SlideShare ist ein Scribd-Unternehmen logo
1 von 1
Downloaden Sie, um offline zu lesen
Accelerated training convergence in superposed quantum networks
NATO Advanced Study Institute on Mining Massive Data Sets for Security
C. Altman, Applied Physics, Delft University of Technology, The Netherlands
E. Knorring, Scandinavia Clinic, St. Petersburg, Russia
R. R. Zapatrin, Informatics Dept, The State Russian Museum, St. Petersburg, Russia
Abstract
We outline an adaptive training framework for artificial neural networks which aims to simultaneously
optimize both topological and numerical structure. The technique combines principal component
analysis and supervised learning and is descended from the mathematical treatment for continuous
evolution of discrete structures as introduced in quantum topology [1, 2]. The formalism of the training
algorithm, first proposed in [3], is optimal for tasks in associative processing and feature extraction. The
procedure is unique in harnessing a coherent ensemble of discrete topological configurations of neural
networks, each of which is formally merged into the appropriate linear state space via superposition.
Training is carried out within this coherent state space, allowing for parallel revision of differing
topological configurations at each step.
The primary feature of our model is that network topologies are represented as specific states of the
simulator. Network training results in convergence to a stable attractor. Once this state has been found,
the Rota algebraic spatialization procedure [4] is applied, enabling conversion of the simulator state to a
conventional neural network upon measurement. Superposed adaptive quantum networks allow for
simultaneous training of both single-neuron activation functions and optimization of whole-network
topological structure. Our mathematical formalism provides quantitative, numerical indications for
optimal reconfiguration of the network topology. We will review candidate physical implementations
for the model drawn from recent developments in condensed matter physics and solid-state quantum
computing.
References
[1] M. Buric, T. Grammatikopoulos, J. Madore, G. Zoupanos, Gravity and the Structure of
Noncommutative Algebras, Journal of High Energy Physics, 0604, 054 (2006)
[2] I. Raptis, R. R. Zapatrin, Quantization of discretized spacetimes and the correspondence principle,
International Journal of Theoretical Physics, 39, 1 (2000)
[3] C. Altman, J. Pykacz, R. R. Zapatrin, Superpositional Quantum Network Topologies, International
Journal of Theoretical Physics, 43, 2029 (2004)
[4] I. Raptis, R. R. Zapatrin, Algebraic description of spacetime foam, Classical and Quantum Gravity,
18, 4187 (2001)

Weitere ähnliche Inhalte

Was ist angesagt?

INFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERING
INFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERINGINFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERING
INFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERINGcscpconf
 
Influence of priors over multityped object in evolutionary clustering
Influence of priors over multityped object in evolutionary clusteringInfluence of priors over multityped object in evolutionary clustering
Influence of priors over multityped object in evolutionary clusteringcsandit
 
Job Scheduling on the Grid Environment using Max-Min Firefly Algorithm
Job Scheduling on the Grid Environment using Max-Min  Firefly AlgorithmJob Scheduling on the Grid Environment using Max-Min  Firefly Algorithm
Job Scheduling on the Grid Environment using Max-Min Firefly AlgorithmEditor IJCATR
 
DFTFIT: Potential Generation for Molecular Dynamics Calculations
DFTFIT: Potential Generation for Molecular Dynamics CalculationsDFTFIT: Potential Generation for Molecular Dynamics Calculations
DFTFIT: Potential Generation for Molecular Dynamics CalculationsChristopher Ostrouchov
 
Computational Nano Technology and Simulation Techniques Applied to Study Silv...
Computational Nano Technology and Simulation Techniques Applied to Study Silv...Computational Nano Technology and Simulation Techniques Applied to Study Silv...
Computational Nano Technology and Simulation Techniques Applied to Study Silv...IRJET Journal
 
Cluster head election using imperialist competitive algorithm (chei) for wire...
Cluster head election using imperialist competitive algorithm (chei) for wire...Cluster head election using imperialist competitive algorithm (chei) for wire...
Cluster head election using imperialist competitive algorithm (chei) for wire...ijmnct
 
