SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
DOI : 10.5121/ijcnc.2014.6207 79
ENHANCED AODV ROUTE DISCOVERY AND
ROUTE ESTABLISHMENT FOR QOS PROVISION FOR
REAL TIME TRANSMISSION IN MANET
Iftikhar Ahmad1
, Uzma Ashraf1
, Sadia Anum1
, and Hira Tahir1
1
Department of CS & IT Mirpur University of Science and Technology
Mirpur, AJK, Pakistan
ABSTRACT
MANET is a temporary connection of mobile nodes via wireless links having no centralized base station.
We developed a protocol with an enhanced route discovery mechanism that avoids the pre-transmission
delay. When a source node wants to communicate with another node, it broadcast RREQ. EAODV give
priority to the source node of real time transmission. When RREQ packet send to neighbor node, for real
time transmission it accept route request on priority basis and the drop ratio of packets decreased, then
throughput increases by receiving more packets at destination and delivery ratio also increased through
these QOS improved.
KEYWORDS
AD-HOC, MANET, AODV, Quality of service, Real Time traffic.
1. INTRODUCTION
Wireless AD-HOC network is distributed network having no centralized infrastructure, each
node forward data packets in routing, sometimes other normal nodes may become router or
gateway. The first wireless AD-HOC networks were the “packet radio” networks (PRNETs),
developed by DARPA in 1970. This network overcome the problem of fixed centralized
infrastructure in the environment where single centralized node and fixed nodes via wired links,
does not work accurately. This AD-HOC network is very useful in Emergency conditions, ease
of deployment, speed of deployment and decreased dependence on infrastructure.
There are three basic types of wireless AD-HOC network: MANET, Wireless mesh network and
Wireless sensor network.MANET [1] is a combination of independent mobile nodes that are
connected with wireless links (radio waves) to perform peer-to-peer communication. MANET
may operate in a standalone fashion, or may be connected to the other larger network like
Internet. Applications of MANETs include military use in battle fields, where a centralized
command center is not only infeasible but also undesirable; and disaster management
scenarios, where on the run, communication between various rescue teams is required in the
absence of any existing communication infrastructure. There are three major protocols used for
MANET are: Proactive (table driven), Reactive (on-demand) and Hybrid (both proactive and
reactive) which are discussed below.
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
80
1.1 Proactive (table driven)
This type of protocols maintains fresh lists of destinations and their routes by periodically
distributing routing tables throughout the network. The main disadvantages of such algorithms
include: Respective amount of data for maintenance, slow reaction on restructuring and failures.
Examples of proactive are DSDV (destination sequenced distance vector) and OLSR (Optimized
Link State Routing).
1.2 Reactive (on-demand)
This type of protocols finds a route on demand by flooding the network with Route Request
packets. Determine route if and when needed Source initiates route discovery. Examples are DSR
(dynamic source routing) and AODV (ad-hoc on demand distance vector).
1.3 Hybrid
This category is called as Adaptive; Combination of proactive and reactive. Example ZRP (zone
routing protocol)
AODV [2] is efficient for both unicast and multicast routing, it builds routes between nodes only
when desired (on-demand) by source nodes, routes are maintain as long as these are needed by
source. AODV has four types of messages: RREQ (route request), RREP (route reply), RERR
(route error) and hello message.
These messages are used in establishing the route between source and destination. If node wants
to send data packet to some destination, it first checks the route to that destination from source, if
there is no route is present between source and destination. Then, first by route discovery method
route is established between source and destination for data delivery. Source node broadcast
RREQ message to its neighbors, node which receive RREQ may send RREP to source if it is
destination node or it has route to destination with corresponding sequence number greater than or
equal to that contained in the RREQ. Otherwise, it rebroadcasts the RREQ. Nodes keep track of
the RREQ's source IP address and broadcast ID. If they receive a RREQ which they have already
processed, they discard the RREQ and do not forward it. When source node receive RREP
message from destination node route is established between source and destination, then HELLO
message generate by source to destination through newly discovered route to check before the
data transmission, then source send data through this route to destination. If due to any reason
topology change or node die, then link failure occurs and RERR message send to source. After
receiving the RERR, if the source node still desires the route, it can reinitiate route discovery.
The rest of this paper is organized as follows. Related work and problem definition is presented in
Section II. The solution and design is covered in Section III, followed by implementation results
and performance evaluation in Section IV. This paper is concluded in Section V while the
references are given towards the end of this paper.
2. RELATED WORK
Enhanced Load Balanced AODV Routing Protocol [3] was proposed to overcome the problem for
longer period of time a protocol is proposed which selects route on the basis of traffic load on
node and reset path as topology changes.
AODVLM [4] which is new load balanced AODV routing protocol, provide a scheme for load
distribution among nodes in MANET. AODVLM improves throughput, reduce average end-to-
delay and overall network performance.
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
81
Energy efficient route discovery method [5] was proposed which reduce the broadcast cost and
overall energy of network. In this approach node Discovery process uses regions similar to disk
which have variable dimensions and as a result time and energy reduces.
AODV-NC-WLB [6] a modified route request broadcast approach was presented based on node
caching. They overcome the drawback of CDS overuse of dominating nodes by a new load
balancing scheme in which they measure the protocol fairness using as parameter distribution
among nodes of the forwarding load. Work load balance technique is based on the idea by
dropping RREQ packet according to load status of each node and load status is set by the value of
threshold.
EEMLAR protocol [7] discussed, a node is involved in any transaction, it losses some of its
energy whose values depend upon the following factors: nature of packet, size, and distance
between nodes. For calculating all these factors, proposed protocol gives an optimized function.
After receiving many route request it calls the optimization function to determine the best path to
select and send RREP .It also store some inferior paths as backup.
Paper [8] proposed an enhancement in AODV protocol to provide QOS support for real time
traffic by using time slot bandwidth reservation in two cases first when both the nodes are in the
