SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
Journal for Research| Volume 02| Issue 01 | March 2016
ISSN: 2395-7549
All rights reserved by www.journalforresearch.org 58
Probability Distribution of Sum of Two
Continuous Variables and Convolution
Rashmi R. Keshvani Yamini M. Parmar
Professor Assistant Professor
Department of Mathematics Department of Mathematics
Sarvajanik College of Engineering & Technology, Surat (Guj.)
India
Government Engineering College, Gandhi nagar (Guj),
India
Abstract
All physical subjects, involving random phenomena, something depending upon chance, naturally find their own way to theory
of Statistics. Hence there arise relations between the results derived for hose random phenomena in different physical subjects
and the concepts of Statistics. Convolution theorem has a variety of applications in field of Fourier transforms and many other
situations, but it bears beautiful applications in field of statistics also .Here in this paper authors want to discuss some notions of
Electrical Engineering in terms of convolution of some probability distributions.
Keywords: A Probability Distribution, An Uniform Probability Distribution, Central Limit Theorem, Convolution, Mean
And Variance of a Probability Distribution, Triangular Function, Unit Rectangle Function
_______________________________________________________________________________________________________
I. INTRODUCTION
Occurrence of resistance of a resistor, with its tolerance can be expressed as a probability distribution. In those circumstances,
what would be the resultant distribution describing occurrence of resistances of resistors having different resistance and different
tolerances, when combined in series? How means and variances are interrelated with that resultant distribution, is main focus of
this paper. In other words, to obtain probability distribution of sum of two random variables is main objective of this paper.
II. SOME BASIC CONCEPTS OF STATISTICS
A Probability Distribution, Its Mean and Variance:
A real valued function 𝑝(π‘₯) is said to be a probability distribution of a random variable π‘₯, if (1) 𝑝(π‘₯) β‰₯ 0, βˆ€ π‘₯ ∈ 𝑅 and
βˆ‘ 𝑝(π‘₯) = 1π‘Žπ‘™π‘™ π‘₯ where π‘₯ is a discrete random variable. or (2) 𝑝(π‘₯) β‰₯ 0, βˆ€ π‘₯ ∈ 𝑅 and ∫ 𝑝(π‘₯)𝑑π‘₯ = 1
∞
βˆ’βˆž
where π‘₯ is a
continuous random variable. The mean of probability distribution 𝑝(π‘₯), denoted by ΞΌ, is defined as
(1) πœ‡ = βˆ‘ π‘₯ 𝑝(π‘₯)π‘Žπ‘™π‘™ π‘₯ , if π‘₯ is discrete, or (2) πœ‡ = ∫ π‘₯ 𝑝(π‘₯)𝑑π‘₯,
∞
βˆ’βˆž
if π‘₯ is continuous. (1)
The variance of probability distribution 𝑝(π‘₯), denoted by 𝜎2
, is defined as
(1) 𝜎2
= βˆ‘ ( π‘₯ βˆ’ πœ‡ )2
𝑝(π‘₯)π‘Žπ‘™π‘™ π‘₯ , if π‘₯ is discrete, or (2) 𝜎2
= ∫ ( π‘₯ βˆ’ πœ‡ )2∞
βˆ’βˆž
𝑝(π‘₯)𝑑π‘₯, if π‘₯ is continuous. [1] (2)
The Uniform Probability Distribution:
The uniform probability distribution, with parameters 𝛼 and 𝛽, has probability distribution 𝑝(π‘₯) defined as
𝑝(π‘₯) = {
1
π›½βˆ’π›Ό
𝑖𝑓 𝛼 < π‘₯ < 𝛽
0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’
(3)
III.THE CONCEPT OF CONVOLUTION
The convolution of two functions 𝑓(π‘₯) and 𝑔(π‘₯), [2], denoted by 𝑓(π‘₯) βˆ— 𝑔(π‘₯), or (𝑓 βˆ— 𝑔)(π‘₯) is defined as
𝑓(π‘₯) βˆ— 𝑔(π‘₯) = ∫ 𝑓(𝑒)𝑔(π‘₯ βˆ’ 𝑒)𝑑𝑒
∞
βˆ’βˆž
(4)
One can easily check that the operation of convolution is commutative, associative and also distributive over addition.
Convolution has additive property also. That is
𝑓 βˆ— (𝑔1 + 𝑔2)(π‘₯) = 𝑓(π‘₯) βˆ— (𝑔1 + 𝑔2)(π‘₯) = 𝑓(π‘₯) βˆ— (𝑔1(π‘₯) + 𝑔2(π‘₯)) = ∫ 𝑓(𝑒) (𝑔1(π‘₯ βˆ’ 𝑒) + 𝑔2( π‘₯ βˆ’ 𝑒))𝑑𝑒
∞
βˆ’βˆž
=
∫ 𝑓(𝑒)𝑔1(π‘₯ βˆ’ 𝑒)𝑑𝑒
βˆ’βˆž
∞
+ ∫ 𝑓(𝑒)𝑔2(π‘₯ βˆ’ 𝑒)𝑑𝑒
βˆ’βˆž
∞
= ( 𝑓 βˆ— 𝑔1)(π‘₯) + ( 𝑓 βˆ— 𝑔2)(π‘₯)
That is 𝑓 βˆ— (𝑔1 + 𝑔2) = ( 𝑓 βˆ— 𝑔1) + ( 𝑓 βˆ— 𝑔2)
Probability Distribution of Sum of Two Continuous Variables and Convolution
(J4R/ Volume 02 / Issue 01 / 009)
All rights reserved by www.journalforresearch.org 59
IV.PROBABILITY DISTRIBUTION OF A SUM
Suppose two probability distributions 𝑝1(π‘₯1) and 𝑝2(π‘₯2) are given and it is required to determine probability distribution
𝑝(π‘₯) of random variable π‘₯ = π‘₯1 + π‘₯2, sum of these two random variables. That is 𝑝(π‘₯) shows probability that sum of π‘₯1and π‘₯2
remains π‘₯. That is 𝑝(π‘₯) = 𝑝( π‘₯ = π‘₯1 + π‘₯2). As for example, suppose a large number of 100-ohm resisters , quoted as subject
to a 10 percent tolerance are drawn from an infinite supply containing equal numbers of resisters in any 1-ohm interval between
90 and 110 and none outside this range. Suppose that the stock of resisters has been drawn from a supply in which the frequency
of occurrence of resisters between 𝑅1 and 𝑅1 𝑑𝑅1 is 𝑃1(𝑅1)𝑑𝑅1. [2]
So 𝑃1(𝑅1) has to be probability distribution, more precisely, uniform probability distribution over interval 90 to 110, ensuring
that,
∫ 𝑃1(𝑅1)
∞
βˆ’βˆž
𝑑𝑅1 = 1, that is 𝑃1(𝑅1) = {
1
(110βˆ’90)
=
1
20
𝑖𝑓 90 ≀ 𝑅1 ≀ 110
0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’
Expressing 𝑃1(𝑅1) in terms of rectangle function, 𝑃1(𝑅1) =
1
20
∏ (
𝑅1βˆ’100
20
), where the rectangle function, denoted by ∏(π‘₯),
is defined as
∏(π‘₯) = {
1 |π‘₯| < 1
2⁄
0 |π‘₯| > 1
2⁄
The mean of this distribution is πœ‡1 = ∫ 𝑅1 𝑃1(𝑅1)𝑑𝑅1 =
1
20
∫ 𝑅1 𝑑𝑅1 =
1
20
[
𝑅1
2
2
]
90
110
= 100
110
90
∞
βˆ’βˆž
, and the variance 𝜎1
2
=
∫ (𝑅1 βˆ’ 100)2
𝑃(𝑅1)𝑑𝑅1 =
1
20
∫ (𝑅1 βˆ’ 100)2
𝑑𝑅1 =
1
20
[
(𝑅1βˆ’100)3
3
]
90
110
=
100
3
110
90
∞
βˆ’βˆž
Similarly for a stock of 50-ohm resisters, with 5-ohm tolerance, another probability distribution𝑃2(𝑅2), defined, as 𝑃2(𝑅2) =
{
1
(55βˆ’45)
=
1
10
𝑖𝑓 45 ≀ 𝑅2 ≀ 55
0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’
will describe the frequency of occurrence of resisters.
Expressing 𝑃2(𝑅2) also, in terms of rectangle function, 𝑃2(𝑅2) =
1
10
∏ (
𝑅2βˆ’50
10
) and the mean of 𝑃2(𝑅2), will be πœ‡2 = 50
and variance 𝜎2
2
=
25
3
If an electronic circuit, combining two of these stock resistors in series[2], and suppose the resulting distribution describing the
probability of occurrence of resistances, is denoted by 𝑃(𝑅), then here problem is to know, what mathematical relation, 𝑃(𝑅)
bears with 𝑃1(𝑅1) and 𝑃2(𝑅2) when 𝑅 = 𝑅1 + 𝑅2. It is clear that 𝑅 = 𝑅1 + 𝑅2 will vary from 90 + 45 = 135 to 110 +
55 = 165, with mean equal to 150. It is also clear that the probability that 𝑅 assumes a value less than or equal to135, that is
𝑃(𝑅 ≀ 135) = 0 and the probability that 𝑅 assumes a value greater than or equal to 165 , that is 𝑃(𝑅 β‰₯ 165) = 0.
Probability that 𝑅 assumes a particular value between 135 and 165, say, 𝑅 = 140, that is 𝑅1 + 𝑅2 = 140, denoted by 𝑃(140)
will be that area where this sum assumes value 140.That is 𝑅2 should remain 140 βˆ’ 𝑅1. Required area will be
𝑃(140) =
1
20
∫ 𝑃2(140 βˆ’ 𝑅1)𝑑𝑅1
110
90
=
1
20
∫ 𝑃2(𝑅2)𝑑
𝑅2=50
𝑅2=30
𝑅2 =
1
20
∫
1
10
𝑑
𝑅2=50
𝑅2=45
𝑅2 =
1
40
,
As 𝑅1 is nonzero if 90 ≀ 𝑅1 ≀ 110 and 𝑅2 is nonzero, if 45 ≀ 𝑅2 ≀ 55.
One can understand that, this is nothing but convolution of 𝑃1(𝑅1) and𝑃2(𝑅2), that is
𝑃(140) = (𝑃1 βˆ— 𝑃2)(140) = ∫ 𝑃1(𝑅1)𝑃2(140 βˆ’ 𝑅1)𝑑𝑅1
∞
βˆ’βˆž
This is an instance of the basic convolution relation between the probability distribution describing the sum of two quantities
and the probability distributions of the given quantities. Now taking in general, let resistor 𝑅1 have greater resistance π‘Ž1 with
tolerance 𝑏1 , and resistor 𝑅2 have smaller resistance π‘Ž2 with tolerance 𝑏2. As π‘Ž1 > π‘Ž2 and, as π‘Ž1 > 𝑏1, π‘Ž2 > 𝑏2, there is
