SlideShare ist ein Scribd-Unternehmen logo
1 von 8
Downloaden Sie, um offline zu lesen
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. II (Jan - Feb. 2015), PP 16-23
www.iosrjournals.org
DOI: 10.9790/5728-11121623 www.iosrjournals.org 16 | Page
Uniformity of the Local Convergence of Chord Method for
Generalized Equations
M. H. Rashid1
, A. Basak2
and M. Z. Khaton3
1,2
Department of Mathematics, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
3
Department of Mathematics, Sapahar Government Degree College, Naogaon-6560, Bangladesh
Abstract: Let 𝑋 be a real or complex Banach space and π‘Œ be a normed linear space. Suppose that 𝑓: 𝑋 β†’ π‘Œ is
a Frechet differentiable function and 𝐹: 𝑋 ⇉ 2 π‘Œ
is a set-valued mapping with closed graph. Uniform
convergence of Chord method for solving generalized equation 𝑦 ∈ 𝑓 π‘₯ + 𝐹 π‘₯ … … . (βˆ—), where 𝑦 ∈ π‘Œ a
parameter, is studied in the present paper. More clearly, we obtain the uniform convergence of the sequence
generated by Chord method in the sense that it is stable under small variation of perturbation parameter 𝑦
provided that the set-valued mapping 𝐹 is pseudo-Lipschitz at a given point (possibly at a given solution).
Keywords: Chord method, Generalized equation, Local convergence, pseudo-Lipschitz mapping, Set-valued
mapping.
AMS (MOS) Subject Classifications: 49J53; 47H04; 65K10.
1. Introduction
Let 𝑋 be a real or complex Banach space and π‘Œ be a normed linear space. We are concerned with the problem of
finding the solution π‘₯βˆ—
of parameterized perturbed generalized equation of the form
𝑦 ∈ 𝑓 π‘₯ + 𝐹 π‘₯ , (1.1)
where 𝑦 ∈ π‘Œ is a parameter, 𝑓: 𝑋 β†’ π‘Œ is a single-valued function and 𝐹: 𝑋 ⇉ 2 π‘Œ
is set-valued mapping with
closed graph.
The Generalized equation problems were introduced by S.M. Robinson [1, 2] as a general tool for
describing, analyzing, and solving different problem in a unified manner. Typical examples are systems of
inequalities, variational inequalities, linear and non-linear complementary problems, systems of nonlinear
equations, equilibrium problems, etc.; see for example [1--3].
It is remark that when 𝐹 = 0 , (1.1) is an equation. When F is positive orthand in 𝑅 𝑛
, (1.1) is a system
of inequalities. When 𝐹 is the normal cone to a convex and closed set in 𝑋, (1.1) represents variational
inequalities.
Newton-type method can be considered to solve this generalized equation when the single-valued
function involved in (1.1) is differentiable. Such an approach has been used in many contributions to this
subject; see for example [4--6].
To solve (1.1), Dontchev [4] introduced a Newton type method of the form
𝑦 ∈ 𝑓 π‘₯ π‘˜ + 𝛻𝑓 π‘₯ π‘˜ π‘₯ π‘˜+1 βˆ’ π‘₯ π‘˜ + 𝐹 π‘₯ π‘˜+1 , π‘˜ = 0,1, . . ., (1.2)
where 𝛻𝑓 π‘₯ π‘˜ is the Frechet derivative of 𝑓 at the point π‘₯ π‘˜ and obtained the stability of the method (1.2).
A large number of iterative methods have been presented for solving (1.1). Pietrus [5] showed the stability of
this method under mild conditions. Other achievements on this topic can be found in [6, 7].
Marinov [8] associated the following method name as β€œChord method” for solving the generalized equation
(1.1):
𝑦 ∈ 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ π‘˜+1 βˆ’ π‘₯ π‘˜ + 𝐹 π‘₯ π‘˜+1 , (1.3)
where 𝐴 ∈ 𝐿 𝑋, π‘Œ . It should be noted that when 𝐴 = 𝛻𝑓 π‘₯ π‘˜ , the method (1.3) reduces to the well-known
Newton-type method (1.2).
In the present paper, we are intended to present a kind of convergence of the sequence generated by the
Chord method defined by (1.3) which is uniform in the sense that the attraction region does not depend on small
variations of the value of the parameter 𝑦 near π‘¦βˆ—
and for such values of 𝑦 the method finds a solution π‘₯ of
(1.1) whenever 𝐹 is pseudo-Lipschitz at (π‘₯βˆ—
, π‘¦βˆ—
) and the Frechet derivative of 𝑓 is continuous. We will prove
the uniformity of the local convergence of the Chord method defined by (1.3) in two different ways.
This work is organized as follows: In Section 2, we recall few preliminary results that will be used in
the subsequent sections. In Section 3, we prove the existence and uniform convergence of the sequence
generated by the Chord method defined by (1.3) for solving generalized equation (1.1). Finally in Section 4, we
will give conclusion of the major results obtained in this study.
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 17 | Page
II. Notations And Preliminary Results
Throughout this work we suppose that 𝑋 is a real or complex Banach space and π‘Œ is a normed linear space. All
the norms are denoted by βˆ™ . The closed ball centered at x with radius π‘Ÿ > 0 denoted by π΅π‘Ÿ(π‘₯) and the set of
linear operators denoted by 𝐿(𝑋, π‘Œ).
The following definition is taken from [7, 9].
Definition 2.1: Let 𝐹: 𝑋 ⇉ 2 π‘Œ
be a set valued mapping. Then the Domain of 𝐹 is denoted by dom 𝐹, and is
define by
dom 𝐹 = π‘₯ ∈ 𝑋 ∢ 𝐹 π‘₯ β‰  βˆ… .
The inverse of 𝐹 is denoted by πΉβˆ’1
, and is defined by
πΉβˆ’1
𝑦 = π‘₯ ∈ 𝑋: 𝑦 ∈ 𝑓 π‘₯ ,
and
The Graph of 𝐹 is denoted by gph 𝐹, and is define by
gph 𝐹 = π‘₯, 𝑦 ∈ 𝑋 Γ— π‘Œ ∢ 𝑦 ∈ 𝐹 π‘₯ .
The following definition of distance from a point to a set and excess are taken from [7, 9].
Definition 2.2: Let 𝑋 be Banach space 𝐴 be subset of 𝑋. Then the distance from a point π‘₯ to a set 𝐴 is denoted
by dist π‘₯, 𝐴 , and is define by
dist (π‘₯, 𝐴) = inf π‘₯ βˆ’ π‘Ž ∢ π‘Ž ∈ 𝐴 .
Definition 2.3: Let 𝑋 be Banach space and 𝐴, 𝐡 βŠ† 𝑋. The excess 𝑒 from the set 𝐴 to a set 𝐡 is given by
𝑒 𝐡, 𝐴 = sup π‘₯ βˆ’ 𝐴 ∢ π‘₯ ∈ 𝐡 .
The following definition is taken from [9].
Definition 2.4: Let 𝐹: 𝑋 ⇉ 2 π‘Œ
be a set-valued mapping. Then 𝐹 is said to be pseudo Lipschitz-around π‘₯0, 𝑦0 ∈
gph 𝐹 with constant 𝑀 if there exist positive constants 𝛼, 𝛽 > 0 such that
𝑒 𝐹 π‘₯1 ∩ 𝐡𝛽 𝑦0 , 𝐹 π‘₯2 ≀ 𝑀 π‘₯1 βˆ’ π‘₯2 ,
for every π‘₯1, π‘₯2 ∈ 𝐡𝛼 π‘₯0 . When 𝐹 is single-valued, this corresponds to the usual concept of Lipschitz
continuity.
The definition of Lipschitz continuity is equivalent to the definition of Aubin continuity, which is given below:
A set-valued map 𝛀: π‘Œ ⇉ 2 𝑋
is Aubin continuous at 𝑦0, π‘₯0 ∈ gph 𝛀 with positive constants 𝛼, 𝛽 and 𝑀 if for
every 𝑦1, 𝑦2 ∈ 𝐡𝛽 𝑦0 and for every π‘₯1 ∈ 𝛀 𝑦1 ∩ 𝐡𝛼 π‘₯0 , there exists an π‘₯2 ∈ 𝛀 𝑦2 such that
π‘₯1 βˆ’ π‘₯2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 .
The constant 𝑀 is called the modulus of Aubin continuity.
The following definition of continuity is taken from the book [10].
Definition 2.5: A map 𝑓: 𝛺 βŠ† 𝑋 β†’ π‘Œ is said to be continuous at π‘₯ ∈ 𝛺 if for every πœ€ > 0, there exist a 𝛿 > 0
such that
𝑓 π‘₯ βˆ’ 𝑓 π‘₯ < πœ€, for all π‘₯ ∈ 𝛺 for which π‘₯ βˆ’ π‘₯ < 𝛿.
Definition 2.6: A map 𝑓: 𝛺 βŠ† 𝑋 β†’ π‘Œ is said to be Lipschitz continuous if there exists constant 𝑐 such that
𝑓 π‘₯ βˆ’ 𝑓 𝑦 ≀ 𝑐 π‘₯ βˆ’ 𝑦 , for all π‘₯ and 𝑦 in the domain of 𝑓.
The following definition of linear convergence is taken from the monogram [11].
Definition 2.7: Let {π‘₯ 𝑛 } be a sequence which is converges to the number π‘₯. Then the sequence {π‘₯ 𝑛 } is said to
be converges linearly to π‘₯, if there exists a number 0 < 𝑐 < 1 such that
π‘₯ 𝑛+1 βˆ’ π‘₯ ≀ 𝑐 π‘₯ 𝑛 βˆ’ π‘₯ .
The following Lemma is a version of fixed point theorem, which is taken from [7].
Lemma 2.1: Let 𝛷: 𝑋 ⇉ 2 𝑋
be a set valued mapping and let πœ‚0 ∈ 𝑋, π‘Ÿ > 0 and 0 < πœ† < 1
be such that
(a) dist πœ‚0, 𝛷 πœ‚0 < π‘Ÿ 1 βˆ’ πœ† and
(b) 𝑒 𝛷 π‘₯1 ∩ π΅π‘Ÿ πœ‚0 , 𝛷 π‘₯2 ≀ πœ† π‘₯1 βˆ’ π‘₯2 , for all π‘₯1, π‘₯1 ∈ π΅π‘Ÿ πœ‚0 .
Then 𝛷 has a fixed point in π΅π‘Ÿ πœ‚0 , that is, there exists π‘₯ ∈ π΅π‘Ÿ πœ‚0 such that π‘₯ ∈ 𝛷 π‘₯ . If 𝛷 is single-valued,
then π‘₯ is the unique fixed point of 𝛷 in π΅π‘Ÿ πœ‚0 .
III. Uniform Convergence Of Chord Method
This section is devoted to study the stability of the Chord method for solving generalized equations
(1.1) involving set-valued mapping and parameters. Let 𝑓: 𝑋 β†’ π‘Œ be a single-valued function which is Frechet
differentiable on an open set in 𝑋 and 𝐹: 𝑋 ⇉ 2 π‘Œ
be a set-valued mapping with closed graph. Let 𝑦 ∈ 𝐹 π‘₯ and
πΉβˆ’1
be pseudo-Lipschitz around 𝑦 , π‘₯ . Then through Theorem 2.1 in [12], we have that 𝑓 + 𝐹 βˆ’1
is pseudo-
Lipschitz around 𝑦 + 𝑓(π‘₯ , π‘₯ ). Let π‘₯ ∈ 𝑋 and define the mapping 𝑃π‘₯ : 𝑋 ⇉ 2 π‘Œ
by
𝑃π‘₯ βˆ™ = 𝑓 π‘₯ + 𝐴 βˆ™ βˆ’π‘₯ + 𝐹 βˆ™ .
Moreover, the following equivalence is obvious, for any 𝑧 ∈ 𝑋 and 𝑦 ∈ π‘Œ,
𝑧 ∈ 𝑃π‘₯
βˆ’1
𝑦 ⇔ 𝑦 ∈ 𝑓 π‘₯ + 𝐴 𝑧 βˆ’ π‘₯ + 𝐹(𝑧). (3.1)
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 18 | Page
In particular, π‘₯βˆ—
∈ 𝑃 π‘₯βˆ—
βˆ’1
π‘¦βˆ—
for each π‘₯βˆ—
, π‘¦βˆ—
∈ gph 𝑓 + 𝐹 . Let π‘Ž > 0, 𝑏 > 0. Throughout the whole paper,
we suppose that π΅π‘Ž π‘₯βˆ—
βŠ† 𝛺 ∩ dom 𝐹 and that π‘₯βˆ—
, π‘¦βˆ—
∈ gph 𝑃 π‘₯βˆ— , for every π‘₯βˆ—
, π‘¦βˆ—
∈ gph 𝑓 + 𝐹 . Then by
Lemma 3.1 in [12], we have that the mapping 𝑃π‘₯βˆ—
βˆ’1
βˆ™ is pseudo-Lipschitz around π‘¦βˆ—
, π‘₯βˆ—
with constant 𝑀, that
is,
𝑒 𝑃π‘₯βˆ—
βˆ’1
𝑦1 ∩ π΅π‘Ž π‘₯βˆ—
, 𝑃π‘₯βˆ—
βˆ’1
𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 , for any 𝑦1, 𝑦2 ∈ 𝐡𝑏 π‘¦βˆ—
. (3.2)
Choose 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
> 0 and set
π‘Ÿ = min 𝑏 βˆ’ 2π‘Ž 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
,
π‘Ž 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ—
4𝑀
. (3.3)
Then π‘Ÿ > 0 ⟺ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
< min
𝑏
2π‘Ž
,
1
𝑀
. (3.4)
The following Lemma is useful for proving the existence of a sequence generated by the method (1.3). The
proof is analogous to the proof of Rashid et al. [7].
Lemma 3.1 Suppose that 𝑃π‘₯βˆ—
βˆ’1
βˆ™ is pseudo-Lipschitz around π‘¦βˆ—
, π‘₯βˆ—
with constant 𝑀. Let π‘₯ ∈ 𝐡 π‘Ž
2
π‘₯βˆ—
and let
𝐴 ∈ 𝐿 𝑋, π‘Œ be such that 𝑀 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 < 1. Suppose that
Sup
π‘₯∈𝐡 π‘Ž
2
π‘₯βˆ—
𝛻𝑓 π‘₯ βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ min
𝑏
2π‘Ž
,
1
𝑀
.
Then 𝑃π‘₯
βˆ’1
βˆ™ is pseudo-Lipschitz around π‘¦βˆ—
, π‘₯βˆ—
with constant
𝑀
1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— ,
that is, 𝑒 𝑃π‘₯
βˆ’1
𝑦1 ∩ 𝐡 π‘Ž
2
π‘₯βˆ—
, 𝑃π‘₯
βˆ’1
𝑦2 ≀
𝑀
1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— 𝑦1 βˆ’ 𝑦2 for any 𝑦1, 𝑦2 ∈ π΅π‘Ÿ π‘¦βˆ—
.
Proof: Let 𝑦1, 𝑦2 ∈ π΅π‘Ÿ π‘¦βˆ—
and π‘₯β€²
∈ 𝑃π‘₯
βˆ’1
𝑦1 ∩ 𝐡 π‘Ž
2
π‘₯βˆ—
. (3.5)
We need to prove that there exists π‘₯β€²β€²
∈ 𝑃π‘₯
βˆ’1
𝑦2 such that
π‘₯β€²
βˆ’ π‘₯β€²β€²
≀
𝑀
1 βˆ’ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
𝑦1 βˆ’ 𝑦2 .
To finish this, we will verify that there exists a sequence π‘₯ π‘˜ βŠ‚ π΅π‘Ž π‘₯βˆ—
such that
𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯ π‘˜βˆ’1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ—
π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + 𝐹 π‘₯ π‘˜ (3.6)
and π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘˜βˆ’2
for each π‘˜ = 2,3,4,… (3.7)
We prove by induction on π‘˜. Denote
𝑧𝑖 = 𝑦𝑖 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯β€²
βˆ’ π‘₯ + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯β€²
βˆ’ π‘₯βˆ—
for each 𝑖 = 1,2. (3.8)
Note by (3.5) that π‘₯ βˆ’ π‘₯β€²
≀ π‘₯ βˆ’ π‘₯βˆ—
+ π‘₯βˆ—
βˆ’ π‘₯β€²
≀ π‘Ž. Following from (3.5) and using (3.3) with the
relation π‘Ÿ ≀ 𝑏 βˆ’ 2π‘Ž 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
, we have that
𝑧𝑖 βˆ’ π‘¦βˆ—
≀ 𝑦𝑖 βˆ’ π‘¦βˆ—
+ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯β€²
≀ π‘Ÿ + 𝛻𝑓 π‘₯βˆ—
+ 𝑑 π‘₯ βˆ’ π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
𝑑𝑑
1
0
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯β€²
≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯β€²