MANET and second when one node is in MANET or other is in fixed network.
FQMM model [9] (flexible QOS model) consider the characteristics of MANET and combines
high quality services of QOS models (intserv and diffserv). FQMM features include: dynamic
roles of nodes, hybrid provisioning and adaptive conditioning.
Real Time On-demand Distance Vector in Mobile Ad hoc Networks [10] includes load parameter
in the RREQ message that helps in the selection of route with low congestion during route
discovery process.
Energy Level and Link State Aware AODV Route Request Forwarding Mechanism Research [11]
presented an AODV protocol with enhancements. In route discovery the route selection is made
on the basis of node power, load status and link state between.
[12] Combine the shortest route selection criteria of AODV with real network status including
link quality, the remaining power capacity and traffic load. This paper contributed by giving
status adoptive routing which improves network life and delivery ratio.
[13] Proposed a new QOS routing protocol based on load distribution algorithm intended for a
variety of traffic classes to establish the best routing paths. The proposed algorithm calculates the
cost metric on the basis of the load on the links. The traffic can be classified as real time traffic
and normal traffic. Real time traffic is considered as high priority and normal traffic as low
priority. In the absence of real time traffic, the lesser loaded path can be utilized by normal traffic.
[14] Presents a comparative analysis of mobile ad-hoc routing protocols over real time video
streaming. Their analysis exploits the built-in support for real time multimedia streaming in ad-
hoc routing protocols. The performance evaluation has been based on various network level
metrics, including average end-to-end delay and packet drop rate.
In the previous techniques there is the problem of RREQ rejection which leads to pre-
transmission delay and don’t have QOS in real time transmission. When a source node wants to
communicate with another node, it sends RREQ to its neighbor nodes, and waits for route reply.
If all the neighbor nodes are busy they do not receive RREQ packets and rejected RREQ packets
again and again. This leads to the problem of delay in the initial stage of transmission. Resulting
into more packet drops and decreased overall throughput. This is called pre -transmission delay.
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
82
3. SOLUTION AND DESIGN
Our solution to resolve the pre-transmission delay problem is to modify existing AODV route
request mechanism in such a way that it will give greater performance then existing AODV
protocol. We are enhancing the existing AODV protocol route discovery process and also reduce
the pre transmission delay of RREQ in RT transmission. We give priority to the source node of
real time transmission. When RREQ packet is broadcasted to neighbor node, for real time
transmission it accept route request on priority basis. In basic AODV the route once selected for
transmission does not expires until unless the transmission is completed. In our mechanism we
have to expire active routes of TCP when UDP transmission starts.As we discussed above that we
give priority to real time transmission real time transmission. The drop ratio of packets gradually
decreased, then throughput increase by delivering more packets at destination and delivery ratio
also increased as a result of which QOS improves. We create scenario in TCL including two
flows for TCP (normal packets) and one for UDP (real time packets). We give priority to the
source node of UDP connection, when UDP transmission starts there is less drop rate, increased
throughput and delivery ratio.
According to EAODV, real time traffic (UDP) gets priority on normal packets. UDP transmission
starts at 60 sec in the network, after start of UDP transmission, no TCP transmission starts. UDP
has priority to send and receive the packets and in routing table only store information about CBR
over UDP transmission.
Table 1: EAODV Mechanism
Source node Packet Type Time to start Destination node
1 TCP 5.0 sec 3
4 TCP 35.0 sec 7
5 UDP 60.0 sec 8
Table 1 shows, there are three flows of transmission of packets. There are two flows of TCP
transmission and one flow of UDP transmission. TCP is used to transmit normal packets and UDP
is used to transmit real time packets. Source node 1 start transmission at 5.0 sec, its packet type is
TCP for normal packets; its destination node is 3. Then, at 35.0 sec source node 4 start
transmission of normal packets TCP, its destination node is 7. When at 60.0 sec UDP
transmission of real time traffic starts, it has priority with normal packets. After 60.0 sec in
routing table, there is no packet of normal traffic. Source node of TCP packet sends their packets
but no data received of normal traffic at destination of TCP packets. UDP real time traffic has
priority over TCP normal traffic, that’s why when UDP transmission starts there is no packet of
normal traffic is stored in routing table. As a result, there are more packets of UDP transmission
are received at destination, throughput increased, packet loss rate decreased and delivery ratio
increased. Hence it is clear that, EAODV is more efficient protocol and also provide QOS
qualities in real time transmission.
3.1 Enhanced route discovery algorithm
Following is the brief description of our enhanced route discovery algorithm that provides
solution to the problem stated earlier in the problem statement.
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
83
Give priority to source node of special (real time) packets
• Fill in the essential RREQ fields and
• Broad cost of RREQ Message
• Active route time is set to a constant
• Reception of RREQ.
Check If RREQ is special type of packet then expire already store entry in routing
table and store special packet on priority basis, accept RREQ.
• Update the routing entry otherwise do not bother.
Forward it to next node.
• If I am the destination Send RREP message to the updated reverse rout in the table.
• Set the Route expire time to current time + active route timeout
Transmission of Real time data packets starts on priority basis.
4. IMPLEMENTATIONAND ANALYSIS
We implement EAODV in NS2 [15] and compare its performance with basic AODV. Propagation
model is Two Ray Ground and Mobility model is Random Way Point [16] because these models
are most widely implemented in simulations of most literature work.
4.1 NS-2 Parameter setting
Other parameters of NS2 are configured for our network scenario is shown in the Table 2. NS2 is
discrete network simulator that is used for implementation for performance comparison MANET
protocols
Table 2. NS-2 Parameter Setting
Routing protocol AODV
Link layer type LL
MAC type Mac/802_11
Interface Queue Queue/Drop Tail/PriQueue
Maximum packets in Ifq 20
Antenna model Antenna/Omni Antenna
Radio propagation model Propagation/TwoRay Ground
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
84
Network Interface Phy/WirelessPhy
Channel type Channel/Wireless Channel
Number of mobile nodes 10
Simulation time 150 seconds
4.2 Performance Metric
We will compare our enhanced protocol with basic AODV. We evaluates performance mainly
according to following metric.
