SlideShare ist ein Scribd-Unternehmen logo
1 von 52
Downloaden Sie, um offline zu lesen
Tera-scale deep learning
                 Quoc	
  V.	
  Le	
  
     Stanford	
  University	
  and	
  Google	
  
Joint	
  work	
  with	
  



        Kai	
  Chen	
       Greg	
  Corrado	
           Jeff	
  Dean	
   MaQhieu	
  Devin	
  




Rajat	
  Monga	
   Andrew	
  Ng	
            Marc Aurelio	
   Paul	
  Tucker	
                  Ke	
  Yang	
  
                                              Ranzato	
  

                          Samy	
  Bengio,	
  Zhenghao	
  Chen,	
  Tom	
  Dean,	
  Pangwei	
  Koh,	
  
  AddiNonal	
             Mark	
  Mao,	
  Jiquan	
  Ngiam,	
  Patrick	
  Nguyen,	
  Andrew	
  Saxe,	
  
    Thanks:	
             Mark	
  Segal,	
  Jon	
  Shlens,	
  	
  Vincent	
  Vanhouke,	
  	
  Xiaoyun	
  Wu,	
  	
  
                          Peng	
  Xe,	
  Serena	
  Yeung,	
  Will	
  Zou	
  
Machine	
  Learning	
  successes	
  




Face	
  recogniNon	
           OCR	
          Autonomous	
  car	
  
                                                                                Email	
  classificaNon	
  




             RecommendaNon	
  systems	
                         Web	
  page	
  ranking	
  
Feature	
  ExtracNon	
  




                                               Classifier	
  




        Feature	
  extracNon	
  
   (Mostly	
  hand-­‐cra]ed	
  features)	
  
Hand-­‐Cra]ed	
  Features	
  
                           Computer	
  vision:	
  
                           	
  
                           	
  

                                                                           …	
  


           SIFT/HOG	
                                 SURF	
  


                          Speech	
  RecogniNon:	
  
                          	
  
                          	
  



                                                                                   …	
  



MFCC	
                     Spectrogram	
                         ZCR	
  
New	
  feature-­‐designing	
  paradigm	
  



Unsupervised	
  Feature	
  Learning	
  /	
  Deep	
  Learning	
  	
  
	
  
ReconstrucNon	
  ICA	
  
	
  
Expensive	
  and	
  typically	
  applied	
  to	
  small	
  problems	
  
The	
  Trend	
  of	
  BigData	
  
Outline	
  

No	
  maQer	
  the	
  algorithm,	
  more	
  features	
  always	
  more	
  successful.	
  
              	
  
              -­‐	
  	
  	
  	
  ReconstrucNon	
  ICA	
  

              -­‐  ApplicaNons	
  to	
  videos,	
  cancer	
  images	
  

              -­‐  Ideas	
  for	
  scaling	
  up	
  

              -­‐  Scaling	
  up	
  Results	
  
Topographic	
  Independent	
  Component	
  Analysis	
  (TICA)	
  
1.	
  Feature	
  computaNon	
  



                                                                            2	
               2.	
  Learning	
  
                                     2	
       (	
     W	
  T	
  
                (	
   W	
  T	
     )	
                  9	
              )	
  
                         1	
  




                                                                                 W	
  T	
  
W	
  T	
                                                                          9	
  
 1	
  
                                                                W	
  
                W	
                                              9	
  
                 1	
  
                                                                                                                  W	
  
                                                                                                                   1	
  
                                                                                                 W	
  =	
  	
     W	
  
                                                                                                                   2	
  
                                                                                                                   .	
  
                                                                                                                   .	
  
                                                                                                                   W	
  
                                                                                                                       10000	
  

             Input	
  data:	
  
Topographic	
  Independent	
  Component	
  Analysis	
  (TICA)	
  
Invariance	
  explained	
  

                      Images	
                   Image1	
                                          Image2	
  

      Features	
  
                                                                  Loc1	
                                                           Loc2	
  


                                                                   1	
                                                     0	
  
     F1	
  




      F2	
                                                         0	
                                                     1	
  




Pooled	
  feature	
  of	
  F1	
  and	
  F2	
        sqrt(1	
  +	
  02	
  )	
  =	
  1	
  
                                                          2	
  
                                                                    	
                                        sqrt(0	
  2	
  +	
  12	
  )	
  =	
  1	
  
                                                                                                                         	
   	
  



                                                                               Same	
  value	
  regardless	
  the	
  locaNon	
  of	
  the	
  edge	
  
TICA:	
                                                             ReconstrucNon	
  ICA:	
  




                 Equivalence	
  between	
  Sparse	
  Coding,	
  Autoencoders,	
  RBMs	
  and	
  ICA	
  
                 Build	
  deep	
  architecture	
  by	
  treaNng	
  the	
  output	
  of	
  one	
  layer	
  as	
  input	
  to	
  
                 another	
  layer	
  

Le,	
  et	
  al.,	
  ICA	
  with	
  Reconstruc1on	
  Cost	
  for	
  Efficient	
  Overcomplete	
  Feature	
  Learning.	
  NIPS	
  2011	
  
