SlideShare ist ein Scribd-Unternehmen logo
1 von 1
Downloaden Sie, um offline zu lesen
K. V. Jovan Jose and Krishnan Raghavachari
Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
An Efficient Implementation of Molecules-in-Molecules Fragment-Based Method for
Chiroptical Vibrational Spectra of Large Molecules
Abstract
References
Acknowledgments
We thank NSF grant (CHE-1266154) for financial support and the BigRed-II
Supercomputing Facility at Indiana University for computational time.
1. MIM-VCD is a fast, accurate and robust ab initio linear scaling method.
2. MIM2 could reproduce the high level total energies, VCD and ROA spectrum accurately.
3. MIM-VCD and MIM-ROA spectrum show excellent agreement with experimental spectrum.
4. MIM-VCD and MIM-ROA are promissing tool for exploring absolute configuration of molecules
Conclusions and Outlook
1. N. J. Mayhall and K. Raghavachari J. Chem. Theory Comput. 2011, 7, 1336.
2. K. V. Jovan Jose and K. Raghavachari J. Chem. Theory Comput. 2015, 11, 950.
3. K. V. Jovan Jose and K. Raghavachari Mol. Phys. 2015, 113, 3057.
4. K. V. Jovan Jose, D. Beckett, K. Raghavachari J. Chem. Theory Comput. 2015, 11, 4238.
5. K. V. Jovan Jose and K. Raghavachari J. Chem. Theory Comput. 2016, 12, 585.
An accurate first-principles evaluation of chiroptic spectroscopic properties of
large molecules is a challenge in electronic structure theory. The Molecules-in-
Molecules method has been adapted for the accurate evaluation of the infrared
(IR), Raman, vibrational circular dichroism (VCD) and Raman optical activity
(ROA) spectra for large molecules. The relevant higher energy derivatives from
smaller fragments are used to build the property tensors of the parent molecule
in our approach. Further, the fragment tensor components are evaluated in the
global coordinate framework, and the link atom tensor components projected
onto the corresponding host and supporting atoms through the Jacobian
projection method in our rigorous implementation. In this poster, I will be
presenting the details of the theory implementation and performance of the
MIM model for evaluating the IR, Raman, VCD and ROA spectra.
VCD and ROA Spectra of Cryptophane-A
Theory of VCD and ROA Spectroscopy
B3LYP/6-311+G(d,p):HF/6-31G
No. of Atoms=45
No. of Basis Functions=638
Anti-Trans-Anti-Trans-Anti-Trans-Perhydrotriphenylene
MPW1PW91/aug-cc-pVTZ-f
No. of Atoms=48
No. of Basis Functions=1026