4.2.1 Average throughput
Throughput is the total number of packets received successfully in the given time.
4.2.2 Packet delivery ratio
It is the ratio of the number of packets received successfully to the total number of packets
transmitted.
4.2.3 Packet loss
It is the packet loss rate of the transmission.
4.3 Simulation results
The Basic AODV is first implemented and run on given MANET scenario in NS-2 and
performance parameters are calculated. Results are generated in graphical form produced by
using trace files that is generated during simulation. Then our proposed protocol for real time
traffic is implemented and results are produced in graphical form.Results are compared by taking
pause time on X-axis and performance metrics throughput and delay on Y-axis.
4.4 Comparison of performance
We simulated the results in NS2 by taking parameters (pause time) on x-axis and performance
metric (delivery ratio, packet loss rate and throughput) on Y-axis. The pause time is the time
interval during which different parameters are calculated .In the figure below at equal intervals
the throughput is calculated as shown in figure 1.
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
85
Figure 1. Comparison of throughput of AODV and EAODV
In figure 1 the throughput comparison between AODV and EAODV is given and it is clear that
the throughput of EAODV is greater than basic AODV as indicated by red line in the graph. At
point 1, 2 and 3 throughput of CBR packets is zero because UDP transmission is not started yet.
At point 3 UDP transmission start and a large increase occur in throughput of CBR packets during
UDP transmission. After point 3 graphs shows a continuous increase in throughput rate of CBR
packets as compare to basic AODV.
Figure 2. Comparison of packet loss of AODV and EAODV
The packet loss rate of basic AODV and EAODV is compared in figure 2. The packet loss rate of
both protocols is calculated at fixed interval of time. First we calculated the number of packets
during fixed intervals and packet loss then packet loss rate is calculated. At point 1, 2 and 3
packet loss is zero because UDP transmission is not start at that time. At point 3 UDP
transmission start and a large decrease occur in packet loss of CBR packets during UDP
transmission as compare to basic AODV. The packet loss rate for the EAODV is smaller than
basic AODV.
0
500
1000
1500
2000
2500
3000
3500
4000
4500
1 2 3 4 5 6
THROUGHPUT
PAUSE TIME
AODV
EAODV
0
500
1000
1500
2000
2500
3000
1 2 3 4 5 6
PACKETLOSS
PAUSE TIME
AODV
EAODV
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
86
Figure 3. Comparison of delivery ratio of AODV and EAODV
Figure 3 shows the delivery ratio of both protocols. Red line is indicating the delivery ratio of
EAODV and blue line indicates the basic AODV. At point 1, 2 and 3 delivery ratio is zero
because UDP transmission is not start. At point 3 UDP transmission start and a large increase
occur in delivery ratio of CBR packets during UDP transmission. Graphs shows continuous
increase in delivery ratio because during UDP transmission no TCP packets are send or received,
due to priority only CBR packets are transmitted. Hence delivery ratio of CBR packets is
increased.
5. CONCLUSION
We developed a protocol with an enhanced route discovery mechanism that avoids the RREQ
rejection and in results reduces the pre transmission delay. EAODV give priority to the source
node of RT transmission. When RREQ packet sends to neighbor node, for RT transmission it
accept route request on priority basis and starts the RT transmission. EAODV expire active routes
of TCP when UDP transmission starts.
The drop ratio of packets decreased, then throughput increase by receiving more packets at
destination and delivery ratio also increased. Our technique focuses to maintain real time
transmissions. With these enhancements our protocol increases the overall throughput of network
and packet delivery ratio for real time transmission as compare to the basic AODV routing
protocol. The simulation result proves the improvement in the performance of the protocol.
REFERENCES
[1] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol Performance
issues and Evaluation Considerations”, Network Working Group, RFC2501, January 1999.
[2] C. Perkins, E. Belding Royer and S. Das “Ad hoc on-demand Distance Vector (AODV) Routing”
IETF RFC3561, July 2003.
[3] Iftikhar Ahmad & Mata ur Rehman“Efficient AODV routing based on traffic load and mobility of
node in MANET” 6th International Conference on Emerging Technologies (ICET),2010.
[4] Iftikhar Ahmad & Humaira Jabeen “Enhanced Load Balanced AODV Routing Protocol” (IJCSIS)
International Journal of Computer Science and Information Security,Vol. 9, No. 1,January 2011.
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
1 2 3 4 5 6
DELIVERYRATIO
PAUSE TIME
AODV
EAODV
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014
87
[5] Abdullah waqas, shahid Imran & hasan mahmood“Energy Efficient Route Discovery for Reactive
Protocols in Wireless Ad Hoc Networks”, 2012 International Conference on Emerging Sciences
(ICET),8-9 Oct. 2012.
[6] Nisar Hundewale, Sunsook Jung & Alex Zelikovsky“Energy Efficient Node Caching and Load
Balancing Enhancement of Reactive Ad Hoc Routing Protocols” Journal of Universal Computer
Science, vol. 13, no. 1 (2007), 110-132.
[7] Mrs. Shilpi Jain, Mr.Sourabh Jain “Energy Efficient Maximum Lifetime Ad-Hoc Routing
(EEMLAR)”,IRACST –International Journal of Computer Networks and Wireless
Communications (IJCNWC), ISSN: 2250-3501 Vol.2, No4, August 2012.
[8] Iftikhar Ahmad,Humaira Jabeen & Faisal Riaz, “ImprovedQOS Routing for Real Time Traffic in
Mobile Ad hoc Network”International Journal of Computer Networks & Communications (IJCNC)
Vol.5, No.4,July 2013.
[9] H. XIAO, Winston K.G. SEAH, Anthony LO and Kee Chiang CHUA “ Flexible Quality Service
Model for Ad-HOC Networks” In proceedings of the IEEE Vehicular Technology Conference,
Tokyo, Japan, May 2000.
[10] Sanjeev Jain, Vankateswarla Pitti and Bhupendra Verma. “Real Time On-demand Distance Vector
in Mobile Ad hoc Networks” Asian Journal of Information Technology 5(4): 454-459, 2005.
[11] Li Hao Jutao, Zhao Jingjing and Minglu, “Energy Level and Link State Aware AODV Route
Request Forwarding Mechanism Research” WSEAS Transactions on Communications, Issue 2,
Volume 8, February 2009.
[12] LI Ting, TANG Rui-bu and JI Hong,”Status adaptive routing with delayed rebroadcast scheme in
AODV-based MANETs” Science Direct, September 2008 Elsevier.
[13] P.Sivakumar , Dr.K.Duraiswamy Research Scholar “A QOS Routing Protocol for Mobile Ad Hoc
Networks based on the Load Distribution”IEEE International Conference on Computational
Intelligence and Computing Research (iccic’10) 2010.
[14] Chhagan Lal, V.Laxmi, M.S.Gaur “Performance Analysis of MANET Routing Protocols for
Multimedia Traffic” International Conference on Computer & Communication Technology
(ICCCT)-2011.
[15] M. Gunes¸ and M. Wenig ,”Models for Realistic Mobility and Radio Wave Propagation for Ad
Hoc Network Simulations” Springer-Verlag London Limited,2009.(A chapter of book “Guide to
Wireless Ad Hoc Networks” ).
[16] K. Fall and K. Varahan, editors, “NS Notes and Documentation” The VINT Project, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, November 1997.