Artificial neural networks in hydrology
Artificial neural networks in hydrology Artificial neural networks in hydrology
Artificial neural networks in hydrology Jonathan D'Cruz
 
Microstructural Analysis and Machine Learning
Microstructural Analysis and Machine LearningMicrostructural Analysis and Machine Learning
Microstructural Analysis and Machine LearningPFHub PFHub
 
Multi-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhaseMulti-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhasePFHub PFHub
 
5.4 mining sequence patterns in biological data
5.4 mining sequence patterns in biological data5.4 mining sequence patterns in biological data
5.4 mining sequence patterns in biological dataKrish_ver2
 
Short Term Electrical Load Forecasting by Artificial Neural Network
Short Term Electrical Load Forecasting by Artificial Neural NetworkShort Term Electrical Load Forecasting by Artificial Neural Network
Short Term Electrical Load Forecasting by Artificial Neural NetworkIJERA Editor
 
A Time Series ANN Approach for Weather Forecasting
A Time Series ANN Approach for Weather ForecastingA Time Series ANN Approach for Weather Forecasting
A Time Series ANN Approach for Weather Forecastingijctcm
 
Machine Learning in Materials Science and Chemistry, USPTO, Nathan C. Frey
Machine Learning in Materials Science and Chemistry, USPTO, Nathan C. FreyMachine Learning in Materials Science and Chemistry, USPTO, Nathan C. Frey
Machine Learning in Materials Science and Chemistry, USPTO, Nathan C. FreyNathan Frey, PhD
 
Text documents clustering using modified multi-verse optimizer
Text documents clustering using modified multi-verse optimizerText documents clustering using modified multi-verse optimizer
Text documents clustering using modified multi-verse optimizerIJECEIAES
 
Feature Subset Selection for High Dimensional Data Using Clustering Techniques
Feature Subset Selection for High Dimensional Data Using Clustering TechniquesFeature Subset Selection for High Dimensional Data Using Clustering Techniques
Feature Subset Selection for High Dimensional Data Using Clustering TechniquesIRJET Journal
 
Vol 16 No 2 - July-December 2016
Vol 16 No 2 - July-December 2016Vol 16 No 2 - July-December 2016
Vol 16 No 2 - July-December 2016ijcsbi
 
Semi-supervised learning approach using modified self-training algorithm to c...
Semi-supervised learning approach using modified self-training algorithm to c...Semi-supervised learning approach using modified self-training algorithm to c...
Semi-supervised learning approach using modified self-training algorithm to c...IJECEIAES
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATKAnders Blom
 

Was ist angesagt? (20)

INFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERING
INFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERINGINFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERING
INFLUENCE OF PRIORS OVER MULTITYPED OBJECT IN EVOLUTIONARY CLUSTERING
 
Influence of priors over multityped object in evolutionary clustering
Influence of priors over multityped object in evolutionary clusteringInfluence of priors over multityped object in evolutionary clustering
Influence of priors over multityped object in evolutionary clustering
 
Job Scheduling on the Grid Environment using Max-Min Firefly Algorithm
Job Scheduling on the Grid Environment using Max-Min  Firefly AlgorithmJob Scheduling on the Grid Environment using Max-Min  Firefly Algorithm
Job Scheduling on the Grid Environment using Max-Min Firefly Algorithm
 
J04401066071
J04401066071J04401066071
J04401066071
 
DFTFIT: Potential Generation for Molecular Dynamics Calculations
DFTFIT: Potential Generation for Molecular Dynamics CalculationsDFTFIT: Potential Generation for Molecular Dynamics Calculations
DFTFIT: Potential Generation for Molecular Dynamics Calculations
 
Computational Nano Technology and Simulation Techniques Applied to Study Silv...
Computational Nano Technology and Simulation Techniques Applied to Study Silv...Computational Nano Technology and Simulation Techniques Applied to Study Silv...
Computational Nano Technology and Simulation Techniques Applied to Study Silv...
 