𝐻 𝑎𝑏 =
𝜕2
𝐸 𝑇𝑜𝑡𝑎𝑙
𝜕𝑋 𝛼 𝜕𝑋 𝛽
=
𝜕2
𝐸𝑟𝑙
𝜕𝑋 𝛼 𝜕𝑋 𝛽
− ෍
𝐿=1
𝑀
𝐽 𝑇
𝜕2
𝐸 𝑚𝑙
𝜕𝑋 𝛼 𝜕𝑋 𝛽
𝐽 + ෍
𝐿=1
𝑀
𝐽 𝑇
𝜕2
𝐸 𝑚ℎ
𝜕𝑋 𝛼 𝜕𝑋 𝛽
𝐽
VCD Intensity
𝐷0→1(𝑖) = 0 𝜇 𝑒𝑙𝑒 1 2
𝑖 =
𝜕𝜇 𝑒𝑙𝑒
𝐺
𝜕𝑄𝑖
2
ħ
4𝜋𝜈𝑖
𝑄𝑖 = ෍
𝑖
𝑆𝜆𝛼,𝑖 𝑋𝜆𝛼
IR Intensity
𝑃𝛼𝛽,𝑇𝑜𝑡𝑎𝑙
𝜆
=
𝜕2
𝐸 𝑇𝑜𝑡𝑎𝑙
𝜕𝑋𝜆𝛼 𝜕𝐹𝛽
= 𝑃𝛼𝛽,𝑟𝑙
𝜆
− ෍
𝐿=1
𝑀
𝑃𝛼𝛽,𝑚𝑙
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3 + ෍
𝐿=1
𝑀
𝑃𝛼𝛽,𝑚ℎ
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3
𝑀 𝛼𝛽,𝑇𝑜𝑡𝑎𝑙
𝜆
= 𝑀 𝛼𝛽,𝑟𝑙
𝜆
− ෍
𝐿=1
𝑀
𝑀 𝛼𝛽,𝑚𝑙
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3 + ෍
𝐿=1
𝑀
𝑀 𝛼𝛽,𝑚ℎ
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3
Actual vs MIM1-VCD
Actual vs MIM2-VCD
No. of Atoms=126
No. of Basis Functions=1872
Frequency=488nm
@MIM2[B3LYP/6-311++G(d,p):
HF/6-31G]
Experiment-Raman
MIM2-Raman
Experiment-ROA
MIM2-ROA
𝛼 𝛼𝛽 =
2
ħ
෍
𝑗≠0
𝜔𝑗0
𝜔𝑗0
2
− 𝜔2
𝑅𝑒 0 𝜇 𝛼 𝑗 ⋅ 𝑗 𝜇 𝛽 0 = 4 ෍
𝑘
𝜙 𝑘
0
𝜇 𝛼 ൯𝜙 𝑘
′
(𝐹𝛽
𝐺 𝛼𝛽
′
=
−2
ħ
෍
𝑗≠0
𝜔
𝜔𝑗0
2
− 𝜔2
𝐼𝑚 0 𝜇 𝛼 𝑗 ⋅ 𝑗 𝑚 𝛽 0 = −4ħ𝜔 ෍
𝑘
𝐼𝑚 )𝜙 𝑘
′
(𝐹𝛼 ൯𝜙 𝑘
′
(𝐵 𝛽
𝐴 𝛼𝛽𝛾 =
2
ħ
෍
𝑗≠0
𝜔𝑗0
𝜔𝑗0
2
− 𝜔2
𝑅𝑒 0 𝜇 𝛼 𝑗 ⋅ 𝑗 𝜃 𝛽𝛾 0 = 4 ෍
𝑘
𝜙 𝑘
0
𝜃 𝛽𝛾 )𝜙 𝑘
′
(𝐹𝛼
𝐴 𝛼𝛽𝛾,𝑇𝑜𝑡𝑎𝑙
𝜆
= 𝐴 𝛼𝛽𝛾,𝑟𝑙
𝜆
− ෍
𝐿=1
𝑀
𝐴 𝛼𝛽𝛾,𝑚𝑙
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3 + ෍
𝐿=1
𝑀
𝐴 𝛼𝛽𝛾,𝑚ℎ
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3
𝐺 𝛼𝛽,𝑇𝑜𝑡𝑎𝑙
𝜆
= 𝐺 𝛼𝛽,𝑟𝑙
𝜆
− ෍
𝐿=1
𝑀
𝐺 𝛼𝛽,𝑚𝑙
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3 + ෍
𝐿=1
𝑀
𝐺 𝛼𝛽,𝑚ℎ
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3
𝛼 𝛼𝛽,𝑇𝑜𝑡𝑎𝑙
𝜆
= 𝛼 𝛼𝛽,𝑟𝑙
𝜆
− ෍
𝐿=1
𝑀
𝛼 𝛼𝛽,𝑚𝑙
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3 + ෍
𝐿=1
𝑀
𝛼 𝛼𝛽,𝑚ℎ
𝜆
𝐽 𝑅2; 𝑅1, 𝑅3
VCD and ROA Spectra
ROA Intensity
Raman and ROA Spectrum of α-D-Cyclodextrin
@MIM2[B3LYP/6-31+G(d,p):
HF/6 -31G]
No. of Atoms=120
No. of Basis Functions=1872
(+)
T1T1T1
Atomic Forces
Hessian
𝐹𝑎 =
𝜕𝐸 𝑇𝑜𝑡𝑎𝑙
𝜕𝑋 𝛼
=
𝜕2
𝐸𝑟𝑙
𝜕𝑋 𝛼
− ෍
𝐿=1
𝑀
𝜕𝐸 𝑚𝑙
𝜕𝑋 𝛼
𝐽 𝑅2; 𝑅1, 𝑅3 + ෍
𝐿=1
𝑀
𝜕𝐸 𝑚ℎ
𝜕𝑋 𝛼
𝐽 𝑅2; 𝑅1, 𝑅3
𝑅0→1(𝑖) = ħ2
෍
𝛽
෍
𝜆,𝛼
𝜆′,𝛼′
𝑆𝜆𝛼,𝑖 𝑃𝛼𝛽
𝜆
𝑆 𝜆′ 𝛼′,𝑖 𝑀 𝛼′ 𝛽
𝜆′
𝑅 𝑎→𝑏(𝑖) = 𝐼𝑚 𝑎 𝜇 𝑒𝑙𝑒 𝑏 𝑖 ⋅ 𝑏 𝜇 𝑚𝑎𝑔 𝑎
𝑖
𝜕𝑟2,𝑎
𝜕𝑟1,𝑏
= (1 − 𝑔)𝛿 𝑎,𝑏
𝜕𝑟2,𝑎
𝜕𝑟3,𝑏
= (𝑔)𝛿 𝑎,𝑏
Experiment-VCD
MIM2-VCD
Experiment-ROA
MIM2-ROA
Proton Assisted Clustering of (Proline)12
+2
Fasman, G., Ed.; Circular Dichroism and
the Conformational Analysis of
Biomolecules.
Springer: New York, 1996; pp 687.
Energy=-704.10569 a.u.
(+) (−)
∆Energy= 0.124 kcal/mol
MAD in ν(I)=0.32(3.24) cm-1 (esu2 cm2)
Experiment
MIM2-VCD
(−)
Enantiopure Recemic Mixture
Infrared Spectra @MIM2[MPW1PW91/6-311G(d,p):MPW1PW91/6-31G]
MIM1
MIM2
Calibration
Ongoing
Experiment MIM2