Weitere ähnliche Inhalte

Was ist angesagt?

P ERFORMANCE C OMPARISON OF R OUTING P ROTOCOLS IN M OBILE A D H OC N E...
P ERFORMANCE C OMPARISON OF  R OUTING  P ROTOCOLS IN  M OBILE  A D  H OC  N E...P ERFORMANCE C OMPARISON OF  R OUTING  P ROTOCOLS IN  M OBILE  A D  H OC  N E...
P ERFORMANCE C OMPARISON OF R OUTING P ROTOCOLS IN M OBILE A D H OC N E...ijujournal
 
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSCOMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSijcax
 
Analysis of FSR, LANMAR and DYMO under MANET
Analysis of FSR, LANMAR and DYMO under MANETAnalysis of FSR, LANMAR and DYMO under MANET
Analysis of FSR, LANMAR and DYMO under MANETidescitation
 
Local distance's neighbouring quantification
Local distance's neighbouring quantificationLocal distance's neighbouring quantification
Local distance's neighbouring quantificationijwmn
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...IOSR Journals
 
rupali published paper
rupali published paperrupali published paper
rupali published paperRoopali Singh
 
Improved aodv based on energy strength and dropping ratio
Improved aodv based on energy strength and dropping ratioImproved aodv based on energy strength and dropping ratio
Improved aodv based on energy strength and dropping ratioIJLT EMAS
 
Distance’s quantification
Distance’s quantificationDistance’s quantification
Distance’s quantificationcsandit
 
Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...IJECEIAES
 
IMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANET
IMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANETIMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANET
IMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANETIJCNCJournal
 
IMPROVED NETWORK CONNECTIVITY IN MANETS
IMPROVED NETWORK CONNECTIVITY IN MANETSIMPROVED NETWORK CONNECTIVITY IN MANETS
IMPROVED NETWORK CONNECTIVITY IN MANETSIJCNCJournal
 
A novel approach of hybrid multipath routing protocol for manets using receiv...
A novel approach of hybrid multipath routing protocol for manets using receiv...A novel approach of hybrid multipath routing protocol for manets using receiv...
A novel approach of hybrid multipath routing protocol for manets using receiv...eSAT Publishing House
 
A study on performance comparison of dymo with aodv and dsr
A study on performance comparison of dymo with aodv and dsrA study on performance comparison of dymo with aodv and dsr
A study on performance comparison of dymo with aodv and dsrIAEME Publication
 
Load aware and load balancing using aomdv routing in manet
Load aware and load balancing using aomdv routing in manetLoad aware and load balancing using aomdv routing in manet
Load aware and load balancing using aomdv routing in manetijctet
 

Was ist angesagt? (18)

P ERFORMANCE C OMPARISON OF R OUTING P ROTOCOLS IN M OBILE A D H OC N E...
P ERFORMANCE C OMPARISON OF  R OUTING  P ROTOCOLS IN  M OBILE  A D  H OC  N E...P ERFORMANCE C OMPARISON OF  R OUTING  P ROTOCOLS IN  M OBILE  A D  H OC  N E...
P ERFORMANCE C OMPARISON OF R OUTING P ROTOCOLS IN M OBILE A D H OC N E...
 
Bh4103368374
Bh4103368374Bh4103368374
Bh4103368374
 
10.1.1.258.7234
10.1.1.258.723410.1.1.258.7234
10.1.1.258.7234
 
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSCOMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
 
Analysis of FSR, LANMAR and DYMO under MANET
Analysis of FSR, LANMAR and DYMO under MANETAnalysis of FSR, LANMAR and DYMO under MANET
Analysis of FSR, LANMAR and DYMO under MANET
 
Local distance's neighbouring quantification
Local distance's neighbouring quantificationLocal distance's neighbouring quantification
Local distance's neighbouring quantification
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
 
En33838844
En33838844En33838844
En33838844
 
rupali published paper
rupali published paperrupali published paper
rupali published paper
 
Improved aodv based on energy strength and dropping ratio
Improved aodv based on energy strength and dropping ratioImproved aodv based on energy strength and dropping ratio
Improved aodv based on energy strength and dropping ratio
 
Distance’s quantification
Distance’s quantificationDistance’s quantification
Distance’s quantification
 
Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...
 
IMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANET
IMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANETIMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANET
IMPROVED QUALITY OF SERVICE PROTOCOL FOR REAL TIME TRAFFIC IN MANET
 
IMPROVED NETWORK CONNECTIVITY IN MANETS
IMPROVED NETWORK CONNECTIVITY IN MANETSIMPROVED NETWORK CONNECTIVITY IN MANETS
IMPROVED NETWORK CONNECTIVITY IN MANETS
 
A novel approach of hybrid multipath routing protocol for manets using receiv...
A novel approach of hybrid multipath routing protocol for manets using receiv...A novel approach of hybrid multipath routing protocol for manets using receiv...
A novel approach of hybrid multipath routing protocol for manets using receiv...
 
A study on performance comparison of dymo with aodv and dsr
A study on performance comparison of dymo with aodv and dsrA study on performance comparison of dymo with aodv and dsr
A study on performance comparison of dymo with aodv and dsr
 
Load aware and load balancing using aomdv routing in manet
Load aware and load balancing using aomdv routing in manetLoad aware and load balancing using aomdv routing in manet
Load aware and load balancing using aomdv routing in manet
 

Ähnlich wie Enhanced aodv route discovery and route establishment for qos provision for real time transmission in manet

PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSPERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSijujournal
 
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSPERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSijujournal
 
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSCOMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSijcax
 
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSCOMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSijcax
 
A new parameter proposed for route selection in routing protocol
A new parameter proposed for route selection in routing protocolA new parameter proposed for route selection in routing protocol
A new parameter proposed for route selection in routing protocolIAEME Publication
 
To improve the QoS in MANETs through analysis between reactive and proactive ...
To improve the QoS in MANETs through analysis between reactive and proactive ...To improve the QoS in MANETs through analysis between reactive and proactive ...
To improve the QoS in MANETs through analysis between reactive and proactive ...CSEIJJournal
 
Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)
Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)
Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)IJMER
 
A SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETs
A SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETsA SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETs
A SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETspijans
 
Progressive Routing Protocol using Hybrid Analysis for MANETs
Progressive Routing Protocol using Hybrid Analysis for MANETsProgressive Routing Protocol using Hybrid Analysis for MANETs
Progressive Routing Protocol using Hybrid Analysis for MANETsidescitation
 
Performance analysis of routing protocols and tcp variants under http and ftp...
Performance analysis of routing protocols and tcp variants under http and ftp...Performance analysis of routing protocols and tcp variants under http and ftp...
Performance analysis of routing protocols and tcp variants under http and ftp...IJCNCJournal
 
