SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Master Thesis
Star Tracker for Satellite – CubeSat platform
Implemented by: Nguyen, Ngoc An
Academic Supervisor: Prof. Dr-Ing. Frieder Keller
Work place Supervisor: Prof. Dr. Hien Vo
Work place: Universidad del Turabo – Puerto Rico
Puerto Rico, May, 2016
Contents
 Introduction
 Existing Designs
 Hardware Design
 Algorithm Design
 Implementing Algorithm on FPGA
 Debug, Testing and Result
Introduction
Cube Satellite (CubeSat)
Dimension: 10 x 10 x 10 cm (1 litter)
Mass: < 1.33kg
Commercial off-the-shelf (COTS)
components Electronics Devices
CubeSat QB50P1
[http://www.amsat.org/?page_id=2944]
Introduction
Star Tracker
Image
Sensor
Star Detect &
Centroid
Calculation
Star Identification
Algorithm
Attitude
Determination
Star
Catalog
Existing Design
Star Tracker Accuracy Update
Rate
Size Power
Consumption
ST-200 30” 1 Hz 50g
30x30x38 mm
220 mW
NST 7” 5 Hz 500g
50x50x100 mm
500 mW
STELLA ~ 2” 4 Hz 120g
60x46x58 mm
200 mW
ST-16 7” 2 Hz 90g
59x56x32.5 mm
500 mW
Existing Design
Star Tracker STELLA
[University of Wuerzburg, Germany]
Existing Designs
Star Tracker CubeStar
[Stellenbosch University, South Africa]
System-level design
Real time
Star Detect
Module
FPGA
Image
Sensor
External
memory (Star
Catalog)
Integrated
Processor
core
External
Interfacing
(e.g. SPI, I2C)
Star Detection step is speed up by
hardware module.
Processor core is free from
handling with large amount of image
data.
 Do not need to buffer image data
before process.
Image
Sensor
Star Detect &
Centroid
Calculation
Star Identification
Algorithm
Attitude
Determination
Star
Catalog
Thesis works:
Hardware Design
 Design Real time Star Detect Module
Hardware Design
Brightness of Stellar Object
m1: apparent magnitude of star 1
m2: apparent magnitude of star 2
I1: illuminance of star 1 [W/cm2/s]
I2: illuminance of star 2 [W/cm2/s]
Star Vega is used as brightness reference
 Magnitude of star Vega is 0
Hardware Design
Effect of Magnitude cut-off
Two Schemes to maintain Sky coverage:
_ Small FOV, high magnitude cut-off  more accurate.
_ Large FOV, low magnitude cut-off  smaller star catalogs / smaller
lens size
Hardware Design
Image Sensor
MT9P031
(ST-16 star
tracker)
MT9M001 AR0130 VITA 1300 Python 0.5
Optical
format
1/2.5" 1/2" 1/3" 1/2" 1/3.6"
Resolution
2592 x 1944
= 5 MP
1280x1024
= 1.3 MP
1280x960
= 1.2 MP
1280 x 1024
= 1.3 MP
800 x 600
=0.5 MP
Pixel size 2.2 um 5.2 um 3.75 um 4.8 um 4.8 um
Sensitivity 1.4 V/lux.sec 4.8 V/lux.sec 6.5 V/lux.sec 4.6 V/lux.sec 7.7 V/lux.sec
ADC
Resolution
12-bit 10-bit 12-bit 10-bit 10-bit
Dynamic
Range
70.1 dB 68.2dB 82dB 60dB >60dB
SNR 38.1 dB 45 dB 44 dB 41dB 40dB
QE (@
550nm)
55% 55% 77% 55%
Power
Consumption
381 mW 363 mW 270 mW 290mW 375 mW
Operating
temperature
-30 to 70 0 to 70 -30 to 70 -40 to 85 -40 to 85
Candidate Image Sensors
Hardware Design
Lens choosing
f-number 2.0 1.4 2.8
Focal length 12mm 16mm 8mm
Field-of-view
Sensor AR0130
18.2 x 12.8 degree 12.78 x 9.0 degree 27 x 19.16 degree
Magnitude cut-off
(expected)
5.16 5.9 4.4
Number of Star in
Catalog
1977 4531 821
Lens available on
market
Edmund Optics
#66-893
Lensagon
BHR16012S12
Edmund Optics
#66-892
Hardware Design
_ Processor: FPGA Cyclone IV
EP4CE6
_ Image Sensor: AR0130
_ Lens: Edmund Optics #66-892
_ Resolution: 1024 x 720
_ Field-of-view: 27 x 19.16 degree
Star Tracker Prototype (without baffle)
Hardware Design
Baffle Design
Hardware Design
Baffle Design
Star Tracker <0.5U 
Vane 0 Vane 1 Vane 2
Height [mm] 4.73 8.03 11.84
Distance from
outermost vane [mm]
0 11.24 24.24
•Baffle radius r = 20 mm
•Baffle length s = 35 mm
Star Detect and Centroid
Calculation
Star can be considered as a point-source light
if the lens is right focus, star intensity occupy 1 pixel
on image sensor.
 Centroid Calculation cannot sub-pixel accuracy
 Cannot separate star image and hot pixel.
Solution:
Slightly defocus the image  Star occupy 3x3 to 5x5 group of pixels.
Star Centroid is calculated by intensity weighting
1 1
1 1
( , )ROIend ROIend
center
x ROIstart y ROIstart
x I x y
x
DN
 