= π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
+ π‘₯ βˆ’ π‘₯β€²
≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘Ž
2
+ π‘Ž ≀ 𝑏.
So we get 𝑧𝑖 ∈ 𝐡𝑏 π‘¦βˆ—
for each 𝑖 = 1,2. Setting π‘₯1 = π‘₯β€²
. Then π‘₯1 ∈ 𝑃π‘₯
βˆ’1
𝑦1 by (3.5), and it comes from (3.1)
that 𝑦1 ∈ 𝑓 π‘₯ + 𝐴 π‘₯1 βˆ’ π‘₯ + 𝐹 π‘₯1 , which can be written as
𝑦1 + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯1 βˆ’ π‘₯βˆ—
∈ 𝑓 π‘₯ + 𝐴 π‘₯1 βˆ’ π‘₯ + 𝐹 π‘₯1 + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯1 βˆ’ π‘₯βˆ—
.
By the definition of 𝑧1 in (3.8), we obtain that
𝑧1 ∈ 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯1 βˆ’ π‘₯ + 𝐹 π‘₯1 .
Hence π‘₯1 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧1 by (3.1), and then π‘₯1 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧1 ∩ π΅π‘Ÿ π‘₯βˆ— π‘₯βˆ—
by (3.5). Noting that 𝑧1, 𝑧2 ∈ 𝐡𝑏 π‘¦βˆ—
, and
from (3.2) we claim that their exists π‘₯2 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧2 such that
π‘₯2 βˆ’ π‘₯1 ≀ 𝑀 𝑧1 βˆ’ 𝑧2 = 𝑀 𝑦1 βˆ’ 𝑦2 . (3.9)
Setting π‘₯1 = π‘₯β€²
. By the definition of 𝑧2 in (3.8), we have that
π‘₯2 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧2 = 𝑃π‘₯βˆ—
βˆ’1
𝑦2 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯ + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯1 βˆ’ π‘₯βˆ—
, which, together with (3.1), implies
that
𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ—
π‘₯2 βˆ’ π‘₯1 + 𝐹 π‘₯2 . (3.10)
Therefore (3.10) and (3.9) shows respectively that (3.6) and (3.7) are true for the constructed points π‘₯1, π‘₯2. We
assume that π‘₯1, π‘₯2, π‘₯3, … . , π‘₯ 𝑛 are constructed such that (3.6) and (3.7) are true for π‘˜ = 2,3, … . , 𝑛. We need to
construct π‘₯ 𝑛+1 such that (3.6) and (3.7) are also true for π‘˜ = 𝑛 + 1. For this purpose, we can write
𝑧𝑖
𝑛
= 𝑦2 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯ 𝑛+π‘–βˆ’1 βˆ’ π‘₯ + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛+π‘–βˆ’1 βˆ’ π‘₯βˆ—
, for each 𝑖 = 0,1.
Then, by the inductive assumption, we have that
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 19 | Page
𝑧0
𝑛
βˆ’ 𝑧1
𝑛
= 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
≀ 𝑦1 βˆ’ 𝑦2 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘›βˆ’1
. (3.11)
Since π‘₯1 βˆ’ π‘₯βˆ—
≀
π‘Ž
2
and 𝑦1 βˆ’ 𝑦2 ≀ 2π‘Ÿ by (3.5), it follows from (3.7) that
π‘₯ 𝑛 βˆ’ π‘₯βˆ—
≀ π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + π‘₯1 βˆ’ π‘₯βˆ—
𝑛
π‘˜=2
≀ 2π‘€π‘Ÿ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘˜βˆ’2
+
π‘Ž
2
𝑛
π‘˜=2
≀
2π‘€π‘Ÿ
1 βˆ’ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+
π‘Ž
2
.
From (3.3), we see π‘Ÿ ≀
π‘Ž 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ—
4𝑀
, and so π‘₯ 𝑛 βˆ’ π‘₯βˆ—
≀ π‘Ž. (3.12)
Accordingly, π‘₯ 𝑛 βˆ’ π‘₯ ≀ π‘₯ 𝑛 βˆ’ π‘₯βˆ—
+ π‘₯βˆ—
βˆ’ π‘₯ ≀
3π‘Ž
2
. (3.13)
Furthermore, using (3.5) and (3.13), one has, for each 𝑖 = 0,1, that
𝑧𝑖
𝑛
βˆ’ π‘¦βˆ—
≀ 𝑦2 βˆ’ π‘¦βˆ—
+ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯ 𝑛+π‘–βˆ’1
≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯ 𝑛+π‘–βˆ’1
= π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯ βˆ’ π‘₯βˆ—
+ π‘₯ βˆ’ π‘₯ 𝑛+π‘–βˆ’1
≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘Ž
2
+
3π‘Ž
2
= π‘Ÿ + 2 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘Ž.
By the assumption of π‘Ÿ in (3.3), we have that 𝑧𝑖
𝑛
∈ 𝐡𝑏 π‘¦βˆ—
for each 𝑖 = 0,1. Since assumption (3.6) holds for
π‘˜ = 𝑛 we have
𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯ π‘›βˆ’1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 𝐹 π‘₯ 𝑛 , which can be written as
𝑦2 + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯ π‘›βˆ’1 βˆ’ π‘₯βˆ—
∈ 𝑓 π‘₯ + 𝐴 π‘₯ π‘›βˆ’1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
+𝐹 π‘₯ 𝑛 + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯ π‘›βˆ’1 βˆ’ π‘₯βˆ—
,
that is, 𝑧0
𝑛
∈ 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛 βˆ’ π‘₯βˆ—
+ 𝐹 π‘₯ 𝑛 by the assumption of 𝑧0
𝑛
. This, jointly with (3.1) and (3.12),
gives π‘₯ 𝑛 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧0
𝑛
∩ π΅π‘Ž π‘₯βˆ—
. Utilize (3.2) again, their exists an element π‘₯ 𝑛+1 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧1
𝑛
such that
π‘₯ 𝑛+1 βˆ’ π‘₯ 𝑛 ≀ 𝑀 𝑧0
𝑛
βˆ’ 𝑧1
𝑛
≀ 𝑀 𝑦1 βˆ’ 𝑦2 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘›βˆ’1
, (3.14)
where the last inequality holds by (3.11). By the assumption of 𝑧1
𝑛
, we get
π‘₯ 𝑛+1 ∈ 𝑃π‘₯βˆ—
βˆ’1
𝑧1
𝑛
= 𝑃π‘₯βˆ—
βˆ’1
𝑦2 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ + 𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛 βˆ’ π‘₯βˆ—
, which, together with (3.1),
implies that
𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ—
π‘₯ 𝑛+1 βˆ’ π‘₯ 𝑛 + 𝐹 π‘₯ 𝑛+1 .
This, together with (3.14), finishes the induction step, and proves the existence of sequence π‘₯ π‘˜ satisfying (3.6)
and (3.7). Since 𝑀 𝐴 βˆ’ 𝑓 π‘₯βˆ—
< 1, we see from (3.7) that, π‘₯ π‘˜ is a Cauchy sequence, and hence it is
convergent. Let π‘₯β€²β€²
= π‘₯ π‘˜π‘˜β†’βˆž
πΏπ‘–π‘š
. Then, taking limit in (3.6) and noting that 𝐹 has closed graph, we get 𝑦2 ∈
𝑓 π‘₯ + 𝐴 π‘₯β€²β€²
βˆ’ π‘₯ + 𝐹 π‘₯β€²β€²
and so π‘₯β€²β€²
∈ 𝑃π‘₯
βˆ’1
𝑦2 .
Furthermore, π‘₯β€²
βˆ’ π‘₯β€²β€²
≀ lim π‘›β†’βˆž sup π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1
𝑛
π‘˜=2
≀ lim π‘›β†’βˆž 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘˜βˆ’2
𝑀 𝑦1 βˆ’ 𝑦2
𝑛
π‘˜=2
=
𝑀
1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— 𝑦1 βˆ’ 𝑦2 .
This completes the proof of the lemma.
3.1 Uniformity of Linear Convergence of First Kind
This section is devoted to study the uniformity of linear convergence of the Chord method defined by (1.3).
Theorem 3.1 Let π‘₯βˆ—
be a solution of (1.1) for 𝑦 = 0. Suppose that 𝑃π‘₯βˆ—
βˆ’1
βˆ™ is pseudo-Lipschitz around 0, π‘₯βˆ—
with constants π‘Ž, 𝑏 and 𝑀. Let π‘₯ ∈ 𝐡 π‘Ž
2
π‘₯βˆ—
and 𝐴 ∈ 𝐿 𝑋, π‘Œ . Suppose that 𝛻𝑓 is continuous on 𝐡 π‘Ž
2
π‘₯βˆ—
with
constant 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
such that 3𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
< 1 , i.e,
sup
π‘₯∈𝐡 π‘Ž
2
π‘₯βˆ—
𝛻𝑓 π‘₯ βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ min
𝑏
2π‘Ž
,
1
𝑀
.
Then there exists positive constants 𝜎 and 𝑐 such that for every 𝑦 ∈ 𝐡𝑏 0 and for every π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ—
there
exists a sequence π‘₯ π‘˜ generated by (1.3) with initial point π‘₯0, which is convergent to a solution π‘₯ of (1.1) for 𝑦,
i.e.
π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝑐 π‘₯ π‘˜ βˆ’ π‘₯ .
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 20 | Page
Proof: Since 𝑃π‘₯
βˆ’1
βˆ™ is pseudo-Lipschitz around 0. π‘₯βˆ—
with constant 𝑀. Then there exist positive constants π‘Ž
and 𝑏 such that
𝑒 𝑃π‘₯βˆ—
βˆ’1
𝑦1 ∩ π΅π‘Ž π‘₯βˆ—
, 𝑃π‘₯βˆ—
βˆ’1
𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 ,for each 𝑦1, 𝑦2 ∈ 𝐡𝑏 0 .
Let π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ—
, 𝑦 ∈ 𝐡𝑏 0 and π‘Ÿ be defined in (3.3). Put 𝛼 =
π‘Ž
2
, 𝛽 = π‘Ÿ and 𝑀′
=
𝑀
1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— are the
constants in Lemma 3.1. Then we have that
𝑒 𝑃π‘₯
βˆ’1
𝑦1 ∩ 𝐡𝛼 π‘₯βˆ—
, 𝑃π‘₯
βˆ’1
𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 ,for each 𝑦1, 𝑦2 ∈ 𝐡𝛽 0 .
Now, we have by Lemma 3.1, for 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
< 1, that
𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
=
𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
1 βˆ’ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
< 1.
Choose 𝜎 > 0 be such that
𝜎 ≀ min 𝛼,
π›Όβˆ’π‘€β€² 𝑏 1+3𝑀′ π΄βˆ’π›»π‘“ π‘₯βˆ—
𝑀′ 5+6𝑀′ π΄βˆ’π›»π‘“ π‘₯βˆ— π΄βˆ’π›»π‘“ π‘₯βˆ— +2
,
π›½βˆ’π‘ βˆ’3𝑀′ 𝑏 π΄βˆ’π›»π‘“ π‘₯βˆ—
6𝑀′ π΄βˆ’π›»π‘“ π‘₯βˆ— 2+3 π΄βˆ’π›»π‘“ π‘₯βˆ— , 1 . (3.15)
Since π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ—
, then π‘₯βˆ—
∈ 𝑃π‘₯0
βˆ’1
βˆ’π‘“ π‘₯βˆ—
+ 𝑓 π‘₯0 + 𝐴 π‘₯βˆ—
βˆ’ π‘₯0 ∩ 𝐡𝛼 π‘₯βˆ—
and
𝑓 π‘₯βˆ—
βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯βˆ—
βˆ’ π‘₯0
≀ 𝑓 π‘₯0 βˆ’ 𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯0 βˆ’ π‘₯βˆ—
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯βˆ—
βˆ’ π‘₯0
≀ 𝛻𝑓 π‘₯βˆ—
+ 𝑑 π‘₯0 βˆ’ π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯0 βˆ’ π‘₯βˆ—
𝑑𝑑 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯βˆ—
βˆ’ π‘₯0
1
0
≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯0 βˆ’ π‘₯βˆ—
+ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯0 βˆ’ π‘₯βˆ—
= 2 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯0 βˆ’ π‘₯βˆ—
≀ 2𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ 𝛽.
Now from Lemma 3.1, there exists π‘₯1 ∈ 𝑃π‘₯0
βˆ’1
𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯0 + 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝐹 π‘₯1 ,
such that π‘₯1 βˆ’ π‘₯βˆ—
≀ 𝑀′
𝑦 + 𝑓 π‘₯βˆ—
βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯βˆ—
βˆ’ π‘₯0
≀ 𝑀′
𝑦 + 𝑓 π‘₯0 βˆ’ 𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯0 βˆ’ π‘₯βˆ—
+𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯βˆ—
βˆ’ π‘₯0
≀ 𝑀′
𝑦 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯βˆ—
βˆ’ π‘₯0 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
π‘₯βˆ—
βˆ’ π‘₯0
≀ 𝑀′
𝑦 + 2𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ 𝑀′
𝑏 + 2𝑀′
𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ 𝛼.
Then we have that π‘₯1 βˆ’ π‘₯0 ≀ π‘₯1 βˆ’ π‘₯βˆ—
+ π‘₯βˆ—
βˆ’ π‘₯0
≀ 𝑀′
𝑏 + 2𝑀′
𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝜎
= 𝑀′
𝑏 + (2𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 1)𝜎.
Note that π‘₯1 ∈ 𝑃π‘₯1
βˆ’1
𝑦 + 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ∩ 𝐡𝛼 π‘₯βˆ—
, and
𝑦 + 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑦 + 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯1 βˆ’ π‘₯0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑦 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑦 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 𝑀′
𝑏 + (2𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 1)𝜎 ≀ 𝛽, where the last inequality holds by third relation
in (3.15). Then, from Lemma 3.1 there exists π‘₯2 ∈ 𝑃π‘₯1
βˆ’1
𝑦 i.e. 𝑦 ∈ 𝑓 π‘₯1 + 𝐴 π‘₯2 βˆ’ π‘₯1 + 𝐹 π‘₯2
such that π‘₯2 βˆ’ π‘₯1 ≀ 𝑀′
𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑀′
( 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯1 βˆ’ π‘₯0 )
+𝑀′
𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
≀ 𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
+𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0
= 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 .
Furthermore, we have that
π‘₯2 βˆ’ π‘₯βˆ—
≀ π‘₯2 βˆ’ π‘₯1 + π‘₯1 βˆ’ π‘₯0 + π‘₯0 βˆ’ π‘₯βˆ—
≀ 1 + 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 + π‘₯0 βˆ’ π‘₯βˆ—
≀ 1 + 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 𝑀′
𝑏 + 2𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 1 𝜎 + 𝜎
≀ 𝑀′
𝑏 1 + 3𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝑀′
5 + 6𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 2 𝜎 ≀ 𝛼. (3.16)
Proceeding by induction, suppose that there exists integer 𝑛 β‰₯ 2 and points π‘₯2, π‘₯3, π‘₯4, … , π‘₯ 𝑛 are obtained by the
Chord method defined by (1.3), we get, π‘₯ π‘˜ ∈ 𝑃π‘₯ π‘˜βˆ’1
𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯ π‘˜βˆ’1 + 𝐴 π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + 𝐹 π‘₯ π‘˜ , such that
π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘˜βˆ’1
π‘₯1 βˆ’ π‘₯0 , π‘˜ = 2,3,4,… … , 𝑛.
Then, repeating the argument in (3.16) we obtain that π‘₯ 𝑛 ∈ 𝐡𝛼 π‘₯βˆ—
. Moreover, we have that
𝑦 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 21 | Page
