cse4
pat1DSpc29
Cse4
pat1D
Does loss of Pat1 alter the localization mapping of the inner kinetochore?
Y= 94.6nm ± 94.3nm
X= 219.3nm ± 76.0nm
n=1032
N term Ndc80 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 180.92nm ± 155.92nm
X= 286.85nm ± 120.9nm
n=1064
Cse4 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 108.8nm ± 102.6nm
X= 281.1nm ± 74.7nm
n= 200
Cse4 pat1KO Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Can model convolution help us understand kinetochore anisotropy?
Y= 94.6nm ± 94.3nm
X= 219.3nm ± 76.0nm
n=1032
Y= 90.1nm ± 79.9nm
X= 219.1nm ± 65.3nm
n= 1000
N term Ndc80 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Ndc80 Simulated
Distance (nm)
Distance(nm)
0 130 260 390 520 650 780 910
650
520
390
260
130
0
-130
-260
-390
-520
-650 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Can model convolution provide insight into the broad localization density of Cse4?
Y= 94.6nm ± 94.3nm
X= 292.5nm ± 96.4nm
n=1000
Cse4 simulated
Distance (nm)
Distance(nm)
0 130 260 390 520 650 780 910
650
520
390
260
130
0
-130
-260
-390
-520
-650 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 180.92nm ± 155.92nm
X= 286.85nm ± 120.9nm
n=1064
Cse4 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 190.2nm ± 141.3nm
X= 280.8nm ± 58.5nm
n= 1000
Cse4 1 centered 4 displaced
Distance (nm)
Distance(nm)
0 130 260 390 520 650 780 910
650
520
390
260
130
0
-130
-260
-390
-520
-650 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Does Cse4 association to CEN change in the absence of Pat1?
Haase and Mishra et al., Current Biology, 2013
CEN association of Cse4 is reduced in pat1D strains by ~60%. Centromeric
levels of Cse4 were assayed by ChIP analysis of Cse4-Myc at CEN1, 3 and 5 and
non-CEN DNA in wild type and pat1D strains.
Is depletion of Cse4 at the centromere in pat1D strains is indicative of extra Cse4 molecules?
• 40% reduction in Cse4
fluorescence intensity
upon loss of Pat1
Haase and Mishra et al., Current Biology, 2013
• 60% reduction of Cse4 at
CEN by ChIP upon loss of
Pat1
• Heatmaps show a change
in Cse4 footprint to one
similar to that of Ndc80
upon loss of Pat1
• Model convolution
cannot match WT Cse4
distribution without the
addition of extra
molecules
• Pat1 regulates
localization of an
accessory pool of Cse4
1x
Kinetochore -
Centromere
Attachment Site
16x
Kinetochore
Microtubules
~250nm diameter
Interpolar
Microtubules
Pericentric cohesin
barrel surrounding
spindle microtubules
~500nm diameter
Accessory molecules of
Cse4 distributed along
pericentric chromatin
Assembling the pieces
Using a diverse set of techniques (3C, deconvolution, model convolution, heatmaps) in conjunction with
widefield microscopy and ChIP, we reach the following conclusions:
C-loop
The Structure of Chromatin at the Centromere
in Saccharomyces Cerevisiae
Julian Haase
Bloom Lab
University of North Carolina at Chapel Hill
Acknowledgements
Bloom Lab
Current Members:
Kerry Bloom
Elaine Yeh
Josh Lawrimore
Former Members:
Ajit Joglekar
Jolien Verdaasdonk
Andrew Stephens
Rachel Haggerty
UNC Computer Science Department
Russ Taylor
Leandra Vicci
Cory Quammen
Basrai Lab
Munira Basrai
Prashant Mishra
UNC Physics Department
Michael Falvo
Salmon Lab
Ted Salmon
Aussie Suzuki
Put “extra” slides after this point
Fluorescence light distribution in an image
Point Spread Function (PSF) of Light
Light emitted from a point source is spread out.
150nM
30nM
Diffraction Limit – Image resolution is limited by the diffraction of light.
Chromatin conformation at Cen3
Cen3 15Kb
Crosslinked
Arm3 15Kb
Crosslinked
Cen3 15Kb
uncrosslinked
Arm3 15Kb
uncrosslinked
15kb (n=10)
112249 52518 9485 7367
Crosslinked 15kb
Cen3 vs. Arm3 Ratio
112249/52518 = 1.96
Uncrosslinked 15kb
Cen3 vs. Arm3 Ratio
9485/7367 = 1.25
Crosslinked Ratio vs. Uncrosslinked Ratio
((1.96/1.25)-1)*100 = 56%
From this, we can say that there is
increased physical proximity on
either side of Cen3 relative to a
region on the arm.
>
Yeh and Haase et al., Current Biology, 2008
3C product analysis
Condition
Cen3/Arm3
Crosslinked
DNA
Cen3/Arm3
Uncrosslinked
DNA
Percent increase following
crosslinking
xlinked-unxlinked
Unxlinked
Sample gel n P value
WT 15kb 1.96 ± .18 1.25 ± .15 56.46% 10 4.46E-08
WT 23kb 1.50 ± .05 1.21 ± .03 23.81% 5 1.02E-05
WT 50kb 0.68 ± .25 1.21 ± .30 -43.81% 5 2.82E-04
aF 15kb 1.90 ± .21 1.22 ± .07 56.02% 10 1.33E-08
aF 23kb 1.52 ± .03 1.21 ± .03 25.91% 5 6.37E-07
aF 50kb 1.13 ± .05 1.21 ± .04 -6.58% 5 .002
ndc10-1 15kb 1.21 ± .08 1.18 ± .09 2.03% 10 .55
ndc10-1, aF 15kb 1.21 ± .03 1.20 ± .02 1.56% 10 .76
mcd1-1 15kb 1.44 ± .14 1.18 ± .05 22.17% 10 3.89E-05
gal cen 15kb 1.23 ± .05 1.21 ± .06 1.76% 10 .67
P
xlinked
A
xlinked
P
unxlinked
A
unxlinked
Yeh and Haase et al., Current Biology, 2008
Degree of looping
Yeh and Haase et al., Current Biology, 2008
0
0.5
1
1.5
2
2.5
3
3.5
1 2 3 4 5
cen3vsarm3IntensityRatio
Actual Dilution of Cen3 vs Arm3
Intensity Ratios vs Actual Dilutions
Series1
3C artificial control
DIC
Smc3 is organized around the spindle axis
Confocal images, 100nm steps
Smc3 GFP Spc29 RFP
Smc3GFP
Spc29RFP
Smc3 localizes as two lobes of fluorescence along either
side of the spindle axis, when the spindle is viewed side
on. The lobes are inside the spindle pole bodies,
indicating the cohesin structure is shorter than the
spindle.
Find more/better images to
show here
Yeh and Haase et al., Current Biology, 2008
DIC
This end-on view suggests cohesin is