   

  
1 1
1 1
( , )ROIend ROIend
center
x ROIstart y ROIstart
y I x y
y
DN
 
   

  
1 1
1 1
( , )
ROIend ROIend
x ROIstart y ROIstart
DN I x y
 
   
  
ROI (Region of Interest)
Star Detect and Centroid
Calculation
Star valid conditions (method 2):
_ Median value of 3x3 window > threshold value
Star valid conditions (method 1):
_ Center pixel > threshold value 1
_ Sum of 3x3 window > threshold value 2
Additional condition: Center pixel = max of the window
 Avoid re-detect the same star spot
Noise in AR0130 sensor
( , ) ( , ) ( )read signal background colI x y I x y I x  
Vertical strip noise is dominant
Noise Correction
720
1024
8
I(1,1) I(1,2) I(1,3) … I(1,1024
)
I(2,1) I(2,2) I(2,3) … I(2,1024
)
… … … … …
I(8,1) I(8,2) I(8,3) … I(8,1024
)
Mean
Column
1
Mean
Column
2
Mean
Column
3
… Mean
Column
1024
Every pixel will be subtracted by the mean value of its column
Noise-correction
Star Detect & Centroid
Calculation Block
Row Buffer (Internal RAM
FIFO)
Row Buffer (Internal RAM
FIFO)
Row Buffer (Internal RAM
FIFO)
Row Buffer (Internal RAM
FIFO)
Data
Pix_clk
FV
LV
Pixel
Counter
x_pixel
y_pixel
Centroiding
Block
: D flip-flop
Note:
Condition
Checking
Block
Window
data
en_tick
x_centroid y_centroid
Centroiding Block
Condition Checking Block
Testing
Testing
Accuracy of centroiding is evaluated by inter-star angular distance
With distortion correction the averaged error of inter-star distance is
0.0536 degrees (~ 3’12.96”)
 Dimmest star can be detected is σ Orionius (Magnitude 4.0)
Testing scene
Conclusion
Current achievement:
• Build Real time Star Detect Module.
• Build de-noise Pre-processing Module
• Can detect star with magnitude up to 4.0
Future Works:
• Integrated hardware modules with a processor
core into one FPGA chip.
• Implement Star Identification algorithm and
Attitude Calculation on processor core.
• Build Lab Test bench.
• Testing whole system.

Weitere ähnliche Inhalte

Was ist angesagt?

OTDR X-60
OTDR X-60OTDR X-60
OTDR X-60
Max Gu
 
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
ijistjournal
 
Multi-temporal series simulations
Multi-temporal series simulationsMulti-temporal series simulations
Multi-temporal series simulations
inglada
 

Was ist angesagt? (20)

Cp mc700 ir48-b, Campro Bangladesh, cctv camera bangladesh, CCTV BD, CCTV Cam...
Cp mc700 ir48-b, Campro Bangladesh, cctv camera bangladesh, CCTV BD, CCTV Cam...Cp mc700 ir48-b, Campro Bangladesh, cctv camera bangladesh, CCTV BD, CCTV Cam...
Cp mc700 ir48-b, Campro Bangladesh, cctv camera bangladesh, CCTV BD, CCTV Cam...
 