ReconstrucNon	
  ICA:	
  




Le,	
  et	
  al.,	
  ICA	
  with	
  Reconstruc1on	
  Cost	
  for	
  Efficient	
  Overcomplete	
  Feature	
  Learning.	
  NIPS	
  2011	
  
ReconstrucNon	
  ICA:	
  




                                                                                              Data	
  whitening	
  




Le,	
  et	
  al.,	
  ICA	
  with	
  Reconstruc1on	
  Cost	
  for	
  Efficient	
  Overcomplete	
  Feature	
  Learning.	
  NIPS	
  2011	
  
TICA:	
                                                        ReconstrucNon	
  ICA:	
  




                                                                                              Data	
  whitening	
  




Le,	
  et	
  al.,	
  ICA	
  with	
  Reconstruc1on	
  Cost	
  for	
  Efficient	
  Overcomplete	
  Feature	
  Learning.	
  NIPS	
  2011	
  
Why	
  RICA?	
  


          Algorithms	
                      Speed	
             Ease	
  of	
  training	
        Invariant	
  Features	
  	
  

       Sparse	
  Coding	
  

       RBMs/Autoencoders	
  

       TICA	
  

       ReconstrucNon	
  ICA	
  




Le,	
  et	
  al.,	
  ICA	
  with	
  Reconstruc1on	
  Cost	
  for	
  Efficient	
  Overcomplete	
  Feature	
  Learning.	
  NIPS	
  2011	
  
Summary	
  of	
  RICA	
  


-­‐  Two-­‐layered	
  network	
  

-­‐  ReconstrucNon	
  cost	
  instead	
  of	
  orthogonality	
  constraints	
  

-­‐  Learns	
  invariant	
  features	
  
	
  
ApplicaNons	
  of	
  RICA	
  
AcNon	
  recogniNon	
  



            Sit	
  up	
                                    Drive	
  Car	
                      Get	
  	
  Out	
  of	
  Car	
  




              Eat	
                                     Answer	
  phone	
                              Kiss	
  




               Run	
                                         Stand	
  up	
                             Shake	
  hands	
  

Le,	
  et	
  al.,	
  Learning	
  hierarchical	
  spa1o-­‐temporal	
  features	
  for	
  	
  
ac1on	
  recogni1on	
  with	
  independent	
  subspace	
  analysis.	
  CVPR	
  2011	
  
Le,	
  et	
  al.,	
  Learning	
  hierarchical	
  spa1o-­‐temporal	
  features	
  for	
  	
  
ac1on	
  recogni1on	
  with	
  independent	
  subspace	
  analysis.	
  CVPR	
  2011	
  
94	
                                                                                                                                  55	
  
                                                  KTH	
                                                                               53	
                             Hollywood2	
  
92	
  
                                                                                                                                      51	
  
90	
                                                                                                                                  49	
  

88	
                                                                                                                                  47	
  
                                                                                                                                      45	
  
86	
                                                                                                                                  43	
  
84	
                                                                                                                                  41	
  
                                                                                                                                      39	
  
82	
  
                                                                                                                                      37	
  
80	
                                                                                                                                  35	
  
         Hessian/SURF	
      pLSA	
     HOF	
          GRBMs	
          3DCNN	
   HMAX	
     HOG	
                                             Hessian/SURF	
     HOG/HOF	
     HOG3D	
     GRBMS	
       HOF	
  
                                                                                                       Learned	
  Features	
                                                                                        Learned	
  Features	
  


87	
                                                                                                                             76	
  
                                                  UCF	
                                                                                                                YouTube	
  
85	
                                                                                                                             75	
  
83	
                                                                                                                             74	
  
81	
                                                                                                                             73	
  
79	
                                                                                                                             72	
  
77	
                                                                                                                             71	
  
75	
                                                                                                                             70	
  
  Hessian/SURF	
            HOG	
                 Hessian	
        HOF	
        HOG3D	
                                                                       Combined	
                           Learned	
  Features	
  
                                                  HOG.HOF	
                                   Learned	
  Features	
                                      Engineered	
  Features	
  



Le,	
  et	
  al.,	
  Learning	
  hierarchical	
  spa1o-­‐temporal	
  features	
  for	
  	
  
ac1on	
  recogni1on	
  with	
  independent	
  subspace	
  analysis.	
  CVPR	
  2011	
  
Cancer	
  classificaNon	
  


                                                                                   92%	
  
   ApoptoNc	
  
                                                                                   90%	
  



Viable	
  tumor	
                                                                  88%	
  

   region	
  
                                                                                   86%	
  



   Necrosis	
                                                                      84%	
  
                                                                                             Hand	
  engineered	
  Features	
     RICA	
  
                                             …	
  




Le,	
  et	
  al.,	
  Learning	
  Invariant	
  Features	
  of	
  Tumor	
  Signatures.	
  ISBI	
  2012	
  
Scaling	
  up	
  	
  
deep	
  RICA	
  networks	
  
Scaling	
  up	
  Deep	
  Learning	
  


Deep	
  learning	
  data	
  




                                        Real	
  data	
  
It’s	
  beQer	
  to	
  have	
  more	
  features!	
  