organized in a cylindrical array.
Confocal images, 100nm steps
Smc3 localizes as a hollow circle when viewed
end on. Spindle pole bodies can be seen directly
in the center of this structure. This “doughnut”
shape, when considered along with the bi-lobed
distribution, suggests cohesin forms a cylinder
that wraps around the spindle.
Smc3 GFP Spc29 RFP
Find more/better images to
show here.
Smc3GFP
Spc29RFP
Yeh and Haase et al., Current Biology, 2008
Images of cohesin + kinetochores
Yeh and Haase et al., Current Biology, 2008
11.10.11 #12611.10.11 #44
WT cohesin time series
Frap Scope, unbinned
t0m t3m t6m t9m t12m t15m t18m
t0m t5m t10m t15m t20m
Side On End On
Width (nm) 417 485
St Dev (nm) 36 76
Side On End On
Original Deconvolved Original Deconvolved
Width (nm) 417 538* 485 559*
St Dev (nm) 36 60 76 30
Confocal WT End On view
Smc3 GFP
Smc3 GFP
deconvolved Smc3 GFP
Smc3 GFP
deconvolved
Confocal WT Side On view
Smc3 GFP
Smc3 GFP
deconvolved Smc3 GFP
Smc3 GFP
deconvolved
Frap Scope cohesin Smc3GFP, Spc29RFP, Ndc80mCherry Surface Render
11.10.11 #12611.10.11 #44
End On Decon Width
(inclusive)
pixels nm
7.75 502
10 648
8.5 551
8 518
8 518
9.5 616
Average Average
8.63 559
Side On Decon Width
(inclusive)
pixels nm
9 583
8 518
8 518
8.5 551
8 518
9 583
8 518
8 518
Average Average
8.31 538
Microscopy Assisted by Graphics and Interactive Convolution
(MAGIC)
How can we test if this proposed structure generates
the fluorescent pattern we see in vivo? With MAGIC!
Model Fluorescent
Image
Special thanks to Cory Quammen and Russ Taylor, members of the
Nanoscale Science Research Group, part of the Computer Science
Department at UNC-Chapel Hill
Magic
Image
Simulations of clustering
Andrew Stephens
Cory W. Quammen & Russell M.
Taylor II
UNC Computer Science
Model convolution of mitotic spindle structures
Stephens et al., MBoC, 2013
Wildtype spot shapes, perpendicular to spindle axis
Metaphase: Cse4 GFP
Width: 655nm
Max intensity: 352
Integrated Intensity: 16741
Anaphase: Cse4 GFP
Width: 642nm (1.98% decrease from metaphase)
Max Intensity: 387 (9.73% increase from metaphase)
Integrated Intensity:17496 (4.51% increase from metaphase)
Metaphase: Ndc80 GFP
Width: 576nm
Max intensity: 748
Integrated Intensity: 35753
Anaphase: Ndc80 GFP
Width: 556nm (3.47% decrease from metaphase)
Max Intensity: 820 (9.59% increase from metaphase)
Integrated Intensity:37299 (4.32% increase from metaphase)
Decrease in “width” represents decrease in radius of spherical structure,
not just a 2D decrease!
Metaphase: WT Cse4 GFP
Width: 655nm
Max intensity: 352
Integrated Intensity: 16741
Metaphase: mre11D Cse4 GFP
Width: 541nm
Max intensity:
Integrated Intensity:
Wildtype vs mre11D spot shapes, perpendicular to spindle axis
Anaphase: Cse4 GFP
Width: 642nm (1.98% decrease from metaphase)
Max Intensity: 387 (9.73% increase from metaphase)
Integrated Intensity:17496 (4.51% increase from metaphase)
Anaphase: mre11D Cse4 GFP
Width: 537nm
Max intensity:
Integrated Intensity:
C-Ndc80
575.56
C-Ndc80
pat1D
571.17
C-Ame1
666.44
C-Ame1
pat1D
671.53
N-Cse4
659.95
N-Cse4
pat1D
569.87
N-Cse4
xrn1D
583.18
400
450
500
550
600
650
700
750
800
1
Kinetochore Spot "Height" along Y axis in Metaphase
C-Ndc80
3,958.76
C-Ndc80
pat1D
3,321.30
C-Ame1
1,587.75
C-Ame1
pat1D
1,450.61
N-Cse4
955.18 N-Cse4
pat1D
595.25
N-Cse4
xrn1D
604.88
400
900
1400
1900
2400
2900
3400
3900
4400
Kinetochore Integrated Spot Intensity
Haase and Mishra et al., Current Biology, 2013
C-Ndc80
60432
C-Ndc80
pat1D
59913
C-Ame1
48640
C-Ame1
pat1D
49998
N-Cse4
24355
N-Cse4
pat1D
32516
N-Cse4
xrn1D
33854
5000
15000
25000
35000
45000
55000
65000
75000
1
Whole Cell Fluorescence in Metaphase
Haase and Mishra et al., Current Biology, 2013
Cse4 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 180.92nm
± 155.92nm
X= 286.85nm
± 120.9nm
n=1064
Cse4 pat1KO Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 108.86nm
± 102.66nm
X= 281.08nm
± 74.74nm
n=200
Y= 102.28nm
± 95.33nm
X= 241.98nm
± 110.9nm
n=204
Cse4 Gal-Psh1 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Haase and Mishra et al., Current Biology, 2013
N term Ndc80 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 94.6nm
± 94.3nm
X= 219.3nm
± 76.0nm
n=1032
Y= 116.2nm
± 102.95nm
X= 258.9nm
± 106.4nm
n=268
C terminal Ndc80 Metaphase
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Ndc80 GFP at AA 410
Distance (nm)
Distance(nm)
0 130 259 389 518 648 778 907
648
518
389
259
130
0
-130
-259
-389
-518
-648 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Y= 118.2nm
± 100.6nm
X= 240.2nm
± 87.9nm
n=204
20.95nm 18.7nm
39.6nm
Heatmap Validation
Haase and Mishra et al., Current Biology, 2013
Haase and Mishra et al., Current Biology, 2013
Heatmap Validation
Cse4 transcription is not affected in pat1D strains
Transcription of the CSE4 gene is not affected in
pat1∆ strains. Total RNA was extracted from
wild type and pat1D strains as determined by qRT-
PCR. Haase and Mishra et al., Current Biology, 2013
Future Directions
By what mechanisms are accessory molecules of Cse4 regulated?
-Pat1 prevents ubiquitination of Cse4?
-examine rates of ubiquitination in WT vs pat1D
-does increasing rate of ubiquitination in WT cells replicate Cse4 distribution in pat1D?
Do accessory Cse4 molecules serves as a “rapid response” to detachment events – mre11?
Super Resolution Imaging – Structured Illumination Microscopy (SIM)
SIM: H2B-GFP Spc29-RFP Metaphase
SIM: Smc3-GFP Spc29-RFP Metaphase