PHE Ellipsometer
PHE EllipsometerPHE Ellipsometer
PHE Ellipsometer
 
OTDR X-60
OTDR X-60OTDR X-60
OTDR X-60
 
Sparse coding Super-Resolution を用いた核医学画像処理
Sparse coding Super-Resolution を用いた核医学画像処理Sparse coding Super-Resolution を用いた核医学画像処理
Sparse coding Super-Resolution を用いた核医学画像処理
 
CCTV UAE, Waterproof CCTV Cameras UAE
CCTV UAE, Waterproof CCTV Cameras UAE CCTV UAE, Waterproof CCTV Cameras UAE
CCTV UAE, Waterproof CCTV Cameras UAE
 
survey paper for image denoising
survey paper for image denoisingsurvey paper for image denoising
survey paper for image denoising
 
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
 
Study on Data Augmentation Methods for Sonar Image Analysis
Study on Data Augmentation Methods for Sonar Image AnalysisStudy on Data Augmentation Methods for Sonar Image Analysis
Study on Data Augmentation Methods for Sonar Image Analysis
 
Image Processing With Sampling and Noise Filtration in Image Reconigation Pr...
Image Processing With Sampling and Noise Filtration in Image  Reconigation Pr...Image Processing With Sampling and Noise Filtration in Image  Reconigation Pr...
Image Processing With Sampling and Noise Filtration in Image Reconigation Pr...
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
DSLR Shoot
DSLR ShootDSLR Shoot
DSLR Shoot
 
Multi-temporal series simulations
Multi-temporal series simulationsMulti-temporal series simulations
Multi-temporal series simulations
 
Study on Application of Ensemble learning on Credit Scoring
Study on Application of Ensemble learning on Credit ScoringStudy on Application of Ensemble learning on Credit Scoring
Study on Application of Ensemble learning on Credit Scoring
 
Deep-Learning Based Stereo Super-Resolution
Deep-Learning Based Stereo Super-ResolutionDeep-Learning Based Stereo Super-Resolution
Deep-Learning Based Stereo Super-Resolution
 
Image sampling and quantization
Image sampling and quantizationImage sampling and quantization
Image sampling and quantization
 
Cp hc700 ir42
Cp hc700 ir42Cp hc700 ir42
Cp hc700 ir42
 
Adaptive Noise Reduction Scheme for Salt and Pepper
Adaptive Noise Reduction Scheme for Salt and PepperAdaptive Noise Reduction Scheme for Salt and Pepper
Adaptive Noise Reduction Scheme for Salt and Pepper
 
Digital Image Processing: Image Restoration
Digital Image Processing: Image RestorationDigital Image Processing: Image Restoration
Digital Image Processing: Image Restoration
 
Edge detection using evolutionary algorithms new
Edge detection using evolutionary algorithms newEdge detection using evolutionary algorithms new
Edge detection using evolutionary algorithms new
 
Basics of edge detection and forier transform
Basics of edge detection and forier transformBasics of edge detection and forier transform
Basics of edge detection and forier transform
 

Andere mochten auch

музыкальный день
музыкальный деньмузыкальный день
музыкальный день
virtualtaganrog
 
PDeJesus-List of projects-2014
PDeJesus-List of projects-2014PDeJesus-List of projects-2014
PDeJesus-List of projects-2014
Pedro De Jesus
 
конкурс креативная летняя шляпка
конкурс  креативная летняя шляпкаконкурс  креативная летняя шляпка
конкурс креативная летняя шляпка
virtualtaganrog
 
Carl Hooper CV 2015
Carl Hooper CV 2015Carl Hooper CV 2015
Carl Hooper CV 2015
Carl Hooper
 
Valuing Mutually Exclusive Capital Projects
Valuing Mutually Exclusive Capital ProjectsValuing Mutually Exclusive Capital Projects
Valuing Mutually Exclusive Capital Projects
Baozheng (Michael) Ge
 
architecture & decorative
architecture & decorativearchitecture & decorative
architecture & decorative
cheng looper
 
ortho 03 principle of closed reduction in fracture and dislocation
ortho 03 principle of closed reduction in fracture and dislocationortho 03 principle of closed reduction in fracture and dislocation
ortho 03 principle of closed reduction in fracture and dislocation
vora kun
 

Andere mochten auch (15)

Interactive Application Development Case Study - Al Khazna
Interactive Application Development Case Study - Al KhaznaInteractive Application Development Case Study - Al Khazna
Interactive Application Development Case Study - Al Khazna
 
музыкальный день
музыкальный деньмузыкальный день
музыкальный день
 
Himbauan idul qurban 2013
Himbauan idul qurban 2013Himbauan idul qurban 2013
Himbauan idul qurban 2013
 