     No	
  maQer	
  the	
  algorithm,	
  more	
  features	
  always	
  more	
  successful.	
  




Coates,	
  et	
  al.,	
  An	
  Analysis	
  of	
  Single-­‐Layer	
  Networks	
  in	
  Unsupervised	
  Feature	
  Learning.	
  AISTATS’11	
  
Most	
  are	
  	
  
local	
  features	
  
Local	
  recepNve	
  field	
  networks	
  

                              Machine	
  #1	
                Machine	
  #2	
            Machine	
  #3	
     Machine	
  #4	
  




              RICA	
  features	
  




      Image	
  




Le,	
  et	
  al.,	
  Tiled	
  Convolu1onal	
  Neural	
  Networks.	
  NIPS	
  2010	
  
Challenges	
  with	
  1000s	
  of	
  machines	
  
Asynchronous	
  Parallel	
  SGDs	
  




                                                        Parameter	
  server	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Asynchronous	
  Parallel	
  SGDs	
  




                                                        Parameter	
  server	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Summary	
  of	
  Scaling	
  up	
  


  -­‐  Local	
  connecNvity	
  

  -­‐  Asynchronous	
  SGDs	
  
  	
  

                                  …	
  And	
  more	
  

-­‐  RPC	
  vs	
  MapReduce	
  

-­‐  Prefetching	
  

-­‐  Single	
  vs	
  Double	
  

-­‐  Removing	
  slow	
  machines	
  

-­‐  OpNmized	
  So]max	
  

-­‐  …	
  
10	
  million	
  200x200	
  images	
  	
  

    1	
  billion	
  parameters	
  
Training	
  


             RICA	
                      Dataset:	
  10	
  million	
  200x200	
  unlabeled	
  images	
  	
  from	
  YouTube/Web	
  
                                         	
  
                                         Train	
  on	
  2000	
  machines	
  (16000	
  cores)	
  for	
  1	
  week	
  
                                         	
  
             RICA	
                      1.15	
  billion	
  parameters	
  
                                         -­‐  100x	
  larger	
  than	
  previously	
  reported	
  	
  
                                         -­‐  Small	
  compared	
  to	
  visual	
  cortex	
  
                                         	
  
             RICA	
  




            Image	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
The	
  face	
  neuron	
  




           Top	
  sNmuli	
  from	
  the	
  test	
  set	
                                          OpNmal	
  sNmulus	
  	
  
                                                                                           by	
  numerical	
  opNmizaNon	
  



Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Random	
  distractors	
  


                                                                     Faces	
  




              Frequency	
  




                                                             Feature	
  value	
  

Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Feature	
  response	
                                              Invariance	
  properNes	
  




                                                                                        Feature	
  response	
  
                                                 0	
  pixels	
       20	
  pixels	
                                                  0	
  pixels	
      20	
  pixels	
  

                                         Horizontal	
  shi]s	
                                                               VerNcal	
  shi]s	
  




                                                                                        Feature	
  response	
  
 Feature	
  response	
  




                               o	
                                     o	
  
                           0	
                                       90	
                                         0.4x	
                   1x	
         1.6x	
  
                                       3D	
  rotaNon	
  angle	
                                                                   Scale	
  factor	
  
Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Top	
  sNmuli	
  from	
  the	
  test	
  set	
                                       OpNmal	
  sNmulus	
  	
  
                                                                                          by	
  numerical	
  opNmizaNon	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Random	
  distractors	
  

                                                                         Pedestrians	
  




              Frequency	
  




                                                             Feature	
  value	
  

Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Top	
  sNmuli	
  from	
  the	
  test	
  set	
                                        OpNmal	
  sNmulus	
  	
  
                                                                                           by	
  numerical	
  opNmizaNon	
  



Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Random	
  distractors	
  


                                                                            Cat	
  faces	
  



                       Frequency	
  




                                                                        Feature	
  value	
  


Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
ImageNet	
  classificaNon	
  

             22,000	
  categories	
  
             	
  
             14,000,000	
  images	
  
             	
  
             Hand-­‐engineered	
  features	
  (SIFT,	
  HOG,	
  LBP),	
  	
  
             SpaNal	
  pyramid,	
  	
  SparseCoding/Compression	
  
             	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
22,000	
  is	
  a	
  lot	
  of	
  categories…	
  	