Weitere ähnliche Inhalte

Was ist angesagt?

Method for measuring or investigation of fiber structure
Method for measuring or investigation of fiber structureMethod for measuring or investigation of fiber structure
Method for measuring or investigation of fiber structure
Shawan Roy
 
2018 BDSRA Roine CLN3
2018 BDSRA Roine CLN32018 BDSRA Roine CLN3
Different technique for investigation of fiber structure..
Different technique for investigation of fiber structure..Different technique for investigation of fiber structure..
Different technique for investigation of fiber structure..
Hasanuzzaman Hasan
 
The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...
The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...
The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...
Sérgio Sacani
 
Nicole Gullatt_Project Engages Presentation (Spring Semester Presentation)
Nicole Gullatt_Project Engages Presentation (Spring Semester  Presentation)Nicole Gullatt_Project Engages Presentation (Spring Semester  Presentation)
Nicole Gullatt_Project Engages Presentation (Spring Semester Presentation)
Nicole Gullatt
 
Analysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATIONAnalysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATION
George Livanos
 
X ray crystallography. presentation
X ray crystallography. presentationX ray crystallography. presentation
X ray crystallography. presentation
Shakir nazir
 
bragg2pre
bragg2prebragg2pre
bragg2pre
Betty Slama
 
X ray crystallography and X ray Diffraction
X ray crystallography and X ray DiffractionX ray crystallography and X ray Diffraction
X ray crystallography and X ray Diffraction
Faisal Hussain
 
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug deliveryUse of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
Minh Anh Nguyen
 
Drug-Polymer Compatibility Studies By XRD
Drug-Polymer Compatibility Studies By XRDDrug-Polymer Compatibility Studies By XRD
Drug-Polymer Compatibility Studies By XRD
Venkatesh Goli
 
Super Resolution Microscopy publications 2012
Super Resolution Microscopy publications 2012Super Resolution Microscopy publications 2012
Super Resolution Microscopy publications 2012
Firstscientix
 
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug deliveryUse of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
Minh Anh Nguyen
 
Biophotonics
BiophotonicsBiophotonics
Biophotonics
Tushar Swami
 
Dti basics
Dti basicsDti basics
Dti basics
unit2nimhans
 
Biomaterials for photonics
Biomaterials for photonicsBiomaterials for photonics
Biomaterials for photonics
udhay roopavath
 
Short case...Dysembryoplastic neuroepithelial tumor
Short case...Dysembryoplastic neuroepithelial tumorShort case...Dysembryoplastic neuroepithelial tumor
Short case...Dysembryoplastic neuroepithelial tumor
Professor Yasser Metwally
 
Whole brain optical imaging
Whole brain optical imagingWhole brain optical imaging
Whole brain optical imaging
Research Data Alliance
 
FINAL Poster
FINAL PosterFINAL Poster
FINAL Poster
Chris Gnam
 
Cavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrorsCavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrors
Ondrej Cernotik
 

Was ist angesagt? (20)

Method for measuring or investigation of fiber structure
Method for measuring or investigation of fiber structureMethod for measuring or investigation of fiber structure
Method for measuring or investigation of fiber structure
 
2018 BDSRA Roine CLN3
2018 BDSRA Roine CLN32018 BDSRA Roine CLN3
2018 BDSRA Roine CLN3
 
Different technique for investigation of fiber structure..
Different technique for investigation of fiber structure..Different technique for investigation of fiber structure..
Different technique for investigation of fiber structure..
 
The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...
The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...
The stelar mass_growth_of_brightest_cluster_galaxies_in_the_irac_shallow_clus...
 
Nicole Gullatt_Project Engages Presentation (Spring Semester Presentation)
Nicole Gullatt_Project Engages Presentation (Spring Semester  Presentation)Nicole Gullatt_Project Engages Presentation (Spring Semester  Presentation)
Nicole Gullatt_Project Engages Presentation (Spring Semester Presentation)
 
Analysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATIONAnalysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATION
 
X ray crystallography. presentation
X ray crystallography. presentationX ray crystallography. presentation
X ray crystallography. presentation
 
bragg2pre
bragg2prebragg2pre
bragg2pre
 
X ray crystallography and X ray Diffraction
X ray crystallography and X ray DiffractionX ray crystallography and X ray Diffraction
X ray crystallography and X ray Diffraction
 
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug deliveryUse of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
 
Drug-Polymer Compatibility Studies By XRD
Drug-Polymer Compatibility Studies By XRDDrug-Polymer Compatibility Studies By XRD
Drug-Polymer Compatibility Studies By XRD
 
Super Resolution Microscopy publications 2012
Super Resolution Microscopy publications 2012Super Resolution Microscopy publications 2012
Super Resolution Microscopy publications 2012
 
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug deliveryUse of spatial frequency domain imaging (sfdi) to quantify drug delivery
Use of spatial frequency domain imaging (sfdi) to quantify drug delivery
 
Biophotonics
BiophotonicsBiophotonics
Biophotonics
 
Dti basics
Dti basicsDti basics
Dti basics
 
Biomaterials for photonics
Biomaterials for photonicsBiomaterials for photonics
Biomaterials for photonics
 
Short case...Dysembryoplastic neuroepithelial tumor
Short case...Dysembryoplastic neuroepithelial tumorShort case...Dysembryoplastic neuroepithelial tumor
Short case...Dysembryoplastic neuroepithelial tumor
 
Whole brain optical imaging
Whole brain optical imagingWhole brain optical imaging
Whole brain optical imaging
 
FINAL Poster
FINAL PosterFINAL Poster
FINAL Poster
 
Cavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrorsCavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrors
 

Andere mochten auch

Componentsoffitness (1)
Componentsoffitness (1)Componentsoffitness (1)
Componentsoffitness (1)
David Felvus
 
Instinto, sexo y sexualidad
Instinto, sexo y sexualidadInstinto, sexo y sexualidad
Instinto, sexo y sexualidad
AnaieSalcedoM
 
Old School Hip Hop T-Shirts
Old School Hip Hop T-ShirtsOld School Hip Hop T-Shirts
Old School Hip Hop T-Shirts
Robert Watts
 