no loss of generality any, if we assume π‘Ž1 > π‘Ž2 > 𝑏1 > 𝑏2 > 0.
In terms of rectangle functions 𝑅1 =
1
2𝑏1
∏ (
𝑅1βˆ’π‘Ž1
2𝑏1
) and 𝑅2 =
1
2𝑏2
∏ (
𝑅2βˆ’π‘Ž2
2𝑏2
)
It is quite obvious that πœ‡1 = ∫ 𝑅1 𝑃1(𝑅1)𝑑𝑅1
∞
βˆ’βˆž
=
1
2𝑏1
∫ 𝑅1 𝑑𝑅1
π‘Ž1+𝑏1
π‘Ž1βˆ’π‘1
=
4π‘Ž1 𝑏1
4𝑏1
= π‘Ž1
πœ‡2 = ∫ 𝑅2 𝑃2(𝑅2)𝑑𝑅2
∞
βˆ’βˆž
=
1
2𝑏2
∫ 𝑅2 𝑑𝑅2
π‘Ž2+𝑏2
π‘Ž2βˆ’π‘2
=
4π‘Ž2 𝑏2
4𝑏2
= π‘Ž2
𝜎1
2
= ∫ (𝑅1 βˆ’ π‘Ž1)2
𝑃1(𝑅)𝑑𝑅1
∞
βˆ’βˆž
=
1
2𝑏1
∫ (𝑅1 βˆ’ π‘Ž1)2
𝑑𝑅1
π‘Ž1+𝑏1
π‘Ž1βˆ’π‘1
=
1
2𝑏1
[
(𝑅1 βˆ’ π‘Ž1 )3
3
] π‘Ž1βˆ’π‘1
π‘Ž1+𝑏1
=
𝑏1
2
3
𝜎2
2
= ∫ ( 𝑅2 βˆ’ π‘Ž2)2
𝑃2(𝑅)𝑑𝑅
∞
βˆ’βˆž
=
1
2𝑏2
∫ ( 𝑅2 βˆ’ π‘Ž2)2
𝑑𝑅
π‘Ž2+𝑏2
π‘Ž2βˆ’π‘2
=
1
2𝑏2
[
(𝑅2 βˆ’ π‘Ž2 )3
3
] π‘Ž2βˆ’π‘2
π‘Ž2+𝑏2
=
𝑏2
2
3
To determine 𝑃(𝑅), following cases are to be considered separately,
If 𝑅 ≀ π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2 or 𝑅 β‰₯ π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2, then 𝑃(𝑅) = 0
If (π‘Ž1 + π‘Ž2) βˆ’ (𝑏1 + 𝑏2) < 𝑅 < (π‘Ž1 + π‘Ž2) βˆ’ 𝑏1 + 𝑏2
𝑃(𝑅) = ∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 =
1
2𝑏1
∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 =
1
2𝑏1
∫ 𝑃2(𝑅2)𝑑𝑅2
π‘…βˆ’(π‘Ž1βˆ’π‘1)
π‘…βˆ’(π‘Ž1 + 𝑏1 )
π‘Ž1+ 𝑏1
π‘Ž1βˆ’π‘1
∞
βˆ’βˆž
=
1
4𝑏1 𝑏2
∫ 𝑑𝑅2
π‘…βˆ’(π‘Ž1βˆ’π‘1)
π‘Ž2βˆ’π‘2
Probability Distribution of Sum of Two Continuous Variables and Convolution
(J4R/ Volume 02 / Issue 01 / 009)
All rights reserved by www.journalforresearch.org 60
=
1
4𝑏1 𝑏2
(𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1) βˆ’ (π‘Ž2 βˆ’ 𝑏2)) as (𝑏1 > 𝑏2 π‘Žπ‘›π‘‘ 𝑅 < π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 + 𝑏2) β‡’ {
𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1) < π‘Ž2 + 𝑏2
𝑅 βˆ’ (π‘Ž1 + 𝑏1) < π‘Ž2 βˆ’ 𝑏2
If (π‘Ž1 + π‘Ž2) βˆ’ 𝑏1 + 𝑏2 ≀ 𝑅 ≀ ( π‘Ž1 + π‘Ž2) + 𝑏1 βˆ’ 𝑏2
𝑃(𝑅) = ∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 =
1
2𝑏1
∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 =
1
2𝑏1
∫ 𝑃2(𝑅2)𝑑𝑅2
π‘…βˆ’(π‘Ž1βˆ’π‘1)
π‘…βˆ’(π‘Ž1 + 𝑏1 )
π‘Ž1+ 𝑏1
π‘Ž1βˆ’π‘1
∞
βˆ’βˆž
=
1
4𝑏1 𝑏2
∫ 𝑑𝑅2
π‘Ž2+𝑏2
π‘Ž2βˆ’π‘2
=
2𝑏2
4𝑏1 𝑏2
=
1
2𝑏1
If π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2 ≀ 𝑅 ≀ π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2,
𝑃(𝑅) = ∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 =
1
2𝑏1
∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 =
1
2𝑏1
∫ 𝑃2(𝑅2)𝑑𝑅2
π‘…βˆ’(π‘Ž1βˆ’π‘1)
π‘…βˆ’(π‘Ž1 + 𝑏1 )
π‘Ž1+ 𝑏1
π‘Ž1βˆ’π‘1
∞
βˆ’βˆž
=
1
4𝑏1 𝑏2
∫ 𝑑𝑅2
π‘Ž2+𝑏2
π‘…βˆ’(π‘Ž1 + 𝑏1)
=
1
4𝑏1 𝑏2
(π‘Ž2 + 𝑏2 + π‘Ž1 + 𝑏1 βˆ’ 𝑅 ),
as (π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2 ≀ 𝑅 π‘Žπ‘›π‘‘ 𝑏1 > 𝑏2) β‡’ {
𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1) > π‘Ž2 + 𝑏2
𝑅 βˆ’ (π‘Ž1 + 𝑏1) > π‘Ž2 βˆ’ 𝑏2
Thus the resulting distribution 𝑃(𝑅), describing the probability of resistances in the electronic circuit, combining two of these
stock resistors in series, 𝑅 = 𝑅1 + 𝑅2 will be obtained as
𝑃(𝑅) =
{
0 𝑖𝑓 𝑅 ≀ π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2
1
4𝑏1 𝑏2
(π‘…βˆ’(π‘Ž1+π‘Ž2βˆ’π‘1βˆ’ 𝑏2)) 𝑖𝑓 π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2 ≀ 𝑅 ≀ π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2
1
2𝑏1
𝑖𝑓 π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 + 𝑏2 ≀ 𝑅 ≀ π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2
1
4𝑏1 𝑏2
(π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2βˆ’π‘… ) 𝑖𝑓 π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2 ≀ 𝑅 ≀ π‘Ž1 + π‘Ž2+ 𝑏1 + 𝑏2
0 𝑖𝑓 𝑅 β‰₯ π‘Ž1+ π‘Ž2+𝑏1+ 𝑏2
(5)
Now ∫ 𝑃(𝑅)𝑑𝑅
∞
βˆ’βˆž
=
1
4𝑏1 𝑏2
{ [
(𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1 + π‘Ž2 βˆ’ 𝑏2))
2
2
]
(π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2)
(π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
+ 2𝑏2[ 𝑅 ](π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
(π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2)
+ [
βˆ’(π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2 βˆ’ 𝑅 )2
2
]
(π‘Ž1+ π‘Ž2+ 𝑏1βˆ’ 𝑏2)
(π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2)
}
=
1
4𝑏1 𝑏2
{ 2 𝑏2
2
+ 2𝑏2(2𝑏1 βˆ’ 2𝑏2) + 2𝑏2
2 } =
1
4𝑏1 𝑏2
{ 4𝑏1 𝑏2} = 1, Ensuring that 𝑃(𝑅) is a probability distribution.
This result shows that composite resistance can be readily found using convolution. The composite resistance is distributed
trapezoid ally as described in the expression (5).
V. CONSEQUENCES OF THE CONVOLUTION RELATION
Let πœ‡, πœ‡1, πœ‡2 be mean of probability distributions 𝑃, 𝑃1, 𝑃2 respectively.
As 𝑃 is convolution of 𝑃1 and 𝑃2,
πœ‡ = ∫ 𝑅𝑃(𝑅)𝑑𝑅
∞
βˆ’βˆž
= ∫ 𝑅(𝑃1 βˆ— 𝑃2)(𝑅)
∞
βˆ’βˆž
𝑑𝑅 = ∫ 𝑅 (∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
∞
βˆ’βˆž
𝑅1) 𝑑𝑅1) 𝑑𝑅
= ∫ 𝑃1(𝑅1)( ∫ 𝑅𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
∞
βˆ’βˆž
𝑅1)𝑑𝑅 ) 𝑑𝑅1 = ∫ 𝑃1(𝑅1)(∫ (π‘…βˆ’π‘…1 + 𝑅1)𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
∞
βˆ’βˆž
𝑅1)𝑑𝑅 ) 𝑑𝑅1
= ∫ 𝑃1(𝑅1) ( ∫ (π‘…βˆ’π‘…1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅 + 𝑅1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅 ) 𝑑𝑅1
∞
βˆ’βˆž
∞
βˆ’βˆž
∞
βˆ’βˆž
= ∫ 𝑃1(𝑅1) ( ∫ (π‘…βˆ’π‘…1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑(𝑅 βˆ’ 𝑅1) + 𝑅1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑(𝑅 βˆ’ 𝑅1)] 𝑑𝑅1
∞
βˆ’βˆž
∞
βˆ’βˆž
∞
βˆ’βˆž
(as in the innermost integration 𝑅1 is constant, 𝑑(𝑅 βˆ’ 𝑅1) = 𝑑𝑅 = 𝑑𝑅2)
= ∫ 𝑃1(𝑅1) {πœ‡2 +
∞
βˆ’βˆž
𝑅1}𝑑𝑅1 = πœ‡2 ∫ 𝑃1(𝑅1) 𝑑𝑅1 +
∞
βˆ’βˆž
∫ 𝑅1
∞
βˆ’βˆž
𝑃1(𝑅1) 𝑑𝑅1 = πœ‡2 + πœ‡1 (6)
𝜎2
= ∫ (𝑅 βˆ’ πœ‡)2
𝑃(𝑅)𝑑𝑅
∞
βˆ’βˆž
= ∫ 𝑅2
𝑃(𝑅)𝑑𝑅
∞
βˆ’βˆž
βˆ’ πœ‡2
= {∫ 𝑅2(𝑃1 βˆ— 𝑃2)(𝑅)𝑑𝑅
∞
βˆ’βˆž
} βˆ’ πœ‡2
= { ∫ 𝑅2
(∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
𝑅1)𝑑𝑅1) 𝑑𝑅 }
∞
βˆ’βˆž
βˆ’ πœ‡2
= { ∫ 𝑃1(𝑅1) (∫ 𝑅2
𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
𝑅1)𝑑𝑅)
∞
βˆ’βˆž
𝑑𝑅1 } βˆ’ πœ‡2
= ∫ 𝑃1(𝑅1) (∫ ((𝑅 βˆ’ 𝑅1) + 𝑅1) 2
𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
𝑅1)𝑑𝑅)
∞
βˆ’βˆž
𝑑𝑅1 βˆ’ πœ‡2
= ∫ 𝑃1(𝑅1) (∫ {(𝑅 βˆ’ 𝑅1) 2
+ 2 𝑅1(𝑅 βˆ’ 𝑅1) + 𝑅1
2
} 𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
𝑅1)𝑑𝑅 )
∞
βˆ’βˆž
𝑑𝑅1 βˆ’ πœ‡2
= ∫ 𝑃1(𝑅1) ( {∫ (𝑅 βˆ’ 𝑅1)2
𝑃2(𝑅 βˆ’
∞
βˆ’βˆž
𝑅1)𝑑(𝑅 βˆ’ 𝑅1)} + 2𝑅1 πœ‡2 + 𝑅1
2
)
∞
βˆ’βˆž
𝑑𝑅1 βˆ’ πœ‡2
Probability Distribution of Sum of Two Continuous Variables and Convolution
(J4R/ Volume 02 / Issue 01 / 009)
All rights reserved by www.journalforresearch.org 61
= ∫ 𝑃1(𝑅1)(𝜎2
2
+ πœ‡2
2
+ 2𝑅1 πœ‡2 + 𝑅1
2)
∞
βˆ’βˆž
𝑑𝑅1 βˆ’ πœ‡2
= (𝜎2
2
+ πœ‡2
2) + 2πœ‡1 πœ‡2 + (𝜎1
2
+ πœ‡1
2) βˆ’ (πœ‡1 + πœ‡2)2
= 𝜎1
2
+ 𝜎2
2
(7)
VI.VERIFICATION OF THE RESULTS
For combined resistor in series,
The mean πœ‡ = ∫ 𝑅 𝑃(𝑅)𝑑𝑅 =
1
4𝑏1 𝑏2
∫ (𝑅2
βˆ’ 𝑅(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2) )
(π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
(π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2)
𝑑𝑅
∞
βˆ’βˆž
=
1
4𝑏1 𝑏2
∫ (𝑅2
βˆ’ 𝑅(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2) )
(π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
(π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2)
𝑑𝑅 +
1
2𝑏1
∫ 𝑅𝑑𝑅
(π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2)
(π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
+
1
4𝑏1 𝑏2
∫ { 𝑅(π‘Ž1 + π‘Ž2 +
(π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2)
(π‘Ž1+ π‘Ž2+ 𝑏1βˆ’ 𝑏2)
𝑏1 + 𝑏2) βˆ’ 𝑅2
} 𝑑𝑅
=
1
4𝑏1 𝑏2
{ [
𝑅3
3
βˆ’
𝑅2
2
(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2)]
(π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2)
(π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
+ 2𝑏2 [
𝑅2
2
]
(π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2)
(π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2)
}
+
1
4𝑏1 𝑏2
{ [
𝑅2
2
(π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2) βˆ’
𝑅3
3
]
(π‘Ž1+ π‘Ž2+ 𝑏1βˆ’ 𝑏2)