≀ 𝑦 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝛻𝑓 π‘₯ π‘›βˆ’1 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
+ 𝛻𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
≀ 𝑏 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝛻𝑓 π‘₯ π‘›βˆ’1 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
≀ 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 2 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
= 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 𝑛
π‘₯1 βˆ’ π‘₯0
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝛽.
Then from π‘₯ 𝑛 ∈ 𝑃π‘₯ 𝑛
βˆ’1
𝑦 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ∩ 𝐡𝛼 π‘₯βˆ—
, and from Lemma 3.1, we conclude
that there exists a chord iterate
π‘₯ 𝑛+1 ∈ 𝑃π‘₯ 𝑛
βˆ’1
𝑦 , (3.17)
satisfying π‘₯ 𝑛+1 βˆ’ π‘₯ 𝑛 ≀ 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 . (3.18)
≀ 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 𝑛
π‘₯1 βˆ’ π‘₯0 .
This completes the induction step. Hence, there exists a sequence π‘₯ 𝑛 which is Cauchy sequence, and passing
to the limit in (3.17), we obtain that π‘₯ 𝑛 is geometrically convergent to solution π‘₯ ∈ 𝑃π‘₯
βˆ’1
𝑦 . Put 𝑐 >
3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 . Now, if we pass to the limit in (3.18), we obtain that π‘₯ 𝑛+1 βˆ’ π‘₯ ≀ 𝑐 π‘₯ 𝑛 βˆ’ π‘₯ . This
completes the proof of theorem.
3.2 Uniformity of Linear Convergence of Second Kind
This section provides the uniformity of linear convergence of the Chord method defined by (1.3) in different
way.
Theorem 3.2 Let π‘₯βˆ—
be a solution of (1.1) for 𝑦 = 0. Suppose that 𝑃π‘₯βˆ—
βˆ’1
βˆ™ is pseudo-Lipschitz around 0, π‘₯βˆ—
with constants π‘Ž, 𝑏 and 𝑀. Let π‘₯ ∈ 𝐡 π‘Ž
4
π‘₯βˆ—
and 𝐴 ∈ 𝐿 𝑋, π‘Œ . Suppose that 𝛻𝑓 is continuous on 𝐡 π‘Ž
4
π‘₯βˆ—
with
constant 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
such that 3𝑀′
𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
< 1, i.e.
sup
π‘₯∈𝐡 π‘Ž
4
π‘₯βˆ—
𝛻𝑓 π‘₯ βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ—
≀ min
𝑏
2π‘Ž
,
1
𝑀
.
Then there exists positive constants 𝜎 and 𝛾 such that for every 𝑦 ∈ 𝐡𝑏 0 and for every π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ—
there
exists a sequence π‘₯ π‘˜ generated by (1.3) with initial point π‘₯0 , which is convergent to a solution π‘₯ of (1.1) for
𝑦, i.e.
π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝛾 π‘₯ π‘˜ βˆ’ π‘₯ .
Proof: Since 𝑃π‘₯
βˆ’1
βˆ™ is pseudo-Lipschitz around 0, π‘₯βˆ—
with constant 𝑀. Then there exist positive constants
π‘Ž and 𝑏 such that
𝑒 𝑃π‘₯βˆ—
βˆ’1
𝑦1 ∩ π΅π‘Ž π‘₯βˆ—
, 𝑃π‘₯βˆ—
βˆ’1
𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 ,for each 𝑦1, 𝑦2 ∈ 𝐡𝑏 0 .
Let π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ—
, 𝑦 ∈ 𝐡𝑏 0 and π‘Ÿ be defined in (4.4). Put 𝛼 =
π‘Ž
2
, 𝛽 = π‘Ÿ and 𝑀′
=
𝑀
1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— are the
constants in Lemma 3.1. Then
𝑒 𝑃π‘₯
βˆ’1
𝑦1 ∩ 𝐡 𝛼
2
π‘₯βˆ—
, 𝑃π‘₯
βˆ’1
𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 , for each 𝑦1, 𝑦2 ∈ 𝐡𝛽 0 .
To prove this theorem, we use Lemma 3.1. Set
𝜎 ≀ min
𝛼
2
,
𝛼 1βˆ’ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’π΄
2
2 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’π΄ 2 ,
π›½βˆ’π‘
𝑀′ 3 𝛻𝑓 π‘₯βˆ— βˆ’π΄ 2 βˆ’
𝛼
2
. (3.19)
Then π‘₯ βˆ’ π‘₯0 ≀ π‘₯ βˆ’ π‘₯βˆ—
+ π‘₯βˆ—
βˆ’ π‘₯0 ≀
𝛼
2
+ 𝜎. Note that
π‘₯ ∈ 𝑃π‘₯0
βˆ’1
𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯0 + 𝐴 π‘₯ βˆ’ π‘₯0 ∩ 𝐡 𝛼
2
π‘₯βˆ—
, and
𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯0 + 𝐴 π‘₯ βˆ’ π‘₯0
≀ 𝑦 + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯ βˆ’ π‘₯0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
≀ 𝑏 + 𝛻𝑓 π‘₯0 + 𝑑 π‘₯ βˆ’ π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯ βˆ’ π‘₯0 𝑑𝑑
1
0
+ 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
≀ 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
= 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 + 2 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
= 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴
𝛼
2
+ 𝜎 ≀ 𝛽.
Now from Lemma 3.1, there exists π‘₯1 ∈ 𝑃π‘₯0
βˆ’1
𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯0 + 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝐹 π‘₯1 ,
such that π‘₯ βˆ’ π‘₯1 ≀ 𝑀′
𝑓 π‘₯ βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯ βˆ’ π‘₯0
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 22 | Page
+𝑀′
𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
≀ 𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
+𝑀′
𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0
≀ Mβ€²
βˆ‡f xβˆ—
βˆ’ A x βˆ’ x0
+Mβ€²
βˆ‡f xβˆ—
βˆ’ A + βˆ‡f xβˆ—
βˆ’ A x βˆ’ x0
= Mβ€²
βˆ‡f xβˆ—
βˆ’ A x βˆ’ x0 + 2Mβ€²
βˆ‡f xβˆ—
βˆ’ A x βˆ’ x0
= 3Mβ€²
βˆ‡f xβˆ—
βˆ’ A x βˆ’ x0 . (3.20)
Hence we have that π‘₯1 βˆ’ π‘₯βˆ—
≀ π‘₯1 βˆ’ π‘₯ + π‘₯ βˆ’ π‘₯βˆ—
≀ 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 + π‘₯ βˆ’ π‘₯βˆ—
≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴
𝛼
2
+ 𝜎 +
𝛼
2
≀ 𝛼.
Furthermore, π‘₯1 ∈ 𝑃π‘₯1
βˆ’1
𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯1 + 𝐴 π‘₯ βˆ’ π‘₯1 ∩ 𝐡 𝛼
2
π‘₯βˆ—
, and from (3.20), we get
π‘₯ βˆ’ π‘₯1 ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴
𝛼
2
+ 𝜎 ≀ 𝛼.
Therefore, we have that
𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯1 + 𝐴 π‘₯ βˆ’ π‘₯1
≀ 𝑦 + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯1 βˆ’ 𝛻𝑓 π‘₯1 π‘₯ βˆ’ π‘₯1
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯1 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
≀ 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯1 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
≀ 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
= 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 3𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴
𝛼
2
+ 𝜎
= 𝑏 + 𝑀′ 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 2 𝛼
2
+ 𝜎 ≀ 𝛽, where the last inequality holds by
third relation in (3.19). It follows from Lemma 3.1 that there exists π‘₯2 ∈ 𝑃π‘₯1
βˆ’1
𝑦 with
𝑦 ∈ 𝑓 π‘₯1 + 𝐴 π‘₯2 βˆ’ π‘₯1 + 𝐹 π‘₯2 , such that
π‘₯2 βˆ’ π‘₯ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯1 βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯1 βˆ’ 𝛻𝑓 π‘₯1 π‘₯ βˆ’ π‘₯1
+𝑀′
𝛻𝑓 π‘₯1 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
≀ 𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
+𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
= 𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 2 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1
= 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 .
Moreover, we have that
π‘₯2 βˆ’ π‘₯βˆ—
≀ π‘₯2 βˆ’ π‘₯ + π‘₯ βˆ’ π‘₯βˆ—
≀ 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 +
𝛼
2
≀ 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 3𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴
𝛼
2
+ 𝜎 +
𝛼
2
= 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 2
𝛼
2
+ 𝜎 +
𝛼
2
≀ 𝛼.
Proceeding by induction, suppose that there exists integer π‘˜ > 2 and points π‘₯2, π‘₯3, π‘₯4, … , π‘₯ π‘˜ are obtained by the
chord method (1.3), we get, π‘₯ π‘˜ ∈ 𝑃π‘₯ π‘˜βˆ’1
𝑦 , i.e.
𝑦 ∈ 𝑓 π‘₯ π‘˜βˆ’1 + 𝐴 π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + 𝐹 π‘₯ π‘˜ ,
such that
π‘₯ π‘˜ βˆ’ π‘₯ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜βˆ’1 βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1
≀ 𝑀′
𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜βˆ’1 βˆ’ 𝛻𝑓 π‘₯ π‘˜βˆ’1 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1
+𝑀′
𝛻𝑓 π‘₯ π‘˜βˆ’1 βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1
≀ 𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 + 𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1
= 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 .
This implies that the theorem is true for π‘₯ π‘˜. To complete this theorem, it remains to prove that the induction is
true for π‘₯ π‘˜+1 . Moreover, we have that
π‘₯ π‘˜ ∈ 𝑃π‘₯ π‘˜
βˆ’1
𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ∩ 𝐡 𝛼
2
π‘₯βˆ—
.
Then, we have that
𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑦 + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜ βˆ’ 𝛻𝑓 π‘₯ π‘˜ π‘₯ βˆ’ π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
Uniformity of the Local Convergence of Chord Method for Generalized Equations
DOI: 10.9790/5728-11121623 www.iosrjournals.org 23 | Page
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝛻𝑓 π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑏 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
= 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1
≀ 𝑏 + 𝑀′
3 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 2
π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝛽.
Now, from Lemma 3.1, there exists π‘₯ π‘˜+1 ∈ 𝑃π‘₯ π‘˜
βˆ’1
𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ π‘˜+1 βˆ’ π‘₯ π‘˜ + 𝐹 π‘₯ π‘˜+1 , such that
π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜ βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜ βˆ’ 𝛻𝑓 π‘₯ π‘˜ π‘₯ βˆ’ π‘₯ π‘˜
+𝑀′
𝛻𝑓 π‘₯ π‘˜ βˆ’ 𝛻𝑓 π‘₯βˆ—
+ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
+𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
≀ 𝑀′ 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 + 2 𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
= 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ .
Taking 𝛾 = 3𝑀′
𝛻𝑓 π‘₯βˆ—
βˆ’ 𝐴 . Then from the last inequality, we have that
π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝛾 π‘₯ βˆ’ π‘₯ π‘˜ .
This completes the proof.
IV. Concluding Remarks
In this study, we have established the uniformity of the local convergence results for the Chord method
defined by (1.3) under the assumptions that 𝑃π‘₯βˆ—
βˆ’1
βˆ™ is pseudo-Lipschitz and 𝛻𝑓 is continuous. In particular, the
uniformity of the convergence results of the Chord method defined by (1.3) are presented in two different ways
when 𝑃π‘₯βˆ—
βˆ’1
βˆ™ is pseudo-Lipschitz and 𝛻𝑓 is continuous. These results improve and extend the corresponding
one [4].
References
[1]. S.M. Robinson, Generalized equations and their solutions, Part I, Basic theory, Math. Program. Stud., 10, 1979, 128–141.
[2]. S.M. Robinson, Generalized equations and their solutions, part II: Application to nonlinear programming, Math. Program. Stud., 19,
1982, 200–221.
[3]. M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarily problems, SIAM Rev., 39, 1997, 669–713.
[4]. A. L. Dontchev, Uniform convergence of the Newton method for Aubin continuous maps, Serdica Math. J., 22 , 1996, 385–398.
[5]. A. Pietrus, Does Newton’s method for set-valued maps converge uniformly in mild differentiability context?, Rev. Columbiana
Mat., 34, 2000, 49–56.
[6]. M.H. Geoffroy and A. Pietrus, A general iterative procedure for solving nonsmooth generalized equations, Comput. Optim. Appl.,
31(1), 2005, 57–67.
[7]. M. H. Rashid, S. H. Yu, C. Li and S. Y. Wu, Convergence Analysis of the Gauss-Newton Method for Lipschitz--like Mappings, J.
Optim. Theory Appl., 158(1), 2013, 216–-233.
[8]. R.T. Marinov, Convergence of the method of chords for solving generalized equations, Rendiconti del Circolo Matematico di
Palermo, 58, 2009, 11–-27.
[9]. A. L. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc., 121, 1994, 481-–489.
[10]. C. L. Evans, Partial Differential Equations (American Mathematics Society, Providence, 1998).
[11]. K. A. Atkinson: An introduction to Numerical Analysis (second edition), American Mathematics Society, Providence, 1988
[12]. A. Basak, A study on Chord methods for generalized equations, Master Thesis, Rajshahi University, 2013.