Câncer
CâncerCâncer
Câncer
Antony Carlos
 
150221 UBC Team
150221 UBC Team150221 UBC Team
150221 UBC Team
Carman Lam
 
La ira
La iraLa ira
Anlisis pelicula al masetro con cariño
Anlisis pelicula al masetro con cariñoAnlisis pelicula al masetro con cariño
Anlisis pelicula al masetro con cariño
Mayerly28
 
Methodsoftraining
MethodsoftrainingMethodsoftraining
Methodsoftraining
David Felvus
 
Spaid Resume
Spaid ResumeSpaid Resume
Spaid Resume
Matthew Spaid
 
Los Procesos Mentales
Los Procesos MentalesLos Procesos Mentales
Los Procesos Mentales
AnaieSalcedoM
 
Oraciones segun el tiempo en ingles
Oraciones segun el tiempo en inglesOraciones segun el tiempo en ingles
Oraciones segun el tiempo en ingles
AnaieSalcedoM
 
Career planning
Career planningCareer planning
Career planning
Ikram Ul Haq Azzam
 

Andere mochten auch (12)

Componentsoffitness (1)
Componentsoffitness (1)Componentsoffitness (1)
Componentsoffitness (1)
 
Instinto, sexo y sexualidad
Instinto, sexo y sexualidadInstinto, sexo y sexualidad
Instinto, sexo y sexualidad
 
Old School Hip Hop T-Shirts
Old School Hip Hop T-ShirtsOld School Hip Hop T-Shirts
Old School Hip Hop T-Shirts
 
Câncer
CâncerCâncer
Câncer
 
150221 UBC Team
150221 UBC Team150221 UBC Team
150221 UBC Team
 
La ira
La iraLa ira
La ira
 
Anlisis pelicula al masetro con cariño
Anlisis pelicula al masetro con cariñoAnlisis pelicula al masetro con cariño
Anlisis pelicula al masetro con cariño
 
Methodsoftraining
MethodsoftrainingMethodsoftraining
Methodsoftraining
 
Spaid Resume
Spaid ResumeSpaid Resume
Spaid Resume
 
Los Procesos Mentales
Los Procesos MentalesLos Procesos Mentales
Los Procesos Mentales
 
Oraciones segun el tiempo en ingles
Oraciones segun el tiempo en inglesOraciones segun el tiempo en ingles
Oraciones segun el tiempo en ingles
 
Career planning
Career planningCareer planning
Career planning
 

Ähnlich wie Bloom Lab Summary

Genome folding by loop extrusion and compartmentalization
Genome folding by loop extrusion and compartmentalization Genome folding by loop extrusion and compartmentalization
Genome folding by loop extrusion and compartmentalization
Leonid Mirny
 
ДНК составляет лишь половину объёма хромосом
ДНК составляет лишь половину объёма хромосомДНК составляет лишь половину объёма хромосом
ДНК составляет лишь половину объёма хромосом
Anatol Alizar
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma cluster
Sérgio Sacani
 
Physical mapping
Physical mappingPhysical mapping
Physical mapping
Priya Trivedi
 
Cyrstallography.pptx
Cyrstallography.pptxCyrstallography.pptx
Cyrstallography.pptx
MuhammadAli732496
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
Bárbara Pérez
 
Physical maps and their use in annotations
Physical maps and their use in annotationsPhysical maps and their use in annotations
Physical maps and their use in annotations
Sheetal Mehla
 
Protein Structure Determination
Protein Structure DeterminationProtein Structure Determination
Protein Structure Determination
Amjad Ibrahim
 
CytokinesisByMitoticSpindle
CytokinesisByMitoticSpindleCytokinesisByMitoticSpindle
CytokinesisByMitoticSpindle
Erdinc Atilgan
 
structural biology-Protein structure function relationship
structural biology-Protein structure function relationshipstructural biology-Protein structure function relationship
structural biology-Protein structure function relationship
MSCW Mysore
 
Homology Modeling.pptx
Homology Modeling.pptxHomology Modeling.pptx
Homology Modeling.pptx
AmnaAkram29
 
Seminar 20150920.2
Seminar 20150920.2Seminar 20150920.2
Seminar 20150920.2
Christopher Day
 
PNAS_2011
PNAS_2011PNAS_2011
PNAS_2011
Jerod Ptacin
 
PIIS1097276515007625
PIIS1097276515007625PIIS1097276515007625
PIIS1097276515007625
Sjoerd Holwerda
 
XRD principle and application
XRD principle and applicationXRD principle and application
XRD principle and application
Techef In
 
Statistical Analysis of Skin Cell Geometry and Motion
Statistical Analysis of Skin Cell Geometry and MotionStatistical Analysis of Skin Cell Geometry and Motion
Statistical Analysis of Skin Cell Geometry and Motion
Amy Werner-Allen
 
X-ray Crystallography.pptx
X-ray Crystallography.pptxX-ray Crystallography.pptx
X-ray Crystallography.pptx
NilamMetkari3
 
Use of ConeBeam Computed Tomography to determine cochlear length and implant ...
Use of ConeBeam Computed Tomography to determine cochlear length and implant ...Use of ConeBeam Computed Tomography to determine cochlear length and implant ...
Use of ConeBeam Computed Tomography to determine cochlear length and implant ...
HEARnet _
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
Alignment Approaches II: Long Reads
Alignment Approaches II: Long ReadsAlignment Approaches II: Long Reads
Alignment Approaches II: Long Reads
Genome Reference Consortium
 

Ähnlich wie Bloom Lab Summary (20)

Genome folding by loop extrusion and compartmentalization
Genome folding by loop extrusion and compartmentalization Genome folding by loop extrusion and compartmentalization
Genome folding by loop extrusion and compartmentalization
 
ДНК составляет лишь половину объёма хромосом
ДНК составляет лишь половину объёма хромосомДНК составляет лишь половину объёма хромосом
ДНК составляет лишь половину объёма хромосом
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma cluster
 
Physical mapping
Physical mappingPhysical mapping
Physical mapping
 
Cyrstallography.pptx
Cyrstallography.pptxCyrstallography.pptx
Cyrstallography.pptx
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Physical maps and their use in annotations
Physical maps and their use in annotationsPhysical maps and their use in annotations
Physical maps and their use in annotations
 
Protein Structure Determination
Protein Structure DeterminationProtein Structure Determination
Protein Structure Determination
 
CytokinesisByMitoticSpindle
CytokinesisByMitoticSpindleCytokinesisByMitoticSpindle
CytokinesisByMitoticSpindle
 
structural biology-Protein structure function relationship
structural biology-Protein structure function relationshipstructural biology-Protein structure function relationship
structural biology-Protein structure function relationship
 