A Review of Ad hoc on demand distance vector routing and proposed AR-AODV
A Review of Ad hoc on demand distance vector routing and proposed AR-AODVA Review of Ad hoc on demand distance vector routing and proposed AR-AODV
A Review of Ad hoc on demand distance vector routing and proposed AR-AODVEditor IJMTER
 
EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...
EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...
EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...cscpconf
 
T HE I MPACT OF TCP C ONGESTION W INDOW S IZE ON THE P ERFORMANCE E VA...
T HE  I MPACT OF  TCP C ONGESTION  W INDOW  S IZE  ON THE  P ERFORMANCE  E VA...T HE  I MPACT OF  TCP C ONGESTION  W INDOW  S IZE  ON THE  P ERFORMANCE  E VA...
T HE I MPACT OF TCP C ONGESTION W INDOW S IZE ON THE P ERFORMANCE E VA...ijwmn
 
Performance comparison of mobile ad hoc network routing protocols
Performance comparison of mobile ad hoc network routing protocolsPerformance comparison of mobile ad hoc network routing protocols
Performance comparison of mobile ad hoc network routing protocolsIJCNCJournal
 
A New Energy Efficient Approach in MANETs: A Review
A New Energy Efficient Approach in MANETs: A ReviewA New Energy Efficient Approach in MANETs: A Review
A New Energy Efficient Approach in MANETs: A ReviewBRNSSPublicationHubI
 
Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...
Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...
Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...pijans
 

Ähnlich wie Enhanced aodv route discovery and route establishment for qos provision for real time transmission in manet (20)

PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSPERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
 
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSPERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PERFORMANCE COMPARISON OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
 
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSCOMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
 
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKSCOMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
 
A new parameter proposed for route selection in routing protocol
A new parameter proposed for route selection in routing protocolA new parameter proposed for route selection in routing protocol
A new parameter proposed for route selection in routing protocol
 
To improve the QoS in MANETs through analysis between reactive and proactive ...
To improve the QoS in MANETs through analysis between reactive and proactive ...To improve the QoS in MANETs through analysis between reactive and proactive ...
To improve the QoS in MANETs through analysis between reactive and proactive ...
 
Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)
Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)
Experiment of Routing Protocol AODV (AdHoc On-demand Distance Vector)
 
B03406010
B03406010B03406010
B03406010
 
A41040105
A41040105A41040105
A41040105
 
A SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETs
A SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETsA SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETs
A SURVEY OF ENHANCED ROUTING PROTOCOLS FOR MANETs
 
Hd3612761280
Hd3612761280Hd3612761280
Hd3612761280
 
Progressive Routing Protocol using Hybrid Analysis for MANETs
Progressive Routing Protocol using Hybrid Analysis for MANETsProgressive Routing Protocol using Hybrid Analysis for MANETs
Progressive Routing Protocol using Hybrid Analysis for MANETs
 
J0935461
J0935461J0935461
J0935461
 
Performance analysis of routing protocols and tcp variants under http and ftp...
Performance analysis of routing protocols and tcp variants under http and ftp...Performance analysis of routing protocols and tcp variants under http and ftp...
Performance analysis of routing protocols and tcp variants under http and ftp...
 
A Review of Ad hoc on demand distance vector routing and proposed AR-AODV
A Review of Ad hoc on demand distance vector routing and proposed AR-AODVA Review of Ad hoc on demand distance vector routing and proposed AR-AODV
A Review of Ad hoc on demand distance vector routing and proposed AR-AODV
 
EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...
EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...
EVALUATION OF PROACTIVE, REACTIVE AND HYBRID AD HOC ROUTING PROTOCOL FOR IEEE...
 
T HE I MPACT OF TCP C ONGESTION W INDOW S IZE ON THE P ERFORMANCE E VA...
T HE  I MPACT OF  TCP C ONGESTION  W INDOW  S IZE  ON THE  P ERFORMANCE  E VA...T HE  I MPACT OF  TCP C ONGESTION  W INDOW  S IZE  ON THE  P ERFORMANCE  E VA...
T HE I MPACT OF TCP C ONGESTION W INDOW S IZE ON THE P ERFORMANCE E VA...
 
Performance comparison of mobile ad hoc network routing protocols
Performance comparison of mobile ad hoc network routing protocolsPerformance comparison of mobile ad hoc network routing protocols
Performance comparison of mobile ad hoc network routing protocols
 
A New Energy Efficient Approach in MANETs: A Review
A New Energy Efficient Approach in MANETs: A ReviewA New Energy Efficient Approach in MANETs: A Review
A New Energy Efficient Approach in MANETs: A Review
 
Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...
Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...
Performance Evaluation AODV, DYMO, OLSR and ZRPAD Hoc Routing Protocol for IE...
 

Mehr von IJCNCJournal

Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...IJCNCJournal
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsIJCNCJournal
 
April 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & CommunicationsApril 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & CommunicationsIJCNCJournal
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionIJCNCJournal
 
High Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT TrafficHigh Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT TrafficIJCNCJournal
 
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...IJCNCJournal
 
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...IJCNCJournal
 
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...IJCNCJournal
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsIJCNCJournal
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionIJCNCJournal
 
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT TrafficHigh Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT TrafficIJCNCJournal
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IJCNCJournal
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...IJCNCJournal
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IJCNCJournal
 
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...IJCNCJournal
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...IJCNCJournal
 
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...IJCNCJournal
 
March 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & CommunicationsMarch 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & CommunicationsIJCNCJournal
 
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...IJCNCJournal
 
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...IJCNCJournal
 

Mehr von IJCNCJournal (20)

Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
 
April 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & CommunicationsApril 2024 - Top 10 Read Articles in Computer Networks & Communications
April 2024 - Top 10 Read Articles in Computer Networks & Communications
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
 
High Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT TrafficHigh Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
High Performance NMF Based Intrusion Detection System for Big Data IOT Traffic
 
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
A Novel Medium Access Control Strategy for Heterogeneous Traffic in Wireless ...
 
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
A Topology Control Algorithm Taking into Account Energy and Quality of Transm...
 
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
Multi-Server user Authentication Scheme for Privacy Preservation with Fuzzy C...
 
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation SystemsAdvanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
Advanced Privacy Scheme to Improve Road Safety in Smart Transportation Systems
 
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware DetectionDEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
DEF: Deep Ensemble Neural Network Classifier for Android Malware Detection
 
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT TrafficHigh Performance NMF based Intrusion Detection System for Big Data IoT Traffic
High Performance NMF based Intrusion Detection System for Big Data IoT Traffic
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
 
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
IoT Guardian: A Novel Feature Discovery and Cooperative Game Theory Empowered...
 