  
…	
  
smoothhound,	
  smoothhound	
  shark,	
  Mustelus	
  mustelus	
  
American	
  smooth	
  dogfish,	
  Mustelus	
  canis	
  
Florida	
  smoothhound,	
  Mustelus	
  norrisi	
  
whiteNp	
  shark,	
  reef	
  whiteNp	
  shark,	
  Triaenodon	
  obseus	
  
AtlanNc	
  spiny	
  dogfish,	
  Squalus	
  acanthias	
  
Pacific	
  spiny	
  dogfish,	
  Squalus	
  suckleyi	
                          SNngray	
  
hammerhead,	
  hammerhead	
  shark	
  
smooth	
  hammerhead,	
  Sphyrna	
  zygaena	
  
smalleye	
  hammerhead,	
  Sphyrna	
  tudes	
  
shovelhead,	
  bonnethead,	
  bonnet	
  shark,	
  Sphyrna	
  Nburo	
  
angel	
  shark,	
  angelfish,	
  SquaNna	
  squaNna,	
  monkfish	
  
electric	
  ray,	
  crampfish,	
  numbfish,	
  torpedo	
                       Mantaray	
  
smalltooth	
  sawfish,	
  PrisNs	
  pecNnatus	
  
guitarfish	
  
roughtail	
  sNngray,	
  DasyaNs	
  centroura	
  
buQerfly	
  ray	
  
eagle	
  ray	
  
spoQed	
  eagle	
  ray,	
  spoQed	
  ray,	
  Aetobatus	
  narinari	
  
cownose	
  ray,	
  cow-­‐nosed	
  ray,	
  Rhinoptera	
  bonasus	
  
manta,	
  manta	
  ray,	
  devilfish	
  
AtlanNc	
  manta,	
  Manta	
  birostris	
  
devil	
  ray,	
  Mobula	
  hypostoma	
  
grey	
  skate,	
  gray	
  skate,	
  Raja	
  baNs	
  
liQle	
  skate,	
  Raja	
  erinacea	
  
…	
  
Best	
  sNmuli	
  


     Feature	
  1	
  



     Feature	
  2	
  



     Feature	
  3	
  



     Feature	
  4	
  


     Feature	
  5	
  



Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Best	
  sNmuli	
  


     Feature	
  6	
  



     Feature	
  7	
  	
  



     Feature	
  8	
  



     Feature	
  9	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Best	
  sNmuli	
  


     Feature	
  10	
  



     Feature	
  11	
  	
  



     Feature	
  12	
  



     Feature	
  13	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
0.005%	
   9.5%	
                                                                                         ?	
  
                Random	
  guess	
                        State-­‐of-­‐the-­‐art	
                      Feature	
  learning	
  	
  
                                                       (Weston,	
  Bengio	
  ‘11)	
                    From	
  raw	
  pixels	
  




Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
0.005%	
   9.5%	
   15.8%	
  
                Random	
  guess	
                                                                                                State-­‐of-­‐the-­‐art	
                                                                                                                          Feature	
  learning	
  	
  
                                                                                                                               (Weston,	
  Bengio	
  ‘11)	
                                                                                                                        From	
  raw	
  pixels	
  

                     ImageNet	
  2009	
  (10k	
  categories):	
  Best	
  published	
  result:	
  17%	
  	
  
                     	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Sanchez	
  &	
  Perronnin	
  ‘11	
  ),	
  	
  
                     	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Our	
  method:	
  20%	
  
                     	
  
                     Using	
  only	
  1000	
  categories,	
  our	
  method	
  >	
  50%	
  
                     	
  



Le,	
  et	
  al.,	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  ICML	
  2012	
  
Other	
  results	
  

No	
  maQer	
  the	
  algorithm,	
  more	
  features	
  always	
  more	
  successful.	
  
         	
  
         -­‐  We	
  also	
  have	
  great	
  features	
  for	
  	
  

                 -­‐  Speech	
  recogniNon	
  

                 -­‐  Word-­‐vector	
  embedding	
  for	
  NLPs	
  
Conclusions	
  
  •  RICA	
  learns	
  invariant	
  features	
  
  •  Face	
  neuron	
  with	
  totally	
  unlabeled	
  data	
  	
  
                                                                                                                             ImageNet	
  
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  enough	
  training	
  and	
  data	
  
  •  State-­‐of-­‐the-­‐art	
  performances	
  on	
  	
                                           0.005%	
                      9.5%	
                            15.8%	
  
                                                                                                  Random	
  guess	
            Best	
  published	
  result	
     Our	
  method	
  
                                   –  AcNon	
  RecogniNon	
  
                                   –  Cancer	
  image	
  classificaNon	
  
                                   –  ImageNet	
  

                                                                                                                    94	
  
                                                                                                                    92	
  
                                                                                                                    90	
  
                                                                                                                    88	
  
                                                                                                                    86	
  
                                                                                                                    84	
  
                                                                                                                    82	
  
                                                                                                                    80	
  
Cancer	
  classificaNon	
                                                AcNon	
  recogniNon	
                                     AcNon	
  recogniNon	
  benchmarks	
  




                Feature	
  visualizaNon	
                                                                 Face	
  neuron	
  
References	
  

•  Q.V.	
  Le,	
  M.A.	
  Ranzato,	
  R.	
  Monga,	
  M.	
  Devin,	
  G.	
  Corrado,	
  K.	
  Chen,	
  J.	
  Dean,	
  A.Y.	
  
   Ng.	
  Building	
  high-­‐level	
  features	
  using	
  large-­‐scale	
  unsupervised	
  learning.	
  
   ICML,	
  2012.	
  