(π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2)
}
=
1
4𝑏1 𝑏2
{
(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 + 𝑏2)2(𝑏1 + 5𝑏2 βˆ’ π‘Ž1 βˆ’ π‘Ž2)
6
+
(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2)3
6
+ 4𝑏2(π‘Ž1 + π‘Ž2)(𝑏1 βˆ’ 𝑏2)}
+
1
4𝑏1 𝑏2
{
(π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2)3
6
βˆ’
(π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2)2(π‘Ž1 + π‘Ž2 + 𝑏1 + 5𝑏2)
6
}
=
2(π‘Ž1 + π‘Ž2)
24𝑏1 𝑏2
{ (π‘Ž1 + π‘Ž2)2
+ 3(𝑏1 + 𝑏2)2) + 12𝑏2(𝑏1 βˆ’ 𝑏2) βˆ’ 2(𝑏1 βˆ’ 𝑏2)(𝑏1 + 5𝑏2) βˆ’ (π‘Ž1 + π‘Ž2)2
+ (𝑏1 βˆ’ 𝑏2)2
}
=
2(π‘Ž1+π‘Ž2)
24𝑏1 𝑏2
{3(𝑏1 + 𝑏2)2
+ 12𝑏2(𝑏1 βˆ’ 𝑏2) βˆ’ 2(𝑏1 βˆ’ 𝑏2)(𝑏1 + 5𝑏2) βˆ’ (𝑏1 βˆ’ 𝑏2)2} = (π‘Ž1 + π‘Ž2 ) = πœ‡1 + πœ‡2. The variance
𝜎2
= ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2∞
βˆ’βˆž
𝑃(𝑅)𝑑𝑅
= ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2
1
4𝑏1 𝑏2
(𝑅 βˆ’ (π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2))𝑑𝑅
π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2
π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2
+ ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2
1
2𝑏1
𝑑𝑅
π‘Ž1+π‘Ž2+𝑏1βˆ’π‘2
π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2
+ ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2
1
4𝑏1 𝑏2
((π‘Ž1 + π‘Ž2+ 𝑏1 + 𝑏2) βˆ’ 𝑅)𝑑𝑅
π‘Ž1+π‘Ž2+ 𝑏1+𝑏2
π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2
= {
1
4𝑏1 𝑏2
∫ (( (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))
3
+ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))
2
(𝑏1 + 𝑏2)) 𝑑𝑅
π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2
π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2
+
1
2𝑏1
∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2
𝑑𝑅
π‘Ž1+π‘Ž2+𝑏1βˆ’π‘2
π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2
+
1
4𝑏1 𝑏2
∫ ( ((π‘Ž1 + π‘Ž2) βˆ’ 𝑅)3
+ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2( 𝑏1 + 𝑏2))𝑑𝑅
π‘Ž1+π‘Ž2+ 𝑏1+𝑏2
π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2
}
=
1
4𝑏1 𝑏2
{[
(π‘…βˆ’(π‘Ž1+π‘Ž2))
4
4
]
π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2
π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2
+ (𝑏1 + 𝑏2) [
(π‘…βˆ’(π‘Ž1+π‘Ž2))
3
3
]
π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2
π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2
} +
1
2𝑏1
[
(π‘…βˆ’(π‘Ž1+π‘Ž2))
3
3
]
π‘Ž1+π‘Ž2βˆ’π‘1+ 𝑏2
π‘Ž1+π‘Ž2+𝑏1βˆ’π‘2
+
1
4𝑏1 𝑏2
{( 𝑏1 +
𝑏2) [
(π‘…βˆ’(π‘Ž1+π‘Ž2))
3
3
]
π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2
π‘Ž1+π‘Ž2+𝑏1+𝑏2
βˆ’ [
((π‘Ž1+π‘Ž2)βˆ’π‘…)
4
4
]
π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2
π‘Ž1+π‘Ž2+𝑏1+𝑏2
}
=
1
4𝑏1 𝑏2
{
(𝑏2 βˆ’ 𝑏1)4
4
βˆ’
(𝑏1 + 𝑏2)4
4
+ (𝑏1 + 𝑏2) (
(𝑏2 βˆ’ 𝑏1)3
3
+
(𝑏1 + 𝑏2)3
3
)} +
1
2𝑏1
{
2(𝑏1 βˆ’ 𝑏2)3
3
}
+
1
4𝑏1 𝑏2
{( 𝑏1 + 𝑏2) {
(𝑏1 + 𝑏2)3
3
βˆ’
(𝑏1 βˆ’ 𝑏2)3
3
} –
(𝑏1 + 𝑏2)4
4
+
(𝑏2 βˆ’ 𝑏1)4
4
}
=
1
4𝑏1 𝑏2
{
(𝑏1 + 𝑏2)4
6
+
(𝑏2 βˆ’ 𝑏1)3
6
(𝑏1 + 7𝑏2) βˆ’
8𝑏2(𝑏2 βˆ’ 𝑏1)3
6
}
=
1
24𝑏1 𝑏2
{(𝑏1 + 𝑏2)4
βˆ’ (𝑏2 βˆ’ 𝑏1)4} =
(𝑏1
2
+ 𝑏2
2)
3
= 𝜎1
2
+ 𝜎2
2
Thus the results (6) and (7) hold true.
What happens if both the resistors are having same resistance as well as same tolerance?
That is if π‘Ž1 = π‘Ž2 = π‘Ž and 𝑏1 = 𝑏2 = 𝑏 then 𝑃(𝑅) will be defined as follows:
𝑃(𝑅) = {
0 𝑖𝑓 𝑅 ≀ 2(π‘Žβˆ’π‘)
1
4𝑏2(π‘…βˆ’2( π‘Žβˆ’π‘)) 𝑖𝑓 2(π‘Žβˆ’π‘)≀ 𝑅 ≀ 2π‘Ž
1
4𝑏2(2(π‘Ž+𝑏)βˆ’π‘… ) 𝑖𝑓 2π‘Ž ≀ 𝑅 ≀ 2( π‘Ž+𝑏)
0 𝑖𝑓 𝑅 β‰₯2( π‘Ž+𝑏)
(8)
That is, 𝑃(𝑅) =
1
2𝑏
Ξ› (
π‘…βˆ’2π‘Ž
2𝑏
), where Ξ›(π‘₯), known as triangular function, is defined as
Probability Distribution of Sum of Two Continuous Variables and Convolution
(J4R/ Volume 02 / Issue 01 / 009)
All rights reserved by www.journalforresearch.org 62
Ξ›(π‘₯) = {
0 𝑖𝑓 |π‘₯| > 1
1 βˆ’ |π‘₯| 𝑖𝑓 |π‘₯| ≀ 1
In this case, πœ‡1 = πœ‡2, 𝜎1 = 𝜎2 and
∫ 𝑃(𝑅)𝑑𝑅 = ∫
1
4𝑏2 (𝑅 βˆ’ 2( π‘Ž βˆ’ 𝑏))𝑑𝑅 + ∫
1
4𝑏2
(2( π‘Ž + 𝑏) βˆ’ 𝑅)𝑑𝑅
2(π‘Ž+𝑏)
2π‘Ž
2π‘Ž
2(π‘Žβˆ’π‘)
∞
βˆ’βˆž
=
1
4𝑏2 {[
(π‘…βˆ’2(π‘Žβˆ’π‘))
2
2
]
2(π‘Žβˆ’π‘)
2π‘Ž
+
[βˆ’
(2(π‘Ž+𝑏)βˆ’π‘…)2
2
]
2π‘Ž
2(π‘Ž+𝑏)
} =
1
4𝑏2
{ 2𝑏2
+ 2𝑏2} = 1.
πœ‡ = ∫ 𝑅𝑃(𝑅)𝑑𝑅
∞
βˆ’βˆž
= { ∫
1
4𝑏2 𝑅(𝑅 βˆ’ 2( π‘Ž βˆ’ 𝑏))𝑑𝑅
2π‘Ž
2(π‘Žβˆ’π‘)
+ ∫
1
4𝑏2 𝑅(2(π‘Ž + 𝑏) βˆ’ 𝑅 )𝑑𝑅
2(π‘Ž+𝑏)
2π‘Ž
} =
1
4𝑏2 { [
𝑅3
3
]
2(π‘Žβˆ’π‘)
2π‘Ž
βˆ’ 2(π‘Ž βˆ’ 𝑏) [
𝑅2
2
]
2(π‘Žβˆ’π‘)
2π‘Ž
+
2(π‘Ž + 𝑏) [
𝑅2
2
]
2π‘Ž
2(π‘Ž+𝑏)
βˆ’ [
𝑅3
3
]
2π‘Ž
2(π‘Ž+𝑏)
} =
1
4𝑏2 {
16π‘Ž3
3
βˆ’
8(π‘Žβˆ’π‘)3
3
+ 4(π‘Ž βˆ’ 𝑏)3
+ 4(π‘Ž + 𝑏)3
βˆ’
8(π‘Ž+𝑏)3
3
βˆ’ 8π‘Ž3
}
=
1
4𝑏2
{
βˆ’8π‘Ž3
3
+
4(π‘Ž βˆ’ 𝑏)3
3
+
4(π‘Ž + 𝑏)3
3
} =
1
3𝑏2
{βˆ’2π‘Ž3 + 2π‘Ž3 + 6π‘Žπ‘2} = 2π‘Ž = 2πœ‡1
𝜎2
= ∫ ( 𝑅 βˆ’ 2π‘Ž)2
𝑃(𝑅)𝑑𝑅
∞
βˆ’βˆž
= ∫ ( 𝑅 βˆ’ 2π‘Ž)2
1
4𝑏2
(𝑅 βˆ’ 2( π‘Ž βˆ’ 𝑏))𝑑𝑅 + ∫
1
4𝑏2
( 𝑅 βˆ’ 2π‘Ž)2(2(π‘Ž + 𝑏) βˆ’ 𝑅 )𝑑𝑅
2(π‘Ž+𝑏)
2π‘Ž
2π‘Ž
2(π‘Žβˆ’π‘)
=
1
4𝑏2
{ ∫ (( 𝑅 βˆ’ 2π‘Ž)3 + 2𝑏( 𝑅 βˆ’ 2π‘Ž)2)𝑑𝑅 + ∫ ((2π‘Ž βˆ’ 𝑅)3 + 2𝑏(2π‘Ž βˆ’ 𝑅)2)𝑑𝑅
2(π‘Ž+𝑏)
2π‘Ž
2π‘Ž
2(π‘Žβˆ’π‘)
}
=
1
4𝑏2
{ [
(𝑅 βˆ’ 2π‘Ž)4
4
]
2(π‘Žβˆ’π‘)
2π‘Ž
+ 2𝑏 [
(𝑅 βˆ’ 2π‘Ž)3
3
]
2(π‘Žβˆ’π‘)
2π‘Ž
βˆ’ [
(2π‘Ž βˆ’ 𝑅)4
4
]
2π‘Ž
2(π‘Ž+𝑏)
βˆ’ 2𝑏 [
(2π‘Ž βˆ’ 𝑅)3
3
]
2π‘Ž
2(π‘Ž+𝑏)
}
=
1
4𝑏2
{4𝑏4
+ 16
𝑏4
3
βˆ’ 4𝑏4
+ 16
𝑏4
3
} =
8𝑏2
3
= 2 𝜎1
2
By (5) and (8), it can be observed that the original distributions had been more rounded by convolution. If more elements were
connected in series then the tendency toward smoothness would be more advanced. If a large number of functions are convolved
together, the resultant may be very smooth and as the number increases indefinitely, the resultant may approach Gaussian
form.[2] In Statistics Gaussian distribution is referred to as β€œnormal distribution with zero mean and standard deviation one”,
where the normal distribution is defined as
𝑝( 𝑋 ≀ π‘₯) =
1
𝜎√2πœ‹
∫ π‘’βˆ’
1
2
(
π‘₯βˆ’πœ‡
𝜎
)2
π‘₯
βˆ’βˆž
𝑑π‘₯ ,
Where 𝑋 is a continuous random variable. The rigorous statement of the above stated tendency of protracted convolution is
nothing but the theorem known as the central-limit theorem.[1].
VII. CENTRAL LIMIT THEOREM
If 𝑋̅ is the mean of a sample of size 𝑛 taken from a population having the mean πœ‡ and the finite variance 𝜎2
, then 𝑧 =
π‘‹Μ…βˆ’πœ‡
𝜎
βˆšπ‘›
⁄
is
a random variable whose distribution function approaches that of the standard normal distribution as 𝑛 β†’ ∞. [1]
From the central limit theorem, it follows that if several, n functions are convolved together or a function is self-convolved n
times, the result approaches Gaussian distribution.[3] Therefore it follows that if several random quantities are added, then the
frequency distribution of the sum will approach a Gaussian distribution.
VIII. CONCLUSION
ο€­ Distribution of sum of two random variables is convolution of distributions of those random variables. Composite
resistance of two resistors, combined in series, is obtained by convolution of distributions of those resistors.
ο€­ Convolution has additive property of means of the components. The mean value of the composite resistance of two
resistors, combined in series, is the sum of the means of those two resistors.
ο€­ Variances are also additive under convolution. Variance of composite resistance of two resistors, combined in series,
is addition of variances of those two resistors.
REFERENCES
[1] Richard A. Johnson, Miller & Freund’s β€œProbability and Statistics for Engineers”, Sixth edition
[2] Ronald N. Bracewell, β€œThe Fourier transform and its applications”, International edition 2000, McGrow-Hill Education.
[3] Rashmi R. Keshvani, Yamini M Parmar, β€œAn approach to various Probability Distributions through Convolution.”, international journal of Physical,
Chemical & Mathematical Sciences. Vol-3, pp-1-8, July-Dec- 2014