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
** Connect, Collaborate, And Innovate: IJCNC - Where Networking Futures Take ...
 
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
Enhancing Traffic Routing Inside a Network through IoT Technology & Network C...
 
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
Multipoint Relay Path for Efficient Topology Maintenance Algorithm in Optimiz...
 
March 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & CommunicationsMarch 2024 - Top 10 Read Articles in Computer Networks & Communications
March 2024 - Top 10 Read Articles in Computer Networks & Communications
 
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
Adaptive Multi-Criteria-Based Load Balancing Technique for Resource Allocatio...
 
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
Comparative Study of Orchestration using gRPC API and REST API in Server Crea...
 

Kürzlich hochgeladen

TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdfChristopherTHyatt
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 

Kürzlich hochgeladen (20)

TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 

Enhanced aodv route discovery and route establishment for qos provision for real time transmission in manet

  • 1. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 DOI : 10.5121/ijcnc.2014.6207 79 ENHANCED AODV ROUTE DISCOVERY AND ROUTE ESTABLISHMENT FOR QOS PROVISION FOR REAL TIME TRANSMISSION IN MANET Iftikhar Ahmad1 , Uzma Ashraf1 , Sadia Anum1 , and Hira Tahir1 1 Department of CS & IT Mirpur University of Science and Technology Mirpur, AJK, Pakistan ABSTRACT MANET is a temporary connection of mobile nodes via wireless links having no centralized base station. We developed a protocol with an enhanced route discovery mechanism that avoids the pre-transmission delay. When a source node wants to communicate with another node, it broadcast RREQ. EAODV give priority to the source node of real time transmission. When RREQ packet send to neighbor node, for real time transmission it accept route request on priority basis and the drop ratio of packets decreased, then throughput increases by receiving more packets at destination and delivery ratio also increased through these QOS improved. KEYWORDS AD-HOC, MANET, AODV, Quality of service, Real Time traffic. 1. INTRODUCTION Wireless AD-HOC network is distributed network having no centralized infrastructure, each node forward data packets in routing, sometimes other normal nodes may become router or gateway. The first wireless AD-HOC networks were the “packet radio” networks (PRNETs), developed by DARPA in 1970. This network overcome the problem of fixed centralized infrastructure in the environment where single centralized node and fixed nodes via wired links, does not work accurately. This AD-HOC network is very useful in Emergency conditions, ease of deployment, speed of deployment and decreased dependence on infrastructure. There are three basic types of wireless AD-HOC network: MANET, Wireless mesh network and Wireless sensor network.MANET [1] is a combination of independent mobile nodes that are connected with wireless links (radio waves) to perform peer-to-peer communication. MANET may operate in a standalone fashion, or may be connected to the other larger network like Internet. Applications of MANETs include military use in battle fields, where a centralized command center is not only infeasible but also undesirable; and disaster management scenarios, where on the run, communication between various rescue teams is required in the absence of any existing communication infrastructure. There are three major protocols used for MANET are: Proactive (table driven), Reactive (on-demand) and Hybrid (both proactive and reactive) which are discussed below.
  • 2. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 80 1.1 Proactive (table driven) This type of protocols maintains fresh lists of destinations and their routes by periodically distributing routing tables throughout the network. The main disadvantages of such algorithms include: Respective amount of data for maintenance, slow reaction on restructuring and failures. Examples of proactive are DSDV (destination sequenced distance vector) and OLSR (Optimized Link State Routing). 1.2 Reactive (on-demand) This type of protocols finds a route on demand by flooding the network with Route Request packets. Determine route if and when needed Source initiates route discovery. Examples are DSR (dynamic source routing) and AODV (ad-hoc on demand distance vector). 1.3 Hybrid This category is called as Adaptive; Combination of proactive and reactive. Example ZRP (zone routing protocol) AODV [2] is efficient for both unicast and multicast routing, it builds routes between nodes only when desired (on-demand) by source nodes, routes are maintain as long as these are needed by source. AODV has four types of messages: RREQ (route request), RREP (route reply), RERR (route error) and hello message. These messages are used in establishing the route between source and destination. If node wants to send data packet to some destination, it first checks the route to that destination from source, if there is no route is present between source and destination. Then, first by route discovery method route is established between source and destination for data delivery. Source node broadcast RREQ message to its neighbors, node which receive RREQ may send RREP to source if it is destination node or it has route to destination with corresponding sequence number greater than or equal to that contained in the RREQ. Otherwise, it rebroadcasts the RREQ. Nodes keep track of the RREQ's source IP address and broadcast ID. If they receive a RREQ which they have already processed, they discard the RREQ and do not forward it. When source node receive RREP message from destination node route is established between source and destination, then HELLO message generate by source to destination through newly discovered route to check before the data transmission, then source send data through this route to destination. If due to any reason topology change or node die, then link failure occurs and RERR message send to source. After receiving the RERR, if the source node still desires the route, it can reinitiate route discovery. The rest of this paper is organized as follows. Related work and problem definition is presented in Section II. The solution and design is covered in Section III, followed by implementation results and performance evaluation in Section IV. This paper is concluded in Section V while the references are given towards the end of this paper. 2. RELATED WORK Enhanced Load Balanced AODV Routing Protocol [3] was proposed to overcome the problem for longer period of time a protocol is proposed which selects route on the basis of traffic load on node and reset path as topology changes. AODVLM [4] which is new load balanced AODV routing protocol, provide a scheme for load distribution among nodes in MANET. AODVLM improves throughput, reduce average end-to- delay and overall network performance.
