SlideShare ist ein Scribd-Unternehmen logo
1 von 154
Downloaden Sie, um offline zu lesen
Recommender Systems
and
Linked Open Data
Tommaso Di Noia
Polytechnic University of Bari
ITALY
11th Reasoning Web Summer School – Berlin August 1, 2015
tommaso.dinoia@poliba.it
@TommasoDiNoia
Agenda
• A quick introduction to Linked Open Data
• Recommender systems
• Evaluation
• Recommender Systems and Linked Open Data
LINKED OPEN DATA
A quick introduction to
Linked Open Data
the Giant Global Graph
Linked (Open) Data
Some definitions:
– A method of publishing data on the Web
– (An instance of) the Web of Data
– A huge database distributed in the Web
– Linked Data is the Semantic Web done right
Web vs Linked Data
Web Linked Data
Analogy File System Database
Designed for Men Machines
(Software Agents)
Main elements Documents Things
Links between Documents Things
Semantics Implicit Explicit
Courtesy of Prof. Enrico Motta, The Open University, Milton Keynes – Uk – Semantic Web: Technologies and Applications.
LOD is the Web
Which technologies?
Which technologies?
Data
Language
Query
Language
Schema
Languages
URI
• Every resource/entity/thing/relation is
identified by a (unique) URI
– URI: <http://dbpedia.org/resource/Berlin>
– CURIE: dbpedia:Berlin
– URI: <http://purl.org/dc/terms/subject>
– CURIE: dcterms:subject
Which vocabularies/ontologies?
• Most popular on http://prefix.cc (July 25, 2015)
– YAGO: http://yago-knowledge.org/resource/
– FOAF: http://xmlns.com/foaf/0.1/
– DBpedia Ontology: http://dbpedia.org/ontology/
– DBpedia Properties:
http://dbpedia.org/property/
Which vocabularies/ontologies?
• Most popular on http://lov.okfn.org (July 25,
2015)
– VANN: http://purl.org/vocab/vann/
– SKOS: http://www.w3.org/2004/02/skos/core
– FOAF
– DCTERMS
– DCE: http://purl.org/dc/elements/1.1/
RDF – Resource Description Framework
• Basic element: triple
[subject] [predicate] [object]
URI URI
URI | Literal
"string"@lang | "string"^^datatype
RDF – Resource Description Framework
dbpedia:Berlin dbo:country dbpedia:Germany .
dbpedia:Berlin rdfs:label "Berlin"@en .
dbpedia:Berlin rdfs:label "Berlino"@it .
dbpedia:Berlin dbo:populationTotal "3517424"^^xsd:integer .
dbpedia:Berlin dcterms:subject category:Capitals_in_Europe .
dbpedia:Berlin rdf:type yago:UrbanArea108675967 .
dbpedia:Germany dbo:language dbpedia:German_Language .
dbpedia:Germany dbo:firstDriverCountry dbpedia:2014_German_Grand_Prix .
RDF – Resource Description Framework
Germany Berlin
2014_German_Grand_Prix
German_Language
Capitals_in_Europe
UrbanArea108675967
"Berlin"@en
"Berlin"@it
"3517424"^^xsd:integer
country
language
firstDriverCountry
type
subject
label
populationTotal
RDFS and OWL in two statements
dbo:country rdfs:range dbo:Country .
dbpedia:Berlin owl:sameAs freebase:Berlin .
SPARQL
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX category: <http://dbpedia.org/resource/Category:>
SELECT DISTINCT ?name ?city
WHERE {
?city dcterms:subject category:Capitals_in_Europe.
?city rdfs:label ?name .
?city dbo:populationTotal ?population .
FILTER (?population < 30000).
}
SPARQL
curl -g -H 'Accept: application/json'
'http://dbpedia.org/sparql?query=SELECT+DISTINCT+?name+?city+WHERE+{?city+dcterms:su
bject+category:Capitals_in_Europe+.+?city+rdfs:label+?name+.+?city+dbpedia-
owl:populationTotal+?population+.+FILTER+(?population+<+30000)+.}'
RECOMMENDER SYSTEMS
The information overload problem
60 seconds in the Web
Personalized Information Access
• Help the user in finding the information they
might be interested in
• Consider their preferences/past behaviour
• Filter irrelevant information
Recommender Systems
• Help users in dealing with Information/Choice Overload
• Help to match users with items
Some definitions
– In its most common formulation, the recommendation problem is
reduced to the problem of estimating ratings for the items that have
not been seen by a user.
[G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender Systems:A survey of the State-of-the-Artand
Possible Extension. TKDE, 2005.]
– Recommender Systems (RSs) are software tools and techniques
providingsuggestions for items to be of use to a user.
[F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook. Springer, 2011.]
The problem
• Estimate a utility function to automatically
predict how much a user will like an item
which is unknown to them.
Input
Set of users
Set of items
Utility function
𝑈 = {𝑢1, … , 𝑢 𝑀}
𝑋 = {𝑥1, …, 𝑥 𝑁}
𝑓: 𝑈 × 𝑋 → 𝑅
∀ 𝑢 ∈ 𝑈, 𝑥 𝑢
′
= arg 𝑚𝑎𝑥 𝑥∈𝑋 𝑓(𝑢, 𝑥)
Output
The rating matrix
5 1 2 4 3 ??
2 4 5 3 5 2
4 3 2 4 1 3