Weitere Γ€hnliche Inhalte

Was ist angesagt?

MT102 Π›Π΅ΠΊΡ† 10
MT102 Π›Π΅ΠΊΡ† 10MT102 Π›Π΅ΠΊΡ† 10
MT102 Π›Π΅ΠΊΡ† 10ssuser184df1
Β 
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sΓ‘nchez
Taller grupal parcial ii nrc 3246  sebastian fueltala_kevin sΓ‘nchezTaller grupal parcial ii nrc 3246  sebastian fueltala_kevin sΓ‘nchez
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sΓ‘nchezkevinct2001
Β 
Weighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with ApplicationsWeighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with ApplicationsPremier Publishers
Β 
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...ijtsrd
Β 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
Β 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference methodPrateek Jha
Β 
MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11ssuser184df1
Β 
MT102 Π›Π΅ΠΊΡ† 7
MT102 Π›Π΅ΠΊΡ† 7MT102 Π›Π΅ΠΊΡ† 7
MT102 Π›Π΅ΠΊΡ† 7ssuser184df1
Β 
Euler's Method
Euler's MethodEuler's Method
Euler's Methoddmidgette
Β 
FEM problem of elasticity
FEM problem of elasticityFEM problem of elasticity
FEM problem of elasticityAshwani Jha
Β 
MT102 Π›Π΅ΠΊΡ† 15
MT102 Π›Π΅ΠΊΡ† 15MT102 Π›Π΅ΠΊΡ† 15
MT102 Π›Π΅ΠΊΡ† 15ssuser184df1
Β 
2-D formulation Plane theory of elasticity Att 6672
2-D formulation Plane theory of elasticity Att 66722-D formulation Plane theory of elasticity Att 6672
2-D formulation Plane theory of elasticity Att 6672Shekh Muhsen Uddin Ahmed
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
Β 
MT102 Π›Π΅ΠΊΡ† 6
MT102 Π›Π΅ΠΊΡ† 6MT102 Π›Π΅ΠΊΡ† 6
MT102 Π›Π΅ΠΊΡ† 6ssuser184df1
Β 
MT102 Π›Π΅ΠΊΡ† 14
MT102 Π›Π΅ΠΊΡ† 14MT102 Π›Π΅ΠΊΡ† 14
MT102 Π›Π΅ΠΊΡ† 14ssuser184df1
Β 

Was ist angesagt? (20)

C0560913
C0560913C0560913
C0560913
Β 
MT102 Π›Π΅ΠΊΡ† 10
MT102 Π›Π΅ΠΊΡ† 10MT102 Π›Π΅ΠΊΡ† 10
MT102 Π›Π΅ΠΊΡ† 10
Β 
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sΓ‘nchez
Taller grupal parcial ii nrc 3246  sebastian fueltala_kevin sΓ‘nchezTaller grupal parcial ii nrc 3246  sebastian fueltala_kevin sΓ‘nchez
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sΓ‘nchez
Β 
Numerical Solution of the Nonlocal Singularly Perturbed Problem
Numerical Solution of the Nonlocal Singularly Perturbed ProblemNumerical Solution of the Nonlocal Singularly Perturbed Problem
Numerical Solution of the Nonlocal Singularly Perturbed Problem
Β 
Weighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with ApplicationsWeighted Analogue of Inverse Maxwell Distribution with Applications
Weighted Analogue of Inverse Maxwell Distribution with Applications
Β 
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Β 
Simple Linear Regression
Simple Linear RegressionSimple Linear Regression
Simple Linear Regression
Β 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
Β 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference method
Β 
Statistics (recap)
Statistics (recap)Statistics (recap)
Statistics (recap)
Β 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
Β 
MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11
Β 
MT102 Π›Π΅ΠΊΡ† 7
MT102 Π›Π΅ΠΊΡ† 7MT102 Π›Π΅ΠΊΡ† 7
MT102 Π›Π΅ΠΊΡ† 7
Β 
Euler's Method
Euler's MethodEuler's Method
Euler's Method
Β 
FEM problem of elasticity
FEM problem of elasticityFEM problem of elasticity
FEM problem of elasticity
Β 
MT102 Π›Π΅ΠΊΡ† 15
MT102 Π›Π΅ΠΊΡ† 15MT102 Π›Π΅ΠΊΡ† 15
MT102 Π›Π΅ΠΊΡ† 15
Β 
2-D formulation Plane theory of elasticity Att 6672
2-D formulation Plane theory of elasticity Att 66722-D formulation Plane theory of elasticity Att 6672
2-D formulation Plane theory of elasticity Att 6672
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Β 
MT102 Π›Π΅ΠΊΡ† 6
MT102 Π›Π΅ΠΊΡ† 6MT102 Π›Π΅ΠΊΡ† 6
MT102 Π›Π΅ΠΊΡ† 6
Β 
MT102 Π›Π΅ΠΊΡ† 14
MT102 Π›Π΅ΠΊΡ† 14MT102 Π›Π΅ΠΊΡ† 14
MT102 Π›Π΅ΠΊΡ† 14
Β 

Andere mochten auch

The effects of worked examples on transfer of statistical reasoning
The effects of worked examples on transfer of statistical reasoningThe effects of worked examples on transfer of statistical reasoning
The effects of worked examples on transfer of statistical reasoningMarianna Lamnina
Β 
applied multivariate statistical techniques in agriculture and plant science 2
applied multivariate statistical techniques in agriculture and plant science 2applied multivariate statistical techniques in agriculture and plant science 2
applied multivariate statistical techniques in agriculture and plant science 2amir rahmani
Β 
probability versusnonprobsampling
 probability versusnonprobsampling probability versusnonprobsampling
probability versusnonprobsamplingWander Guerra
Β 
Ten Important Life Lessons on Nano Medicine Research Paper Taught Us
Ten Important Life Lessons on Nano Medicine Research Paper Taught UsTen Important Life Lessons on Nano Medicine Research Paper Taught Us
Ten Important Life Lessons on Nano Medicine Research Paper Taught Usscience journals
Β 
Non-Temporal ARIMA Models in Statistical Research
Non-Temporal ARIMA Models in Statistical ResearchNon-Temporal ARIMA Models in Statistical Research
Non-Temporal ARIMA Models in Statistical ResearchMagnify Analytic Solutions
Β 
Statistical thinking in Medicine (Historical Overview)
Statistical thinking in Medicine (Historical Overview)Statistical thinking in Medicine (Historical Overview)
Statistical thinking in Medicine (Historical Overview)Christos Argyropoulos
Β 
Business research model
Business research modelBusiness research model
Business research modelVignan Cheruku
Β 
Statistical analysis training course
Statistical analysis training courseStatistical analysis training course
Statistical analysis training courseMarwa Abo-Amra
Β 
random variable and distribution
random variable and distributionrandom variable and distribution
random variable and distributionlovemucheca
Β 
wto and indian agriculture
wto and indian agriculturewto and indian agriculture
wto and indian agriculturecharudatta gangoli
Β 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributionsmandalina landy
Β 
Polynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesPolynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesAnkur Patel
Β 
Sampling distribution
Sampling distributionSampling distribution
Sampling distributionNilanjan Bhaumik
Β 
Random variables
Random variablesRandom variables
Random variablesmrraymondstats
Β 
Role of Statistics in Scientific Research
Role of Statistics in Scientific ResearchRole of Statistics in Scientific Research
Role of Statistics in Scientific ResearchVaruna Harshana
Β 
STATISTICS: Normal Distribution
STATISTICS: Normal Distribution STATISTICS: Normal Distribution
STATISTICS: Normal Distribution jundumaug1
Β 
Normal distribution and sampling distribution
Normal distribution and sampling distributionNormal distribution and sampling distribution
Normal distribution and sampling distributionMridul Arora
Β 
M.Tech Final Seminar
M.Tech Final SeminarM.Tech Final Seminar
M.Tech Final Seminarsantoshborate2
Β 

Andere mochten auch (19)