Homology Modeling.pptx
Homology Modeling.pptxHomology Modeling.pptx
Homology Modeling.pptx
 
Seminar 20150920.2
Seminar 20150920.2Seminar 20150920.2
Seminar 20150920.2
 
PNAS_2011
PNAS_2011PNAS_2011
PNAS_2011
 
PIIS1097276515007625
PIIS1097276515007625PIIS1097276515007625
PIIS1097276515007625
 
XRD principle and application
XRD principle and applicationXRD principle and application
XRD principle and application
 
Statistical Analysis of Skin Cell Geometry and Motion
Statistical Analysis of Skin Cell Geometry and MotionStatistical Analysis of Skin Cell Geometry and Motion
Statistical Analysis of Skin Cell Geometry and Motion
 
X-ray Crystallography.pptx
X-ray Crystallography.pptxX-ray Crystallography.pptx
X-ray Crystallography.pptx
 
Use of ConeBeam Computed Tomography to determine cochlear length and implant ...
Use of ConeBeam Computed Tomography to determine cochlear length and implant ...Use of ConeBeam Computed Tomography to determine cochlear length and implant ...
Use of ConeBeam Computed Tomography to determine cochlear length and implant ...
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Alignment Approaches II: Long Reads
Alignment Approaches II: Long ReadsAlignment Approaches II: Long Reads
Alignment Approaches II: Long Reads
 