Weitere ähnliche Inhalte

Andere mochten auch

documents
documentsdocuments
documentsxilvar
 
Trabajo metodos de investigacion
Trabajo metodos de investigacionTrabajo metodos de investigacion
Trabajo metodos de investigacionLuis Caiza
 
SSTG: Consell de barri Sarrià octubre 2013
SSTG: Consell de barri Sarrià octubre 2013SSTG: Consell de barri Sarrià octubre 2013
SSTG: Consell de barri Sarrià octubre 2013Ajuntament de Barcelona
 
Identité numérique
Identité numériqueIdentité numérique
Identité numériqueCYB@RDECHE
 
Investorenmeinungen zum Entry Standard: Welche Akzeptanz hat das Marktsegment
Investorenmeinungen zum Entry Standard: Welche Akzeptanz hat das MarktsegmentInvestorenmeinungen zum Entry Standard: Welche Akzeptanz hat das Marktsegment
Investorenmeinungen zum Entry Standard: Welche Akzeptanz hat das Marktsegmentcometis AG
 
Jz301064w Guo Presentation
Jz301064w Guo PresentationJz301064w Guo Presentation
Jz301064w Guo Presentationjpcoffice
 
Circular dichroism & Ord
Circular dichroism & Ord Circular dichroism & Ord
Circular dichroism & Ord Lovnish Thakur
 
3ª fase classificação final do 1º ciclo
3ª fase   classificação final do 1º ciclo3ª fase   classificação final do 1º ciclo
3ª fase classificação final do 1º cicloBiblioteca Escolar Aeob
 
Presentacion de software libre
Presentacion de software librePresentacion de software libre
Presentacion de software librecristo328
 

Andere mochten auch (11)

documents
documentsdocuments
documents
 
Trabajo metodos de investigacion
Trabajo metodos de investigacionTrabajo metodos de investigacion
Trabajo metodos de investigacion
 