The effects of worked examples on transfer of statistical reasoning
The effects of worked examples on transfer of statistical reasoningThe effects of worked examples on transfer of statistical reasoning
The effects of worked examples on transfer of statistical reasoning
Β 
applied multivariate statistical techniques in agriculture and plant science 2
applied multivariate statistical techniques in agriculture and plant science 2applied multivariate statistical techniques in agriculture and plant science 2
applied multivariate statistical techniques in agriculture and plant science 2
Β 
probability versusnonprobsampling
 probability versusnonprobsampling probability versusnonprobsampling
probability versusnonprobsampling
Β 
Ten Important Life Lessons on Nano Medicine Research Paper Taught Us
Ten Important Life Lessons on Nano Medicine Research Paper Taught UsTen Important Life Lessons on Nano Medicine Research Paper Taught Us
Ten Important Life Lessons on Nano Medicine Research Paper Taught Us
Β 
Non-Temporal ARIMA Models in Statistical Research
Non-Temporal ARIMA Models in Statistical ResearchNon-Temporal ARIMA Models in Statistical Research
Non-Temporal ARIMA Models in Statistical Research
Β 
Statistical thinking in Medicine (Historical Overview)
Statistical thinking in Medicine (Historical Overview)Statistical thinking in Medicine (Historical Overview)
Statistical thinking in Medicine (Historical Overview)
Β 
Business research model
Business research modelBusiness research model
Business research model
Β 
Statistical analysis training course
Statistical analysis training courseStatistical analysis training course
Statistical analysis training course
Β 
random variable and distribution
random variable and distributionrandom variable and distribution
random variable and distribution
Β 
wto and indian agriculture
wto and indian agriculturewto and indian agriculture
wto and indian agriculture
Β 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributions
Β 
Polynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesPolynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two Variables
Β 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
Β 
Random variables
Random variablesRandom variables
Random variables
Β 
Role of Statistics in Scientific Research
Role of Statistics in Scientific ResearchRole of Statistics in Scientific Research
Role of Statistics in Scientific Research
Β 
STATISTICS: Normal Distribution
STATISTICS: Normal Distribution STATISTICS: Normal Distribution
STATISTICS: Normal Distribution
Β 
Normal distribution and sampling distribution
Normal distribution and sampling distributionNormal distribution and sampling distribution
Normal distribution and sampling distribution
Β 
Break Even Analysis
Break Even AnalysisBreak Even Analysis
Break Even Analysis
Β 
M.Tech Final Seminar
M.Tech Final SeminarM.Tech Final Seminar
M.Tech Final Seminar
Β 

Γ„hnlich wie Probability Distribution of Sum of Two Continuous Variables

publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
Β 
Probability Proficiency.pptx
Probability Proficiency.pptxProbability Proficiency.pptx
Probability Proficiency.pptxHarshGupta137011
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
Β 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesIOSR Journals
Β 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
Β 
Applied mathematics
Applied mathematicsApplied mathematics
Applied mathematicsssuserada5be
Β 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfssuserfb9ae6
Β 
A05330107
A05330107A05330107
A05330107IOSR-JEN
Β 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...IJERA Editor
Β 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
Β 
F04573843
F04573843F04573843
F04573843IOSR-JEN
Β 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEMuhammad Nur Chalim
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
Β 

Γ„hnlich wie Probability Distribution of Sum of Two Continuous Variables (20)

lec32.ppt
lec32.pptlec32.ppt
lec32.ppt
Β 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
Β 
publisher in research
publisher in researchpublisher in research
publisher in research
Β 
Probability Proficiency.pptx
Probability Proficiency.pptxProbability Proficiency.pptx
Probability Proficiency.pptx
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Β 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
Β 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
Β 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
Β 
Applied mathematics
Applied mathematicsApplied mathematics
Applied mathematics
Β 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdf
Β 
A05330107
A05330107A05330107
A05330107
Β 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
Β 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
Β 
F04573843
F04573843F04573843
F04573843
Β 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Β 
lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
Β 

Mehr von Journal For Research

Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...Journal For Research
Β 
Experimental Verification and Validation of Stress Distribution of Composite ...
Experimental Verification and Validation of Stress Distribution of Composite ...Experimental Verification and Validation of Stress Distribution of Composite ...
Experimental Verification and Validation of Stress Distribution of Composite ...Journal For Research
Β 
Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...
Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...
Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...Journal For Research
Β 
A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016
A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016
A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016Journal For Research
Β 
IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...
IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...
IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...Journal For Research
Β 
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015Journal For Research
Β 
HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014
HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014
HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014Journal For Research
Β 
A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...
A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...
A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...Journal For Research
Β 
A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...
A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...
A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...Journal For Research
Β 
LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012
LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012
LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012Journal For Research
Β 
DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...
DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...
DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...Journal For Research
Β 
AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009
AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009
AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009Journal For Research
Β 
LINE FOLLOWER ROBOT | J4RV4I1010
LINE FOLLOWER ROBOT | J4RV4I1010LINE FOLLOWER ROBOT | J4RV4I1010
LINE FOLLOWER ROBOT | J4RV4I1010Journal For Research
Β 
CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008
CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008
CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008Journal For Research
Β 
AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002
AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002
AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002Journal For Research
Β 
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001Journal For Research
Β 
IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021
IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021
IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021Journal For Research
Β 
USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...
USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...
USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...Journal For Research
Β 
UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023
UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023
UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023Journal For Research
Β 
SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024
SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024
SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024Journal For Research
Β 

Mehr von Journal For Research (20)

Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Β 
Experimental Verification and Validation of Stress Distribution of Composite ...
Experimental Verification and Validation of Stress Distribution of Composite ...Experimental Verification and Validation of Stress Distribution of Composite ...
Experimental Verification and Validation of Stress Distribution of Composite ...
Β 
Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...
Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...
Image Binarization for the uses of Preprocessing to Detect Brain Abnormality ...
Β 
A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016
A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016
A Research Paper on BFO and PSO Based Movie Recommendation System | J4RV4I1016
Β 
IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...
IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...
IoT based Digital Agriculture Monitoring System and Their Impact on Optimal U...
Β 
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
Β 
HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014
HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014
HCI BASED APPLICATION FOR PLAYING COMPUTER GAMES | J4RV4I1014
Β 
A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...
A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...
A REVIEW ON DESIGN OF PUBLIC TRANSPORTATION SYSTEM IN CHANDRAPUR CITY | J4RV4...
Β 
A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...
A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...
A REVIEW ON LIFTING AND ASSEMBLY OF ROTARY KILN TYRE WITH SHELL BY FLEXIBLE G...
Β 
LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012
LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012
LABORATORY STUDY OF STRONG, MODERATE AND WEAK SANDSTONES | J4RV4I1012
Β 
DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...
DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...
DESIGN ANALYSIS AND FABRICATION OF MANUAL RICE TRANSPLANTING MACHINE | J4RV4I...
Β 
AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009
AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009
AN OVERVIEW: DAKNET TECHNOLOGY - BROADBAND AD-HOC CONNECTIVITY | J4RV4I1009
Β 
LINE FOLLOWER ROBOT | J4RV4I1010
LINE FOLLOWER ROBOT | J4RV4I1010LINE FOLLOWER ROBOT | J4RV4I1010
LINE FOLLOWER ROBOT | J4RV4I1010
Β 
CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008
CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008
CHATBOT FOR COLLEGE RELATED QUERIES | J4RV4I1008
Β 
AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002
AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002
AN INTEGRATED APPROACH TO REDUCE INTRA CITY TRAFFIC AT COIMBATORE | J4RV4I1002
Β 
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
A REVIEW STUDY ON GAS-SOLID CYCLONE SEPARATOR USING LAPPLE MODEL | J4RV4I1001
Β 
IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021
IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021
IMAGE SEGMENTATION USING FCM ALGORITM | J4RV3I12021
Β 
USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...
USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...
USE OF GALVANIZED STEELS FOR AUTOMOTIVE BODY- CAR SURVEY RESULTS AT COASTAL A...
Β 
UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023
UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023
UNMANNED AERIAL VEHICLE FOR REMITTANCE | J4RV3I12023
Β 
SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024
SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024
SURVEY ON A MODERN MEDICARE SYSTEM USING INTERNET OF THINGS | J4RV3I12024
Β 

KΓΌrzlich hochgeladen

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
Β 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Dr. Mazin Mohamed alkathiri
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
Β 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
Β 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
Β 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
Β 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
Β 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
Β 

KΓΌrzlich hochgeladen (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Β 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
Β 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
Β 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
Β 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
Β 
CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1
Β 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Β 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Β 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
Β 