Bloom Lab Summary

  • 1. Resolving the Structure of Chromatin at the Centromere in Saccharomyces Cerevisiae Julian Haase Bloom Lab
  • 2. • Cohesin enriched approximately 3-fold in a 50kb region flanking the centromere (Weber et al., PLOS, 2006) How is successful chromosome segregation achieved? • Faithful segregation of chromosomes to daughter cells is essential; failure leads to aneuploidy, which can lead to cancer and diseases such as Down’s syndrome (trisomy 21) and Edward’s syndrome (trisomy 18). • The centromere is a chromosomal locus that is required for mitosis and acts as the site of kinetochore formation. The histone H3 variant CENPA (Cse4) is incorporated here. • The kinetochore is large multi-protein complex consisting of over 70 proteins that are recruited to the centromere. This then serves to mechanically link the chromosomes to microtubules, through microtubule binding components such as Ndc80. • Once sister chromatids are properly attached to opposite poles via microtubules, tension is generated across the spindle. This tension fulfills checkpoints that allow segregation to continue. • Tension is achieved by holding sister chromatids together prior to anaphase. • The cohesin complex holds sisters together.
  • 3. Are centromere proximal lacO arrays bound together during metaphase? How do we reconcile the 3-fold enrichment of cohesin at centromeres with separated centromere proximal lacO arrays? Does this model accurately portray live cell imaging of centromeres and centromere proximal DNA? Outer Spots – Spindle pole bodies Inner spots – CEN3 proximal lacO arrays (1.1kb from Cen3) Pearson et al., Journal Cell Biol., 2001 1 um
  • 4. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 5. Chromosome Conformation Capture (3C) A method to detect the interaction frequency between two points in the genome. This can be used to infer the spatial arrangement and physical structure of a chromatin fiber. 1) Crosslink 2) Digest 3) Ligate 4) Reverse Crosslinks 5) PCR 1) Crosslink 2) Digest 3) Ligate 4) Reverse Crosslinks 5) PCR Cen3 Cen3 15kb 23kb 50kb 50kb Decker et al., Science, 2002
  • 6. What is the conformation of chromatin near centromeres? Yeh and Haase et al., Current Biology, 2008 WT ChrIII 15kb (2.41) WT ChrIII 23kb (1.64) WT ChrIII 50kb (0.25) mcd1-1 ChrIII 15kb (1.54) nuf2-60 ChrIII 15kb (2.25) galCen3 ChrIII 15kb (1.18) WT ChrXI 12.3kb (2.49) Uncrosslinked (1.15) 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 3 Pericentricvsarmexperimentalratio Pericentric vs arm control ratio Chromosomal Interaction Frequency
  • 7. Intra-strand cohesin Inter-strand cohesin C-loop Kinetochore attachment Proposed path of centromeric DNA: the C-loop • Accounts for cohesin enrichment at pericentric DNA • Predicts centromere proximal lacO separation seen in live cells • Predicts the increase in chromosomal looping at pericentric DNA seen by 3C
  • 8. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 9. What is the structure and function of the cohesin complex? Intra-strand cohesin Inter-strand cohesin • Four protein complex • Holds sister chromatids together •Cleaved at anaphase onset
  • 10. Can we detect cohesin enrichment at pericentric chromatin by fluorescence? Yeh and Haase et al., Current Biology, 2008 End on view Smc3 Spc29 Ndc80Smc3 Side on view Spc29Smc3
  • 11. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 12. What are some limitations of light microscopy? Verdaasdonk et al., Journal of Cellular Physiology, 2014 Airy discs and rings The blurring of light by a microscope, the point spread function (PSF), can be approximated by a Gaussian distribution Abbe diffraction limit Spots within the Abbe limit appear as a single diffraction limited spot.
  • 13. How do we overcome the blurring of light? Verdaasdonk et al., Journal of Cellular Physiology, 2014 Deconvolution restores light blurred by the point spread function to the original point source without loss of data. Smc3-GFP Original Deconvolved Smc3-GFP before and after the application of nonlinear iterative deconvolution
  • 14. Can we get a clearer picture of the organization of cohesin using deconvolution? Smc3 GFP side on view deconvolvedoriginal Smc3 GFP end on view deconvolvedoriginal
  • 15. How is cohesin organized in the mitotic spindle? Smc3 Ndc80 Spc29 Smc3 Spc29 Smc3 By generating surface renders from deconvolved images stepping through the spindle, we expect cohesin is confined to a hollow barrel shaped region encompassing the spindle.
  • 16. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 17. Populate geometric shape with fluorophores Convolve with experimental PSF Analyze and compare experimental and modelled imagesExperimental PSF What is model convolution? Model convolution provides subpixel accuracy of the position of fluorescently labelled proteins. Stephens et al., MBoC, 2013 • Takes the opposite approach of deconvolution. It generates an understanding of the possible fluorophore distributions that give rise to an experimental image. • This can be used to gain insight to the number of molecules, the distribution of molecules, dynamics, and more.
  • 18. Can model convolution be used to predict the structure of spindle components? Winey et al., 1995; Gardner et al., 2005 Stephens et al., MBoC, 2013
  • 19. Stephens et al., MBoC, 2013 Can model convolution be used to predict the structure of spindle components?
  • 20. Stephens et al., MBoC, 2013 Can model convolution be used to predict the structure of spindle components?
  • 21. 550nm 500 nm What is the structural organization of cohesin in the mitotic spindle? • Cohesin is enriched 3-fold along pericentric chromatin • Imaging tells us cohesin is organized along the spindle axis • Using deconvolution, model convolution and surface rendering we conclude cohesin is arrayed as a hollow cylinder encompassing the spindle during metaphase. Yeh and Haase et al., Current Biology, 2008
  • 22. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 23. Can we determine localization with sub pixel accuracy using large population data sets? Using large population data sets (n>200), we can generate positional density maps which show the frequency with which something can be found at a given location. Haase and Mishra et al., Current Biology, 2013
  • 24. How do we validate heatmaps as a method we trust? Use heatmaps to measure known values from in vivo measurements of kinetochore components. • Average discrepancy between heatmap and SHREC values is 5.3 nm. • Heatmaps faithfully reproduce measurements from high localization accuracy techniques. Joglekar et al., Current Biology, 2009 Haase et al., Current Biology, 2012 • SHREC - Single molecule High Resolution Colocalization: two dimensional (XY) measurement with high localization accuracy (10nm). 10 nm • Compare SHREC measurements of intra- kinetochore distances to heatmap measurements to validate. Heatmap values SHREC values
  • 25. How do chromatin heatmaps compare to cohesin localization? LacO 1.1kb from Cen3 WT Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 285.1nm ± 68.9nm X= 354.5nm ± 74.1nm n= 240 lacO 1.1kb from Cen3 LacO 1.8kb from Cen15 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 257.3nm ± 76.8nm X= 405.2nm ± 136.4nm n= 228 lacO 6.8kb from Cen15 LacO 3.8kb from Cen3 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 326.2nm ± 110nm X= 420.6nm ± 175.3nm n= 208 lacO 8.8kb from Cen3 Centromere proximal chromatin fills a volumetric space similar to that predicted by cohesin visualization -Width of cohesin barrel encompasses the spread in the Y dimension of chromatin heatmaps -Both cohesin and chromatin show decreased localization at the spindle axis Stephens et al., JCB, 2011