Cluster head election using imperialist competitive algorithm (chei) for wire...
Cluster head election using imperialist competitive algorithm (chei) for wire...Cluster head election using imperialist competitive algorithm (chei) for wire...
Cluster head election using imperialist competitive algorithm (chei) for wire...
 
Artificial neural networks in hydrology
Artificial neural networks in hydrology Artificial neural networks in hydrology
Artificial neural networks in hydrology
 
Microstructural Analysis and Machine Learning
Microstructural Analysis and Machine LearningMicrostructural Analysis and Machine Learning
Microstructural Analysis and Machine Learning
 
Multi-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhaseMulti-phase-field simulations with OpenPhase
Multi-phase-field simulations with OpenPhase
 
5.4 mining sequence patterns in biological data
5.4 mining sequence patterns in biological data5.4 mining sequence patterns in biological data
5.4 mining sequence patterns in biological data
 
Short Term Electrical Load Forecasting by Artificial Neural Network
Short Term Electrical Load Forecasting by Artificial Neural NetworkShort Term Electrical Load Forecasting by Artificial Neural Network
Short Term Electrical Load Forecasting by Artificial Neural Network
 
A Time Series ANN Approach for Weather Forecasting
A Time Series ANN Approach for Weather ForecastingA Time Series ANN Approach for Weather Forecasting
A Time Series ANN Approach for Weather Forecasting
 
I0343047049
I0343047049I0343047049
I0343047049
 
Machine Learning in Materials Science and Chemistry, USPTO, Nathan C. Frey
Machine Learning in Materials Science and Chemistry, USPTO, Nathan C. FreyMachine Learning in Materials Science and Chemistry, USPTO, Nathan C. Frey
Machine Learning in Materials Science and Chemistry, USPTO, Nathan C. Frey
 
Text documents clustering using modified multi-verse optimizer
Text documents clustering using modified multi-verse optimizerText documents clustering using modified multi-verse optimizer
Text documents clustering using modified multi-verse optimizer
 
Feature Subset Selection for High Dimensional Data Using Clustering Techniques
Feature Subset Selection for High Dimensional Data Using Clustering TechniquesFeature Subset Selection for High Dimensional Data Using Clustering Techniques
Feature Subset Selection for High Dimensional Data Using Clustering Techniques
 
Vol 16 No 2 - July-December 2016
Vol 16 No 2 - July-December 2016Vol 16 No 2 - July-December 2016
Vol 16 No 2 - July-December 2016
 
Semi-supervised learning approach using modified self-training algorithm to c...
Semi-supervised learning approach using modified self-training algorithm to c...Semi-supervised learning approach using modified self-training algorithm to c...
Semi-supervised learning approach using modified self-training algorithm to c...
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATK
 

Ähnlich wie Accelerated training convergence in superposed quantum networks

A Hybrid Deep Neural Network Model For Time Series Forecasting
A Hybrid Deep Neural Network Model For Time Series ForecastingA Hybrid Deep Neural Network Model For Time Series Forecasting
A Hybrid Deep Neural Network Model For Time Series ForecastingMartha Brown
 
ANN based STLF of Power System
ANN based STLF of Power SystemANN based STLF of Power System
ANN based STLF of Power SystemYousuf Khan
 
Survey on Artificial Neural Network Learning Technique Algorithms
Survey on Artificial Neural Network Learning Technique AlgorithmsSurvey on Artificial Neural Network Learning Technique Algorithms
Survey on Artificial Neural Network Learning Technique AlgorithmsIRJET Journal
 
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Cemal Ardil
 
Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...
Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...
Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...Editor IJCATR
 
A SELF-ORGANIZING RECURRENT NEURAL NETWORK
A SELF-ORGANIZING RECURRENT NEURAL NETWORKA SELF-ORGANIZING RECURRENT NEURAL NETWORK
A SELF-ORGANIZING RECURRENT NEURAL NETWORKijaia
 
Black-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX modelBlack-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX modelIJECEIAES
 
Efficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesEfficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesIRJET Journal
 