3 5 1 5 2 4
4 4 5 3 5 2
TheMatrix
Titanic
Iloveshopping
Argo
LoveActually
Thehangover
Tommaso
Vito
Phuong
Jessica
Paolo
The rating matrix
(in the real world)
5 ? ? 4 3 ?
2 4 5 ? 5 ?
? 3 ? 4 ? 3
3 5 ? 5 2 ?
4 4 5 ? 5 2
TheMatrix
Titanic
Iloveshopping
Argo
LoveActually
Thehangover
Tommaso
Vito
Phuong
Jessica
Paolo
How sparse is a rating matrix?
Ratings
Explicit
Implicit
Rating Prediction vs Ranking
Best Worst
Recommendation techniques
• Content-based
• Collaborative filtering
• Demographic
• Knowledge-based
• Community-based
• Hybrid recommender systems
Collaborative Recommender Systems
Collaborative RSs recommend items to a user by identifying
other users with a similar profile
Recommender
System
User profile
Users
Item7
Item15
Item11
…
Top-N Recommendations
Item1, 5
Item2, 1
Item5, 4
Item10, 5
….
….
Item1, 4
Item2, 2
Item5, 5
Item10, 3
….
Item1, 4
Item2, 2
Item5, 5
Item10, 3
….
Item1, 4
Item2, 2
Item5, 5
Item10, 3
….
Content-based Recommender Systems
Recommender
System
User profile
Item7
Item15
Item11
…
Top-N Recommendations
Item1, 5
Item2, 1
Item5, 4
Item10, 5
….
Items
Item1
Item2
Item100
Item’s
descriptions
….
CB-RSs recommend items to a user based on their description
and on the profile of the user’s interests
Knowledge-based Recommender Systems
Recommender
System
Item7
Item15
Item11
…
Top-N Recommendations
Items
Item1
Item2
Item100Item’s
descriptions
….
KB-RSs recommend items to a user based on their description
and domain knowledge encoded in a knowledge base
Knowledge-base
Collaborative Filtering
• Memory-based
– Mainly based on k-NN
– Does not require any preliminary model building
phase
• Model-based
– Learn a predictive model before computing
recommendations
k-Nearest Neighbors
k = 5
N
User-based Collaborative Recommendation
5 1 2 4 3 ??
2 4 5 3 5 2
4 3 2 4 1 3
3 5 1 5 2 4
4 4 5 3 5 2
TheMatrix
Titanic
Iloveshopping
Argo
LoveActually
Thehangover
Tommaso
Vito
Phuong
Jessica
Paolo
Pearson’s correlation coefficient
Rate prediction
= 𝑋
Item-based Collaborative Recommendation
5 1 2 4 3 ??
2 4 5 3 5 2
4 3 2 4 1 3
3 5 1 5 2 4
4 4 5 3 5 2
TheMatrix
Titanic
Iloveshopping
Argo
LoveActually
Thehangover
𝑠𝑖𝑚 𝑥𝑖, 𝑥𝑗 =
𝑥𝑖 ⋅ 𝑥𝑗
|𝑥𝑖| ∗ |𝑥𝑗|
=
σ 𝑟𝑢,𝑥 𝑖
∗ 𝑟𝑢,𝑥 𝑗𝑢
σ 𝑟𝑢,𝑥 𝑖
2
𝑢 ∗ σ 𝑟𝑢,𝑥
2
𝑢
Cosine Similarity
Rate prediction
𝑟ǁ 𝑢𝑖, 𝑥′ =
σ 𝑠𝑖𝑚 𝑥Ԧ, 𝑥Ԧ′ ∗ 𝑟𝑥,𝑢 𝑖𝑥∈𝑋 𝑢 𝑖
σ 𝑠𝑖𝑚 𝑥Ԧ, 𝑥Ԧ′𝑥∈𝑋 𝑢 𝑖
Adjusted Cosine Similarity
= 𝑋 𝑢𝑖
Tommaso
Vito
Phuong
Jessica
Paolo
CF drawbacks
• Sparsity / Cold-start
– New user
– New item
• Grey sheep problem
Content-Based Recommender Systems
• Items are described in terms of
attributes/features
• A finite set of values is associated to each
feature
• Item representation is a (Boolean) vector
Content-based
CB-RSs try to recommend items similar* to
those a given user has liked in the past
[P. Lops, M. de Gemmis, G. Semeraro. Content-based Recommender Systems: Stateof the Art and Trends. Recommender
Systems Handbook. 2011]
• Heuristic-based
– Usually adopt techniques borrowed from IR
• Model-based
– Often we have a model for each user
(*) similar from a content-based perspective
CB drawbacks
• Content overspecialization
• Portfolio effect
• Sparsity / Cold-start
– New user
Knowledge-based
Recommender Systems
• Conversational approaches
• Reasoning techniques
– Case-based reasoning
– Constraint reasoning
Hybrid recommender systems
• Weighted
• Switching
• Mixed
• Feature combination
• Cascade
• Feature augmentation
• Meta-level
Robin D. Burke. Hybrid recommender systems:Survey and experiments. User Model. User-Adapt. Interact., 12(4):331–370, 2002.
EVALUATION
Dataset split
20%80%
…
hold-out
k-fold cross-validation
Training Set
Test Set (TS)
Protocols
• Rated test-items
• All unrated items: compute a score for every
item not rated by the user (also items not
appearing in the user test set)
Accuracy metrics for rating prediction
𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟
𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟
MAE and RMSE drawback
• Not very suitable for top-N recommendation
– Errors in the highest part of the recommendation
list are considered in the same way as the ones in
the lowest part
Accuracy metrics for top-N
recommendation
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @ 𝑁
𝑃𝑢@𝑁 =
|𝐿 𝑢 𝑁 ∩ 𝑇𝑆 𝑢
+
|
𝑁
𝑅𝑒𝑐𝑎𝑙𝑙 @ 𝑁
𝑅 𝑢@𝑁 =
|𝐿 𝑢 𝑁 ∩ 𝑇𝑆 𝑢
+|
|𝑇𝑆 𝑢
+
|
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑖𝑛 @ 𝑁
𝐿 𝑢 𝑁 is the recommendation list
up to the N-th element
𝑇𝑆 𝑢
+ is the set of relevant test
items for 𝑢
𝐼𝐷𝐶𝐺@𝑁 indicates the score
Obtained by an ideal ranking of 𝐿 𝑢 𝑁
Is all about precision?