•  Q.V.	
  Le,	
  J.	
  Ngiam,	
  Z.	
  Chen,	
  D.	
  Chia,	
  P.	
  Koh,	
  A.Y.	
  Ng.	
  Tiled	
  Convolu8onal	
  Neural	
  
   Networks.	
  NIPS,	
  2010.	
  	
  
•  Q.V.	
  Le,	
  W.Y.	
  Zou,	
  S.Y.	
  Yeung,	
  A.Y.	
  Ng.	
  Learning	
  hierarchical	
  spa8o-­‐temporal	
  
   features	
  for	
  ac8on	
  recogni8on	
  with	
  independent	
  subspace	
  analysis.	
  CVPR,	
  
   2011.	
  
•  Q.V.	
  Le,	
  J.	
  Ngiam,	
  A.	
  Coates,	
  A.	
  Lahiri,	
  B.	
  Prochnow,	
  A.Y.	
  Ng.	
  	
  
   On	
  op8miza8on	
  methods	
  for	
  deep	
  learning.	
  ICML,	
  2011.	
  	
  
•  Q.V.	
  Le,	
  A.	
  Karpenko,	
  J.	
  Ngiam,	
  A.Y.	
  Ng.	
  	
  ICA	
  with	
  Reconstruc8on	
  Cost	
  for	
  
   Efficient	
  Overcomplete	
  Feature	
  Learning.	
  NIPS,	
  2011.	
  	
  
•  Q.V.	
  Le,	
  J.	
  Han,	
  J.	
  Gray,	
  P.	
  Spellman,	
  A.	
  Borowsky,	
  B.	
  Parvin.	
  Learning	
  Invariant	
  
   Features	
  for	
  Tumor	
  Signatures.	
  ISBI,	
  2012.	
  	
  
•  I.J.	
  Goodfellow,	
  Q.V.	
  Le,	
  A.M.	
  Saxe,	
  H.	
  Lee,	
  A.Y.	
  Ng,	
  	
  Measuring	
  invariances	
  in	
  
   deep	
  networks.	
  NIPS,	
  2009.	
  



                       hQp://ai.stanford.edu/~quocle	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Lesson 7: The Derivative (Section 21 handout)
Lesson 7: The Derivative (Section 21 handout)Lesson 7: The Derivative (Section 21 handout)
Lesson 7: The Derivative (Section 21 handout)Matthew Leingang
 
TUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVM
TUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVMTUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVM
TUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVMMediaEval2012
 
Seattle Scalability Meetup
Seattle Scalability MeetupSeattle Scalability Meetup
Seattle Scalability MeetupMike Miller
 
Network Identification via Node Knock-out
Network Identification via Node Knock-outNetwork Identification via Node Knock-out
Network Identification via Node Knock-outMarzieh Nabi
 
Icws09 Lecue Presentation
Icws09 Lecue PresentationIcws09 Lecue Presentation
Icws09 Lecue PresentationFreddy Lecue
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Dataswissnex San Francisco
 
3D visualization with VTVK and MayaVi2
3D visualization with VTVK and MayaVi23D visualization with VTVK and MayaVi2
3D visualization with VTVK and MayaVi2zukun
 
Ln Multipilot 32_schematic
Ln Multipilot 32_schematicLn Multipilot 32_schematic
Ln Multipilot 32_schematicRoberto Navoni
 
2 tri partite model algebra
2 tri partite model algebra2 tri partite model algebra
2 tri partite model algebraAle Cignetti
 
Aj2418721874
Aj2418721874Aj2418721874
Aj2418721874IJMER
 
Ultra short multi soliton generation for application in long distance communi...
Ultra short multi soliton generation for application in long distance communi...Ultra short multi soliton generation for application in long distance communi...
Ultra short multi soliton generation for application in long distance communi...University of Malaya (UM)
 
Kccsi 2012 a real-time robust object tracking-v2
Kccsi 2012   a real-time robust object tracking-v2Kccsi 2012   a real-time robust object tracking-v2
Kccsi 2012 a real-time robust object tracking-v2Prarinya Siritanawan
 

Was ist angesagt? (14)

Lesson 7: The Derivative (Section 21 handout)
Lesson 7: The Derivative (Section 21 handout)Lesson 7: The Derivative (Section 21 handout)
Lesson 7: The Derivative (Section 21 handout)
 
TUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVM
TUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVMTUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVM
TUKE MediaEval 2012: Spoken Web Search using DTW and Unsupervised SVM
 
Seattle Scalability Meetup
Seattle Scalability MeetupSeattle Scalability Meetup
Seattle Scalability Meetup
 
Network Identification via Node Knock-out
Network Identification via Node Knock-outNetwork Identification via Node Knock-out
Network Identification via Node Knock-out
 
Icws09 Lecue Presentation
Icws09 Lecue PresentationIcws09 Lecue Presentation
Icws09 Lecue Presentation
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Data
 
3D visualization with VTVK and MayaVi2
3D visualization with VTVK and MayaVi23D visualization with VTVK and MayaVi2
3D visualization with VTVK and MayaVi2
 
Ln Multipilot 32_schematic
Ln Multipilot 32_schematicLn Multipilot 32_schematic
Ln Multipilot 32_schematic
 
2 tri partite model algebra
2 tri partite model algebra2 tri partite model algebra
2 tri partite model algebra
 
Im2013vit
Im2013vitIm2013vit
Im2013vit
 
Aj2418721874
Aj2418721874Aj2418721874
Aj2418721874
 
Ultra short multi soliton generation for application in long distance communi...
Ultra short multi soliton generation for application in long distance communi...Ultra short multi soliton generation for application in long distance communi...
Ultra short multi soliton generation for application in long distance communi...
 