Elephant swarm optimization for wireless sensor networks –a cross layer mecha...
Elephant swarm optimization for wireless sensor networks –a cross layer mecha...Elephant swarm optimization for wireless sensor networks –a cross layer mecha...
Elephant swarm optimization for wireless sensor networks –a cross layer mecha...IAEME Publication
 
P REDICTION F OR S HORT -T ERM T RAFFIC F LOW B ASED O N O PTIMIZED W...
P REDICTION  F OR  S HORT -T ERM  T RAFFIC  F LOW  B ASED  O N  O PTIMIZED  W...P REDICTION  F OR  S HORT -T ERM  T RAFFIC  F LOW  B ASED  O N  O PTIMIZED  W...
P REDICTION F OR S HORT -T ERM T RAFFIC F LOW B ASED O N O PTIMIZED W...ijcsit
 
On the High Dimentional Information Processing in Quaternionic Domain and its...
On the High Dimentional Information Processing in Quaternionic Domain and its...On the High Dimentional Information Processing in Quaternionic Domain and its...
On the High Dimentional Information Processing in Quaternionic Domain and its...IJAAS Team
 
A Transmission Range Based Clustering Algorithm for Topology Control Manet
A Transmission Range Based Clustering Algorithm for Topology Control ManetA Transmission Range Based Clustering Algorithm for Topology Control Manet
A Transmission Range Based Clustering Algorithm for Topology Control Manetgraphhoc
 
Statistical global modeling of β^- decay halflives systematics ...
Statistical global modeling of β^- decay halflives systematics ...Statistical global modeling of β^- decay halflives systematics ...
Statistical global modeling of β^- decay halflives systematics ...butest
 
A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...
A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...
A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...Cemal Ardil
 
Comparison of Neural Network Training Functions for Hematoma Classification i...
Comparison of Neural Network Training Functions for Hematoma Classification i...Comparison of Neural Network Training Functions for Hematoma Classification i...
Comparison of Neural Network Training Functions for Hematoma Classification i...IOSR Journals
 

Ähnlich wie Accelerated training convergence in superposed quantum networks (20)

G013124354
G013124354G013124354
G013124354
 
A Hybrid Deep Neural Network Model For Time Series Forecasting
A Hybrid Deep Neural Network Model For Time Series ForecastingA Hybrid Deep Neural Network Model For Time Series Forecasting
A Hybrid Deep Neural Network Model For Time Series Forecasting
 
D028018022
D028018022D028018022
D028018022
 
ANN based STLF of Power System
ANN based STLF of Power SystemANN based STLF of Power System
ANN based STLF of Power System
 
Survey on Artificial Neural Network Learning Technique Algorithms
Survey on Artificial Neural Network Learning Technique AlgorithmsSurvey on Artificial Neural Network Learning Technique Algorithms
Survey on Artificial Neural Network Learning Technique Algorithms
 
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
 
Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...
Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...
Time Series Forecasting Using Novel Feature Extraction Algorithm and Multilay...
 
Nonlinear Controller for the Laser Fiber Using PID Controller
Nonlinear Controller for the Laser Fiber Using PID ControllerNonlinear Controller for the Laser Fiber Using PID Controller
Nonlinear Controller for the Laser Fiber Using PID Controller
 
A SELF-ORGANIZING RECURRENT NEURAL NETWORK
A SELF-ORGANIZING RECURRENT NEURAL NETWORKA SELF-ORGANIZING RECURRENT NEURAL NETWORK
A SELF-ORGANIZING RECURRENT NEURAL NETWORK
 
Black-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX modelBlack-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX model
 
Efficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesEfficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of Trusses
 
Elephant swarm optimization for wireless sensor networks –a cross layer mecha...
Elephant swarm optimization for wireless sensor networks –a cross layer mecha...Elephant swarm optimization for wireless sensor networks –a cross layer mecha...
Elephant swarm optimization for wireless sensor networks –a cross layer mecha...
 