Is all about precision?
• Diversity
– Avoid to recommend only items in a small subset
of the catalog
– Suggest diverse items in the recommendation list
• Novelty
– Recommend items in the long tail
• Serendipity
– Suggest unexpected but interesting items
Novelty
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 − 𝐵𝑎𝑠𝑒𝑑 𝑁𝑜𝑣𝑒𝑙𝑡𝑦
Diversity
𝐼𝑛𝑡𝑟𝑎 − 𝐿𝑖𝑠𝑡 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝐼𝐿𝐷 𝑢@𝑁 =
1
2
⋅ ෍ ෍ 1 − 𝑠𝑖𝑚 𝑥𝑖, 𝑥𝑗
𝑥 𝑗∈𝐿 𝑢 𝑁𝑥 𝑖∈𝐿 𝑢 𝑛
𝐼𝐿𝐷@𝑁 =
1
|𝑈|
⋅ ෍ 𝐼𝐿𝐷 𝑢@𝑁
𝑢∈𝑈
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝐴𝐷𝑖𝑛@𝑁 =
| ‫ڂ‬ 𝐿 𝑢(𝑁)𝑢∈𝑈 |
|𝑋|
RECOMMENDER SYSTEMS AND
LINKED OPEN DATA
Content-Based Recommender Systems
P. Lops, M. de Gemmis, G. Semeraro. Content-based recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach, B. Shapira,
editors, Recommender Systems Hankbook: A complete Guide for Research Scientists& Practitioners
Content-Based Recommender Systems
P. Lops, M. de Gemmis, G. Semeraro. Content-based recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach, B. Shapira,
editors, Recommender Systems Hankbook: A complete Guide for Research Scientists& Practitioners
Need of domain knowledge!
We need rich descriptionsof the items!
No suggestion is availableif the analyzed content does not contain enough
information to discriminateitems the user might like from items the user
might not like.*
(*) P. Lops,M. de Gemmis,G.Semeraro.Content-basedRecommenderSystems:State of the ArtandTrends.In:P.Kantor,F.Ricci,L. Rokach andB. Shapira,
editors,RecommenderSystemsHandbook:A CompleteGuide forResearchScientists&Practitioners
The quality of CB recommendations are correlated with the quality of the
features that are explicitly associated with the items.
Limited Content Analysis
Traditional Content-based RecSys
• Base on keyword/attribute -based item
representations
• Rely on the quality of the content-analyzer to
extract expressive item features
• Lack of knowledge about the items
Semantic-aware approaches
Traditional Ontological/Semantic
Recommender Systems
make use of limited
domain
ontologies;
What about Linked Data?
Use Linked Datato mitigate
the limitedcontent analysis
issue
• Plenty of structureddata
available
• No Content Analyzer
required
Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
Why RS + LOD
• Multi-Domain knowledge
Why RS + LOD
• Standardized access to data
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?actor WHERE {
dbpedia:Pulp_Fiction dbo:starring ?actor .
}
PREFIX yago: <http://yago-knowledge.org/resource/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
CONSTRUCT{
?book ?p ?o .
?book yago:linksTo ?yagolink .
}
WHERE{
SERVICE <http://live.dbpedia.org/sparql> {
?book rdf:type dbpedia-owl:Book .
?book ?p ?o .
?book owl:sameAs ?yago .
FILTER(regex(str(?yago),"http://yago-knowledge.org/resource/"))
.
}
SERVICE <http://lod2.openlinksw.com/sparql> {
?yago yago:linksTo ?yagolink .
}
}
Why RS + LOD
• Semantic Analysis
A high level architecture
Item Linker
• Direct Item Linking
• Item Description Linking
Direct item Linking
dbpedia:I_Am_Legend_(film)
Direct item Linking
dbpedia:I_Am_Legend_(film)
dbpedia:Troy_(film)
dbpedia:Troy
Direct item Linking
dbpedia:I_Am_Legend_(film)
dbpedia:Troy_(film)
dbpedia:Scarface_(1983_film)
dbpedia:Scarface:_The_World_Is_Yours
Direct Item Linking
dbpedia:The_Da_Vinci_Code
dbpedia:Divine_Comedy
Direct Item Linking
dbpedia:The_Da_Vinci_Code
Direct Item Linking
dbpedia:The_Da_Vinci_Code
dbpedia:Divine_Comedy
???
Direct Item Linking
• The easy way
SELECT DISTINCT ?uri, ?title WHERE {
?uri rdf:type dbpedia-owl:Film.
?uri rdfs:label ?title.
FILTER langMatches(lang(?title), "EN") .
FILTER regex(?title, "matrix", "i")
}
Direct item Linking
• Other approaches
– DBpedia Lookup
https://github.com/dbpedia/lookup
– Silk Framework
http://silk-framework.com/
Item Description Linking
Item Description Linking
Item Description Linking
Item Graph Analyzer
• Build your own knowledge graph
– Select relevant properties. Possible solutions:
• Ontological properties
• Categorical properties
• Frequent properties
– Explore the graph up to a limited depth
Which LOD RSs?
• Content-based
– Heuristic-based
– Model based
• Hybrid
• Knowledge-based
Common features
Linked Data as a structured
information source for item descriptions
Rich item descriptions
Different item features
representations
• Direct properties
• Property paths
• Node paths
• Neighborhoods
• …
Datasets
Subset of Movielens mapped to DBpedia
Subset of Last.fm mapped to DBpedia
Subset of The Library Thing mapped to DBpedia