Kccsi 2012 a real-time robust object tracking-v2
Kccsi 2012   a real-time robust object tracking-v2Kccsi 2012   a real-time robust object tracking-v2
Kccsi 2012 a real-time robust object tracking-v2
 
JavaYDL15
JavaYDL15JavaYDL15
JavaYDL15
 

Mehr von zukun

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009zukun
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVzukun
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Informationzukun
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statisticszukun
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibrationzukun
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionzukun
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluationzukun
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-softwarezukun
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptorszukun
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectorszukun
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-introzukun
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video searchzukun
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video searchzukun
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video searchzukun
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learningzukun
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionzukun
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick startzukun
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysiszukun
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structureszukun
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities zukun
 

Mehr von zukun (20)

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCV
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Information
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statistics
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibration
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer vision
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluation
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-software
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptors
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectors
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-intro
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video search
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video search
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video search
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learning
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer vision
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick start
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structures
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities
 

Kürzlich hochgeladen

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 

Kürzlich hochgeladen (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 

Quoc le tera-scale deep learning

  • 1. Tera-scale deep learning Quoc  V.  Le   Stanford  University  and  Google  
  • 2. Joint  work  with   Kai  Chen   Greg  Corrado   Jeff  Dean   MaQhieu  Devin   Rajat  Monga   Andrew  Ng   Marc Aurelio   Paul  Tucker   Ke  Yang   Ranzato   Samy  Bengio,  Zhenghao  Chen,  Tom  Dean,  Pangwei  Koh,   AddiNonal   Mark  Mao,  Jiquan  Ngiam,  Patrick  Nguyen,  Andrew  Saxe,   Thanks:   Mark  Segal,  Jon  Shlens,    Vincent  Vanhouke,    Xiaoyun  Wu,     Peng  Xe,  Serena  Yeung,  Will  Zou  
  • 3. Machine  Learning  successes   Face  recogniNon   OCR   Autonomous  car   Email  classificaNon   RecommendaNon  systems   Web  page  ranking  
  • 4. Feature  ExtracNon   Classifier   Feature  extracNon   (Mostly  hand-­‐cra]ed  features)  
  • 5. Hand-­‐Cra]ed  Features   Computer  vision:       …   SIFT/HOG   SURF   Speech  RecogniNon:       …   MFCC   Spectrogram   ZCR  
  • 6. New  feature-­‐designing  paradigm   Unsupervised  Feature  Learning  /  Deep  Learning       ReconstrucNon  ICA     Expensive  and  typically  applied  to  small  problems  
  • 7. The  Trend  of  BigData  
  • 8. Outline   No  maQer  the  algorithm,  more  features  always  more  successful.     -­‐        ReconstrucNon  ICA   -­‐  ApplicaNons  to  videos,  cancer  images   -­‐  Ideas  for  scaling  up   -­‐  Scaling  up  Results  
  • 9. Topographic  Independent  Component  Analysis  (TICA)  
  • 10. 1.  Feature  computaNon   2   2.  Learning   2   (   W  T   (   W  T   )   9   )   1   W  T   W  T   9   1   W   W   9   1   W   1   W  =     W   2   .   .   W   10000   Input  data:  
  • 11. Topographic  Independent  Component  Analysis  (TICA)  
  • 12. Invariance  explained   Images   Image1   Image2   Features   Loc1   Loc2   1   0   F1   F2   0   1   Pooled  feature  of  F1  and  F2   sqrt(1  +  02  )  =  1   2     sqrt(0  2  +  12  )  =  1       Same  value  regardless  the  locaNon  of  the  edge  