P REDICTION F OR S HORT -T ERM T RAFFIC F LOW B ASED O N O PTIMIZED W...
P REDICTION  F OR  S HORT -T ERM  T RAFFIC  F LOW  B ASED  O N  O PTIMIZED  W...P REDICTION  F OR  S HORT -T ERM  T RAFFIC  F LOW  B ASED  O N  O PTIMIZED  W...
P REDICTION F OR S HORT -T ERM T RAFFIC F LOW B ASED O N O PTIMIZED W...
 
On the High Dimentional Information Processing in Quaternionic Domain and its...
On the High Dimentional Information Processing in Quaternionic Domain and its...On the High Dimentional Information Processing in Quaternionic Domain and its...
On the High Dimentional Information Processing in Quaternionic Domain and its...
 
PggLas12
PggLas12PggLas12
PggLas12
 
A Transmission Range Based Clustering Algorithm for Topology Control Manet
A Transmission Range Based Clustering Algorithm for Topology Control ManetA Transmission Range Based Clustering Algorithm for Topology Control Manet
A Transmission Range Based Clustering Algorithm for Topology Control Manet
 
Statistical global modeling of β^- decay halflives systematics ...
Statistical global modeling of β^- decay halflives systematics ...Statistical global modeling of β^- decay halflives systematics ...
Statistical global modeling of β^- decay halflives systematics ...
 
A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...
A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...
A multi-layer-artificial-neural-network-architecture-design-for-load-forecast...
 
Comparison of Neural Network Training Functions for Hematoma Classification i...
Comparison of Neural Network Training Functions for Hematoma Classification i...Comparison of Neural Network Training Functions for Hematoma Classification i...
Comparison of Neural Network Training Functions for Hematoma Classification i...
 
Iv3515241527
Iv3515241527Iv3515241527
Iv3515241527
 

Accelerated training convergence in superposed quantum networks

  • 1. Accelerated training convergence in superposed quantum networks NATO Advanced Study Institute on Mining Massive Data Sets for Security C. Altman, Applied Physics, Delft University of Technology, The Netherlands E. Knorring, Scandinavia Clinic, St. Petersburg, Russia R. R. Zapatrin, Informatics Dept, The State Russian Museum, St. Petersburg, Russia Abstract We outline an adaptive training framework for artificial neural networks which aims to simultaneously optimize both topological and numerical structure. The technique combines principal component analysis and supervised learning and is descended from the mathematical treatment for continuous evolution of discrete structures as introduced in quantum topology [1, 2]. The formalism of the training algorithm, first proposed in [3], is optimal for tasks in associative processing and feature extraction. The procedure is unique in harnessing a coherent ensemble of discrete topological configurations of neural networks, each of which is formally merged into the appropriate linear state space via superposition. Training is carried out within this coherent state space, allowing for parallel revision of differing topological configurations at each step. The primary feature of our model is that network topologies are represented as specific states of the simulator. Network training results in convergence to a stable attractor. Once this state has been found, the Rota algebraic spatialization procedure [4] is applied, enabling conversion of the simulator state to a conventional neural network upon measurement. Superposed adaptive quantum networks allow for simultaneous training of both single-neuron activation functions and optimization of whole-network topological structure. Our mathematical formalism provides quantitative, numerical indications for optimal reconfiguration of the network topology. We will review candidate physical implementations for the model drawn from recent developments in condensed matter physics and solid-state quantum computing. References [1] M. Buric, T. Grammatikopoulos, J. Madore, G. Zoupanos, Gravity and the Structure of Noncommutative Algebras, Journal of High Energy Physics, 0604, 054 (2006) [2] I. Raptis, R. R. Zapatrin, Quantization of discretized spacetimes and the correspondence principle, International Journal of Theoretical Physics, 39, 1 (2000) [3] C. Altman, J. Pykacz, R. R. Zapatrin, Superpositional Quantum Network Topologies, International Journal of Theoretical Physics, 43, 2029 (2004) [4] I. Raptis, R. R. Zapatrin, Algebraic description of spacetime foam, Classical and Quantum Gravity, 18, 4187 (2001)