SSTG: Consell de barri Sarrià octubre 2013
SSTG: Consell de barri Sarrià octubre 2013SSTG: Consell de barri Sarrià octubre 2013
SSTG: Consell de barri Sarrià octubre 2013
 
Word 09 e 10
Word 09 e 10Word 09 e 10
Word 09 e 10
 
Identité numérique
Identité numériqueIdentité numérique
Identité numérique
 
Programaçao escolas janeiro2016
Programaçao escolas janeiro2016Programaçao escolas janeiro2016
Programaçao escolas janeiro2016
 
Investorenmeinungen zum Entry Standard: Welche Akzeptanz hat das Marktsegment
Investorenmeinungen zum Entry Standard: Welche Akzeptanz hat das MarktsegmentInvestorenmeinungen zum Entry Standard: Welche Akzeptanz hat das Marktsegment
Investorenmeinungen zum Entry Standard: Welche Akzeptanz hat das Marktsegment
 
Jz301064w Guo Presentation
Jz301064w Guo PresentationJz301064w Guo Presentation
Jz301064w Guo Presentation
 
Circular dichroism & Ord
Circular dichroism & Ord Circular dichroism & Ord
Circular dichroism & Ord
 
3ª fase classificação final do 1º ciclo
3ª fase   classificação final do 1º ciclo3ª fase   classificação final do 1º ciclo
3ª fase classificação final do 1º ciclo
 
Presentacion de software libre
Presentacion de software librePresentacion de software libre
Presentacion de software libre
 

Ähnlich wie Poster-JovanJose-42-by-56

NNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINALNNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINALJoshua Barrow
 
Indoor Heading Estimation
 Indoor Heading Estimation Indoor Heading Estimation
Indoor Heading EstimationAlwin Poulose
 
Biological applications of optical tweezers
Biological applications of optical tweezersBiological applications of optical tweezers
Biological applications of optical tweezersApurba Paul
 
NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics Mark Berjanskii
 
Resonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular ExcitationsResonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular ExcitationsbalasubrahmaniyamM
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...JeremyHeyl
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTOAnthony Melvin Crasto Ph.D
 
Nucleic Acid Sequence-Based Amplification ( NASBA )...
Nucleic Acid Sequence-Based Amplification ( NASBA )...Nucleic Acid Sequence-Based Amplification ( NASBA )...
Nucleic Acid Sequence-Based Amplification ( NASBA )...Angie Jorgensen
 
Energy-dispersive x-ray diffraction for on-stream monitoring of m
Energy-dispersive x-ray diffraction for on-stream monitoring of mEnergy-dispersive x-ray diffraction for on-stream monitoring of m
Energy-dispersive x-ray diffraction for on-stream monitoring of mJoel O'Dwyer
 
Redox Potentials using Pulse Radiolysis
Redox Potentials using Pulse RadiolysisRedox Potentials using Pulse Radiolysis
Redox Potentials using Pulse RadiolysisStephanie Hernandez
 
Using Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle MonitoringUsing Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle MonitoringPower System Operation
 
Devices for advanced physics research
Devices for advanced physics research	Devices for advanced physics research
Devices for advanced physics research journal ijrtem
 
Devices for advanced physics research
Devices for advanced physics researchDevices for advanced physics research
Devices for advanced physics researchIJRTEMJOURNAL
 
Poster1 (dragged)
Poster1 (dragged)Poster1 (dragged)
Poster1 (dragged)Vivian Tang
 
A RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUE
A RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUEA RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUE
A RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUEIAEME Publication
 
MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...
MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...
MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...Nooria Sukmaningtyas
 
Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...
Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...
Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...paperpublications3
 
Development of Nonlinear Optical Microscope and Scanner
Development of Nonlinear Optical Microscope and ScannerDevelopment of Nonlinear Optical Microscope and Scanner
Development of Nonlinear Optical Microscope and ScannerRohan Sharma
 

Ähnlich wie Poster-JovanJose-42-by-56 (20)

NNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINALNNBAR SESAPS PRESENTATION FINAL
NNBAR SESAPS PRESENTATION FINAL
 