Mappings
http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
Direct properties
Jaccard similarity
Content-based prediction
Vector Space Model for LOD
Righteous Kill
starring
director
subject/broader
genre
Heat
RobertDeNiro
JohnAvnet
Serialkillerfilms
Drama
AlPacino
BrianDennehy
Heistfilms
Crimefilms
starring
RobertDeNiro
AlPacino
BrianDennehy
Righteous Kill
Heat
… …
Vector Space Model for LOD
Righteous Kill
STARRING
Al Pacino
(v1)
Robert
De Niro
(v2)
Brian
Dennehy
(v3)
Righteous
Kill (m1)
X X X
Heat (m2) X X
Heat
Righteous Kill (x1) wv1,x1 wv2,x1 wv3,x1
Heat (x2) wv1,x2 wv2,x2 0
𝑤 𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 = 𝑡𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 ∗ 𝑖𝑑𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜
Vector Space Model for LOD
Righteous Kill
STARRING
Al Pacino
(v1)
Robert
De Niro
(v2)
Brian
Dennehy
(v3)
Righteous
Kill (m1)
X X X
Heat (m2) X X
Heat
Righteous Kill (x1) wv1,x1 wv2,x1 wv3,x1
Heat (x2) wv1,x2 wv2,x2 0
𝑤 𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 = 𝑡𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 ∗ 𝑖𝑑𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜
𝑡𝑓 ∈ {0,1}
Vector Space Model for LOD
+
+
+
… =
𝒔𝒊𝒎 𝒔𝒕𝒂𝒓𝒓𝒊𝒏𝒈(𝒙𝒊, 𝒙𝒋) =
𝒘 𝒗 𝟏,𝒙𝒊
∗ 𝒘 𝒗 𝟏,𝒙𝒋
+ 𝒘 𝒗 𝟐,𝒙𝒊
∗ 𝒘 𝒗 𝟐,𝒙𝒋
+ 𝒘 𝒗 𝟑,𝒙𝒊
∗ 𝒘 𝒗 𝟑,𝒙𝒋
𝒘 𝒗 𝟏,𝒙𝒊
𝟐 + 𝒘 𝒗 𝟐,𝒙𝒊
𝟐 + 𝒘 𝒗 𝟑,𝒙𝒊
𝟐 ∗ 𝒘 𝒗 𝟏,𝒙𝒋
𝟐 + 𝒘 𝒗 𝟐,𝒙𝒋
𝟐 + 𝒘 𝒗 𝟑,𝒙𝒋
𝟐
𝜶 𝒔𝒕𝒂𝒓𝒓𝒊𝒏𝒈 ∗ 𝒔𝒊𝒎 𝒔𝒕𝒂𝒓𝒓𝒊𝒏𝒈(𝒙𝒊, 𝒙𝒋)
𝜶 𝒅𝒊𝒓𝒆𝒄𝒕𝒐𝒓 ∗ 𝒔𝒊𝒎 𝒅𝒊𝒓𝒆𝒄𝒕𝒐𝒓(𝒙𝒊, 𝒙𝒋)
𝜶 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 ∗ 𝒔𝒊𝒎 𝒔𝒖𝒃𝒋𝒆𝒄𝒕(𝒙𝒊, 𝒙𝒋)
𝒔𝒊𝒎 (𝒙𝒊, 𝒙𝒋)
VSM Content-based Recommender
We predict the rating using a Nearest NeighborClassifier wherein the similarity
measure is a linear combination of localpropertysimilarities
TommasoDi Noia,Roberto Mirizzi,VitoClaudioOstuni,Davide Romito, Markus Zanker.LinkedOpenDatatosupportContent-basedRecommenderSystems.8th
International Conference on SemanticSystems(I-SEMANTICS) - 2012
VSM Content-based Recommender
We predict the rating using a Nearest NeighborClassifier wherein the similarity
measure is a linear combination of localpropertysimilarities
Selected properties
VSM Content-based Recommender
We predict the rating using a Nearest NeighborClassifier wherein the similarity
measure is a linear combination of localpropertysimilarities
heuristic-based → model-based
Property subset evaluation
The subject+broader
solution is better than only
subject or subject+more
broaders.
The best solution is
achieved with
subject+broader+
genres.
Too many broaders
introduce noise.
Rated test items protocol
Evaluation against other
content-based approaches
Rated test items protocol
Evaluation against other approaches
Rated test items protocol
Property paths
Path-based features
Analysis of complex relations between the user preferences and the
target item
Vito ClaudioOstuni, Tommaso Di Noia, Eugenio Di Sciascio, Roberto Mirizzi. Top-N Recommendations from Implicit Feedback leveragingLinked Open Data.
7th Conference on Recommender Systems (RecSys ) – 2013
Data model
I1 i2 i3 i4
u1 1 1 0 0
u2 1 0 1 0
u3 0 1 1 0
u4 0 1 0 1
Implicit Feedback Matrix Knowledge Graph
^
S 
Data model
Implicit Feedback Matrix Knowledge Graph
^
S 
I1 i2 i3 i4
u1 1 1 0 0
u2 1 0 1 0
u3 0 1 1 0
u4 0 1 0 1
Data model
Implicit Feedback Matrix Knowledge Graph
^
S 
I1 i2 i3 i4
u1 1 1 0 0
u2 1 0 1 0
u3 0 1 1 0
u4 0 1 0 1
Path-based features
Path: acyclic sequence of relations ( s , .. rl , .. rL )
Frequency of j-th path in the sub-graph
related to u and x
• The more the paths, the more the relevance of the item.
• Different paths have different meaning.
• Not all types of paths are relevant.
u3 s i2 p2 e1 p1 i1  (s, p2 , p1)
Problem formulation
Feature vector
Set of irrelevant items for u
Set of relevantitems for u
Training Set
Sample of irrelevant items for u
𝑋 𝑢
+ = 𝑥 ∈ 𝑋 𝑠Ƹ 𝑢 𝑥 = 1}
𝑋 𝑢
−
= 𝑥 ∈ 𝑋 𝑠Ƹ 𝑢 𝑥 = 0}
𝑋 𝑢
−∗ ⊆ 𝑋 𝑢
−
𝑤𝑢𝑥 ∈ ℝ 𝐷
TR = ‫ڂ‬ < 𝑤𝑢𝑥, 𝑠Ƹ 𝑢 𝑥 > 𝑥 ∈ (𝑋 𝑢
+
∪ 𝑋 𝑢
−∗
)}𝑢
u1
x1
u2
u3
x2
x3
e1
e3
e4
e2
e5
u4
x4
Path-based features
wu3x1
?
u1
u2
u3
e1
e3
e4
e2
e5
u4
Path-based features
path(1) (s, s, s) : 1
x1
x2
x3
x4
u1
u2
u3
e1
e3
e4
e2
e5
u4
Path-based features
path(1) (s, s, s) : 2
x1
x2
x3
x4
u1
u2
u3
e1
e3
e4
e2
e5
u4
Path-based features
path(1) (s, s, s) : 2
path(2) (s, p2, p1) : 1
x1
x2
x3
x4
u1
u2
u3
e1
e3
e4
e2
e5
u4
Path-based features
path(1) (s, s, s) : 2
path(2) (s, p2, p1) : 2
x1
x2
x3
x4
u1
u2
u3
e1
e3
e4
e2
e5
u4
Path-based features
path(1) (s, s, s) : 2
path(2) (s, p2, p1) : 2
path(3) (s, p2, p3, p1) : 1
x1
x2
x3
x4
Path-based features
path(1) (s, s, s) : 2