Componentesgenerales asignatura
Componentesgenerales asignaturaComponentesgenerales asignatura
Componentesgenerales asignatura
 
PDeJesus-List of projects-2014
PDeJesus-List of projects-2014PDeJesus-List of projects-2014
PDeJesus-List of projects-2014
 
FUTURE OF FOOD
FUTURE OF FOODFUTURE OF FOOD
FUTURE OF FOOD
 
SWPS 2015 AGM Annual Report Presentation
SWPS 2015 AGM Annual Report PresentationSWPS 2015 AGM Annual Report Presentation
SWPS 2015 AGM Annual Report Presentation
 
Sherlock holmes opening
Sherlock holmes openingSherlock holmes opening
Sherlock holmes opening
 
конкурс креативная летняя шляпка
конкурс  креативная летняя шляпкаконкурс  креативная летняя шляпка
конкурс креативная летняя шляпка
 
Carl Hooper CV 2015
Carl Hooper CV 2015Carl Hooper CV 2015
Carl Hooper CV 2015
 
Valuing Mutually Exclusive Capital Projects
Valuing Mutually Exclusive Capital ProjectsValuing Mutually Exclusive Capital Projects
Valuing Mutually Exclusive Capital Projects
 
architecture & decorative
architecture & decorativearchitecture & decorative
architecture & decorative
 
Desarrollo de un prisma hexagonal truncado
Desarrollo de un prisma hexagonal truncadoDesarrollo de un prisma hexagonal truncado
Desarrollo de un prisma hexagonal truncado
 
ortho 03 principle of closed reduction in fracture and dislocation
ortho 03 principle of closed reduction in fracture and dislocationortho 03 principle of closed reduction in fracture and dislocation
ortho 03 principle of closed reduction in fracture and dislocation
 
Bridas forjadas 2007
Bridas forjadas 2007Bridas forjadas 2007
Bridas forjadas 2007
 

Ähnlich wie AnNguyen_MSThesis

SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)
Reheman Baikejiang
 
Exploring Methods to Improve Edge Detection with Canny Algorithm
Exploring Methods to Improve Edge Detection with Canny AlgorithmExploring Methods to Improve Edge Detection with Canny Algorithm
Exploring Methods to Improve Edge Detection with Canny Algorithm
Prasad Thakur
 
Semester2FinalPresentation
Semester2FinalPresentationSemester2FinalPresentation
Semester2FinalPresentation
Michael Wilson
 

Ähnlich wie AnNguyen_MSThesis (20)

極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用
 
Design and development of solar pumped Nd:YAG Laser
Design and development of solar pumped Nd:YAG LaserDesign and development of solar pumped Nd:YAG Laser
Design and development of solar pumped Nd:YAG Laser
 
Jual Theodolite Sokkia
Jual Theodolite Sokkia Jual Theodolite Sokkia
Jual Theodolite Sokkia
 
Hvordan maler og dokumenterer du?
Hvordan maler og dokumenterer du?Hvordan maler og dokumenterer du?
Hvordan maler og dokumenterer du?
 
E lab culurciello-history
E lab culurciello-historyE lab culurciello-history
E lab culurciello-history
 
Design of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsDesign of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB Communications
 
SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)
 
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
 
Time-resolved mirrorless scintillation detector @ AAPM2018
Time-resolved mirrorless scintillation detector @ AAPM2018Time-resolved mirrorless scintillation detector @ AAPM2018
Time-resolved mirrorless scintillation detector @ AAPM2018
 
Samsung Techwin SCD-3081 Data Sheet
Samsung Techwin SCD-3081 Data SheetSamsung Techwin SCD-3081 Data Sheet
Samsung Techwin SCD-3081 Data Sheet
 
Exploring Methods to Improve Edge Detection with Canny Algorithm
Exploring Methods to Improve Edge Detection with Canny AlgorithmExploring Methods to Improve Edge Detection with Canny Algorithm
Exploring Methods to Improve Edge Detection with Canny Algorithm
 
Image Quality - Radiologic Imaging
Image Quality - Radiologic ImagingImage Quality - Radiologic Imaging
Image Quality - Radiologic Imaging
 
Removal of Gaussian noise on the image edges using the Prewitt operator and t...
Removal of Gaussian noise on the image edges using the Prewitt operator and t...Removal of Gaussian noise on the image edges using the Prewitt operator and t...
Removal of Gaussian noise on the image edges using the Prewitt operator and t...
 