Probability Distribution of Sum of Two Continuous Variables

  • 1. Journal for Research| Volume 02| Issue 01 | March 2016 ISSN: 2395-7549 All rights reserved by www.journalforresearch.org 58 Probability Distribution of Sum of Two Continuous Variables and Convolution Rashmi R. Keshvani Yamini M. Parmar Professor Assistant Professor Department of Mathematics Department of Mathematics Sarvajanik College of Engineering & Technology, Surat (Guj.) India Government Engineering College, Gandhi nagar (Guj), India Abstract All physical subjects, involving random phenomena, something depending upon chance, naturally find their own way to theory of Statistics. Hence there arise relations between the results derived for hose random phenomena in different physical subjects and the concepts of Statistics. Convolution theorem has a variety of applications in field of Fourier transforms and many other situations, but it bears beautiful applications in field of statistics also .Here in this paper authors want to discuss some notions of Electrical Engineering in terms of convolution of some probability distributions. Keywords: A Probability Distribution, An Uniform Probability Distribution, Central Limit Theorem, Convolution, Mean And Variance of a Probability Distribution, Triangular Function, Unit Rectangle Function _______________________________________________________________________________________________________ I. INTRODUCTION Occurrence of resistance of a resistor, with its tolerance can be expressed as a probability distribution. In those circumstances, what would be the resultant distribution describing occurrence of resistances of resistors having different resistance and different tolerances, when combined in series? How means and variances are interrelated with that resultant distribution, is main focus of this paper. In other words, to obtain probability distribution of sum of two random variables is main objective of this paper. II. SOME BASIC CONCEPTS OF STATISTICS A Probability Distribution, Its Mean and Variance: A real valued function 𝑝(π‘₯) is said to be a probability distribution of a random variable π‘₯, if (1) 𝑝(π‘₯) β‰₯ 0, βˆ€ π‘₯ ∈ 𝑅 and βˆ‘ 𝑝(π‘₯) = 1π‘Žπ‘™π‘™ π‘₯ where π‘₯ is a discrete random variable. or (2) 𝑝(π‘₯) β‰₯ 0, βˆ€ π‘₯ ∈ 𝑅 and ∫ 𝑝(π‘₯)𝑑π‘₯ = 1 ∞ βˆ’βˆž where π‘₯ is a continuous random variable. The mean of probability distribution 𝑝(π‘₯), denoted by ΞΌ, is defined as (1) πœ‡ = βˆ‘ π‘₯ 𝑝(π‘₯)π‘Žπ‘™π‘™ π‘₯ , if π‘₯ is discrete, or (2) πœ‡ = ∫ π‘₯ 𝑝(π‘₯)𝑑π‘₯, ∞ βˆ’βˆž if π‘₯ is continuous. (1) The variance of probability distribution 𝑝(π‘₯), denoted by 𝜎2 , is defined as (1) 𝜎2 = βˆ‘ ( π‘₯ βˆ’ πœ‡ )2 𝑝(π‘₯)π‘Žπ‘™π‘™ π‘₯ , if π‘₯ is discrete, or (2) 𝜎2 = ∫ ( π‘₯ βˆ’ πœ‡ )2∞ βˆ’βˆž 𝑝(π‘₯)𝑑π‘₯, if π‘₯ is continuous. [1] (2) The Uniform Probability Distribution: The uniform probability distribution, with parameters 𝛼 and 𝛽, has probability distribution 𝑝(π‘₯) defined as 𝑝(π‘₯) = { 1 π›½βˆ’π›Ό 𝑖𝑓 𝛼 < π‘₯ < 𝛽 0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’ (3) III.THE CONCEPT OF CONVOLUTION The convolution of two functions 𝑓(π‘₯) and 𝑔(π‘₯), [2], denoted by 𝑓(π‘₯) βˆ— 𝑔(π‘₯), or (𝑓 βˆ— 𝑔)(π‘₯) is defined as 𝑓(π‘₯) βˆ— 𝑔(π‘₯) = ∫ 𝑓(𝑒)𝑔(π‘₯ βˆ’ 𝑒)𝑑𝑒 ∞ βˆ’βˆž (4) One can easily check that the operation of convolution is commutative, associative and also distributive over addition. Convolution has additive property also. That is 𝑓 βˆ— (𝑔1 + 𝑔2)(π‘₯) = 𝑓(π‘₯) βˆ— (𝑔1 + 𝑔2)(π‘₯) = 𝑓(π‘₯) βˆ— (𝑔1(π‘₯) + 𝑔2(π‘₯)) = ∫ 𝑓(𝑒) (𝑔1(π‘₯ βˆ’ 𝑒) + 𝑔2( π‘₯ βˆ’ 𝑒))𝑑𝑒 ∞ βˆ’βˆž = ∫ 𝑓(𝑒)𝑔1(π‘₯ βˆ’ 𝑒)𝑑𝑒 βˆ’βˆž ∞ + ∫ 𝑓(𝑒)𝑔2(π‘₯ βˆ’ 𝑒)𝑑𝑒 βˆ’βˆž ∞ = ( 𝑓 βˆ— 𝑔1)(π‘₯) + ( 𝑓 βˆ— 𝑔2)(π‘₯) That is 𝑓 βˆ— (𝑔1 + 𝑔2) = ( 𝑓 βˆ— 𝑔1) + ( 𝑓 βˆ— 𝑔2)
  • 2. Probability Distribution of Sum of Two Continuous Variables and Convolution (J4R/ Volume 02 / Issue 01 / 009) All rights reserved by www.journalforresearch.org 59 IV.PROBABILITY DISTRIBUTION OF A SUM Suppose two probability distributions 𝑝1(π‘₯1) and 𝑝2(π‘₯2) are given and it is required to determine probability distribution 𝑝(π‘₯) of random variable π‘₯ = π‘₯1 + π‘₯2, sum of these two random variables. That is 𝑝(π‘₯) shows probability that sum of π‘₯1and π‘₯2 remains π‘₯. That is 𝑝(π‘₯) = 𝑝( π‘₯ = π‘₯1 + π‘₯2). As for example, suppose a large number of 100-ohm resisters , quoted as subject to a 10 percent tolerance are drawn from an infinite supply containing equal numbers of resisters in any 1-ohm interval between 90 and 110 and none outside this range. Suppose that the stock of resisters has been drawn from a supply in which the frequency of occurrence of resisters between 𝑅1 and 𝑅1 𝑑𝑅1 is 𝑃1(𝑅1)𝑑𝑅1. [2] So 𝑃1(𝑅1) has to be probability distribution, more precisely, uniform probability distribution over interval 90 to 110, ensuring that, ∫ 𝑃1(𝑅1) ∞ βˆ’βˆž 𝑑𝑅1 = 1, that is 𝑃1(𝑅1) = { 1 (110βˆ’90) = 1 20 𝑖𝑓 90 ≀ 𝑅1 ≀ 110 0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’ Expressing 𝑃1(𝑅1) in terms of rectangle function, 𝑃1(𝑅1) = 1 20 ∏ ( 𝑅1βˆ’100 20 ), where the rectangle function, denoted by ∏(π‘₯), is defined as ∏(π‘₯) = { 1 |π‘₯| < 1 2⁄ 0 |π‘₯| > 1 2⁄ The mean of this distribution is πœ‡1 = ∫ 𝑅1 𝑃1(𝑅1)𝑑𝑅1 = 1 20 ∫ 𝑅1 𝑑𝑅1 = 1 20 [ 𝑅1 2 2 ] 90 110 = 100 110 90 ∞ βˆ’βˆž , and the variance 𝜎1 2 = ∫ (𝑅1 βˆ’ 100)2 𝑃(𝑅1)𝑑𝑅1 = 1 20 ∫ (𝑅1 βˆ’ 100)2 𝑑𝑅1 = 1 20 [ (𝑅1βˆ’100)3 3 ] 90 110 = 100 3 110 90 ∞ βˆ’βˆž Similarly for a stock of 50-ohm resisters, with 5-ohm tolerance, another probability distribution𝑃2(𝑅2), defined, as 𝑃2(𝑅2) = { 1 (55βˆ’45) = 1 10 𝑖𝑓 45 ≀ 𝑅2 ≀ 55 0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’ will describe the frequency of occurrence of resisters. Expressing 𝑃2(𝑅2) also, in terms of rectangle function, 𝑃2(𝑅2) = 1 10 ∏ ( 𝑅2βˆ’50 10 ) and the mean of 𝑃2(𝑅2), will be πœ‡2 = 50 and variance 𝜎2 2 = 25 3 If an electronic circuit, combining two of these stock resistors in series[2], and suppose the resulting distribution describing the probability of occurrence of resistances, is denoted by 𝑃(𝑅), then here problem is to know, what mathematical relation, 𝑃(𝑅) bears with 𝑃1(𝑅1) and 𝑃2(𝑅2) when 𝑅 = 𝑅1 + 𝑅2. It is clear that 𝑅 = 𝑅1 + 𝑅2 will vary from 90 + 45 = 135 to 110 + 55 = 165, with mean equal to 150. It is also clear that the probability that 𝑅 assumes a value less than or equal to135, that is 𝑃(𝑅 ≀ 135) = 0 and the probability that 𝑅 assumes a value greater than or equal to 165 , that is 𝑃(𝑅 β‰₯ 165) = 0. Probability that 𝑅 assumes a particular value between 135 and 165, say, 𝑅 = 140, that is 𝑅1 + 𝑅2 = 140, denoted by 𝑃(140) will be that area where this sum assumes value 140.That is 𝑅2 should remain 140 βˆ’ 𝑅1. Required area will be 𝑃(140) = 1 20 ∫ 𝑃2(140 βˆ’ 𝑅1)𝑑𝑅1 110 90 = 1 20 ∫ 𝑃2(𝑅2)𝑑 𝑅2=50 𝑅2=30 𝑅2 = 1 20 ∫ 1 10 𝑑 𝑅2=50 𝑅2=45 𝑅2 = 1 40 , As 𝑅1 is nonzero if 90 ≀ 𝑅1 ≀ 110 and 𝑅2 is nonzero, if 45 ≀ 𝑅2 ≀ 55. One can understand that, this is nothing but convolution of 𝑃1(𝑅1) and𝑃2(𝑅2), that is 𝑃(140) = (𝑃1 βˆ— 𝑃2)(140) = ∫ 𝑃1(𝑅1)𝑃2(140 βˆ’ 𝑅1)𝑑𝑅1 ∞ βˆ’βˆž This is an instance of the basic convolution relation between the probability distribution describing the sum of two quantities and the probability distributions of the given quantities. Now taking in general, let resistor 𝑅1 have