path(2) (s, p2, p1) : 2
path(3) (s, p2, p3, p1) : 1
u1
u2
u3
e1
e3
e4
e2
e5
u4
x1
x2
x3
x4
Evaluation of different ranking
functions
0
0,1
0,2
0,3
0,4
0,5
0,6
given 5 given 10 given 20 given 30 given 50 given All
recall@5
userprofile size
Movielens
BagBoo
GBRT
Sum
Evaluation of different ranking
functions
0
0,1
0,2
0,3
0,4
0,5
0,6
given 5 given 10 given 20 given All
recall@5
userprofile size
Last.fm
BagBoo
GBRT
Sum
Comparative approaches
• BPRMF, Bayesian Personalized Ranking for Matrix Factorization
• BPRLin, Linear Model optimized for BPR (Hybrid alg.)
• SLIM, Sparse Linear Methods for Top-N Recommender Systems
• SMRMF, Soft Margin Ranking Matrix Factorization
MyMediaLite
Comparison with other
approaches
0
0,1
0,2
0,3
0,4
0,5
0,6
given 5 given 10 given 20 given 30 given 50 given All
userprofile size
Movielens
SPrank
BPRMF
SLIM
BPRLin
SMRMF
precision@5
Comparison with other
approaches
0
0,1
0,2
0,3
0,4
0,5
0,6
given 5 given 10 given 20 given All
userprofile size
Last.fm
SPrank
BPRMF
SLIM
BPRLin
SMRMF
precision@5
Neighborhoods
Graph-based Item Representation
The Godfather
Mafia_films
Gangster_films
American
Gangster
Films_about_organized_crime
_in_the_United_States
Best_Picture_Academy
_Award_winners
Best_Thriller_Empire
_Award_winners
Films_shot_in_New_York_City
subject
subject
subject
subject
subject
subject
subject
Vito Claudio Ostuni, Tommaso Di Noia, Roberto Mirizzi, Eugenio Di Sciascio. A Linked Data Recommender Systemusing a Neighborhood-based
Graph Kernel. The15th International Conferenceon Electronic Commerceand Web Technologies –2014
Graph-based Item Representation
The Godfather
Mafia_films Films_about_organized_crime
Gangster_films
American
Gangster
Films_about_organized_crime
_in_the_United_States
Films_about_organized_
crime_by_country
Best_Picture_Academy
_Award_winners
Best_Thriller_Empire
_Award_winners
Awards_for_best_film
Films_shot_in_New_York_City
subject
subject
subject
broader
broader
broader
broader
broader
subject
subject
subject
subject
Graph-based Item Representation
The Godfather
Mafia_films Films_about_organized_crime
Gangster_films
American
Gangster
Films_about_organized_crime
_in_the_United_States
Films_about_organized_
crime_by_country
Best_Picture_Academy
_Award_winners
Best_Thriller_Empire
_Award_winners
Awards_for_best_film
Films_shot_in_New_York_City
subject
subject
subject
broader
broader
broader
broader
broader
subject
subject
subject
subject
Graph-based Item Representation
The Godfather
Mafia_films Films_about_organized_crime
Gangster_films
American
Gangster
Films_about_organized_crime
_in_the_United_States
Films_about_organized_
crime_by_country
Best_Picture_Academy
_Award_winners
Best_Thriller_Empire
_Award_winners
Awards_for_best_film
Films_shot_in_New_York_City
subject
subject
subject
broader
broader
broader
broader
broader
broader
subject
subject
subject
subject
Graph-based Item Representation
The Godfather
Mafia_films Films_about_organized_crime
Gangster_films
American
Gangster
Films_about_organized_crime
_in_the_United_States
Films_about_organized_
crime_by_country
Best_Picture_Academy
_Award_winners
Best_Thriller_Empire
_Award_winners
Awards_for_best_film
Films_shot_in_New_York_City
subject
subject
subject
broader
broader
broader
broader
broader
broader
subject
subject
subject
subject
Exploit entities descriptions
h-hop Item Neighborhood Graph
The Godfather
Mafia_films Films_about_organized_crime
Gangster_films
Best_Picture_Academy
_Award_winners Awards_for_best_film
Films_shot_in_New_York_City
subject
subject
subject
broader
broader
broader
Kernel Methods
Work by embedding data in a vector space and looking for linear
patterns in such space
𝑥 → 𝜙(𝑥)
[Kernel Methods for General PatternAnalysis. Nello Cristianini . http://www.kernel-methods.net/tutorials/KMtalk.pdf]
𝜙(𝑥)
𝜙
𝑥Input space Feature space
We can work in the new space F by specifying an inner product
function between points in it
𝑘 𝑥𝑖, 𝑥𝑗 = < 𝜙(𝑥𝑖), 𝜙(𝑥𝑗)>
h-hop Item Entity-based
Neighborhood Graph Kernel
Explicit computation of the feature map
entity importance in the item neighborhood graph
𝑘 𝐺ℎ 𝑥𝑖, 𝑥𝑗 = 𝜙 𝐺ℎ 𝑥𝑖 , 𝜙 𝐺ℎ 𝑥𝑗
𝜙 𝐺ℎ 𝑥𝑖 = (𝑤𝑥𝑖,𝑒1
, 𝑤𝑥𝑖,𝑒2
, …, 𝑤𝑥𝑖,𝑒 𝑚
, … , 𝑤 𝑥𝑖,𝑒 𝑡
)
Explicit computation of the feature map
# edges involving 𝑒 𝑚 at l hops from 𝑥𝑖
a.k.a. frequency of the entity in the
item neighborhood graph
factor taking into account at which hop the entity appears
h-hop Item Entity-based
Neighborhood Graph Kernel
𝑘 𝐺ℎ 𝑥𝑖, 𝑥𝑗 = 𝜙 𝐺ℎ 𝑥𝑖 , 𝜙 𝐺ℎ 𝑥𝑗
𝜙 𝐺ℎ 𝑥𝑖 = (𝑤𝑥𝑖,𝑒1
, 𝑤𝑥𝑖,𝑒2
, …, 𝑤𝑥𝑖,𝑒 𝑚
, … , 𝑤 𝑥𝑖,𝑒 𝑡
)
Weights computation example
i
e1
e2