Weitere Γ€hnliche Inhalte

Was ist angesagt?

NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
Β 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
Β 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308IJERA Editor
Β 
Some new exact Solutions for the nonlinear schrΓΆdinger equation
Some new exact Solutions for the nonlinear schrΓΆdinger equationSome new exact Solutions for the nonlinear schrΓΆdinger equation
Some new exact Solutions for the nonlinear schrΓΆdinger equationinventy
Β 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Rene Kotze
Β 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqwRene Kotze
Β 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesRene Kotze
Β 
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...inventy
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Lake Como School of Advanced Studies
Β 
F031202030035
F031202030035F031202030035
F031202030035ijceronline
Β 
M. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein Spaces
M. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein SpacesM. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein Spaces
M. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein SpacesSEENET-MTP
Β 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
Β 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocityRene Kotze
Β 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsijtsrd
Β 

Was ist angesagt? (20)

NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Β 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Β 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308
Β 
Some new exact Solutions for the nonlinear schrΓΆdinger equation
Some new exact Solutions for the nonlinear schrΓΆdinger equationSome new exact Solutions for the nonlinear schrΓΆdinger equation
Some new exact Solutions for the nonlinear schrΓΆdinger equation
Β 
Hbam2011 09
Hbam2011 09Hbam2011 09
Hbam2011 09
Β 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
Β 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
Β 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
Β 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
Β 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
Β 
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
Β 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
Β 
G023073077
G023073077G023073077
G023073077
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Β 
F031202030035
F031202030035F031202030035
F031202030035
Β 
M. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein Spaces
M. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein SpacesM. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein Spaces
M. Visinescu: Hidden Symmetries of the Five-dimensional Sasaki - Einstein Spaces
Β 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Β 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
Β 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
Β 

Andere mochten auch

concurso publico na rede municipal.
concurso publico na rede municipal. concurso publico na rede municipal.
concurso publico na rede municipal. Rogerio Catanese
Β 
basic fundementals of construction sealants certificate
basic fundementals of construction sealants certificatebasic fundementals of construction sealants certificate
basic fundementals of construction sealants certificateAmmar Jassim
Β 
certificate basic joint sealant
certificate basic joint sealantcertificate basic joint sealant
certificate basic joint sealantAmmar Jassim
Β 
ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ศักกริน
ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ΰΈ¨ΰΈ±ΰΈΰΈΰΈ£ΰΈ΄ΰΈ™ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ศักกริน
ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ศักกรินNattaphum Muesriphum
Β 
product engineer-structural strengthening
product engineer-structural strengtheningproduct engineer-structural strengthening
product engineer-structural strengtheningAmmar Jassim
Β 
Ejercicio 7 de word
Ejercicio 7 de wordEjercicio 7 de word
Ejercicio 7 de wordadrivila1987
Β 
SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...
SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...
SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...Bruno Rabelo
Β 
Cultura, clima y cambios organizacionales
Cultura, clima y cambios organizacionalesCultura, clima y cambios organizacionales
Cultura, clima y cambios organizacionalesWendyh123
Β 
basic S.Strengthening certificate
basic S.Strengthening certificatebasic S.Strengthening certificate
basic S.Strengthening certificateAmmar Jassim
Β 
Plc presentation
Plc presentationPlc presentation
Plc presentationNits Sharma
Β 
Face Image Restoration based on sample patterns using MLP Neural Network
Face Image Restoration based on sample patterns using MLP Neural NetworkFace Image Restoration based on sample patterns using MLP Neural Network
Face Image Restoration based on sample patterns using MLP Neural NetworkIOSR Journals
Β 
RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...
RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...
RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...IOSR Journals
Β 
Influence of Cr Doping On Structural, Morphological and Optical Properties of...
Influence of Cr Doping On Structural, Morphological and Optical Properties of...Influence of Cr Doping On Structural, Morphological and Optical Properties of...
Influence of Cr Doping On Structural, Morphological and Optical Properties of...IOSR Journals
Β 