  • 13. TICA:   ReconstrucNon  ICA:   Equivalence  between  Sparse  Coding,  Autoencoders,  RBMs  and  ICA   Build  deep  architecture  by  treaNng  the  output  of  one  layer  as  input  to   another  layer   Le,  et  al.,  ICA  with  Reconstruc1on  Cost  for  Efficient  Overcomplete  Feature  Learning.  NIPS  2011  
  • 14. ReconstrucNon  ICA:   Le,  et  al.,  ICA  with  Reconstruc1on  Cost  for  Efficient  Overcomplete  Feature  Learning.  NIPS  2011  
  • 15. ReconstrucNon  ICA:   Data  whitening   Le,  et  al.,  ICA  with  Reconstruc1on  Cost  for  Efficient  Overcomplete  Feature  Learning.  NIPS  2011  
  • 16. TICA:   ReconstrucNon  ICA:   Data  whitening   Le,  et  al.,  ICA  with  Reconstruc1on  Cost  for  Efficient  Overcomplete  Feature  Learning.  NIPS  2011  
  • 17. Why  RICA?   Algorithms   Speed   Ease  of  training   Invariant  Features     Sparse  Coding   RBMs/Autoencoders   TICA   ReconstrucNon  ICA   Le,  et  al.,  ICA  with  Reconstruc1on  Cost  for  Efficient  Overcomplete  Feature  Learning.  NIPS  2011  
  • 18. Summary  of  RICA   -­‐  Two-­‐layered  network   -­‐  ReconstrucNon  cost  instead  of  orthogonality  constraints   -­‐  Learns  invariant  features    
  • 20. AcNon  recogniNon   Sit  up   Drive  Car   Get    Out  of  Car   Eat   Answer  phone   Kiss   Run   Stand  up   Shake  hands   Le,  et  al.,  Learning  hierarchical  spa1o-­‐temporal  features  for     ac1on  recogni1on  with  independent  subspace  analysis.  CVPR  2011  
  • 21. Le,  et  al.,  Learning  hierarchical  spa1o-­‐temporal  features  for     ac1on  recogni1on  with  independent  subspace  analysis.  CVPR  2011  
  • 22. 94   55   KTH   53   Hollywood2   92   51   90   49   88   47   45   86   43   84   41   39   82   37   80   35   Hessian/SURF   pLSA   HOF   GRBMs   3DCNN   HMAX   HOG   Hessian/SURF   HOG/HOF   HOG3D   GRBMS   HOF   Learned  Features   Learned  Features   87   76   UCF   YouTube   85   75   83   74   81   73   79   72   77   71   75   70   Hessian/SURF   HOG   Hessian   HOF   HOG3D   Combined   Learned  Features   HOG.HOF   Learned  Features   Engineered  Features   Le,  et  al.,  Learning  hierarchical  spa1o-­‐temporal  features  for     ac1on  recogni1on  with  independent  subspace  analysis.  CVPR  2011  
  • 23. Cancer  classificaNon   92%   ApoptoNc   90%   Viable  tumor   88%   region   86%   Necrosis   84%   Hand  engineered  Features   RICA   …   Le,  et  al.,  Learning  Invariant  Features  of  Tumor  Signatures.  ISBI  2012  
  • 24. Scaling  up     deep  RICA  networks  
  • 25. Scaling  up  Deep  Learning   Deep  learning  data   Real  data  
  • 26. It’s  beQer  to  have  more  features!   No  maQer  the  algorithm,  more  features  always  more  successful.   Coates,  et  al.,  An  Analysis  of  Single-­‐Layer  Networks  in  Unsupervised  Feature  Learning.  AISTATS’11  
  • 27. Most  are     local  features  
  • 28. Local  recepNve  field  networks   Machine  #1   Machine  #2   Machine  #3   Machine  #4   RICA  features   Image   Le,  et  al.,  Tiled  Convolu1onal  Neural  Networks.  NIPS  2010  
  • 29. Challenges  with  1000s  of  machines  
  • 30. Asynchronous  Parallel  SGDs   Parameter  server   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 31. Asynchronous  Parallel  SGDs   Parameter  server   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 32. Summary  of  Scaling  up   -­‐  Local  connecNvity   -­‐  Asynchronous  SGDs     …  And  more   -­‐  RPC  vs  MapReduce   -­‐  Prefetching   -­‐  Single  vs  Double   -­‐  Removing  slow  machines   -­‐  OpNmized  So]max   -­‐  …  
  • 33. 10  million  200x200  images     1  billion  parameters  
  • 34. Training   RICA   Dataset:  10  million  200x200  unlabeled  images    from  YouTube/Web     Train  on  2000  machines  (16000  cores)  for  1  week     RICA   1.15  billion  parameters   -­‐  100x  larger  than  previously  reported     -­‐  Small  compared  to  visual  cortex     RICA   Image   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 35. The  face  neuron   Top  sNmuli  from  the  test  set   OpNmal  sNmulus     by  numerical  opNmizaNon   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 36. Random  distractors   Faces   Frequency   Feature  value   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 37. Feature  response   Invariance  properNes   Feature  response   0  pixels   20  pixels   0  pixels   20  pixels   Horizontal  shi]s   VerNcal  shi]s   Feature  response   Feature  response   o   o   0   90   0.4x   1x   1.6x   3D  rotaNon  angle   Scale  factor   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 38. Top  sNmuli  from  the  test  set   OpNmal  sNmulus     by  numerical  opNmizaNon   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 39. Random  distractors   Pedestrians   Frequency   Feature  value   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 40. Top  sNmuli  from  the  test  set   OpNmal  sNmulus     by  numerical  opNmizaNon   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 41. Random  distractors   Cat  faces   Frequency   Feature  value   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 42.