p3
p2
e4
e5
p3
p3
h=2
𝑐 𝑃෠1 𝑥 𝑖 ,𝑒1
= 2
𝑐 𝑃෠1 𝑥 𝑖 ,𝑒2
= 1
𝑐 𝑃෠2 𝑥 𝑖 ,𝑒4
= 1
𝑐 𝑃෠2 𝑥 𝑖 ,𝑒5
= 2
Weights computation example
i
e1
e2
p3
p2
e4
e5
p3
p3
h=2
𝑐 𝑃෠1 𝑥 𝑖 ,𝑒1
= 2
𝑐 𝑃෠1 𝑥 𝑖 ,𝑒2
= 1
𝑐 𝑃෠2 𝑥 𝑖 ,𝑒4
= 1
𝑐 𝑃෠2 𝑥 𝑖 ,𝑒5
= 2
Informative entity about the item even if not directly related to it
Experimental Settings
• Trained a SVM Regression model for each user
• Accuracy Evaluation: Precision, Recall
• Novelty Evaluation: Entropy-based Novelty (All
Items protocol) [the lower the better]
Kernel calibration
impact of alpha params
Comparative approaches
•NB: 1-hop item neigh. + Naive Bayes classifier
•VSM: 1-hop item neigh. Vector Space Model (tf-idf) +
SVM regr
•WK: 2-hop item neigh. Walk-based kernel + SVM regr
Comparison with other
approaches (i)
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Prec@10 [20/80] Prec@10 [40/60] Prec@10 [80/20]
NK-bestPrec
NK-bestEntr
NB
VSM
WK
Rated test items protocol
Comparison with other
approaches (ii)
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
EBN@10 [20/80] EBN@10 [40/60] EBN@10 [80/20]
NK-bestPrec
NK-bestEntr
NB
VSM
WK
Node paths
The FreeSound case study
Vito ClaudioOstuni, Sergio Oramas, Tommaso Di Noia, Xavier Serra, Eugenio Di Sciascio. A Semantic Hybrid Approach for Sound Recommendation. 24th
World Wide Web Conference - 2015
FreeSound Knowledge Graph
Item textual descriptions enrichment: Entity Linking tools can be used
to enrich item textual descriptions with LOD
Explicit computation of the feature map
# sequences and subsequences of nodes
from 𝑥𝑖 to em
Normalization factor
h-hop Item Node-Based
Neighborhood Graph Kernel
𝜙 𝐺ℎ 𝑥𝑖 = (𝑤𝑥𝑖,𝑝∗1
, …, 𝑤𝑥𝑖,𝑝∗ 𝑚
, … , 𝑤 𝑥𝑖,𝑝∗ 𝑡
)
𝑘 𝐺ℎ 𝑥𝑖, 𝑥𝑗 = 𝜙 𝐺ℎ 𝑥𝑖 , 𝜙 𝐺ℎ 𝑥𝑗
Hybrid Recommendation via
Feature Combination
The hybridizations is based on the combination of different data
sources
Final approach: collaborative + LOD + textual description + tags
Users who rated the item
u1 u2 u3 …. entity1 entity2 …. keyw1 keyw2 … tag1 …
entities from the knowledge
graph (explicit feature mapping)
Keywords extracted from
the textual description
tags associated to the item
Item Feature Vector
Accuracy
All items protocol
Long Tail
Aggregate Diversity
• Feature combination hybrid approach
• adding collaborative features to item contentfeature vectors can improve
considerably recommendation accuracy
• Semantic Enrichment
• semantics can help in improving differentperformances beyond accuracy
such as novelty and catalog coverage
Hybrid approaches:
some lessons learnt
Dataset selection
Select the domain(s) of your RS
SELECT count(?i) AS ?num ?c
WHERE {
?i a ?c .
FILTER(regex(?c, "^http://dbpedia.org/ontology")) .
}
ORDER BY DESC(?num)
Does the LOD dataset selection
matter?
A comparison between
DBpedia and Freebase
Accuracy Coverage Diversity Novelty
Freebase + + - -
DBpedia - - + +
Phuong Nguyen, Paolo Tomeo, Tommaso Di Noia, Eugenio Di Sciascio. Content-based recommendationsvia DBpedia and Freebase: a casestudy
in the music domain. The14th International Semantic Web Conference - ISWC 2015
A comparison between
DBpedia and Freebase
Accuracy Coverage Diversity Novelty
1-hop - - - +
2-hop + + + -
Phuong Nguyen, Paolo Tomeo, Tommaso Di Noia, Eugenio Di Sciascio. Content-based recommendationsvia DBpedia and Freebase: a casestudy
in the music domain. The14th International Semantic Web Conference - ISWC 2015
Conclusions
• Linked Open Data to enrich the contentdescriptionsof
item
• Exploit differentcharacteristcsof the semantic network
to represent/learnfeatures
• Improved accuracy
• Improved novelty
• Improved Aggregate Diversity
• Entity linking for a better expoitationof text-based
data
• Select the right approach, dataset,set of properties to
build your RS
Open issues
• Generalize to graph pattern extraction to
represent features
• Automatically select the triples related to the
domain of interest
• Automatically select meaningful properties to
represent items
• Analysis with respect to «knowledge
coverage» of the dataset
– What is the best approach?
Not covered here
• User profile
• Preferences
• Context-aware
• Knowledge-based approaches
• …
Many thanks to the
RecSys crew @ SisInf Lab
Roberto Mirizzi
now at Yahoo! CA
Vito Claudio Ostuni
now at
Jessica Rosati
Phd Fellowship Awardee @
Paolo Tomeo
Jindřich Mynarz
Phuong Nguyen
Sergio Oramas
Aleksandra Karpus
Visiting Students and PostDoc
Recommender Systems
and
Linked Open Data
Tommaso Di Noia
Polytechnic University of Bari
ITALY
11th Reasoning Web Summer School – Berlin August 1, 2015
tommaso.dinoia@poliba.it
@TommasoDiNoia