  • 26. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 27. Do inner and outer kinetochore components have the same degree of anisotropy? Ndc80 Metaphase Ndc80 Anaphase C-Ndc80 575.56 N-Cse4 659.95 400 450 500 550 600 650 700 750 800 Spot “Height” in Metaphase C-Ndc80 1.09 N-Cse4 1.23 1 1.1 1.2 1.3 Spot Anisotropy in Anaphase (spot “height”/spot “width”) Broad Cse4 localization pattern similar to that observed by Wisniewski, et al., eLife, 2014 Haase et al., Current Biology, 2012 Cse4 Metaphase Cse4 Anaphase
  • 28. Is kinetochore anisotropy the result of light blurring? • Broad non diffraction limited footprint of Cse4 remains distinct after deconvolution when compared to Ndc80 • Unlikely to be an imaging artifact Metaphase Anaphase Ndc80Spc29 Ndc80 deconvolvedoriginal Ndc80Spc29 Ndc80 deconvolvedoriginal Ndc80Spc29 Ndc80 Ndc80Spc29 Ndc80 Cse4Spc29 Cse4 Cse4Spc29 Cse4 Cse4Spc29 Cse4 Cse4Spc29 Cse4
  • 29. Y= 94.6nm ± 94.3nm X= 219.3nm ± 76.0nm n=1032 Y= 116.2nm ± 102.95nm X= 258.9nm ± 106.4nm n=268 Y= 180.92nm ± 155.92nm X= 286.85nm ± 120.9nm n=1064 Do heatmaps give any insight into the anisotropy of kinetochores? Cse4 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 C terminal Ndc80 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 N term Ndc80 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
  • 30. What is the path of DNA at the centromere? Can we visualize cohesin enrichment at the centromere? How do we resolve the organization of cohesin at the centromere? • Deconvolution • Model Convolution What is the spatial confinement of pericentric chromatin? What is the significance of kinetochore anisotropy? Are there any mutants that regulate kinetochore anisotropy?
  • 31. What makes Pat1 a candidate for anisotropy regulation at the kinetochore? Wang et al., , 1996 Pilkington et al., , 2008 Mishra et al., Genetics, 2013 • Structural component of the kinetochore, and has a conserved region which mediates CEN association • Associates with centromeres in an NDC10 dependent manner • Loss of Pat1 delays sister chromatid separation, causes errors in segregation, and leads to defects in structural integrity of chromatin near the centromere. • Protein Associated with Topoisomerase II • Involved in P-body assembly (non translating mRNAs and decapping factors) More recently, Pat1 was found to have a role in chromosome segregation independent of its function in P-body assembly and translation repression
  • 32. Does Pat1 play a role in kinetochore anisotropy? Ndc80 Metaphase Ndc80 pat1D Metaphase Ndc80 Anaphase Ndc80 pat1D Anaphase C-Ndc80 1.09 C-Ndc80 pat1D 1.09 N-Cse4 1.23 N-Cse4 pat1D 1.06 1 1.1 1.2 1.3 Spot Anisotropy in Anaphase (spot “height”/spot “width”) C-Ndc80 3,958.76 C-Ndc80 pat1D 3,321.30 N-Cse4 955.18 N-Cse4 pat1D 595.25 400 900 1400 1900 2400 2900 3400 3900 4400 Integrated Spot Intensity C-Ndc80 575.56 C-Ndc80 pat1D 571.17 N-Cse4 659.95 N-Cse4 pat1D 569.87 400 450 500 550 600 650 700 750 800 Spot "Height" in Metaphase Haase and Mishra et al., Current Biology, 2013 Absence of Pat1 decreases Cse4 footprint to that of Ndc80 Cse4 Metaphase Cse4 pat1D Metaphase Cse4 Anaphase Cse4 pat1D Anaphase
  • 33. Can deconvolution confirm the Pat1 dependent nature of kinetochore anisotropy? Ndc80 GFP deconvolved Metaphase Anaphase Ndc80Spc29 Ndc80 deconvolvedoriginal deconvolvedoriginal Ndc80Spc29 Ndc80 Cse4Spc29 Cse4 Cse4Spc29 Cse4 Ndc80 pat1DSpc29 Ndc80 pat1D Ndc80 pat1DSpc29 Ndc80 pat1D Cse4 pat1DSpc29 Cse4 pat1D Cse4 pat1DSpc29 Cse4 pat1D
  • 34. Does loss of Pat1 alter the localization mapping of the inner kinetochore? Y= 94.6nm ± 94.3nm X= 219.3nm ± 76.0nm n=1032 N term Ndc80 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 180.92nm ± 155.92nm X= 286.85nm ± 120.9nm n=1064 Cse4 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 108.8nm ± 102.6nm X= 281.1nm ± 74.7nm n= 200 Cse4 pat1KO Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
  • 35. Can model convolution help us understand kinetochore anisotropy? Y= 94.6nm ± 94.3nm X= 219.3nm ± 76.0nm n=1032 Y= 90.1nm ± 79.9nm X= 219.1nm ± 65.3nm n= 1000 N term Ndc80 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ndc80 Simulated Distance (nm) Distance(nm) 0 130 260 390 520 650 780 910 650 520 390 260 130 0 -130 -260 -390 -520 -650 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
  • 36. Can model convolution provide insight into the broad localization density of Cse4? Y= 94.6nm ± 94.3nm X= 292.5nm ± 96.4nm n=1000 Cse4 simulated Distance (nm) Distance(nm) 0 130 260 390 520 650 780 910 650 520 390 260 130 0 -130 -260 -390 -520 -650 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 180.92nm ± 155.92nm X= 286.85nm ± 120.9nm n=1064 Cse4 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 190.2nm ± 141.3nm X= 280.8nm ± 58.5nm n= 1000 Cse4 1 centered 4 displaced Distance (nm) Distance(nm) 0 130 260 390 520 650 780 910 650 520 390 260 130 0 -130 -260 -390 -520 -650 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
  • 37. Does Cse4 association to CEN change in the absence of Pat1? Haase and Mishra et al., Current Biology, 2013 CEN association of Cse4 is reduced in pat1D strains by ~60%. Centromeric levels of Cse4 were assayed by ChIP analysis of Cse4-Myc at CEN1, 3 and 5 and non-CEN DNA in wild type and pat1D strains.
  • 38. Is depletion of Cse4 at the centromere in pat1D strains is indicative of extra Cse4 molecules? • 40% reduction in Cse4 fluorescence intensity upon loss of Pat1 Haase and Mishra et al., Current Biology, 2013 • 60% reduction of Cse4 at CEN by ChIP upon loss of Pat1 • Heatmaps show a change in Cse4 footprint to one similar to that of Ndc80 upon loss of Pat1 • Model convolution cannot match WT Cse4 distribution without the addition of extra molecules • Pat1 regulates localization of an accessory pool of Cse4
  • 39. 1x Kinetochore - Centromere Attachment Site 16x Kinetochore Microtubules ~250nm diameter Interpolar Microtubules Pericentric cohesin barrel surrounding spindle microtubules ~500nm diameter Accessory molecules of Cse4 distributed along pericentric chromatin Assembling the pieces Using a diverse set of techniques (3C, deconvolution, model convolution, heatmaps) in conjunction with widefield microscopy and ChIP, we reach the following conclusions: C-loop
  • 40. The Structure of Chromatin at the Centromere in Saccharomyces Cerevisiae Julian Haase Bloom Lab University of North Carolina at Chapel Hill
  • 41. Acknowledgements Bloom Lab Current Members: Kerry Bloom Elaine Yeh Josh Lawrimore Former Members: Ajit Joglekar Jolien Verdaasdonk Andrew Stephens Rachel Haggerty UNC Computer Science Department Russ Taylor Leandra Vicci Cory Quammen Basrai Lab Munira Basrai Prashant Mishra UNC Physics Department Michael Falvo Salmon Lab Ted Salmon Aussie Suzuki
  • 42. Put “extra” slides after this point
  • 43.
  • 44.
  • 45. Fluorescence light distribution in an image Point Spread Function (PSF) of Light Light emitted from a point source is spread out. 150nM 30nM Diffraction Limit – Image resolution is limited by the diffraction of light.