Andere mochten auch (16)

concurso publico na rede municipal.
concurso publico na rede municipal. concurso publico na rede municipal.
concurso publico na rede municipal.
Β 
basic fundementals of construction sealants certificate
basic fundementals of construction sealants certificatebasic fundementals of construction sealants certificate
basic fundementals of construction sealants certificate
Β 
certificate basic joint sealant
certificate basic joint sealantcertificate basic joint sealant
certificate basic joint sealant
Β 
ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ศักกริน
ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ΰΈ¨ΰΈ±ΰΈΰΈΰΈ£ΰΈ΄ΰΈ™ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ศักกริน
ΰΈ­ΰΈ²ΰΈŠΰΈ΅ΰΈžΰΉ‚ΰΈ›ΰΈ£ΰΉΰΈΰΈ£ΰΈ‘ΰΉ€ΰΈ‘ΰΈ­ΰΈ£ΰΉŒ ศักกริน
Β 
product engineer-structural strengthening
product engineer-structural strengtheningproduct engineer-structural strengthening
product engineer-structural strengthening
Β 
Ejercicio 7 de word
Ejercicio 7 de wordEjercicio 7 de word
Ejercicio 7 de word
Β 
SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...
SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...
SEARCHING FOR GOOD HOW TO USE SEO & GOOGLE GRANTS TO GROW AWARENESS FOR YOUR ...
Β 
Cultura, clima y cambios organizacionales
Cultura, clima y cambios organizacionalesCultura, clima y cambios organizacionales
Cultura, clima y cambios organizacionales
Β 
Bangladesh
BangladeshBangladesh
Bangladesh
Β 
basic S.Strengthening certificate
basic S.Strengthening certificatebasic S.Strengthening certificate
basic S.Strengthening certificate
Β 
Plc presentation
Plc presentationPlc presentation
Plc presentation
Β 
Face Image Restoration based on sample patterns using MLP Neural Network
Face Image Restoration based on sample patterns using MLP Neural NetworkFace Image Restoration based on sample patterns using MLP Neural Network
Face Image Restoration based on sample patterns using MLP Neural Network
Β 
A018140107
A018140107A018140107
A018140107
Β 
RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...
RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...
RAPD Analysis Of Rapidly Multiplied In Vitro Plantlets of Anthurium Andreanum...
Β 
Influence of Cr Doping On Structural, Morphological and Optical Properties of...
Influence of Cr Doping On Structural, Morphological and Optical Properties of...Influence of Cr Doping On Structural, Morphological and Optical Properties of...
Influence of Cr Doping On Structural, Morphological and Optical Properties of...
Β 
A0560106
A0560106A0560106
A0560106
Β 

Γ„hnlich wie Uniformity of the Local Convergence of Chord Method for Generalized Equations

A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
Β 
2 borgs
2 borgs2 borgs
2 borgsYandex
Β 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Spaceinventionjournals
Β 
A05330107
A05330107A05330107
A05330107IOSR-JEN
Β 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
Β 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodSEMINARGROOT
Β 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...IJRES Journal
Β 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...irjes
Β 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayfoxtrot jp R
Β 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyfoxtrot jp R
Β 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdfoxtrot jp R
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020foxtrot jp R
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1foxtrot jp R
Β 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsAlexander Decker
Β 
Lane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalLane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalSOUMYADAS230727
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrdfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220foxtrot jp R
Β 

Γ„hnlich wie Uniformity of the Local Convergence of Chord Method for Generalized Equations (20)

A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
Β 
2 borgs
2 borgs2 borgs
2 borgs
Β 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Β 
A05330107
A05330107A05330107
A05330107
Β 
Waveguides
WaveguidesWaveguides
Waveguides
Β 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
Β 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's method
Β 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
Β 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
Β 
E04 06 3943
E04 06 3943E04 06 3943
E04 06 3943
Β 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
Β 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
Β 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
Β 
CPP.pptx
CPP.pptxCPP.pptx
CPP.pptx
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
Β 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Β 
Lane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalLane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_final
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
Β 

Mehr von IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
Β 
M0111397100
M0111397100M0111397100
M0111397100
Β 
L011138596
L011138596L011138596
L011138596
Β 
K011138084
K011138084K011138084
K011138084
Β 
J011137479
J011137479J011137479
J011137479
Β 
I011136673
I011136673I011136673
I011136673
Β 
G011134454
G011134454G011134454
G011134454
Β 
H011135565
H011135565H011135565
H011135565
Β 
F011134043
F011134043F011134043
F011134043
Β 
E011133639
E011133639E011133639
E011133639
Β 
D011132635
D011132635D011132635
D011132635
Β 
C011131925
C011131925C011131925
C011131925
Β 
B011130918
B011130918B011130918
B011130918
Β 
A011130108
A011130108A011130108
A011130108
Β 
I011125160
I011125160I011125160
I011125160
Β 
H011124050
H011124050H011124050
H011124050
Β 
G011123539
G011123539G011123539
G011123539
Β 
F011123134
F011123134F011123134
F011123134
Β 
E011122530
E011122530E011122530
E011122530
Β 
D011121524
D011121524D011121524
D011121524
Β 

KΓΌrzlich hochgeladen

CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
Β 
Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
Β 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Silpa
Β 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxSilpa
Β 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsbassianu17
Β 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
Β 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
Β 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Silpa
Β 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
Β 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
Β 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
Β 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
Β 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
Β 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
Β 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
Β 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
Β 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
Β 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
Β 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfSumit Kumar yadav
Β 

KΓΌrzlich hochgeladen (20)

CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
Β 
Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❀CALL GIRL 7870993772 ❀CALL GIRLS ESCORT SERVICE In Bhiwan...
Β 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Β 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
Β 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
Β 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
Β 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
Β 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
Β 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
Β 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
Β 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
Β 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Β 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Β 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
Β 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
Β 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
Β 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
Β 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
Β 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Β 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
Β 