Indoor Heading Estimation
 Indoor Heading Estimation Indoor Heading Estimation
Indoor Heading Estimation
 
Biological applications of optical tweezers
Biological applications of optical tweezersBiological applications of optical tweezers
Biological applications of optical tweezers
 
NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics NMR Random Coil Index & Protein Dynamics
NMR Random Coil Index & Protein Dynamics
 
Resonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular ExcitationsResonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular Excitations
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
 
Nucleic Acid Sequence-Based Amplification ( NASBA )...
Nucleic Acid Sequence-Based Amplification ( NASBA )...Nucleic Acid Sequence-Based Amplification ( NASBA )...
Nucleic Acid Sequence-Based Amplification ( NASBA )...
 
Energy-dispersive x-ray diffraction for on-stream monitoring of m
Energy-dispersive x-ray diffraction for on-stream monitoring of mEnergy-dispersive x-ray diffraction for on-stream monitoring of m
Energy-dispersive x-ray diffraction for on-stream monitoring of m
 
Redox Potentials using Pulse Radiolysis
Redox Potentials using Pulse RadiolysisRedox Potentials using Pulse Radiolysis
Redox Potentials using Pulse Radiolysis
 
Using Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle MonitoringUsing Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle Monitoring
 
V4502136139
V4502136139V4502136139
V4502136139
 
Devices for advanced physics research
Devices for advanced physics research	Devices for advanced physics research
Devices for advanced physics research
 
Devices for advanced physics research
Devices for advanced physics researchDevices for advanced physics research
Devices for advanced physics research
 
Poster1 (dragged)
Poster1 (dragged)Poster1 (dragged)
Poster1 (dragged)
 
A RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUE
A RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUEA RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUE
A RESEARCH ON NON COOPERATIVE HYBRID SPECTRUM SENSING TECHNIQUE
 
MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...
MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...
MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Op...
 
Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...
Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...
Hybrid Quantum Genetic Particle Swarm Optimization Algorithm For Solving Opti...
 
Development of Nonlinear Optical Microscope and Scanner
Development of Nonlinear Optical Microscope and ScannerDevelopment of Nonlinear Optical Microscope and Scanner
Development of Nonlinear Optical Microscope and Scanner
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 