  • 43. ImageNet  classificaNon   22,000  categories     14,000,000  images     Hand-­‐engineered  features  (SIFT,  HOG,  LBP),     SpaNal  pyramid,    SparseCoding/Compression     Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 44. 22,000  is  a  lot  of  categories…     …   smoothhound,  smoothhound  shark,  Mustelus  mustelus   American  smooth  dogfish,  Mustelus  canis   Florida  smoothhound,  Mustelus  norrisi   whiteNp  shark,  reef  whiteNp  shark,  Triaenodon  obseus   AtlanNc  spiny  dogfish,  Squalus  acanthias   Pacific  spiny  dogfish,  Squalus  suckleyi   SNngray   hammerhead,  hammerhead  shark   smooth  hammerhead,  Sphyrna  zygaena   smalleye  hammerhead,  Sphyrna  tudes   shovelhead,  bonnethead,  bonnet  shark,  Sphyrna  Nburo   angel  shark,  angelfish,  SquaNna  squaNna,  monkfish   electric  ray,  crampfish,  numbfish,  torpedo   Mantaray   smalltooth  sawfish,  PrisNs  pecNnatus   guitarfish   roughtail  sNngray,  DasyaNs  centroura   buQerfly  ray   eagle  ray   spoQed  eagle  ray,  spoQed  ray,  Aetobatus  narinari   cownose  ray,  cow-­‐nosed  ray,  Rhinoptera  bonasus   manta,  manta  ray,  devilfish   AtlanNc  manta,  Manta  birostris   devil  ray,  Mobula  hypostoma   grey  skate,  gray  skate,  Raja  baNs   liQle  skate,  Raja  erinacea   …  
  • 45. Best  sNmuli   Feature  1   Feature  2   Feature  3   Feature  4   Feature  5   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 46. Best  sNmuli   Feature  6   Feature  7     Feature  8   Feature  9   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 47. Best  sNmuli   Feature  10   Feature  11     Feature  12   Feature  13   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 48. 0.005%   9.5%   ?   Random  guess   State-­‐of-­‐the-­‐art   Feature  learning     (Weston,  Bengio  ‘11)   From  raw  pixels   Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 49. 0.005%   9.5%   15.8%   Random  guess   State-­‐of-­‐the-­‐art   Feature  learning     (Weston,  Bengio  ‘11)   From  raw  pixels   ImageNet  2009  (10k  categories):  Best  published  result:  17%                                                                                                                        (Sanchez  &  Perronnin  ‘11  ),                                                                                                                        Our  method:  20%     Using  only  1000  categories,  our  method  >  50%     Le,  et  al.,  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.  ICML  2012  
  • 50. Other  results   No  maQer  the  algorithm,  more  features  always  more  successful.     -­‐  We  also  have  great  features  for     -­‐  Speech  recogniNon   -­‐  Word-­‐vector  embedding  for  NLPs  
  • 51. Conclusions   •  RICA  learns  invariant  features   •  Face  neuron  with  totally  unlabeled  data     ImageNet                  with  enough  training  and  data   •  State-­‐of-­‐the-­‐art  performances  on     0.005%   9.5%   15.8%   Random  guess   Best  published  result   Our  method   –  AcNon  RecogniNon   –  Cancer  image  classificaNon   –  ImageNet   94   92   90   88   86   84   82   80   Cancer  classificaNon   AcNon  recogniNon   AcNon  recogniNon  benchmarks   Feature  visualizaNon   Face  neuron  
  • 52. References   •  Q.V.  Le,  M.A.  Ranzato,  R.  Monga,  M.  Devin,  G.  Corrado,  K.  Chen,  J.  Dean,  A.Y.   Ng.  Building  high-­‐level  features  using  large-­‐scale  unsupervised  learning.   ICML,  2012.   •  Q.V.  Le,  J.  Ngiam,  Z.  Chen,  D.  Chia,  P.  Koh,  A.Y.  Ng.  Tiled  Convolu8onal  Neural   Networks.  NIPS,  2010.     •  Q.V.  Le,  W.Y.  Zou,  S.Y.  Yeung,  A.Y.  Ng.  Learning  hierarchical  spa8o-­‐temporal   features  for  ac8on  recogni8on  with  independent  subspace  analysis.  CVPR,   2011.   •  Q.V.  Le,  J.  Ngiam,  A.  Coates,  A.  Lahiri,  B.  Prochnow,  A.Y.  Ng.     On  op8miza8on  methods  for  deep  learning.  ICML,  2011.     •  Q.V.  Le,  A.  Karpenko,  J.  Ngiam,  A.Y.  Ng.    ICA  with  Reconstruc8on  Cost  for   Efficient  Overcomplete  Feature  Learning.  NIPS,  2011.     •  Q.V.  Le,  J.  Han,  J.  Gray,  P.  Spellman,  A.  Borowsky,  B.  Parvin.  Learning  Invariant   Features  for  Tumor  Signatures.  ISBI,  2012.     •  I.J.  Goodfellow,  Q.V.  Le,  A.M.  Saxe,  H.  Lee,  A.Y.  Ng,    Measuring  invariances  in   deep  networks.  NIPS,  2009.   hQp://ai.stanford.edu/~quocle