Uniformity of the Local Convergence of Chord Method for Generalized Equations

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. II (Jan - Feb. 2015), PP 16-23 www.iosrjournals.org DOI: 10.9790/5728-11121623 www.iosrjournals.org 16 | Page Uniformity of the Local Convergence of Chord Method for Generalized Equations M. H. Rashid1 , A. Basak2 and M. Z. Khaton3 1,2 Department of Mathematics, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh 3 Department of Mathematics, Sapahar Government Degree College, Naogaon-6560, Bangladesh Abstract: Let 𝑋 be a real or complex Banach space and π‘Œ be a normed linear space. Suppose that 𝑓: 𝑋 β†’ π‘Œ is a Frechet differentiable function and 𝐹: 𝑋 ⇉ 2 π‘Œ is a set-valued mapping with closed graph. Uniform convergence of Chord method for solving generalized equation 𝑦 ∈ 𝑓 π‘₯ + 𝐹 π‘₯ … … . (βˆ—), where 𝑦 ∈ π‘Œ a parameter, is studied in the present paper. More clearly, we obtain the uniform convergence of the sequence generated by Chord method in the sense that it is stable under small variation of perturbation parameter 𝑦 provided that the set-valued mapping 𝐹 is pseudo-Lipschitz at a given point (possibly at a given solution). Keywords: Chord method, Generalized equation, Local convergence, pseudo-Lipschitz mapping, Set-valued mapping. AMS (MOS) Subject Classifications: 49J53; 47H04; 65K10. 1. Introduction Let 𝑋 be a real or complex Banach space and π‘Œ be a normed linear space. We are concerned with the problem of finding the solution π‘₯βˆ— of parameterized perturbed generalized equation of the form 𝑦 ∈ 𝑓 π‘₯ + 𝐹 π‘₯ , (1.1) where 𝑦 ∈ π‘Œ is a parameter, 𝑓: 𝑋 β†’ π‘Œ is a single-valued function and 𝐹: 𝑋 ⇉ 2 π‘Œ is set-valued mapping with closed graph. The Generalized equation problems were introduced by S.M. Robinson [1, 2] as a general tool for describing, analyzing, and solving different problem in a unified manner. Typical examples are systems of inequalities, variational inequalities, linear and non-linear complementary problems, systems of nonlinear equations, equilibrium problems, etc.; see for example [1--3]. It is remark that when 𝐹 = 0 , (1.1) is an equation. When F is positive orthand in 𝑅 𝑛 , (1.1) is a system of inequalities. When 𝐹 is the normal cone to a convex and closed set in 𝑋, (1.1) represents variational inequalities. Newton-type method can be considered to solve this generalized equation when the single-valued function involved in (1.1) is differentiable. Such an approach has been used in many contributions to this subject; see for example [4--6]. To solve (1.1), Dontchev [4] introduced a Newton type method of the form 𝑦 ∈ 𝑓 π‘₯ π‘˜ + 𝛻𝑓 π‘₯ π‘˜ π‘₯ π‘˜+1 βˆ’ π‘₯ π‘˜ + 𝐹 π‘₯ π‘˜+1 , π‘˜ = 0,1, . . ., (1.2) where 𝛻𝑓 π‘₯ π‘˜ is the Frechet derivative of 𝑓 at the point π‘₯ π‘˜ and obtained the stability of the method (1.2). A large number of iterative methods have been presented for solving (1.1). Pietrus [5] showed the stability of this method under mild conditions. Other achievements on this topic can be found in [6, 7]. Marinov [8] associated the following method name as β€œChord method” for solving the generalized equation (1.1): 𝑦 ∈ 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ π‘˜+1 βˆ’ π‘₯ π‘˜ + 𝐹 π‘₯ π‘˜+1 , (1.3) where 𝐴 ∈ 𝐿 𝑋, π‘Œ . It should be noted that when 𝐴 = 𝛻𝑓 π‘₯ π‘˜ , the method (1.3) reduces to the well-known Newton-type method (1.2). In the present paper, we are intended to present a kind of convergence of the sequence generated by the Chord method defined by (1.3) which is uniform in the sense that the attraction region does not depend on small variations of the value of the parameter 𝑦 near π‘¦βˆ— and for such values of 𝑦 the method finds a solution π‘₯ of (1.1) whenever 𝐹 is pseudo-Lipschitz at (π‘₯βˆ— , π‘¦βˆ— ) and the Frechet derivative of 𝑓 is continuous. We will prove the uniformity of the local convergence of the Chord method defined by (1.3) in two different ways. This work is organized as follows: In Section 2, we recall few preliminary results that will be used in the subsequent sections. In Section 3, we prove the existence and uniform convergence of the sequence generated by the Chord method defined by (1.3) for solving generalized equation (1.1). Finally in Section 4, we will give conclusion of the major results obtained in this study.
  • 2. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 17 | Page II. Notations And Preliminary Results Throughout this work we suppose that 𝑋 is a real or complex Banach space and π‘Œ is a normed linear space. All the norms are denoted by βˆ™ . The closed ball centered at x with radius π‘Ÿ > 0 denoted by π΅π‘Ÿ(π‘₯) and the set of linear operators denoted by 𝐿(𝑋, π‘Œ). The following definition is taken from [7, 9]. Definition 2.1: Let 𝐹: 𝑋 ⇉ 2 π‘Œ be a set valued mapping. Then the Domain of 𝐹 is denoted by dom 𝐹, and is define by dom 𝐹 = π‘₯ ∈ 𝑋 ∢ 𝐹 π‘₯ β‰  βˆ… . The inverse of 𝐹 is denoted by πΉβˆ’1 , and is defined by πΉβˆ’1 𝑦 = π‘₯ ∈ 𝑋: 𝑦 ∈ 𝑓 π‘₯ , and The Graph of 𝐹 is denoted by gph 𝐹, and is define by gph 𝐹 = π‘₯, 𝑦 ∈ 𝑋 Γ— π‘Œ ∢ 𝑦 ∈ 𝐹 π‘₯ . The following definition of distance from a point to a set and excess are taken from [7, 9]. Definition 2.2: Let 𝑋 be Banach space 𝐴 be subset of 𝑋. Then the distance from a point π‘₯ to a set 𝐴 is denoted by dist π‘₯, 𝐴 , and is define by dist (π‘₯, 𝐴) = inf π‘₯ βˆ’ π‘Ž ∢ π‘Ž ∈ 𝐴 . Definition 2.3: Let 𝑋 be Banach space and 𝐴, 𝐡 βŠ† 𝑋. The excess 𝑒 from the set 𝐴 to a set 𝐡 is given by 𝑒 𝐡, 𝐴 = sup π‘₯ βˆ’ 𝐴 ∢ π‘₯ ∈ 𝐡 . The following definition is taken from [9]. Definition 2.4: Let 𝐹: 𝑋 ⇉ 2 π‘Œ be a set-valued mapping. Then 𝐹 is said to be pseudo Lipschitz-around π‘₯0, 𝑦0 ∈ gph 𝐹 with constant 𝑀 if there exist positive constants 𝛼, 𝛽 > 0 such that 𝑒 𝐹 π‘₯1 ∩ 𝐡𝛽 𝑦0 , 𝐹 π‘₯2 ≀ 𝑀 π‘₯1 βˆ’ π‘₯2 , for every π‘₯1, π‘₯2 ∈ 𝐡𝛼 π‘₯0 . When 𝐹 is single-valued, this corresponds to the usual concept of Lipschitz continuity. The definition of Lipschitz continuity is equivalent to the definition of Aubin continuity, which is given below: A set-valued map 𝛀: π‘Œ ⇉ 2 𝑋 is Aubin continuous at 𝑦0, π‘₯0 ∈ gph 𝛀 with positive constants 𝛼, 𝛽 and 𝑀 if for every 𝑦1, 𝑦2 ∈ 𝐡𝛽 𝑦0 and for every π‘₯1 ∈ 𝛀 𝑦1 ∩ 𝐡𝛼 π‘₯0 , there exists an π‘₯2 ∈ 𝛀 𝑦2 such that π‘₯1 βˆ’ π‘₯2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 . The constant 𝑀 is called the modulus of Aubin continuity. The following definition of continuity is taken from the book [10]. Definition 2.5: A map 𝑓: 𝛺 βŠ† 𝑋 β†’ π‘Œ is said to be continuous at π‘₯ ∈ 𝛺 if for every πœ€ > 0, there exist a 𝛿 > 0 such that 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ < πœ€, for all π‘₯ ∈ 𝛺 for which π‘₯ βˆ’ π‘₯ < 𝛿. Definition 2.6: A map 𝑓: 𝛺 βŠ† 𝑋 β†’ π‘Œ is said to be Lipschitz continuous if there exists constant 𝑐 such that 𝑓 π‘₯ βˆ’ 𝑓 𝑦 ≀ 𝑐 π‘₯ βˆ’ 𝑦 , for all π‘₯ and 𝑦 in the domain of 𝑓. The following definition of linear convergence is taken from the monogram [11]. Definition 2.7: Let {π‘₯ 𝑛 } be a sequence which is converges to the number π‘₯. Then the sequence {π‘₯ 𝑛 } is said to be converges linearly to π‘₯, if there exists a number 0 < 𝑐 < 1 such that π‘₯ 𝑛+1 βˆ’ π‘₯ ≀ 𝑐 π‘₯ 𝑛 βˆ’ π‘₯ . The following Lemma is a version of fixed point theorem, which is taken from [7]. Lemma 2.1: Let 𝛷: 𝑋 ⇉ 2 𝑋 be a set valued mapping and let πœ‚0 ∈ 𝑋, π‘Ÿ > 0 and 0 < πœ† < 1 be such that (a) dist πœ‚0, 𝛷 πœ‚0 < π‘Ÿ 1 βˆ’ πœ† and (b) 𝑒 𝛷 π‘₯1 ∩ π΅π‘Ÿ πœ‚0 , 𝛷 π‘₯2 ≀ πœ† π‘₯1 βˆ’ π‘₯2 , for all π‘₯1, π‘₯1 ∈ π΅π‘Ÿ πœ‚0 . Then 𝛷 has a fixed point in π΅π‘Ÿ πœ‚0 , that is, there exists π‘₯ ∈ π΅π‘Ÿ πœ‚0 such that π‘₯ ∈ 𝛷 π‘₯ . If 𝛷 is single-valued, then π‘₯ is the unique fixed point of 𝛷 in π΅π‘Ÿ πœ‚0 . III. Uniform Convergence Of Chord Method This section is devoted to study the stability of the Chord method for solving generalized equations (1.1) involving set-valued mapping and parameters. Let 𝑓: 𝑋 β†’ π‘Œ be a single-valued function which is Frechet differentiable on an open set in 𝑋 and 𝐹: 𝑋 ⇉ 2 π‘Œ be a set-valued mapping with closed graph. Let 𝑦 ∈ 𝐹 π‘₯ and πΉβˆ’1 be pseudo-Lipschitz around 𝑦 , π‘₯ . Then through Theorem 2.1 in [12], we have that 𝑓 + 𝐹 βˆ’1 is pseudo- Lipschitz around 𝑦 + 𝑓(π‘₯ , π‘₯ ). Let π‘₯ ∈ 𝑋 and define the mapping 𝑃π‘₯ : 𝑋 ⇉ 2 π‘Œ by 𝑃π‘₯ βˆ™ = 𝑓 π‘₯ + 𝐴 βˆ™ βˆ’π‘₯ + 𝐹 βˆ™ . Moreover, the following equivalence is obvious, for any 𝑧 ∈ 𝑋 and 𝑦 ∈ π‘Œ, 𝑧 ∈ 𝑃π‘₯ βˆ’1 𝑦 ⇔ 𝑦 ∈ 𝑓 π‘₯ + 𝐴 𝑧 βˆ’ π‘₯ + 𝐹(𝑧). (3.1)
  • 3. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 18 | Page In particular, π‘₯βˆ— ∈ 𝑃 π‘₯βˆ— βˆ’1 π‘¦βˆ— for each π‘₯βˆ— , π‘¦βˆ— ∈ gph 𝑓 + 𝐹 . Let π‘Ž > 0, 𝑏 > 0. Throughout the whole paper, we suppose that π΅π‘Ž π‘₯βˆ— βŠ† 𝛺 ∩ dom 𝐹 and that π‘₯βˆ— , π‘¦βˆ— ∈ gph 𝑃 π‘₯βˆ— , for every π‘₯βˆ— , π‘¦βˆ— ∈ gph 𝑓 + 𝐹 . Then by Lemma 3.1 in [12], we have that the mapping 𝑃π‘₯βˆ— βˆ’1 βˆ™ is pseudo-Lipschitz around π‘¦βˆ— , π‘₯βˆ— with constant 𝑀, that is, 𝑒 𝑃π‘₯βˆ— βˆ’1 𝑦1 ∩ π΅π‘Ž π‘₯βˆ— , 𝑃π‘₯βˆ— βˆ’1 𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 , for any 𝑦1, 𝑦2 ∈ 𝐡𝑏 π‘¦βˆ— . (3.2) Choose 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— > 0 and set π‘Ÿ = min 𝑏 βˆ’ 2π‘Ž 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— , π‘Ž 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— 4𝑀 . (3.3) Then π‘Ÿ > 0 ⟺ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— < min 𝑏 2π‘Ž , 1 𝑀 . (3.4) The following Lemma is useful for proving the existence of a sequence generated by the method (1.3). The proof is analogous to the proof of Rashid et al. [7]. Lemma 3.1 Suppose that 𝑃π‘₯βˆ— βˆ’1 βˆ™ is pseudo-Lipschitz around π‘¦βˆ— , π‘₯βˆ— with constant 𝑀. Let π‘₯ ∈ 𝐡 π‘Ž 2 π‘₯βˆ— and let 𝐴 ∈ 𝐿 𝑋, π‘Œ be such that 𝑀 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 < 1. Suppose that Sup π‘₯∈𝐡 π‘Ž 2 π‘₯βˆ— 𝛻𝑓 π‘₯ βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ min 𝑏 2π‘Ž , 1 𝑀 . Then 𝑃π‘₯ βˆ’1 βˆ™ is pseudo-Lipschitz around π‘¦βˆ— , π‘₯βˆ— with constant 𝑀 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— , that is, 𝑒 𝑃π‘₯ βˆ’1 𝑦1 ∩ 𝐡 π‘Ž 2 π‘₯βˆ— , 𝑃π‘₯ βˆ’1 𝑦2 ≀ 𝑀 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— 𝑦1 βˆ’ 𝑦2 for any 𝑦1, 𝑦2 ∈ π΅π‘Ÿ π‘¦βˆ— . Proof: Let 𝑦1, 𝑦2 ∈ π΅π‘Ÿ π‘¦βˆ— and π‘₯β€² ∈ 𝑃π‘₯ βˆ’1 𝑦1 ∩ 𝐡 π‘Ž 2 π‘₯βˆ— . (3.5) We need to prove that there exists π‘₯β€²β€² ∈ 𝑃π‘₯ βˆ’1 𝑦2 such that π‘₯β€² βˆ’ π‘₯β€²β€² ≀ 𝑀 1 βˆ’ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— 𝑦1 βˆ’ 𝑦2 . To finish this, we will verify that there exists a sequence π‘₯ π‘˜ βŠ‚ π΅π‘Ž π‘₯βˆ— such that 𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯ π‘˜βˆ’1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ— π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + 𝐹 π‘₯ π‘˜ (3.6) and π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘˜βˆ’2 for each π‘˜ = 2,3,4,… (3.7) We prove by induction on π‘˜. Denote 𝑧𝑖 = 𝑦𝑖 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯β€² βˆ’ π‘₯ + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯β€² βˆ’ π‘₯βˆ— for each 𝑖 = 1,2. (3.8) Note by (3.5) that π‘₯ βˆ’ π‘₯β€² ≀ π‘₯ βˆ’ π‘₯βˆ— + π‘₯βˆ— βˆ’ π‘₯β€² ≀ π‘Ž. Following from (3.5) and using (3.3) with the relation π‘Ÿ ≀ 𝑏 βˆ’ 2π‘Ž 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— , we have that 𝑧𝑖 βˆ’ π‘¦βˆ— ≀ 𝑦𝑖 βˆ’ π‘¦βˆ— + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯β€² ≀ π‘Ÿ + 𝛻𝑓 π‘₯βˆ— + 𝑑 π‘₯ βˆ’ π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— 𝑑𝑑 1 0 