  • 46. Chromatin conformation at Cen3 Cen3 15Kb Crosslinked Arm3 15Kb Crosslinked Cen3 15Kb uncrosslinked Arm3 15Kb uncrosslinked 15kb (n=10) 112249 52518 9485 7367 Crosslinked 15kb Cen3 vs. Arm3 Ratio 112249/52518 = 1.96 Uncrosslinked 15kb Cen3 vs. Arm3 Ratio 9485/7367 = 1.25 Crosslinked Ratio vs. Uncrosslinked Ratio ((1.96/1.25)-1)*100 = 56% From this, we can say that there is increased physical proximity on either side of Cen3 relative to a region on the arm. > Yeh and Haase et al., Current Biology, 2008
  • 47. 3C product analysis Condition Cen3/Arm3 Crosslinked DNA Cen3/Arm3 Uncrosslinked DNA Percent increase following crosslinking xlinked-unxlinked Unxlinked Sample gel n P value WT 15kb 1.96 ± .18 1.25 ± .15 56.46% 10 4.46E-08 WT 23kb 1.50 ± .05 1.21 ± .03 23.81% 5 1.02E-05 WT 50kb 0.68 ± .25 1.21 ± .30 -43.81% 5 2.82E-04 aF 15kb 1.90 ± .21 1.22 ± .07 56.02% 10 1.33E-08 aF 23kb 1.52 ± .03 1.21 ± .03 25.91% 5 6.37E-07 aF 50kb 1.13 ± .05 1.21 ± .04 -6.58% 5 .002 ndc10-1 15kb 1.21 ± .08 1.18 ± .09 2.03% 10 .55 ndc10-1, aF 15kb 1.21 ± .03 1.20 ± .02 1.56% 10 .76 mcd1-1 15kb 1.44 ± .14 1.18 ± .05 22.17% 10 3.89E-05 gal cen 15kb 1.23 ± .05 1.21 ± .06 1.76% 10 .67 P xlinked A xlinked P unxlinked A unxlinked Yeh and Haase et al., Current Biology, 2008
  • 48. Degree of looping Yeh and Haase et al., Current Biology, 2008
  • 49. 0 0.5 1 1.5 2 2.5 3 3.5 1 2 3 4 5 cen3vsarm3IntensityRatio Actual Dilution of Cen3 vs Arm3 Intensity Ratios vs Actual Dilutions Series1 3C artificial control
  • 50. DIC Smc3 is organized around the spindle axis Confocal images, 100nm steps Smc3 GFP Spc29 RFP Smc3GFP Spc29RFP Smc3 localizes as two lobes of fluorescence along either side of the spindle axis, when the spindle is viewed side on. The lobes are inside the spindle pole bodies, indicating the cohesin structure is shorter than the spindle. Find more/better images to show here Yeh and Haase et al., Current Biology, 2008
  • 51. DIC This end-on view suggests cohesin is organized in a cylindrical array. Confocal images, 100nm steps Smc3 localizes as a hollow circle when viewed end on. Spindle pole bodies can be seen directly in the center of this structure. This “doughnut” shape, when considered along with the bi-lobed distribution, suggests cohesin forms a cylinder that wraps around the spindle. Smc3 GFP Spc29 RFP Find more/better images to show here. Smc3GFP Spc29RFP Yeh and Haase et al., Current Biology, 2008
  • 52. Images of cohesin + kinetochores Yeh and Haase et al., Current Biology, 2008 11.10.11 #12611.10.11 #44
  • 53. WT cohesin time series Frap Scope, unbinned t0m t3m t6m t9m t12m t15m t18m t0m t5m t10m t15m t20m
  • 54. Side On End On Width (nm) 417 485 St Dev (nm) 36 76 Side On End On Original Deconvolved Original Deconvolved Width (nm) 417 538* 485 559* St Dev (nm) 36 60 76 30
  • 55. Confocal WT End On view Smc3 GFP Smc3 GFP deconvolved Smc3 GFP Smc3 GFP deconvolved
  • 56. Confocal WT Side On view Smc3 GFP Smc3 GFP deconvolved Smc3 GFP Smc3 GFP deconvolved
  • 57.
  • 58.
  • 59. Frap Scope cohesin Smc3GFP, Spc29RFP, Ndc80mCherry Surface Render 11.10.11 #12611.10.11 #44
  • 60. End On Decon Width (inclusive) pixels nm 7.75 502 10 648 8.5 551 8 518 8 518 9.5 616 Average Average 8.63 559 Side On Decon Width (inclusive) pixels nm 9 583 8 518 8 518 8.5 551 8 518 9 583 8 518 8 518 Average Average 8.31 538
  • 61. Microscopy Assisted by Graphics and Interactive Convolution (MAGIC) How can we test if this proposed structure generates the fluorescent pattern we see in vivo? With MAGIC! Model Fluorescent Image Special thanks to Cory Quammen and Russ Taylor, members of the Nanoscale Science Research Group, part of the Computer Science Department at UNC-Chapel Hill Magic Image
  • 62. Simulations of clustering Andrew Stephens Cory W. Quammen & Russell M. Taylor II UNC Computer Science
  • 63. Model convolution of mitotic spindle structures Stephens et al., MBoC, 2013
  • 64. Wildtype spot shapes, perpendicular to spindle axis Metaphase: Cse4 GFP Width: 655nm Max intensity: 352 Integrated Intensity: 16741 Anaphase: Cse4 GFP Width: 642nm (1.98% decrease from metaphase) Max Intensity: 387 (9.73% increase from metaphase) Integrated Intensity:17496 (4.51% increase from metaphase) Metaphase: Ndc80 GFP Width: 576nm Max intensity: 748 Integrated Intensity: 35753 Anaphase: Ndc80 GFP Width: 556nm (3.47% decrease from metaphase) Max Intensity: 820 (9.59% increase from metaphase) Integrated Intensity:37299 (4.32% increase from metaphase) Decrease in “width” represents decrease in radius of spherical structure, not just a 2D decrease!
  • 65. Metaphase: WT Cse4 GFP Width: 655nm Max intensity: 352 Integrated Intensity: 16741 Metaphase: mre11D Cse4 GFP Width: 541nm Max intensity: Integrated Intensity: Wildtype vs mre11D spot shapes, perpendicular to spindle axis Anaphase: Cse4 GFP Width: 642nm (1.98% decrease from metaphase) Max Intensity: 387 (9.73% increase from metaphase) Integrated Intensity:17496 (4.51% increase from metaphase) Anaphase: mre11D Cse4 GFP Width: 537nm Max intensity: Integrated Intensity:
  • 66.
  • 67. C-Ndc80 575.56 C-Ndc80 pat1D 571.17 C-Ame1 666.44 C-Ame1 pat1D 671.53 N-Cse4 659.95 N-Cse4 pat1D 569.87 N-Cse4 xrn1D 583.18 400 450 500 550 600 650 700 750 800 1 Kinetochore Spot "Height" along Y axis in Metaphase C-Ndc80 3,958.76 C-Ndc80 pat1D 3,321.30 C-Ame1 1,587.75 C-Ame1 pat1D 1,450.61 N-Cse4 955.18 N-Cse4 pat1D 595.25 N-Cse4 xrn1D 604.88 400 900 1400 1900 2400 2900 3400 3900 4400 Kinetochore Integrated Spot Intensity Haase and Mishra et al., Current Biology, 2013
  • 69. Cse4 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 180.92nm ± 155.92nm X= 286.85nm ± 120.9nm n=1064 Cse4 pat1KO Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 108.86nm ± 102.66nm X= 281.08nm ± 74.74nm n=200 Y= 102.28nm ± 95.33nm X= 241.98nm ± 110.9nm n=204 Cse4 Gal-Psh1 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Haase and Mishra et al., Current Biology, 2013
  • 70. N term Ndc80 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 94.6nm ± 94.3nm X= 219.3nm ± 76.0nm n=1032 Y= 116.2nm ± 102.95nm X= 258.9nm ± 106.4nm n=268 C terminal Ndc80 Metaphase Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ndc80 GFP at AA 410 Distance (nm) Distance(nm) 0 130 259 389 518 648 778 907 648 518 389 259 130 0 -130 -259 -389 -518 -648 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y= 118.2nm ± 100.6nm X= 240.2nm ± 87.9nm n=204 20.95nm 18.7nm 39.6nm
  • 71. Heatmap Validation Haase and Mishra et al., Current Biology, 2013
  • 72. Haase and Mishra et al., Current Biology, 2013 Heatmap Validation
  • 73. Cse4 transcription is not affected in pat1D strains Transcription of the CSE4 gene is not affected in pat1∆ strains. Total RNA was extracted from wild type and pat1D strains as determined by qRT- PCR. Haase and Mishra et al., Current Biology, 2013
  • 74. Future Directions By what mechanisms are accessory molecules of Cse4 regulated? -Pat1 prevents ubiquitination of Cse4? -examine rates of ubiquitination in WT vs pat1D -does increasing rate of ubiquitination in WT cells replicate Cse4 distribution in pat1D? Do accessory Cse4 molecules serves as a “rapid response” to detachment events – mre11? Super Resolution Imaging – Structured Illumination Microscopy (SIM)
  • 75. SIM: H2B-GFP Spc29-RFP Metaphase SIM: Smc3-GFP Spc29-RFP Metaphase