Adcmt 8230 e-optical_power_meter_denkei
Adcmt 8230 e-optical_power_meter_denkeiAdcmt 8230 e-optical_power_meter_denkei
Adcmt 8230 e-optical_power_meter_denkei
 
Smart Noise Cancellation Processing: New Level of Clarity in Digital Radiography
Smart Noise Cancellation Processing: New Level of Clarity in Digital RadiographySmart Noise Cancellation Processing: New Level of Clarity in Digital Radiography
Smart Noise Cancellation Processing: New Level of Clarity in Digital Radiography
 
SLM Microscope
SLM Microscope SLM Microscope
SLM Microscope
 
Desktop spectrophotometer
Desktop spectrophotometerDesktop spectrophotometer
Desktop spectrophotometer
 
Surface Optics Corporation
Surface Optics CorporationSurface Optics Corporation
Surface Optics Corporation
 
Accurately Measure Concentration of Nanoparticles in Colloids
Accurately Measure Concentration of Nanoparticles in ColloidsAccurately Measure Concentration of Nanoparticles in Colloids
Accurately Measure Concentration of Nanoparticles in Colloids
 
Semester2FinalPresentation
Semester2FinalPresentationSemester2FinalPresentation
Semester2FinalPresentation
 

AnNguyen_MSThesis

  • 1. Master Thesis Star Tracker for Satellite – CubeSat platform Implemented by: Nguyen, Ngoc An Academic Supervisor: Prof. Dr-Ing. Frieder Keller Work place Supervisor: Prof. Dr. Hien Vo Work place: Universidad del Turabo – Puerto Rico Puerto Rico, May, 2016
  • 2. Contents  Introduction  Existing Designs  Hardware Design  Algorithm Design  Implementing Algorithm on FPGA  Debug, Testing and Result
  • 3. Introduction Cube Satellite (CubeSat) Dimension: 10 x 10 x 10 cm (1 litter) Mass: < 1.33kg Commercial off-the-shelf (COTS) components Electronics Devices CubeSat QB50P1 [http://www.amsat.org/?page_id=2944]
  • 4. Introduction Star Tracker Image Sensor Star Detect & Centroid Calculation Star Identification Algorithm Attitude Determination Star Catalog
  • 5. Existing Design Star Tracker Accuracy Update Rate Size Power Consumption ST-200 30” 1 Hz 50g 30x30x38 mm 220 mW NST 7” 5 Hz 500g 50x50x100 mm 500 mW STELLA ~ 2” 4 Hz 120g 60x46x58 mm 200 mW ST-16 7” 2 Hz 90g 59x56x32.5 mm 500 mW
  • 6. Existing Design Star Tracker STELLA [University of Wuerzburg, Germany]
  • 7. Existing Designs Star Tracker CubeStar [Stellenbosch University, South Africa]
  • 8. System-level design Real time Star Detect Module FPGA Image Sensor External memory (Star Catalog) Integrated Processor core External Interfacing (e.g. SPI, I2C) Star Detection step is speed up by hardware module. Processor core is free from handling with large amount of image data.  Do not need to buffer image data before process. Image Sensor Star Detect & Centroid Calculation Star Identification Algorithm Attitude Determination Star Catalog Thesis works: Hardware Design  Design Real time Star Detect Module
  • 9. Hardware Design Brightness of Stellar Object m1: apparent magnitude of star 1 m2: apparent magnitude of star 2 I1: illuminance of star 1 [W/cm2/s] I2: illuminance of star 2 [W/cm2/s] Star Vega is used as brightness reference  Magnitude of star Vega is 0
  • 10. Hardware Design Effect of Magnitude cut-off Two Schemes to maintain Sky coverage: _ Small FOV, high magnitude cut-off  more accurate. _ Large FOV, low magnitude cut-off  smaller star catalogs / smaller lens size