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯β€² ≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯β€² = π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— + π‘₯ βˆ’ π‘₯β€² ≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘Ž 2 + π‘Ž ≀ 𝑏. So we get 𝑧𝑖 ∈ 𝐡𝑏 π‘¦βˆ— for each 𝑖 = 1,2. Setting π‘₯1 = π‘₯β€² . Then π‘₯1 ∈ 𝑃π‘₯ βˆ’1 𝑦1 by (3.5), and it comes from (3.1) that 𝑦1 ∈ 𝑓 π‘₯ + 𝐴 π‘₯1 βˆ’ π‘₯ + 𝐹 π‘₯1 , which can be written as 𝑦1 + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯1 βˆ’ π‘₯βˆ— ∈ 𝑓 π‘₯ + 𝐴 π‘₯1 βˆ’ π‘₯ + 𝐹 π‘₯1 + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯1 βˆ’ π‘₯βˆ— . By the definition of 𝑧1 in (3.8), we obtain that 𝑧1 ∈ 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯1 βˆ’ π‘₯ + 𝐹 π‘₯1 . Hence π‘₯1 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧1 by (3.1), and then π‘₯1 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧1 ∩ π΅π‘Ÿ π‘₯βˆ— π‘₯βˆ— by (3.5). Noting that 𝑧1, 𝑧2 ∈ 𝐡𝑏 π‘¦βˆ— , and from (3.2) we claim that their exists π‘₯2 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧2 such that π‘₯2 βˆ’ π‘₯1 ≀ 𝑀 𝑧1 βˆ’ 𝑧2 = 𝑀 𝑦1 βˆ’ 𝑦2 . (3.9) Setting π‘₯1 = π‘₯β€² . By the definition of 𝑧2 in (3.8), we have that π‘₯2 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧2 = 𝑃π‘₯βˆ— βˆ’1 𝑦2 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯ + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯1 βˆ’ π‘₯βˆ— , which, together with (3.1), implies that 𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ— π‘₯2 βˆ’ π‘₯1 + 𝐹 π‘₯2 . (3.10) Therefore (3.10) and (3.9) shows respectively that (3.6) and (3.7) are true for the constructed points π‘₯1, π‘₯2. We assume that π‘₯1, π‘₯2, π‘₯3, … . , π‘₯ 𝑛 are constructed such that (3.6) and (3.7) are true for π‘˜ = 2,3, … . , 𝑛. We need to construct π‘₯ 𝑛+1 such that (3.6) and (3.7) are also true for π‘˜ = 𝑛 + 1. For this purpose, we can write 𝑧𝑖 𝑛 = 𝑦2 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯ 𝑛+π‘–βˆ’1 βˆ’ π‘₯ + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛+π‘–βˆ’1 βˆ’ π‘₯βˆ— , for each 𝑖 = 0,1. Then, by the inductive assumption, we have that
  • 4. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 19 | Page 𝑧0 𝑛 βˆ’ 𝑧1 𝑛 = 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ≀ 𝑦1 βˆ’ 𝑦2 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘›βˆ’1 . (3.11) Since π‘₯1 βˆ’ π‘₯βˆ— ≀ π‘Ž 2 and 𝑦1 βˆ’ 𝑦2 ≀ 2π‘Ÿ by (3.5), it follows from (3.7) that π‘₯ 𝑛 βˆ’ π‘₯βˆ— ≀ π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + π‘₯1 βˆ’ π‘₯βˆ— 𝑛 π‘˜=2 ≀ 2π‘€π‘Ÿ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘˜βˆ’2 + π‘Ž 2 𝑛 π‘˜=2 ≀ 2π‘€π‘Ÿ 1 βˆ’ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + π‘Ž 2 . From (3.3), we see π‘Ÿ ≀ π‘Ž 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— 4𝑀 , and so π‘₯ 𝑛 βˆ’ π‘₯βˆ— ≀ π‘Ž. (3.12) Accordingly, π‘₯ 𝑛 βˆ’ π‘₯ ≀ π‘₯ 𝑛 βˆ’ π‘₯βˆ— + π‘₯βˆ— βˆ’ π‘₯ ≀ 3π‘Ž 2 . (3.13) Furthermore, using (3.5) and (3.13), one has, for each 𝑖 = 0,1, that 𝑧𝑖 𝑛 βˆ’ π‘¦βˆ— ≀ 𝑦2 βˆ’ π‘¦βˆ— + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯ 𝑛+π‘–βˆ’1 ≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯ 𝑛+π‘–βˆ’1 = π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯ βˆ’ π‘₯βˆ— + π‘₯ βˆ’ π‘₯ 𝑛+π‘–βˆ’1 ≀ π‘Ÿ + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘Ž 2 + 3π‘Ž 2 = π‘Ÿ + 2 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘Ž. By the assumption of π‘Ÿ in (3.3), we have that 𝑧𝑖 𝑛 ∈ 𝐡𝑏 π‘¦βˆ— for each 𝑖 = 0,1. Since assumption (3.6) holds for π‘˜ = 𝑛 we have 𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯ π‘›βˆ’1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 𝐹 π‘₯ 𝑛 , which can be written as 𝑦2 + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯ π‘›βˆ’1 βˆ’ π‘₯βˆ— ∈ 𝑓 π‘₯ + 𝐴 π‘₯ π‘›βˆ’1 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 +𝐹 π‘₯ 𝑛 + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯ π‘›βˆ’1 βˆ’ π‘₯βˆ— , that is, 𝑧0 𝑛 ∈ 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛 βˆ’ π‘₯βˆ— + 𝐹 π‘₯ 𝑛 by the assumption of 𝑧0 𝑛 . This, jointly with (3.1) and (3.12), gives π‘₯ 𝑛 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧0 𝑛 ∩ π΅π‘Ž π‘₯βˆ— . Utilize (3.2) again, their exists an element π‘₯ 𝑛+1 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧1 𝑛 such that π‘₯ 𝑛+1 βˆ’ π‘₯ 𝑛 ≀ 𝑀 𝑧0 𝑛 βˆ’ 𝑧1 𝑛 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘›βˆ’1 , (3.14) where the last inequality holds by (3.11). By the assumption of 𝑧1 𝑛 , we get π‘₯ 𝑛+1 ∈ 𝑃π‘₯βˆ— βˆ’1 𝑧1 𝑛 = 𝑃π‘₯βˆ— βˆ’1 𝑦2 βˆ’ 𝑓 π‘₯ βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ + 𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛 βˆ’ π‘₯βˆ— , which, together with (3.1), implies that 𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ + 𝛻𝑓 π‘₯βˆ— π‘₯ 𝑛+1 βˆ’ π‘₯ 𝑛 + 𝐹 π‘₯ 𝑛+1 . This, together with (3.14), finishes the induction step, and proves the existence of sequence π‘₯ π‘˜ satisfying (3.6) and (3.7). Since 𝑀 𝐴 βˆ’ 𝑓 π‘₯βˆ— < 1, we see from (3.7) that, π‘₯ π‘˜ is a Cauchy sequence, and hence it is convergent. Let π‘₯β€²β€² = π‘₯ π‘˜π‘˜β†’βˆž πΏπ‘–π‘š . Then, taking limit in (3.6) and noting that 𝐹 has closed graph, we get 𝑦2 ∈ 𝑓 π‘₯ + 𝐴 π‘₯β€²β€² βˆ’ π‘₯ + 𝐹 π‘₯β€²β€² and so π‘₯β€²β€² ∈ 𝑃π‘₯ βˆ’1 𝑦2 . Furthermore, π‘₯β€² βˆ’ π‘₯β€²β€² ≀ lim π‘›β†’βˆž sup π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 𝑛 π‘˜=2 ≀ lim π‘›β†’βˆž 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘˜βˆ’2 𝑀 𝑦1 βˆ’ 𝑦2 𝑛 π‘˜=2 = 𝑀 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— 𝑦1 βˆ’ 𝑦2 . This completes the proof of the lemma. 3.1 Uniformity of Linear Convergence of First Kind This section is devoted to study the uniformity of linear convergence of the Chord method defined by (1.3). Theorem 3.1 Let π‘₯βˆ— be a solution of (1.1) for 𝑦 = 0. Suppose that 𝑃π‘₯βˆ— βˆ’1 βˆ™ is pseudo-Lipschitz around 0, π‘₯βˆ— with constants π‘Ž, 𝑏 and 𝑀. Let π‘₯ ∈ 𝐡 π‘Ž 2 π‘₯βˆ— and 𝐴 ∈ 𝐿 𝑋, π‘Œ . Suppose that 𝛻𝑓 is continuous on 𝐡 π‘Ž 2 π‘₯βˆ— with constant 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— such that 3𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— < 1 , i.e, sup π‘₯∈𝐡 π‘Ž 2 π‘₯βˆ— 𝛻𝑓 π‘₯ βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ min 𝑏 2π‘Ž , 1 𝑀 . Then there exists positive constants 𝜎 and 𝑐 such that for every 𝑦 ∈ 𝐡𝑏 0 and for every π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ— there exists a sequence π‘₯ π‘˜ generated by (1.3) with initial point π‘₯0, which is convergent to a solution π‘₯ of (1.1) for 𝑦, i.e. π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝑐 π‘₯ π‘˜ βˆ’ π‘₯ .
  • 5. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 20 | Page Proof: Since 𝑃π‘₯ βˆ’1 βˆ™ is pseudo-Lipschitz around 0. π‘₯βˆ— with constant 𝑀. Then there exist positive constants π‘Ž and 𝑏 such that 𝑒 𝑃π‘₯βˆ— βˆ’1 𝑦1 ∩ π΅π‘Ž π‘₯βˆ— , 𝑃π‘₯βˆ— βˆ’1 𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 ,for each 𝑦1, 𝑦2 ∈ 𝐡𝑏 0 . Let π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ— , 𝑦 ∈ 𝐡𝑏 0 and π‘Ÿ be defined in (3.3). Put 𝛼 = π‘Ž 2 , 𝛽 = π‘Ÿ and 𝑀′ = 𝑀 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— are the constants in Lemma 3.1. Then we have that 𝑒 𝑃π‘₯ βˆ’1 𝑦1 ∩ 𝐡𝛼 π‘₯βˆ— , 𝑃π‘₯ βˆ’1 𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 ,for each 𝑦1, 𝑦2 ∈ 𝐡𝛽 0 . Now, we have by Lemma 3.1, for 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— < 1, that 𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— = 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— 1 βˆ’ 𝑀 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— < 1. Choose 𝜎 > 0 be such that 𝜎 ≀ min 𝛼, π›Όβˆ’π‘€β€² 𝑏 1+3𝑀′ π΄βˆ’π›»π‘“ π‘₯βˆ— 𝑀′ 5+6𝑀′ π΄βˆ’π›»π‘“ π‘₯βˆ— π΄βˆ’π›»π‘“ π‘₯βˆ— +2 , π›½βˆ’π‘ βˆ’3𝑀′ 𝑏 π΄βˆ’π›»π‘“ π‘₯βˆ— 6𝑀′ π΄βˆ’π›»π‘“ π‘₯βˆ— 2+3 π΄βˆ’π›»π‘“ π‘₯βˆ— , 1 . (3.15) Since π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ— , then π‘₯βˆ— ∈ 𝑃π‘₯0 βˆ’1 βˆ’π‘“ π‘₯βˆ— + 𝑓 π‘₯0 + 𝐴 π‘₯βˆ— βˆ’ π‘₯0 ∩ 𝐡𝛼 π‘₯βˆ— and 𝑓 π‘₯βˆ— βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝑓 π‘₯0 βˆ’ 𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯0 βˆ’ π‘₯βˆ— + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝛻𝑓 π‘₯βˆ— + 𝑑 π‘₯0 βˆ’ π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯0 βˆ’ π‘₯βˆ— 𝑑𝑑 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯βˆ— βˆ’ π‘₯0 1 0 ≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯0 βˆ’ π‘₯βˆ— + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯0 βˆ’ π‘₯βˆ— = 2 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯0 βˆ’ π‘₯βˆ— ≀ 2𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ 𝛽. Now from Lemma 3.1, there exists π‘₯1 ∈ 𝑃π‘₯0 βˆ’1 𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯0 + 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝐹 π‘₯1 , such that π‘₯1 βˆ’ π‘₯βˆ— ≀ 𝑀′ 𝑦 + 𝑓 π‘₯βˆ— βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝑀′ 𝑦 + 𝑓 π‘₯0 βˆ’ 𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯0 βˆ’ π‘₯βˆ— +𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝑀′ 𝑦 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯βˆ— βˆ’ π‘₯0 + 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝑀′ 𝑦 + 2𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ 𝑀′ 𝑏 + 2𝑀′ 𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ 𝛼. Then we have that π‘₯1 βˆ’ π‘₯0 ≀ π‘₯1 βˆ’ π‘₯βˆ— + π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝑀′ 𝑏 + 2𝑀′ 𝜎 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝜎 = 𝑀′ 𝑏 + (2𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + 1)𝜎. Note that π‘₯1 ∈ 𝑃π‘₯1 βˆ’1 𝑦 + 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ∩ 𝐡𝛼 π‘₯βˆ— , and 𝑦 + 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑦 + 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯1 βˆ’ π‘₯0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑦 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑦 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝑀′ 𝑏 + (2𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + 1)𝜎 ≀ 𝛽, where the last inequality holds by third relation in (3.15). Then, from Lemma 3.1 there exists π‘₯2 ∈ 𝑃π‘₯1 βˆ’1 𝑦 i.e. 𝑦 ∈ 𝑓 π‘₯1 + 𝐴 π‘₯2 βˆ’ π‘₯1 + 𝐹 π‘₯2 such that π‘₯2 βˆ’ π‘₯1 ≀ 𝑀′ 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑀′ ( 𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯1 βˆ’ π‘₯0 ) +𝑀′ 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 +𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 = 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 . Furthermore, we have that π‘₯2 βˆ’ π‘₯βˆ— ≀ π‘₯2 βˆ’ π‘₯1 + π‘₯1 βˆ’ π‘₯0 + π‘₯0 βˆ’ π‘₯βˆ— ≀ 1 + 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 + π‘₯0 βˆ’ π‘₯βˆ— ≀ 1 + 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝑀′ 𝑏 + 2𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + 1 𝜎 + 𝜎 ≀ 𝑀′ 𝑏 1 + 3𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝑀′ 5 + 6𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— + 2 𝜎 ≀ 𝛼. (3.16) Proceeding by induction, suppose that there exists integer 𝑛 β‰₯ 2 and points π‘₯2, π‘₯3, π‘₯4, … , π‘₯ 𝑛 are obtained by the Chord method defined by (1.3), we get, π‘₯ π‘˜ ∈ 𝑃π‘₯ π‘˜βˆ’1 𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯ π‘˜βˆ’1 + 𝐴 π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + 𝐹 π‘₯ π‘˜ , such that π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘˜βˆ’1 π‘₯1 βˆ’ π‘₯0 , π‘˜ = 2,3,4,… … , 𝑛. Then, repeating the argument in (3.16) we obtain that π‘₯ 𝑛 ∈ 𝐡𝛼 π‘₯βˆ— . Moreover, we have that 𝑦 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1