Weitere ähnliche Inhalte

Was ist angesagt?

JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...GUANGYUAN PIAO
 
JIST2015-data challenge
JIST2015-data challengeJIST2015-data challenge
JIST2015-data challengeGUANGYUAN PIAO
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationArjen de Vries
 
Semantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked DataSemantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked DataSaeedeh Shekarpour
 
Informatics is a natural science
Informatics is a natural scienceInformatics is a natural science
Informatics is a natural scienceFrank van Harmelen
 
How well does your Instance Matching system perform? Experimental evaluation ...
How well does your Instance Matching system perform? Experimental evaluation ...How well does your Instance Matching system perform? Experimental evaluation ...
How well does your Instance Matching system perform? Experimental evaluation ...Holistic Benchmarking of Big Linked Data
 
Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...
Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...
Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...Johann Petrak
 
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerAutomatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerFrancesco Osborne
 
The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...
The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...
The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...Jeff Z. Pan
 
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Arjen de Vries
 
R programming for psychometrics
R programming for psychometricsR programming for psychometrics
R programming for psychometricsDiane Talley
 
Searching with vectors
Searching with vectorsSearching with vectors
Searching with vectorsSimon Hughes
 
Social Phrases Having Impact in Altmetrics - SOPHIA
Social Phrases Having Impact in Altmetrics - SOPHIASocial Phrases Having Impact in Altmetrics - SOPHIA
Social Phrases Having Impact in Altmetrics - SOPHIAInsight_Altmetrics
 
Quality Metrics for Linked Open Data
Quality Metrics for  Linked Open Data Quality Metrics for  Linked Open Data
Quality Metrics for Linked Open Data ebrahim_bagheri
 
Data Tactics Data Science Brown Bag (April 2014)
Data Tactics Data Science Brown Bag (April 2014)Data Tactics Data Science Brown Bag (April 2014)
Data Tactics Data Science Brown Bag (April 2014)Rich Heimann
 
Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...
Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...
Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...Lucidworks
 
Learning to assess Linked Data relationships using Genetic Programming
Learning to assess Linked Data relationships using Genetic ProgrammingLearning to assess Linked Data relationships using Genetic Programming
Learning to assess Linked Data relationships using Genetic ProgrammingVrije Universiteit Amsterdam
 
Unsupervised Learning of an Extensive and Usable Taxonomy for DBpedia
Unsupervised Learning of an Extensive and Usable Taxonomy for DBpediaUnsupervised Learning of an Extensive and Usable Taxonomy for DBpedia
Unsupervised Learning of an Extensive and Usable Taxonomy for DBpediaMarco Fossati
 

Was ist angesagt? (20)

JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
 
Sybrandt Thesis Proposal Presentation
Sybrandt Thesis Proposal PresentationSybrandt Thesis Proposal Presentation
Sybrandt Thesis Proposal Presentation
 
Question answering
Question answeringQuestion answering
Question answering
 
JIST2015-data challenge
JIST2015-data challengeJIST2015-data challenge
JIST2015-data challenge
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and Recommendation
 
Semantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked DataSemantic Interpretation of User Query for Question Answering on Interlinked Data
Semantic Interpretation of User Query for Question Answering on Interlinked Data
 
Informatics is a natural science
Informatics is a natural scienceInformatics is a natural science
Informatics is a natural science
 
How well does your Instance Matching system perform? Experimental evaluation ...
How well does your Instance Matching system perform? Experimental evaluation ...How well does your Instance Matching system perform? Experimental evaluation ...
How well does your Instance Matching system perform? Experimental evaluation ...
 
Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...
Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...
Semantics2018 Zhang,Petrak,Maynard: Adapted TextRank for Term Extraction: A G...
 
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerAutomatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
 
The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...
The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...
The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet? --- Revisit...
 
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
 
R programming for psychometrics
R programming for psychometricsR programming for psychometrics
R programming for psychometrics
 
Searching with vectors
Searching with vectorsSearching with vectors
Searching with vectors
 
Social Phrases Having Impact in Altmetrics - SOPHIA
Social Phrases Having Impact in Altmetrics - SOPHIASocial Phrases Having Impact in Altmetrics - SOPHIA
Social Phrases Having Impact in Altmetrics - SOPHIA
 
Quality Metrics for Linked Open Data
Quality Metrics for  Linked Open Data Quality Metrics for  Linked Open Data
Quality Metrics for Linked Open Data
 
Data Tactics Data Science Brown Bag (April 2014)
Data Tactics Data Science Brown Bag (April 2014)Data Tactics Data Science Brown Bag (April 2014)
Data Tactics Data Science Brown Bag (April 2014)
 
Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...
Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...
Automatically Build Solr Synonyms List using Machine Learning - Chao Han, Luc...
 
Learning to assess Linked Data relationships using Genetic Programming
Learning to assess Linked Data relationships using Genetic ProgrammingLearning to assess Linked Data relationships using Genetic Programming
Learning to assess Linked Data relationships using Genetic Programming
 
Unsupervised Learning of an Extensive and Usable Taxonomy for DBpedia
Unsupervised Learning of an Extensive and Usable Taxonomy for DBpediaUnsupervised Learning of an Extensive and Usable Taxonomy for DBpedia
Unsupervised Learning of an Extensive and Usable Taxonomy for DBpedia
 

Andere mochten auch

X-omics Data Integration Challenges
X-omics Data Integration ChallengesX-omics Data Integration Challenges
X-omics Data Integration ChallengesCOST action BM1006
 
Dynamic generation of personalized hybrid recommender systems
Dynamic generation of personalized hybrid recommender systemsDynamic generation of personalized hybrid recommender systems
Dynamic generation of personalized hybrid recommender systemsSimon Dooms
 
Movie Recommendation with DBpedia - IIR 2012
Movie Recommendation with DBpedia - IIR 2012Movie Recommendation with DBpedia - IIR 2012
Movie Recommendation with DBpedia - IIR 2012Roku
 
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...GUANGYUAN PIAO
 
Semantics-aware Graph-based Recommender Systems exploiting Linked Open Data
Semantics-aware Graph-based Recommender Systems exploiting Linked Open DataSemantics-aware Graph-based Recommender Systems exploiting Linked Open Data
Semantics-aware Graph-based Recommender Systems exploiting Linked Open DataCataldo Musto
 
Hybrid recommender systems
Hybrid recommender systemsHybrid recommender systems
Hybrid recommender systemsrenataghisloti
 
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...GUANGYUAN PIAO
 
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...GUANGYUAN PIAO
 
Automatic Selection of Linked Open Data features in Graph-based Recommender S...
Automatic Selection of Linked Open Data features in Graph-based Recommender S...Automatic Selection of Linked Open Data features in Graph-based Recommender S...
Automatic Selection of Linked Open Data features in Graph-based Recommender S...Cataldo Musto
 
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...GUANGYUAN PIAO
 
Recommender Systems in the Linked Data era
Recommender Systems in the Linked Data eraRecommender Systems in the Linked Data era
Recommender Systems in the Linked Data eraRoku
 
Movie Recommendation engine
Movie Recommendation engineMovie Recommendation engine
Movie Recommendation engineJayesh Lahori
 