  • 11. Hardware Design Image Sensor MT9P031 (ST-16 star tracker) MT9M001 AR0130 VITA 1300 Python 0.5 Optical format 1/2.5" 1/2" 1/3" 1/2" 1/3.6" Resolution 2592 x 1944 = 5 MP 1280x1024 = 1.3 MP 1280x960 = 1.2 MP 1280 x 1024 = 1.3 MP 800 x 600 =0.5 MP Pixel size 2.2 um 5.2 um 3.75 um 4.8 um 4.8 um Sensitivity 1.4 V/lux.sec 4.8 V/lux.sec 6.5 V/lux.sec 4.6 V/lux.sec 7.7 V/lux.sec ADC Resolution 12-bit 10-bit 12-bit 10-bit 10-bit Dynamic Range 70.1 dB 68.2dB 82dB 60dB >60dB SNR 38.1 dB 45 dB 44 dB 41dB 40dB QE (@ 550nm) 55% 55% 77% 55% Power Consumption 381 mW 363 mW 270 mW 290mW 375 mW Operating temperature -30 to 70 0 to 70 -30 to 70 -40 to 85 -40 to 85 Candidate Image Sensors
  • 12. Hardware Design Lens choosing f-number 2.0 1.4 2.8 Focal length 12mm 16mm 8mm Field-of-view Sensor AR0130 18.2 x 12.8 degree 12.78 x 9.0 degree 27 x 19.16 degree Magnitude cut-off (expected) 5.16 5.9 4.4 Number of Star in Catalog 1977 4531 821 Lens available on market Edmund Optics #66-893 Lensagon BHR16012S12 Edmund Optics #66-892
  • 13. Hardware Design _ Processor: FPGA Cyclone IV EP4CE6 _ Image Sensor: AR0130 _ Lens: Edmund Optics #66-892 _ Resolution: 1024 x 720 _ Field-of-view: 27 x 19.16 degree Star Tracker Prototype (without baffle)
  • 15. Hardware Design Baffle Design Star Tracker <0.5U  Vane 0 Vane 1 Vane 2 Height [mm] 4.73 8.03 11.84 Distance from outermost vane [mm] 0 11.24 24.24 •Baffle radius r = 20 mm •Baffle length s = 35 mm
  • 16. Star Detect and Centroid Calculation Star can be considered as a point-source light if the lens is right focus, star intensity occupy 1 pixel on image sensor.  Centroid Calculation cannot sub-pixel accuracy  Cannot separate star image and hot pixel. Solution: Slightly defocus the image  Star occupy 3x3 to 5x5 group of pixels. Star Centroid is calculated by intensity weighting 1 1 1 1 ( , )ROIend ROIend center x ROIstart y ROIstart x I x y x DN           1 1 1 1 ( , )ROIend ROIend center x ROIstart y ROIstart y I x y y DN           1 1 1 1 ( , ) ROIend ROIend x ROIstart y ROIstart DN I x y          ROI (Region of Interest)
  • 17. Star Detect and Centroid Calculation Star valid conditions (method 2): _ Median value of 3x3 window > threshold value Star valid conditions (method 1): _ Center pixel > threshold value 1 _ Sum of 3x3 window > threshold value 2 Additional condition: Center pixel = max of the window  Avoid re-detect the same star spot
  • 18. Noise in AR0130 sensor ( , ) ( , ) ( )read signal background colI x y I x y I x   Vertical strip noise is dominant
  • 19. Noise Correction 720 1024 8 I(1,1) I(1,2) I(1,3) … I(1,1024 ) I(2,1) I(2,2) I(2,3) … I(2,1024 ) … … … … … I(8,1) I(8,2) I(8,3) … I(8,1024 ) Mean Column 1 Mean Column 2 Mean Column 3 … Mean Column 1024 Every pixel will be subtracted by the mean value of its column Noise-correction
  • 20. Star Detect & Centroid Calculation Block
  • 21. Row Buffer (Internal RAM FIFO) Row Buffer (Internal RAM FIFO) Row Buffer (Internal RAM FIFO) Row Buffer (Internal RAM FIFO) Data Pix_clk FV LV Pixel Counter x_pixel y_pixel Centroiding Block : D flip-flop Note: Condition Checking Block Window data en_tick x_centroid y_centroid
  • 25. Testing Accuracy of centroiding is evaluated by inter-star angular distance With distortion correction the averaged error of inter-star distance is 0.0536 degrees (~ 3’12.96”)  Dimmest star can be detected is σ Orionius (Magnitude 4.0) Testing scene
  • 26. Conclusion Current achievement: • Build Real time Star Detect Module. • Build de-noise Pre-processing Module • Can detect star with magnitude up to 4.0 Future Works: • Integrated hardware modules with a processor core into one FPGA chip. • Implement Star Identification algorithm and Attitude Calculation on processor core. • Build Lab Test bench. • Testing whole system.