  • 6. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 21 | Page ≀ 𝑦 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝛻𝑓 π‘₯ π‘›βˆ’1 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 𝛻𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ≀ 𝑏 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝛻𝑓 π‘₯ π‘›βˆ’1 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ≀ 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 + 2 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 = 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝑛 π‘₯1 βˆ’ π‘₯0 ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯1 βˆ’ π‘₯0 ≀ 𝛽. Then from π‘₯ 𝑛 ∈ 𝑃π‘₯ 𝑛 βˆ’1 𝑦 + 𝑓 π‘₯ 𝑛 βˆ’ 𝑓 π‘₯ π‘›βˆ’1 βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 ∩ 𝐡𝛼 π‘₯βˆ— , and from Lemma 3.1, we conclude that there exists a chord iterate π‘₯ 𝑛+1 ∈ 𝑃π‘₯ 𝑛 βˆ’1 𝑦 , (3.17) satisfying π‘₯ 𝑛+1 βˆ’ π‘₯ 𝑛 ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ 𝑛 βˆ’ π‘₯ π‘›βˆ’1 . (3.18) ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝑛 π‘₯1 βˆ’ π‘₯0 . This completes the induction step. Hence, there exists a sequence π‘₯ 𝑛 which is Cauchy sequence, and passing to the limit in (3.17), we obtain that π‘₯ 𝑛 is geometrically convergent to solution π‘₯ ∈ 𝑃π‘₯ βˆ’1 𝑦 . Put 𝑐 > 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 . Now, if we pass to the limit in (3.18), we obtain that π‘₯ 𝑛+1 βˆ’ π‘₯ ≀ 𝑐 π‘₯ 𝑛 βˆ’ π‘₯ . This completes the proof of theorem. 3.2 Uniformity of Linear Convergence of Second Kind This section provides the uniformity of linear convergence of the Chord method defined by (1.3) in different way. Theorem 3.2 Let π‘₯βˆ— be a solution of (1.1) for 𝑦 = 0. Suppose that 𝑃π‘₯βˆ— βˆ’1 βˆ™ is pseudo-Lipschitz around 0, π‘₯βˆ— with constants π‘Ž, 𝑏 and 𝑀. Let π‘₯ ∈ 𝐡 π‘Ž 4 π‘₯βˆ— and 𝐴 ∈ 𝐿 𝑋, π‘Œ . Suppose that 𝛻𝑓 is continuous on 𝐡 π‘Ž 4 π‘₯βˆ— with constant 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— such that 3𝑀′ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— < 1, i.e. sup π‘₯∈𝐡 π‘Ž 4 π‘₯βˆ— 𝛻𝑓 π‘₯ βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ 𝐴 βˆ’ 𝛻𝑓 π‘₯βˆ— ≀ min 𝑏 2π‘Ž , 1 𝑀 . Then there exists positive constants 𝜎 and 𝛾 such that for every 𝑦 ∈ 𝐡𝑏 0 and for every π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ— there exists a sequence π‘₯ π‘˜ generated by (1.3) with initial point π‘₯0 , which is convergent to a solution π‘₯ of (1.1) for 𝑦, i.e. π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝛾 π‘₯ π‘˜ βˆ’ π‘₯ . Proof: Since 𝑃π‘₯ βˆ’1 βˆ™ is pseudo-Lipschitz around 0, π‘₯βˆ— with constant 𝑀. Then there exist positive constants π‘Ž and 𝑏 such that 𝑒 𝑃π‘₯βˆ— βˆ’1 𝑦1 ∩ π΅π‘Ž π‘₯βˆ— , 𝑃π‘₯βˆ— βˆ’1 𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 ,for each 𝑦1, 𝑦2 ∈ 𝐡𝑏 0 . Let π‘₯0 ∈ 𝐡𝜎 π‘₯βˆ— , 𝑦 ∈ 𝐡𝑏 0 and π‘Ÿ be defined in (4.4). Put 𝛼 = π‘Ž 2 , 𝛽 = π‘Ÿ and 𝑀′ = 𝑀 1βˆ’π‘€ π΄βˆ’π›»π‘“ π‘₯βˆ— are the constants in Lemma 3.1. Then 𝑒 𝑃π‘₯ βˆ’1 𝑦1 ∩ 𝐡 𝛼 2 π‘₯βˆ— , 𝑃π‘₯ βˆ’1 𝑦2 ≀ 𝑀 𝑦1 βˆ’ 𝑦2 , for each 𝑦1, 𝑦2 ∈ 𝐡𝛽 0 . To prove this theorem, we use Lemma 3.1. Set 𝜎 ≀ min 𝛼 2 , 𝛼 1βˆ’ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’π΄ 2 2 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’π΄ 2 , π›½βˆ’π‘ 𝑀′ 3 𝛻𝑓 π‘₯βˆ— βˆ’π΄ 2 βˆ’ 𝛼 2 . (3.19) Then π‘₯ βˆ’ π‘₯0 ≀ π‘₯ βˆ’ π‘₯βˆ— + π‘₯βˆ— βˆ’ π‘₯0 ≀ 𝛼 2 + 𝜎. Note that π‘₯ ∈ 𝑃π‘₯0 βˆ’1 𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯0 + 𝐴 π‘₯ βˆ’ π‘₯0 ∩ 𝐡 𝛼 2 π‘₯βˆ— , and 𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯0 + 𝐴 π‘₯ βˆ’ π‘₯0 ≀ 𝑦 + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯ βˆ’ π‘₯0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 ≀ 𝑏 + 𝛻𝑓 π‘₯0 + 𝑑 π‘₯ βˆ’ π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯ βˆ’ π‘₯0 𝑑𝑑 1 0 + 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 ≀ 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 = 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 + 2 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 = 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝛼 2 + 𝜎 ≀ 𝛽. Now from Lemma 3.1, there exists π‘₯1 ∈ 𝑃π‘₯0 βˆ’1 𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯0 + 𝐴 π‘₯1 βˆ’ π‘₯0 + 𝐹 π‘₯1 , such that π‘₯ βˆ’ π‘₯1 ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯0 βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯0 π‘₯ βˆ’ π‘₯0
  • 7. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 22 | Page +𝑀′ 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 ≀ 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 +𝑀′ 𝛻𝑓 π‘₯0 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 ≀ Mβ€² βˆ‡f xβˆ— βˆ’ A x βˆ’ x0 +Mβ€² βˆ‡f xβˆ— βˆ’ A + βˆ‡f xβˆ— βˆ’ A x βˆ’ x0 = Mβ€² βˆ‡f xβˆ— βˆ’ A x βˆ’ x0 + 2Mβ€² βˆ‡f xβˆ— βˆ’ A x βˆ’ x0 = 3Mβ€² βˆ‡f xβˆ— βˆ’ A x βˆ’ x0 . (3.20) Hence we have that π‘₯1 βˆ’ π‘₯βˆ— ≀ π‘₯1 βˆ’ π‘₯ + π‘₯ βˆ’ π‘₯βˆ— ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯0 + π‘₯ βˆ’ π‘₯βˆ— ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝛼 2 + 𝜎 + 𝛼 2 ≀ 𝛼. Furthermore, π‘₯1 ∈ 𝑃π‘₯1 βˆ’1 𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯1 + 𝐴 π‘₯ βˆ’ π‘₯1 ∩ 𝐡 𝛼 2 π‘₯βˆ— , and from (3.20), we get π‘₯ βˆ’ π‘₯1 ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝛼 2 + 𝜎 ≀ 𝛼. Therefore, we have that 𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯1 + 𝐴 π‘₯ βˆ’ π‘₯1 ≀ 𝑦 + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯1 βˆ’ 𝛻𝑓 π‘₯1 π‘₯ βˆ’ π‘₯1 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯1 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 ≀ 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯1 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 ≀ 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 = 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝛼 2 + 𝜎 = 𝑏 + 𝑀′ 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 2 𝛼 2 + 𝜎 ≀ 𝛽, where the last inequality holds by third relation in (3.19). It follows from Lemma 3.1 that there exists π‘₯2 ∈ 𝑃π‘₯1 βˆ’1 𝑦 with 𝑦 ∈ 𝑓 π‘₯1 + 𝐴 π‘₯2 βˆ’ π‘₯1 + 𝐹 π‘₯2 , such that π‘₯2 βˆ’ π‘₯ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯1 βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯1 βˆ’ 𝛻𝑓 π‘₯1 π‘₯ βˆ’ π‘₯1 +𝑀′ 𝛻𝑓 π‘₯1 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 ≀ 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 +𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 = 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 2 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 = 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 . Moreover, we have that π‘₯2 βˆ’ π‘₯βˆ— ≀ π‘₯2 βˆ’ π‘₯ + π‘₯ βˆ’ π‘₯βˆ— ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯1 + 𝛼 2 ≀ 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 𝛼 2 + 𝜎 + 𝛼 2 = 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 2 𝛼 2 + 𝜎 + 𝛼 2 ≀ 𝛼. Proceeding by induction, suppose that there exists integer π‘˜ > 2 and points π‘₯2, π‘₯3, π‘₯4, … , π‘₯ π‘˜ are obtained by the chord method (1.3), we get, π‘₯ π‘˜ ∈ 𝑃π‘₯ π‘˜βˆ’1 𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯ π‘˜βˆ’1 + 𝐴 π‘₯ π‘˜ βˆ’ π‘₯ π‘˜βˆ’1 + 𝐹 π‘₯ π‘˜ , such that π‘₯ π‘˜ βˆ’ π‘₯ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜βˆ’1 βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜βˆ’1 βˆ’ 𝛻𝑓 π‘₯ π‘˜βˆ’1 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 +𝑀′ 𝛻𝑓 π‘₯ π‘˜βˆ’1 βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 + 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 = 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 . This implies that the theorem is true for π‘₯ π‘˜. To complete this theorem, it remains to prove that the induction is true for π‘₯ π‘˜+1 . Moreover, we have that π‘₯ π‘˜ ∈ 𝑃π‘₯ π‘˜ βˆ’1 𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ∩ 𝐡 𝛼 2 π‘₯βˆ— . Then, we have that 𝑦 βˆ’ 𝑓 π‘₯ + 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑦 + 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜ βˆ’ 𝛻𝑓 π‘₯ π‘˜ π‘₯ βˆ’ π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜
  • 8. Uniformity of the Local Convergence of Chord Method for Generalized Equations DOI: 10.9790/5728-11121623 www.iosrjournals.org 23 | Page + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝛻𝑓 π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑏 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ = 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑏 + 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝑏 + 𝑀′ 3 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 2 π‘₯ βˆ’ π‘₯ π‘˜βˆ’1 ≀ 𝛽. Now, from Lemma 3.1, there exists π‘₯ π‘˜+1 ∈ 𝑃π‘₯ π‘˜ βˆ’1 𝑦 , i.e. 𝑦 ∈ 𝑓 π‘₯ π‘˜ + 𝐴 π‘₯ π‘˜+1 βˆ’ π‘₯ π‘˜ + 𝐹 π‘₯ π‘˜+1 , such that π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜ βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑀′ 𝑓 π‘₯ βˆ’ 𝑓 π‘₯ π‘˜ βˆ’ 𝛻𝑓 π‘₯ π‘˜ π‘₯ βˆ’ π‘₯ π‘˜ +𝑀′ 𝛻𝑓 π‘₯ π‘˜ βˆ’ 𝛻𝑓 π‘₯βˆ— + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ +𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ ≀ 𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 + 2 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ = 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 π‘₯ βˆ’ π‘₯ π‘˜ . Taking 𝛾 = 3𝑀′ 𝛻𝑓 π‘₯βˆ— βˆ’ 𝐴 . Then from the last inequality, we have that π‘₯ π‘˜+1 βˆ’ π‘₯ ≀ 𝛾 π‘₯ βˆ’ π‘₯ π‘˜ . This completes the proof. IV. Concluding Remarks In this study, we have established the uniformity of the local convergence results for the Chord method defined by (1.3) under the assumptions that 𝑃π‘₯βˆ— βˆ’1 βˆ™ is pseudo-Lipschitz and 𝛻𝑓 is continuous. In particular, the uniformity of the convergence results of the Chord method defined by (1.3) are presented in two different ways when 𝑃π‘₯βˆ— βˆ’1 βˆ™ is pseudo-Lipschitz and 𝛻𝑓 is continuous. These results improve and extend the corresponding one [4]. References [1]. S.M. Robinson, Generalized equations and their solutions, Part I, Basic theory, Math. Program. Stud., 10, 1979, 128–141. [2]. S.M. Robinson, Generalized equations and their solutions, part II: Application to nonlinear programming, Math. Program. Stud., 19, 1982, 200–221. [3]. M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarily problems, SIAM Rev., 39, 1997, 669–713. [4]. A. L. Dontchev, Uniform convergence of the Newton method for Aubin continuous maps, Serdica Math. J., 22 , 1996, 385–398. [5]. A. Pietrus, Does Newton’s method for set-valued maps converge uniformly in mild differentiability context?, Rev. Columbiana Mat., 34, 2000, 49–56. [6]. M.H. Geoffroy and A. Pietrus, A general iterative procedure for solving nonsmooth generalized equations, Comput. Optim. Appl., 31(1), 2005, 57–67. [7]. M. H. Rashid, S. H. Yu, C. Li and S. Y. Wu, Convergence Analysis of the Gauss-Newton Method for Lipschitz--like Mappings, J. Optim. Theory Appl., 158(1), 2013, 216–-233. [8]. R.T. Marinov, Convergence of the method of chords for solving generalized equations, Rendiconti del Circolo Matematico di Palermo, 58, 2009, 11–-27. [9]. A. L. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc., 121, 1994, 481-–489. [10]. C. L. Evans, Partial Differential Equations (American Mathematics Society, Providence, 1998). [11]. K. A. Atkinson: An introduction to Numerical Analysis (second edition), American Mathematics Society, Providence, 1988 [12]. A. Basak, A study on Chord methods for generalized equations, Master Thesis, Rajshahi University, 2013.