Poster-JovanJose-42-by-56

  • 1. K. V. Jovan Jose and Krishnan Raghavachari Department of Chemistry, Indiana University, Bloomington, IN 47405, United States An Efficient Implementation of Molecules-in-Molecules Fragment-Based Method for Chiroptical Vibrational Spectra of Large Molecules Abstract References Acknowledgments We thank NSF grant (CHE-1266154) for financial support and the BigRed-II Supercomputing Facility at Indiana University for computational time. 1. MIM-VCD is a fast, accurate and robust ab initio linear scaling method. 2. MIM2 could reproduce the high level total energies, VCD and ROA spectrum accurately. 3. MIM-VCD and MIM-ROA spectrum show excellent agreement with experimental spectrum. 4. MIM-VCD and MIM-ROA are promissing tool for exploring absolute configuration of molecules Conclusions and Outlook 1. N. J. Mayhall and K. Raghavachari J. Chem. Theory Comput. 2011, 7, 1336. 2. K. V. Jovan Jose and K. Raghavachari J. Chem. Theory Comput. 2015, 11, 950. 3. K. V. Jovan Jose and K. Raghavachari Mol. Phys. 2015, 113, 3057. 4. K. V. Jovan Jose, D. Beckett, K. Raghavachari J. Chem. Theory Comput. 2015, 11, 4238. 5. K. V. Jovan Jose and K. Raghavachari J. Chem. Theory Comput. 2016, 12, 585. An accurate first-principles evaluation of chiroptic spectroscopic properties of large molecules is a challenge in electronic structure theory. The Molecules-in- Molecules method has been adapted for the accurate evaluation of the infrared (IR), Raman, vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra for large molecules. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule in our approach. Further, the fragment tensor components are evaluated in the global coordinate framework, and the link atom tensor components projected onto the corresponding host and supporting atoms through the Jacobian projection method in our rigorous implementation. In this poster, I will be presenting the details of the theory implementation and performance of the MIM model for evaluating the IR, Raman, VCD and ROA spectra. VCD and ROA Spectra of Cryptophane-A Theory of VCD and ROA Spectroscopy B3LYP/6-311+G(d,p):HF/6-31G No. of Atoms=45 No. of Basis Functions=638 Anti-Trans-Anti-Trans-Anti-Trans-Perhydrotriphenylene MPW1PW91/aug-cc-pVTZ-f No. of Atoms=48 No. of Basis Functions=1026 𝐻 𝑎𝑏 = 𝜕2 𝐸 𝑇𝑜𝑡𝑎𝑙 𝜕𝑋 𝛼 𝜕𝑋 𝛽 = 𝜕2 𝐸𝑟𝑙 𝜕𝑋 