greater resistance π‘Ž1 with tolerance 𝑏1 , and resistor 𝑅2 have smaller resistance π‘Ž2 with tolerance 𝑏2. As π‘Ž1 > π‘Ž2 and, as π‘Ž1 > 𝑏1, π‘Ž2 > 𝑏2, there is no loss of generality any, if we assume π‘Ž1 > π‘Ž2 > 𝑏1 > 𝑏2 > 0. In terms of rectangle functions 𝑅1 = 1 2𝑏1 ∏ ( 𝑅1βˆ’π‘Ž1 2𝑏1 ) and 𝑅2 = 1 2𝑏2 ∏ ( 𝑅2βˆ’π‘Ž2 2𝑏2 ) It is quite obvious that πœ‡1 = ∫ 𝑅1 𝑃1(𝑅1)𝑑𝑅1 ∞ βˆ’βˆž = 1 2𝑏1 ∫ 𝑅1 𝑑𝑅1 π‘Ž1+𝑏1 π‘Ž1βˆ’π‘1 = 4π‘Ž1 𝑏1 4𝑏1 = π‘Ž1 πœ‡2 = ∫ 𝑅2 𝑃2(𝑅2)𝑑𝑅2 ∞ βˆ’βˆž = 1 2𝑏2 ∫ 𝑅2 𝑑𝑅2 π‘Ž2+𝑏2 π‘Ž2βˆ’π‘2 = 4π‘Ž2 𝑏2 4𝑏2 = π‘Ž2 𝜎1 2 = ∫ (𝑅1 βˆ’ π‘Ž1)2 𝑃1(𝑅)𝑑𝑅1 ∞ βˆ’βˆž = 1 2𝑏1 ∫ (𝑅1 βˆ’ π‘Ž1)2 𝑑𝑅1 π‘Ž1+𝑏1 π‘Ž1βˆ’π‘1 = 1 2𝑏1 [ (𝑅1 βˆ’ π‘Ž1 )3 3 ] π‘Ž1βˆ’π‘1 π‘Ž1+𝑏1 = 𝑏1 2 3 𝜎2 2 = ∫ ( 𝑅2 βˆ’ π‘Ž2)2 𝑃2(𝑅)𝑑𝑅 ∞ βˆ’βˆž = 1 2𝑏2 ∫ ( 𝑅2 βˆ’ π‘Ž2)2 𝑑𝑅 π‘Ž2+𝑏2 π‘Ž2βˆ’π‘2 = 1 2𝑏2 [ (𝑅2 βˆ’ π‘Ž2 )3 3 ] π‘Ž2βˆ’π‘2 π‘Ž2+𝑏2 = 𝑏2 2 3 To determine 𝑃(𝑅), following cases are to be considered separately, If 𝑅 ≀ π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2 or 𝑅 β‰₯ π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2, then 𝑃(𝑅) = 0 If (π‘Ž1 + π‘Ž2) βˆ’ (𝑏1 + 𝑏2) < 𝑅 < (π‘Ž1 + π‘Ž2) βˆ’ 𝑏1 + 𝑏2 𝑃(𝑅) = ∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 = 1 2𝑏1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 = 1 2𝑏1 ∫ 𝑃2(𝑅2)𝑑𝑅2 π‘…βˆ’(π‘Ž1βˆ’π‘1) π‘…βˆ’(π‘Ž1 + 𝑏1 ) π‘Ž1+ 𝑏1 π‘Ž1βˆ’π‘1 ∞ βˆ’βˆž = 1 4𝑏1 𝑏2 ∫ 𝑑𝑅2 π‘…βˆ’(π‘Ž1βˆ’π‘1) π‘Ž2βˆ’π‘2
  • 3. Probability Distribution of Sum of Two Continuous Variables and Convolution (J4R/ Volume 02 / Issue 01 / 009) All rights reserved by www.journalforresearch.org 60 = 1 4𝑏1 𝑏2 (𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1) βˆ’ (π‘Ž2 βˆ’ 𝑏2)) as (𝑏1 > 𝑏2 π‘Žπ‘›π‘‘ 𝑅 < π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 + 𝑏2) β‡’ { 𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1) < π‘Ž2 + 𝑏2 𝑅 βˆ’ (π‘Ž1 + 𝑏1) < π‘Ž2 βˆ’ 𝑏2 If (π‘Ž1 + π‘Ž2) βˆ’ 𝑏1 + 𝑏2 ≀ 𝑅 ≀ ( π‘Ž1 + π‘Ž2) + 𝑏1 βˆ’ 𝑏2 𝑃(𝑅) = ∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 = 1 2𝑏1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 = 1 2𝑏1 ∫ 𝑃2(𝑅2)𝑑𝑅2 π‘…βˆ’(π‘Ž1βˆ’π‘1) π‘…βˆ’(π‘Ž1 + 𝑏1 ) π‘Ž1+ 𝑏1 π‘Ž1βˆ’π‘1 ∞ βˆ’βˆž = 1 4𝑏1 𝑏2 ∫ 𝑑𝑅2 π‘Ž2+𝑏2 π‘Ž2βˆ’π‘2 = 2𝑏2 4𝑏1 𝑏2 = 1 2𝑏1 If π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2 ≀ 𝑅 ≀ π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2, 𝑃(𝑅) = ∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 = 1 2𝑏1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅1 = 1 2𝑏1 ∫ 𝑃2(𝑅2)𝑑𝑅2 π‘…βˆ’(π‘Ž1βˆ’π‘1) π‘…βˆ’(π‘Ž1 + 𝑏1 ) π‘Ž1+ 𝑏1 π‘Ž1βˆ’π‘1 ∞ βˆ’βˆž = 1 4𝑏1 𝑏2 ∫ 𝑑𝑅2 π‘Ž2+𝑏2 π‘…βˆ’(π‘Ž1 + 𝑏1) = 1 4𝑏1 𝑏2 (π‘Ž2 + 𝑏2 + π‘Ž1 + 𝑏1 βˆ’ 𝑅 ), as (π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2 ≀ 𝑅 π‘Žπ‘›π‘‘ 𝑏1 > 𝑏2) β‡’ { 𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1) > π‘Ž2 + 𝑏2 𝑅 βˆ’ (π‘Ž1 + 𝑏1) > π‘Ž2 βˆ’ 𝑏2 Thus the resulting distribution 𝑃(𝑅), describing the probability of resistances in the electronic circuit, combining two of these stock resistors in series, 𝑅 = 𝑅1 + 𝑅2 will be obtained as 𝑃(𝑅) = { 0 𝑖𝑓 𝑅 ≀ π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2 1 4𝑏1 𝑏2 (π‘…βˆ’(π‘Ž1+π‘Ž2βˆ’π‘1βˆ’ 𝑏2)) 𝑖𝑓 π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2 ≀ 𝑅 ≀ π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2 1 2𝑏1 𝑖𝑓 π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 + 𝑏2 ≀ 𝑅 ≀ π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2 1 4𝑏1 𝑏2 (π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2βˆ’π‘… ) 𝑖𝑓 π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2 ≀ 𝑅 ≀ π‘Ž1 + π‘Ž2+ 𝑏1 + 𝑏2 0 𝑖𝑓 𝑅 β‰₯ π‘Ž1+ π‘Ž2+𝑏1+ 𝑏2 (5) Now ∫ 𝑃(𝑅)𝑑𝑅 ∞ βˆ’βˆž = 1 4𝑏1 𝑏2 { [ (𝑅 βˆ’ (π‘Ž1 βˆ’ 𝑏1 + π‘Ž2 βˆ’ 𝑏2)) 2 2 ] (π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2) (π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) + 2𝑏2[ 𝑅 ](π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) (π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2) + [ βˆ’(π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2 βˆ’ 𝑅 )2 2 ] (π‘Ž1+ π‘Ž2+ 𝑏1βˆ’ 𝑏2) (π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2) } = 1 4𝑏1 𝑏2 { 2 𝑏2 2 + 2𝑏2(2𝑏1 βˆ’ 2𝑏2) + 2𝑏2 2 } = 1 4𝑏1 𝑏2 { 4𝑏1 𝑏2} = 1, Ensuring that 𝑃(𝑅) is a probability distribution. This result shows that composite resistance can be readily found using convolution. The composite resistance is distributed trapezoid ally as described in the expression (5). V. CONSEQUENCES OF THE CONVOLUTION RELATION Let πœ‡, πœ‡1, πœ‡2 be mean of probability distributions 𝑃, 𝑃1, 𝑃2 respectively. As 𝑃 is convolution of 𝑃1 and 𝑃2, πœ‡ = ∫ 𝑅𝑃(𝑅)𝑑𝑅 ∞ βˆ’βˆž = ∫ 𝑅(𝑃1 βˆ— 𝑃2)(𝑅) ∞ βˆ’βˆž 𝑑𝑅 = ∫ 𝑅 (∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž ∞ βˆ’βˆž 𝑅1) 𝑑𝑅1) 𝑑𝑅 = ∫ 𝑃1(𝑅1)( ∫ 𝑅𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž ∞ βˆ’βˆž 𝑅1)𝑑𝑅 ) 𝑑𝑅1 = ∫ 𝑃1(𝑅1)(∫ (π‘…βˆ’π‘…1 + 𝑅1)𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž ∞ βˆ’βˆž 𝑅1)𝑑𝑅 ) 𝑑𝑅1 = ∫ 𝑃1(𝑅1) ( ∫ (π‘…βˆ’π‘…1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅 + 𝑅1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑𝑅 ) 𝑑𝑅1 ∞ βˆ’βˆž ∞ βˆ’βˆž ∞ βˆ’βˆž = ∫ 𝑃1(𝑅1) ( ∫ (π‘…βˆ’π‘…1)𝑃2(𝑅 βˆ’ 𝑅1)𝑑(𝑅 βˆ’ 𝑅1) + 𝑅1 ∫ 𝑃2(𝑅 βˆ’ 𝑅1)𝑑(𝑅 βˆ’ 𝑅1)] 𝑑𝑅1 ∞ βˆ’βˆž ∞ βˆ’βˆž ∞ βˆ’βˆž (as in the innermost integration 𝑅1 is constant, 𝑑(𝑅 βˆ’ 𝑅1) = 𝑑𝑅 = 𝑑𝑅2) = ∫ 𝑃1(𝑅1) {πœ‡2 + ∞ βˆ’βˆž 𝑅1}𝑑𝑅1 = πœ‡2 ∫ 𝑃1(𝑅1) 𝑑𝑅1 + ∞ βˆ’βˆž ∫ 𝑅1 ∞ βˆ’βˆž 𝑃1(𝑅1) 𝑑𝑅1 = πœ‡2 + πœ‡1 (6) 𝜎2 = ∫ (𝑅 βˆ’ πœ‡)2 𝑃(𝑅)𝑑𝑅 ∞ βˆ’βˆž = ∫ 𝑅2 𝑃(𝑅)𝑑𝑅 ∞ βˆ’βˆž βˆ’ πœ‡2 = {∫ 𝑅2(𝑃1 βˆ— 𝑃2)(𝑅)𝑑𝑅 ∞ βˆ’βˆž } βˆ’ πœ‡2 = { ∫ 𝑅2 (∫ 𝑃1(𝑅1)𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž 𝑅1)𝑑𝑅1) 𝑑𝑅 } ∞ βˆ’βˆž βˆ’ πœ‡2 = { ∫ 𝑃1(𝑅1) (∫ 𝑅2 𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž 𝑅1)𝑑𝑅) ∞ βˆ’βˆž 𝑑𝑅1 } βˆ’ πœ‡2 = ∫ 𝑃1(𝑅1) (∫ ((𝑅 βˆ’ 𝑅1) + 𝑅1) 2 𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž 𝑅1)𝑑𝑅) ∞ βˆ’βˆž 𝑑𝑅1 βˆ’ πœ‡2 = ∫ 𝑃1(𝑅1) (∫ {(𝑅 βˆ’ 𝑅1) 2 + 2 𝑅1(𝑅 βˆ’ 𝑅1) + 𝑅1 2 } 𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž 𝑅1)𝑑𝑅 ) ∞ βˆ’βˆž 𝑑𝑅1 βˆ’ πœ‡2 = ∫ 𝑃1(𝑅1) ( {∫ (𝑅 βˆ’ 𝑅1)2 𝑃2(𝑅 βˆ’ ∞ βˆ’βˆž 𝑅1)𝑑(𝑅 βˆ’ 𝑅1)} + 2𝑅1 πœ‡2 + 𝑅1 2 ) ∞ βˆ’βˆž 𝑑𝑅1 βˆ’ πœ‡2
  • 4. Probability Distribution of Sum of Two Continuous Variables and Convolution (J4R/ Volume 02 / Issue 01 / 009) All rights reserved by www.journalforresearch.org 61 = ∫ 𝑃1(𝑅1)(𝜎2 2 + πœ‡2 2 + 2𝑅1 πœ‡2 + 𝑅1 2) ∞ βˆ’βˆž 𝑑𝑅1 βˆ’ πœ‡2 = (𝜎2 2 + πœ‡2 2) + 2πœ‡1 πœ‡2 + (𝜎1 2 + πœ‡1 2) βˆ’ (πœ‡1 + πœ‡2)2 = 𝜎1 2 + 𝜎2 2 (7) VI.VERIFICATION OF THE RESULTS For combined resistor in series, The mean πœ‡ = ∫ 𝑅 𝑃(𝑅)𝑑𝑅 = 1 4𝑏1 𝑏2 ∫ (𝑅2 βˆ’ 𝑅(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2) ) (π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) (π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2) 𝑑𝑅 ∞ βˆ’βˆž = 1 4𝑏1 𝑏2 ∫ (𝑅2 βˆ’ 𝑅(π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2) ) (π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) (π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2) 𝑑𝑅 + 1 2𝑏1 ∫ 𝑅𝑑𝑅 (π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2) (π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) + 1 4𝑏1 𝑏2 ∫ { 𝑅(π‘Ž1 + π‘Ž2 + (π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2) (π‘Ž1+ π‘Ž2+ 𝑏1βˆ’ 𝑏2) 𝑏1 + 𝑏2) βˆ’ 𝑅2 } 𝑑𝑅 = 1 4𝑏1 𝑏2 { [ 𝑅3 3 βˆ’ 𝑅2 2 (π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2)] (π‘Ž1+ π‘Ž2βˆ’π‘1βˆ’π‘2) (π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) + 2𝑏2 [ 𝑅2 2 ] (π‘Ž1+ π‘Ž2βˆ’π‘1+ 𝑏2) (π‘Ž1+ π‘Ž2+𝑏1βˆ’ 𝑏2) } + 1 4𝑏1 𝑏2 { [ 𝑅2 2 (π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2) βˆ’ 𝑅3 3 ] (π‘Ž1+ π‘Ž2+ 𝑏1βˆ’ 𝑏2) (π‘Ž1+ π‘Ž2+ 𝑏1+ 𝑏2) } = 1 4𝑏1 𝑏2 { (π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 + 𝑏2)2(𝑏1 + 5𝑏2 βˆ’ π‘Ž1 βˆ’ π‘Ž2) 6 + (π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2)3 6 + 4𝑏2(π‘Ž1 + π‘Ž2)(𝑏1 βˆ’ 𝑏2)} + 1 4𝑏1 𝑏2 { (π‘Ž1 + π‘Ž2 + 𝑏1 + 𝑏2)3 6 βˆ’ (π‘Ž1 + π‘Ž2 + 𝑏1 βˆ’ 𝑏2)2(π‘Ž1 + π‘Ž2 + 𝑏1 + 5𝑏2) 6 } = 2(π‘Ž1 + π‘Ž2) 24𝑏1 𝑏2 { (π‘Ž1 + π‘Ž2)2 + 3(𝑏1 + 𝑏2)2) + 12𝑏2(𝑏1 βˆ’ 𝑏2) βˆ’ 2(𝑏1 βˆ’ 𝑏2)(𝑏1 + 5𝑏2) βˆ’ (π‘Ž1 + π‘Ž2)2 + (𝑏1 βˆ’ 𝑏2)2 } = 2(π‘Ž1+π‘Ž2) 24𝑏1 𝑏2 {3(𝑏1 + 𝑏2)2 + 12𝑏2(𝑏1 βˆ’ 𝑏2) βˆ’ 2(𝑏1 βˆ’ 𝑏2)(𝑏1 + 5𝑏2) βˆ’ (𝑏1 βˆ’ 𝑏2)2} = (π‘Ž1 + π‘Ž2 ) = πœ‡1 + πœ‡2. The variance 𝜎2 = ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2∞ βˆ’βˆž 𝑃(𝑅)𝑑𝑅 = ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2 1 4𝑏1 𝑏2 (𝑅 βˆ’ (π‘Ž1 + π‘Ž2 βˆ’ 𝑏1 βˆ’ 𝑏2))𝑑𝑅 π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2 π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2 + ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2 1 2𝑏1 𝑑𝑅 π‘Ž1+π‘Ž2+𝑏1βˆ’π‘2 π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2 + ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2 1 4𝑏1 𝑏2 ((π‘Ž1 + π‘Ž2+ 𝑏1 + 𝑏2) βˆ’ 𝑅)𝑑𝑅 π‘Ž1+π‘Ž2+ 𝑏1+𝑏2 π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2 = { 1 4𝑏1 𝑏2 ∫ (( (𝑅 βˆ’ (π‘Ž1 + π‘Ž2)) 3 + (𝑅 βˆ’ (π‘Ž1 + π‘Ž2)) 2 (𝑏1 + 𝑏2)) 𝑑𝑅 π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2 π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2 + 1 2𝑏1 ∫ (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2 𝑑𝑅 π‘Ž1+π‘Ž2+𝑏1βˆ’π‘2 π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2 + 1 4𝑏1 𝑏2 ∫ ( ((π‘Ž1 + π‘Ž2) βˆ’ 𝑅)3 + (𝑅 βˆ’ (π‘Ž1 + π‘Ž2))2( 𝑏1 + 𝑏2))𝑑𝑅 π‘Ž1+π‘Ž2+ 𝑏1+𝑏2 π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2 } = 1 4𝑏1 𝑏2 {[ (π‘…βˆ’(π‘Ž1+π‘Ž2)) 4 4 ] π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2 π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2 + (𝑏1 + 𝑏2) [ (π‘…βˆ’(π‘Ž1+π‘Ž2)) 3 3 ] π‘Ž1+π‘Ž2βˆ’π‘1βˆ’π‘2 π‘Ž1+π‘Ž2βˆ’π‘1+𝑏2 } + 1 2𝑏1 [ (π‘…βˆ’(π‘Ž1+π‘Ž2)) 3 3 ] π‘Ž1+π‘Ž2βˆ’π‘1+ 𝑏2 π‘Ž1+π‘Ž2+𝑏1βˆ’π‘2 + 1 4𝑏1 𝑏2 {( 𝑏1 + 𝑏2) [ (π‘…βˆ’(π‘Ž1+π‘Ž2)) 3 3 ] π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2 π‘Ž1+π‘Ž2+𝑏1+𝑏2 βˆ’ [ ((π‘Ž1+π‘Ž2)βˆ’π‘…) 4 4 ] π‘Ž1+π‘Ž2+ 𝑏1βˆ’π‘2 π‘Ž1+π‘Ž2+𝑏1+𝑏2 } = 1 4𝑏1 𝑏2 { (𝑏2 βˆ’ 𝑏1)4 4 βˆ’ (𝑏1 + 𝑏2)4 4 + (𝑏1 + 𝑏2) ( (𝑏2 βˆ’ 𝑏1)3 3 + (𝑏1 + 𝑏2)3 3 )} + 1 2𝑏1 { 2(𝑏1 βˆ’ 𝑏2)3 3 } + 1 4𝑏1 𝑏2 {( 𝑏1 + 𝑏2) { (𝑏1 + 𝑏2)3 3 βˆ’ (𝑏1 βˆ’ 𝑏2)3 3 } – (𝑏1 + 𝑏2)4 4 + (𝑏2 βˆ’ 𝑏1)4 4 } = 1 4𝑏1 𝑏2 { (𝑏1 + 𝑏2)4 6 + (𝑏2 βˆ’ 𝑏1)3 6 (𝑏1 + 7𝑏2) βˆ’ 8𝑏2(𝑏2 βˆ’ 𝑏1)3 6 } = 1 24𝑏1 𝑏2 {(𝑏1 + 𝑏2)4 βˆ’ (𝑏2 βˆ’ 𝑏1)4} = (𝑏1 2 + 𝑏2 2) 3 = 𝜎1 2 + 𝜎2 2 Thus the results (6) and (7) hold true. What happens if both the resistors are having same resistance as well as same tolerance? That is if π‘Ž1 = π‘Ž2 = π‘Ž and 𝑏1 = 𝑏2 = 𝑏 then 𝑃(𝑅) will be defined as follows: 𝑃(𝑅) = { 0 𝑖𝑓 𝑅 ≀ 2(π‘Žβˆ’π‘) 1 4𝑏2(π‘…βˆ’2( π‘Žβˆ’π‘)) 𝑖𝑓 2(π‘Žβˆ’π‘)≀ 𝑅 ≀ 2π‘Ž 1 4𝑏2(2(π‘Ž+𝑏)βˆ’π‘… ) 𝑖𝑓 2π‘Ž ≀ 𝑅 ≀ 2( π‘Ž+𝑏) 0 𝑖𝑓 𝑅 β‰₯2( π‘Ž+𝑏) (8) That is, 𝑃(𝑅) = 1 2𝑏 Ξ› ( π‘…βˆ’2π‘Ž 2𝑏 ), where Ξ›(π‘₯), known as triangular function, is defined as
  • 5. Probability Distribution of Sum of Two Continuous Variables and Convolution (J4R/ Volume 02 / Issue 01 / 009) All rights reserved by www.journalforresearch.org 62 Ξ›(π‘₯) = { 0 𝑖𝑓 |π‘₯| > 1 1 βˆ’ |π‘₯| 𝑖𝑓 |π‘₯| ≀ 1 In this case, πœ‡1 = πœ‡2, 𝜎1 = 𝜎2 and ∫ 𝑃(𝑅)𝑑𝑅 = ∫ 1 4𝑏2 (𝑅 βˆ’ 2( π‘Ž βˆ’ 𝑏))𝑑𝑅 + ∫ 1 4𝑏2 (2( π‘Ž + 𝑏) βˆ’ 𝑅)𝑑𝑅 2(π‘Ž+𝑏) 2π‘Ž 2π‘Ž 2(π‘Žβˆ’π‘) ∞ βˆ’βˆž = 1 4𝑏2 {[ (π‘…βˆ’2(π‘Žβˆ’π‘)) 2 2 ] 2(π‘Žβˆ’π‘) 2π‘Ž + [βˆ’ (2(π‘Ž+𝑏)βˆ’π‘…)2 2 ] 2π‘Ž 2(π‘Ž+𝑏) } = 1 4𝑏2 { 2𝑏2 + 2𝑏2} = 1. πœ‡ = ∫ 𝑅𝑃(𝑅)𝑑𝑅 ∞ βˆ’βˆž = { ∫ 1 4𝑏2 𝑅(𝑅 βˆ’ 2( π‘Ž βˆ’ 𝑏))𝑑𝑅 2π‘Ž 2(π‘Žβˆ’π‘) + ∫ 1 4𝑏2 𝑅(2(π‘Ž + 𝑏) βˆ’ 𝑅 )𝑑𝑅 2(π‘Ž+𝑏) 2π‘Ž } = 1 4𝑏2 { [ 𝑅3 3 ] 2(π‘Žβˆ’π‘) 2π‘Ž βˆ’ 2(π‘Ž βˆ’ 𝑏) [ 𝑅2 2 ] 2(π‘Žβˆ’π‘) 2π‘Ž + 2(π‘Ž + 𝑏) [ 𝑅2 2 ] 2π‘Ž 2(π‘Ž+𝑏) βˆ’ [ 𝑅3 3 ] 2π‘Ž 2(π‘Ž+𝑏) } = 1 4𝑏2 { 16π‘Ž3 3 βˆ’ 8(π‘Žβˆ’π‘)3 3 + 4(π‘Ž βˆ’ 𝑏)3 + 4(π‘Ž + 𝑏)3 βˆ’ 8(π‘Ž+𝑏)3 3 βˆ’ 8π‘Ž3 } = 1 4𝑏2 { βˆ’8π‘Ž3 3 + 4(π‘Ž βˆ’ 𝑏)3 3 + 4(π‘Ž + 𝑏)3 3 } = 1 3𝑏2 {βˆ’2π‘Ž3 + 2π‘Ž3 + 6π‘Žπ‘2} = 2π‘Ž = 2πœ‡1 𝜎2 = ∫ ( 𝑅 βˆ’ 2π‘Ž)2 𝑃(𝑅)𝑑𝑅 ∞ βˆ’βˆž = ∫ ( 𝑅 βˆ’ 2π‘Ž)2 1 4𝑏2 (𝑅 βˆ’ 2( π‘Ž βˆ’ 𝑏))𝑑𝑅 + ∫ 1 4𝑏2 ( 𝑅 βˆ’ 2π‘Ž)2(2(π‘Ž + 𝑏) βˆ’ 𝑅 )𝑑𝑅 2(π‘Ž+𝑏) 2π‘Ž 2π‘Ž 2(π‘Žβˆ’π‘) = 1 4𝑏2 { ∫ (( 𝑅 βˆ’ 2π‘Ž)3 + 2𝑏( 𝑅 βˆ’ 2π‘Ž)2)𝑑𝑅 + ∫ ((2π‘Ž βˆ’ 𝑅)3 + 2𝑏(2π‘Ž βˆ’ 𝑅)2)𝑑𝑅 2(π‘Ž+𝑏) 2π‘Ž 2π‘Ž 2(π‘Žβˆ’π‘) } = 1 4𝑏2 { [ (𝑅 βˆ’ 2π‘Ž)4 4 ] 2(π‘Žβˆ’π‘) 2π‘Ž + 2𝑏 [ (𝑅 βˆ’ 2π‘Ž)3 3 ] 2(π‘Žβˆ’π‘) 2π‘Ž βˆ’ [ (2π‘Ž βˆ’ 𝑅)4 4 ] 2π‘Ž 2(π‘Ž+𝑏) βˆ’ 2𝑏 [ (2π‘Ž βˆ’ 𝑅)3 3 ] 2π‘Ž 2(π‘Ž+𝑏) } = 1 4𝑏2 {4𝑏4 + 16 𝑏4 3 βˆ’ 4𝑏4 + 16 𝑏4 3 } = 8𝑏2 3 = 2 𝜎1 2 By (5) and (8), it can be observed that the original distributions had been more rounded by convolution. If more elements were connected in series then the tendency toward smoothness would be more advanced. If a large number of functions are convolved together, the resultant may be very smooth and as the number increases indefinitely, the resultant may approach Gaussian form.[2] In Statistics Gaussian distribution is referred to as β€œnormal distribution with zero mean and standard deviation one”, where the normal distribution is defined as 𝑝( 𝑋 ≀ π‘₯) = 1 𝜎√2πœ‹ ∫ π‘’βˆ’ 1 2 ( π‘₯βˆ’πœ‡ 𝜎 )2 π‘₯ βˆ’βˆž 𝑑π‘₯ , Where 𝑋 is a continuous random variable. The rigorous statement of the above stated tendency of protracted convolution is nothing but the theorem known as the central-limit theorem.[1]. VII. CENTRAL LIMIT THEOREM If 𝑋̅ is the mean of a sample of size 𝑛 taken from a population having the mean πœ‡ and the finite variance 𝜎2 , then 𝑧 = π‘‹Μ…βˆ’πœ‡ 𝜎 βˆšπ‘› ⁄ is a random variable whose distribution function approaches that of the standard normal distribution as 𝑛 β†’ ∞. [1] From the central limit theorem, it follows that if several, n functions are convolved together or a function is self-convolved n times, the result approaches Gaussian distribution.[3] Therefore it follows that if several random quantities are added, then the frequency distribution of the sum will approach a Gaussian distribution. VIII. CONCLUSION ο€­ Distribution of sum of two random variables is convolution of distributions of those random variables. Composite resistance of two resistors, combined in series, is obtained by convolution of distributions of those resistors. ο€­ Convolution has additive property of means of the components. The mean value of the composite resistance of two resistors, combined in series, is the sum of the means of those two resistors. ο€­ Variances are also additive under convolution. Variance of composite resistance of two resistors, combined in series, is addition of variances of those two resistors. REFERENCES [1] Richard A. Johnson, Miller & Freund’s β€œProbability and Statistics for Engineers”, Sixth edition [2] Ronald N. Bracewell, β€œThe Fourier transform and its applications”, International edition 2000, McGrow-Hill Education. [3] Rashmi R. Keshvani, Yamini M Parmar, β€œAn approach to various Probability Distributions through Convolution.”, international journal of Physical, Chemical & Mathematical Sciences. Vol-3, pp-1-8, July-Dec- 2014