  • 3. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 81 Energy efficient route discovery method [5] was proposed which reduce the broadcast cost and overall energy of network. In this approach node Discovery process uses regions similar to disk which have variable dimensions and as a result time and energy reduces. AODV-NC-WLB [6] a modified route request broadcast approach was presented based on node caching. They overcome the drawback of CDS overuse of dominating nodes by a new load balancing scheme in which they measure the protocol fairness using as parameter distribution among nodes of the forwarding load. Work load balance technique is based on the idea by dropping RREQ packet according to load status of each node and load status is set by the value of threshold. EEMLAR protocol [7] discussed, a node is involved in any transaction, it losses some of its energy whose values depend upon the following factors: nature of packet, size, and distance between nodes. For calculating all these factors, proposed protocol gives an optimized function. After receiving many route request it calls the optimization function to determine the best path to select and send RREP .It also store some inferior paths as backup. Paper [8] proposed an enhancement in AODV protocol to provide QOS support for real time traffic by using time slot bandwidth reservation in two cases first when both the nodes are in the MANET and second when one node is in MANET or other is in fixed network. FQMM model [9] (flexible QOS model) consider the characteristics of MANET and combines high quality services of QOS models (intserv and diffserv). FQMM features include: dynamic roles of nodes, hybrid provisioning and adaptive conditioning. Real Time On-demand Distance Vector in Mobile Ad hoc Networks [10] includes load parameter in the RREQ message that helps in the selection of route with low congestion during route discovery process. Energy Level and Link State Aware AODV Route Request Forwarding Mechanism Research [11] presented an AODV protocol with enhancements. In route discovery the route selection is made on the basis of node power, load status and link state between. [12] Combine the shortest route selection criteria of AODV with real network status including link quality, the remaining power capacity and traffic load. This paper contributed by giving status adoptive routing which improves network life and delivery ratio. [13] Proposed a new QOS routing protocol based on load distribution algorithm intended for a variety of traffic classes to establish the best routing paths. The proposed algorithm calculates the cost metric on the basis of the load on the links. The traffic can be classified as real time traffic and normal traffic. Real time traffic is considered as high priority and normal traffic as low priority. In the absence of real time traffic, the lesser loaded path can be utilized by normal traffic. [14] Presents a comparative analysis of mobile ad-hoc routing protocols over real time video streaming. Their analysis exploits the built-in support for real time multimedia streaming in ad- hoc routing protocols. The performance evaluation has been based on various network level metrics, including average end-to-end delay and packet drop rate. In the previous techniques there is the problem of RREQ rejection which leads to pre- transmission delay and don’t have QOS in real time transmission. When a source node wants to communicate with another node, it sends RREQ to its neighbor nodes, and waits for route reply. If all the neighbor nodes are busy they do not receive RREQ packets and rejected RREQ packets again and again. This leads to the problem of delay in the initial stage of transmission. Resulting into more packet drops and decreased overall throughput. This is called pre -transmission delay.
  • 4. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 82 3. SOLUTION AND DESIGN Our solution to resolve the pre-transmission delay problem is to modify existing AODV route request mechanism in such a way that it will give greater performance then existing AODV protocol. We are enhancing the existing AODV protocol route discovery process and also reduce the pre transmission delay of RREQ in RT transmission. We give priority to the source node of real time transmission. When RREQ packet is broadcasted to neighbor node, for real time transmission it accept route request on priority basis. In basic AODV the route once selected for transmission does not expires until unless the transmission is completed. In our mechanism we have to expire active routes of TCP when UDP transmission starts.As we discussed above that we give priority to real time transmission real time transmission. The drop ratio of packets gradually decreased, then throughput increase by delivering more packets at destination and delivery ratio also increased as a result of which QOS improves. We create scenario in TCL including two flows for TCP (normal packets) and one for UDP (real time packets). We give priority to the source node of UDP connection, when UDP transmission starts there is less drop rate, increased throughput and delivery ratio. According to EAODV, real time traffic (UDP) gets priority on normal packets. UDP transmission starts at 60 sec in the network, after start of UDP transmission, no TCP transmission starts. UDP has priority to send and receive the packets and in routing table only store information about CBR over UDP transmission. Table 1: EAODV Mechanism Source node Packet Type Time to start Destination node 1 TCP 5.0 sec 3 4 TCP 35.0 sec 7 5 UDP 60.0 sec 8 Table 1 shows, there are three flows of transmission of packets. There are two flows of TCP transmission and one flow of UDP transmission. TCP is used to transmit normal packets and UDP is used to transmit real time packets. Source node 1 start transmission at 5.0 sec, its packet type is TCP for normal packets; its destination node is 3. Then, at 35.0 sec source node 4 start transmission of normal packets TCP, its destination node is 7. When at 60.0 sec UDP transmission of real time traffic starts, it has priority with normal packets. After 60.0 sec in routing table, there is no packet of normal traffic. Source node of TCP packet sends their packets but no data received of normal traffic at destination of TCP packets. UDP real time traffic has priority over TCP normal traffic, that’s why when UDP transmission starts there is no packet of normal traffic is stored in routing table. As a result, there are more packets of UDP transmission are received at destination, throughput increased, packet loss rate decreased and delivery ratio increased. Hence it is clear that, EAODV is more efficient protocol and also provide QOS qualities in real time transmission. 3.1 Enhanced route discovery algorithm Following is the brief description of our enhanced route discovery algorithm that provides solution to the problem stated earlier in the problem statement.
  • 5. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 83 Give priority to source node of special (real time) packets • Fill in the essential RREQ fields and • Broad cost of RREQ Message • Active route time is set to a constant • Reception of RREQ. Check If RREQ is special type of packet then expire already store entry in routing table and store special packet on priority basis, accept RREQ. • Update the routing entry otherwise do not bother. Forward it to next node. • If I am the destination Send RREP message to the updated reverse rout in the table. • Set the Route expire time to current time + active route timeout Transmission of Real time data packets starts on priority basis. 4. IMPLEMENTATIONAND ANALYSIS We implement EAODV in NS2 [15] and compare its performance with basic AODV. Propagation model is Two Ray Ground and Mobility model is Random Way Point [16] because these models are most widely implemented in simulations of most literature work. 4.1 NS-2 Parameter setting Other parameters of NS2 are configured for our network scenario is shown in the Table 2. NS2 is discrete network simulator that is used for implementation for performance comparison MANET protocols Table 2. NS-2 Parameter Setting Routing protocol AODV Link layer type LL MAC type Mac/802_11 Interface Queue Queue/Drop Tail/PriQueue Maximum packets in Ifq 20 Antenna model Antenna/Omni Antenna Radio propagation model Propagation/TwoRay Ground