𝛼 𝜕𝑋 𝛽 − ෍ 𝐿=1 𝑀 𝐽 𝑇 𝜕2 𝐸 𝑚𝑙 𝜕𝑋 𝛼 𝜕𝑋 𝛽 𝐽 + ෍ 𝐿=1 𝑀 𝐽 𝑇 𝜕2 𝐸 𝑚ℎ 𝜕𝑋 𝛼 𝜕𝑋 𝛽 𝐽 VCD Intensity 𝐷0→1(𝑖) = 0 𝜇 𝑒𝑙𝑒 1 2 𝑖 = 𝜕𝜇 𝑒𝑙𝑒 𝐺 𝜕𝑄𝑖 2 ħ 4𝜋𝜈𝑖 𝑄𝑖 = ෍ 𝑖 𝑆𝜆𝛼,𝑖 𝑋𝜆𝛼 IR Intensity 𝑃𝛼𝛽,𝑇𝑜𝑡𝑎𝑙 𝜆 = 𝜕2 𝐸 𝑇𝑜𝑡𝑎𝑙 𝜕𝑋𝜆𝛼 𝜕𝐹𝛽 = 𝑃𝛼𝛽,𝑟𝑙 𝜆 − ෍ 𝐿=1 𝑀 𝑃𝛼𝛽,𝑚𝑙 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 + ෍ 𝐿=1 𝑀 𝑃𝛼𝛽,𝑚ℎ 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 𝑀 𝛼𝛽,𝑇𝑜𝑡𝑎𝑙 𝜆 = 𝑀 𝛼𝛽,𝑟𝑙 𝜆 − ෍ 𝐿=1 𝑀 𝑀 𝛼𝛽,𝑚𝑙 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 + ෍ 𝐿=1 𝑀 𝑀 𝛼𝛽,𝑚ℎ 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 Actual vs MIM1-VCD Actual vs MIM2-VCD No. of Atoms=126 No. of Basis Functions=1872 Frequency=488nm @MIM2[B3LYP/6-311++G(d,p): HF/6-31G] Experiment-Raman MIM2-Raman Experiment-ROA MIM2-ROA 𝛼 𝛼𝛽 = 2 ħ ෍ 𝑗≠0 𝜔𝑗0 𝜔𝑗0 2 − 𝜔2 𝑅𝑒 0 𝜇 𝛼 𝑗 ⋅ 𝑗 𝜇 𝛽 0 = 4 ෍ 𝑘 𝜙 𝑘 0 𝜇 𝛼 ൯𝜙 𝑘 ′ (𝐹𝛽 𝐺 𝛼𝛽 ′ = −2 ħ ෍ 𝑗≠0 𝜔 𝜔𝑗0 2 − 𝜔2 𝐼𝑚 0 𝜇 𝛼 𝑗 ⋅ 𝑗 𝑚 𝛽 0 = −4ħ𝜔 ෍ 𝑘 𝐼𝑚 )𝜙 𝑘 ′ (𝐹𝛼 ൯𝜙 𝑘 ′ (𝐵 𝛽 𝐴 𝛼𝛽𝛾 = 2 ħ ෍ 𝑗≠0 𝜔𝑗0 𝜔𝑗0 2 − 𝜔2 𝑅𝑒 0 𝜇 𝛼 𝑗 ⋅ 𝑗 𝜃 𝛽𝛾 0 = 4 ෍ 𝑘 𝜙 𝑘 0 𝜃 𝛽𝛾 )𝜙 𝑘 ′ (𝐹𝛼 𝐴 𝛼𝛽𝛾,𝑇𝑜𝑡𝑎𝑙 𝜆 = 𝐴 𝛼𝛽𝛾,𝑟𝑙 𝜆 − ෍ 𝐿=1 𝑀 𝐴 𝛼𝛽𝛾,𝑚𝑙 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 + ෍ 𝐿=1 𝑀 𝐴 𝛼𝛽𝛾,𝑚ℎ 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 𝐺 𝛼𝛽,𝑇𝑜𝑡𝑎𝑙 𝜆 = 𝐺 𝛼𝛽,𝑟𝑙 𝜆 − ෍ 𝐿=1 𝑀 𝐺 𝛼𝛽,𝑚𝑙 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 + ෍ 𝐿=1 𝑀 𝐺 𝛼𝛽,𝑚ℎ 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 𝛼 𝛼𝛽,𝑇𝑜𝑡𝑎𝑙 𝜆 = 𝛼 𝛼𝛽,𝑟𝑙 𝜆 − ෍ 𝐿=1 𝑀 𝛼 𝛼𝛽,𝑚𝑙 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 + ෍ 𝐿=1 𝑀 𝛼 𝛼𝛽,𝑚ℎ 𝜆 𝐽 𝑅2; 𝑅1, 𝑅3 VCD and ROA Spectra ROA Intensity Raman and ROA Spectrum of α-D-Cyclodextrin @MIM2[B3LYP/6-31+G(d,p): HF/6 -31G] No. of Atoms=120 No. of Basis Functions=1872 (+) T1T1T1 Atomic Forces Hessian 𝐹𝑎 = 𝜕𝐸 𝑇𝑜𝑡𝑎𝑙 𝜕𝑋 𝛼 = 𝜕2 𝐸𝑟𝑙 𝜕𝑋 𝛼 − ෍ 𝐿=1 𝑀 𝜕𝐸 𝑚𝑙 𝜕𝑋 𝛼 𝐽 𝑅2; 𝑅1, 𝑅3 + ෍ 𝐿=1 𝑀 𝜕𝐸 𝑚ℎ 𝜕𝑋 𝛼 𝐽 𝑅2; 𝑅1, 𝑅3 𝑅0→1(𝑖) = ħ2 ෍ 𝛽 ෍ 𝜆,𝛼 𝜆′,𝛼′ 𝑆𝜆𝛼,𝑖 𝑃𝛼𝛽 𝜆 𝑆 𝜆′ 𝛼′,𝑖 𝑀 𝛼′ 𝛽 𝜆′ 𝑅 𝑎→𝑏(𝑖) = 𝐼𝑚 𝑎 𝜇 𝑒𝑙𝑒 𝑏 𝑖 ⋅ 𝑏 𝜇 𝑚𝑎𝑔 𝑎 𝑖 𝜕𝑟2,𝑎 𝜕𝑟1,𝑏 = (1 − 𝑔)𝛿 𝑎,𝑏 𝜕𝑟2,𝑎 𝜕𝑟3,𝑏 = (𝑔)𝛿 𝑎,𝑏 Experiment-VCD MIM2-VCD Experiment-ROA MIM2-ROA Proton Assisted Clustering of (Proline)12 +2 Fasman, G., Ed.; Circular Dichroism and the Conformational Analysis of Biomolecules. Springer: New York, 1996; pp 687. Energy=-704.10569 a.u. (+) (−) ∆Energy= 0.124 kcal/mol MAD in ν(I)=0.32(3.24) cm-1 (esu2 cm2) Experiment MIM2-VCD (−) Enantiopure Recemic Mixture Infrared Spectra @MIM2[MPW1PW91/6-311G(d,p):MPW1PW91/6-31G] MIM1 MIM2 Calibration Ongoing Experiment MIM2