  • 6. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 84 Network Interface Phy/WirelessPhy Channel type Channel/Wireless Channel Number of mobile nodes 10 Simulation time 150 seconds 4.2 Performance Metric We will compare our enhanced protocol with basic AODV. We evaluates performance mainly according to following metric. 4.2.1 Average throughput Throughput is the total number of packets received successfully in the given time. 4.2.2 Packet delivery ratio It is the ratio of the number of packets received successfully to the total number of packets transmitted. 4.2.3 Packet loss It is the packet loss rate of the transmission. 4.3 Simulation results The Basic AODV is first implemented and run on given MANET scenario in NS-2 and performance parameters are calculated. Results are generated in graphical form produced by using trace files that is generated during simulation. Then our proposed protocol for real time traffic is implemented and results are produced in graphical form.Results are compared by taking pause time on X-axis and performance metrics throughput and delay on Y-axis. 4.4 Comparison of performance We simulated the results in NS2 by taking parameters (pause time) on x-axis and performance metric (delivery ratio, packet loss rate and throughput) on Y-axis. The pause time is the time interval during which different parameters are calculated .In the figure below at equal intervals the throughput is calculated as shown in figure 1.
  • 7. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 85 Figure 1. Comparison of throughput of AODV and EAODV In figure 1 the throughput comparison between AODV and EAODV is given and it is clear that the throughput of EAODV is greater than basic AODV as indicated by red line in the graph. At point 1, 2 and 3 throughput of CBR packets is zero because UDP transmission is not started yet. At point 3 UDP transmission start and a large increase occur in throughput of CBR packets during UDP transmission. After point 3 graphs shows a continuous increase in throughput rate of CBR packets as compare to basic AODV. Figure 2. Comparison of packet loss of AODV and EAODV The packet loss rate of basic AODV and EAODV is compared in figure 2. The packet loss rate of both protocols is calculated at fixed interval of time. First we calculated the number of packets during fixed intervals and packet loss then packet loss rate is calculated. At point 1, 2 and 3 packet loss is zero because UDP transmission is not start at that time. At point 3 UDP transmission start and a large decrease occur in packet loss of CBR packets during UDP transmission as compare to basic AODV. The packet loss rate for the EAODV is smaller than basic AODV. 0 500 1000 1500 2000 2500 3000 3500 4000 4500 1 2 3 4 5 6 THROUGHPUT PAUSE TIME AODV EAODV 0 500 1000 1500 2000 2500 3000 1 2 3 4 5 6 PACKETLOSS PAUSE TIME AODV EAODV
  • 8. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 86 Figure 3. Comparison of delivery ratio of AODV and EAODV Figure 3 shows the delivery ratio of both protocols. Red line is indicating the delivery ratio of EAODV and blue line indicates the basic AODV. At point 1, 2 and 3 delivery ratio is zero because UDP transmission is not start. At point 3 UDP transmission start and a large increase occur in delivery ratio of CBR packets during UDP transmission. Graphs shows continuous increase in delivery ratio because during UDP transmission no TCP packets are send or received, due to priority only CBR packets are transmitted. Hence delivery ratio of CBR packets is increased. 5. CONCLUSION We developed a protocol with an enhanced route discovery mechanism that avoids the RREQ rejection and in results reduces the pre transmission delay. EAODV give priority to the source node of RT transmission. When RREQ packet sends to neighbor node, for RT transmission it accept route request on priority basis and starts the RT transmission. EAODV expire active routes of TCP when UDP transmission starts. The drop ratio of packets decreased, then throughput increase by receiving more packets at destination and delivery ratio also increased. Our technique focuses to maintain real time transmissions. With these enhancements our protocol increases the overall throughput of network and packet delivery ratio for real time transmission as compare to the basic AODV routing protocol. The simulation result proves the improvement in the performance of the protocol. REFERENCES [1] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol Performance issues and Evaluation Considerations”, Network Working Group, RFC2501, January 1999. [2] C. Perkins, E. Belding Royer and S. Das “Ad hoc on-demand Distance Vector (AODV) Routing” IETF RFC3561, July 2003. [3] Iftikhar Ahmad & Mata ur Rehman“Efficient AODV routing based on traffic load and mobility of node in MANET” 6th International Conference on Emerging Technologies (ICET),2010. [4] Iftikhar Ahmad & Humaira Jabeen “Enhanced Load Balanced AODV Routing Protocol” (IJCSIS) International Journal of Computer Science and Information Security,Vol. 9, No. 1,January 2011. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 1 2 3 4 5 6 DELIVERYRATIO PAUSE TIME AODV EAODV
  • 9. International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.2, March 2014 87 [5] Abdullah waqas, shahid Imran & hasan mahmood“Energy Efficient Route Discovery for Reactive Protocols in Wireless Ad Hoc Networks”, 2012 International Conference on Emerging Sciences (ICET),8-9 Oct. 2012. [6] Nisar Hundewale, Sunsook Jung & Alex Zelikovsky“Energy Efficient Node Caching and Load Balancing Enhancement of Reactive Ad Hoc Routing Protocols” Journal of Universal Computer Science, vol. 13, no. 1 (2007), 110-132. [7] Mrs. Shilpi Jain, Mr.Sourabh Jain “Energy Efficient Maximum Lifetime Ad-Hoc Routing (EEMLAR)”,IRACST –International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 Vol.2, No4, August 2012. [8] Iftikhar Ahmad,Humaira Jabeen & Faisal Riaz, “ImprovedQOS Routing for Real Time Traffic in Mobile Ad hoc Network”International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.4,July 2013. [9] H. XIAO, Winston K.G. SEAH, Anthony LO and Kee Chiang CHUA “ Flexible Quality Service Model for Ad-HOC Networks” In proceedings of the IEEE Vehicular Technology Conference, Tokyo, Japan, May 2000. [10] Sanjeev Jain, Vankateswarla Pitti and Bhupendra Verma. “Real Time On-demand Distance Vector in Mobile Ad hoc Networks” Asian Journal of Information Technology 5(4): 454-459, 2005. [11] Li Hao Jutao, Zhao Jingjing and Minglu, “Energy Level and Link State Aware AODV Route Request Forwarding Mechanism Research” WSEAS Transactions on Communications, Issue 2, Volume 8, February 2009. [12] LI Ting, TANG Rui-bu and JI Hong,”Status adaptive routing with delayed rebroadcast scheme in AODV-based MANETs” Science Direct, September 2008 Elsevier. [13] P.Sivakumar , Dr.K.Duraiswamy Research Scholar “A QOS Routing Protocol for Mobile Ad Hoc Networks based on the Load Distribution”IEEE International Conference on Computational Intelligence and Computing Research (iccic’10) 2010. [14] Chhagan Lal, V.Laxmi, M.S.Gaur “Performance Analysis of MANET Routing Protocols for Multimedia Traffic” International Conference on Computer & Communication Technology (ICCCT)-2011. [15] M. Gunes¸ and M. Wenig ,”Models for Realistic Mobility and Radio Wave Propagation for Ad Hoc Network Simulations” Springer-Verlag London Limited,2009.(A chapter of book “Guide to Wireless Ad Hoc Networks” ). [16] K. Fall and K. Varahan, editors, “NS Notes and Documentation” The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, November 1997.