A content based movie recommender system for mobile application
A content based movie recommender system for mobile applicationA content based movie recommender system for mobile application
A content based movie recommender system for mobile applicationArafat X
 

Andere mochten auch (13)

X-omics Data Integration Challenges
X-omics Data Integration ChallengesX-omics Data Integration Challenges
X-omics Data Integration Challenges
 
Dynamic generation of personalized hybrid recommender systems
Dynamic generation of personalized hybrid recommender systemsDynamic generation of personalized hybrid recommender systems
Dynamic generation of personalized hybrid recommender systems
 
Movie Recommendation with DBpedia - IIR 2012
Movie Recommendation with DBpedia - IIR 2012Movie Recommendation with DBpedia - IIR 2012
Movie Recommendation with DBpedia - IIR 2012
 
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
 
Semantics-aware Graph-based Recommender Systems exploiting Linked Open Data
Semantics-aware Graph-based Recommender Systems exploiting Linked Open DataSemantics-aware Graph-based Recommender Systems exploiting Linked Open Data
Semantics-aware Graph-based Recommender Systems exploiting Linked Open Data
 
Hybrid recommender systems
Hybrid recommender systemsHybrid recommender systems
Hybrid recommender systems
 
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
 
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
 
Automatic Selection of Linked Open Data features in Graph-based Recommender S...
Automatic Selection of Linked Open Data features in Graph-based Recommender S...Automatic Selection of Linked Open Data features in Graph-based Recommender S...
Automatic Selection of Linked Open Data features in Graph-based Recommender S...
 
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
 
Recommender Systems in the Linked Data era
Recommender Systems in the Linked Data eraRecommender Systems in the Linked Data era
Recommender Systems in the Linked Data era
 
Movie Recommendation engine
Movie Recommendation engineMovie Recommendation engine
Movie Recommendation engine
 
A content based movie recommender system for mobile application
A content based movie recommender system for mobile applicationA content based movie recommender system for mobile application
A content based movie recommender system for mobile application
 

Ähnlich wie Recommender Systems and Linked Open Data

A recommendation engine for your php application
A recommendation engine for your php applicationA recommendation engine for your php application
A recommendation engine for your php applicationMichele Orselli
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine LearningRahul Jain
 
Recommendation Systems Roadtrip
Recommendation Systems RoadtripRecommendation Systems Roadtrip
Recommendation Systems RoadtripThe Real Dyl
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisStuart Wrigley
 
Facets and Pivoting for Flexible and Usable Linked Data Exploration
Facets and Pivoting for Flexible and Usable Linked Data ExplorationFacets and Pivoting for Flexible and Usable Linked Data Exploration
Facets and Pivoting for Flexible and Usable Linked Data ExplorationRoberto García
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlightsSandra Garcia
 
Ordering the chaos: Creating websites with imperfect data
Ordering the chaos: Creating websites with imperfect dataOrdering the chaos: Creating websites with imperfect data
Ordering the chaos: Creating websites with imperfect dataAndy Stretton
 
Hierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyondHierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyondFrank Kelly
 
Buidling large scale recommendation engine
Buidling large scale recommendation engineBuidling large scale recommendation engine
Buidling large scale recommendation engineKeeyong Han
 
Apache Mahout Tutorial - Recommendation - 2013/2014
Apache Mahout Tutorial - Recommendation - 2013/2014 Apache Mahout Tutorial - Recommendation - 2013/2014
Apache Mahout Tutorial - Recommendation - 2013/2014 Cataldo Musto
 
Discovery Hub: on-the-fly linked data exploratory search
Discovery Hub: on-the-fly linked data exploratory searchDiscovery Hub: on-the-fly linked data exploratory search
Discovery Hub: on-the-fly linked data exploratory searchFabien Gandon
 
Introduction to Recommendation System
Introduction to Recommendation SystemIntroduction to Recommendation System
Introduction to Recommendation SystemMinha Hwang
 
[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label Classification[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label ClassificationYONG ZHENG
 
Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Gabriel Moreira
 
Overview of recommender system
Overview of recommender systemOverview of recommender system
Overview of recommender systemStanley Wang
 
Search Quality Evaluation to Help Reproducibility: An Open-source Approach
Search Quality Evaluation to Help Reproducibility: An Open-source ApproachSearch Quality Evaluation to Help Reproducibility: An Open-source Approach
Search Quality Evaluation to Help Reproducibility: An Open-source ApproachAlessandro Benedetti
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation SystemsRobin Reni
 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptxShree Shree
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringChangsung Moon
 
Search Quality Evaluation to Help Reproducibility : an Open Source Approach
Search Quality Evaluation to Help Reproducibility : an Open Source ApproachSearch Quality Evaluation to Help Reproducibility : an Open Source Approach
Search Quality Evaluation to Help Reproducibility : an Open Source ApproachAlessandro Benedetti
 

Ähnlich wie Recommender Systems and Linked Open Data (20)

A recommendation engine for your php application
A recommendation engine for your php applicationA recommendation engine for your php application
A recommendation engine for your php application
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
Recommendation Systems Roadtrip
Recommendation Systems RoadtripRecommendation Systems Roadtrip
Recommendation Systems Roadtrip
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log Analysis
 
Facets and Pivoting for Flexible and Usable Linked Data Exploration
Facets and Pivoting for Flexible and Usable Linked Data ExplorationFacets and Pivoting for Flexible and Usable Linked Data Exploration
Facets and Pivoting for Flexible and Usable Linked Data Exploration
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlights
 
Ordering the chaos: Creating websites with imperfect data
Ordering the chaos: Creating websites with imperfect dataOrdering the chaos: Creating websites with imperfect data
Ordering the chaos: Creating websites with imperfect data
 
Hierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyondHierarchical clustering in Python and beyond
Hierarchical clustering in Python and beyond
 
Buidling large scale recommendation engine
Buidling large scale recommendation engineBuidling large scale recommendation engine
Buidling large scale recommendation engine
 
Apache Mahout Tutorial - Recommendation - 2013/2014
Apache Mahout Tutorial - Recommendation - 2013/2014 Apache Mahout Tutorial - Recommendation - 2013/2014
Apache Mahout Tutorial - Recommendation - 2013/2014
 
Discovery Hub: on-the-fly linked data exploratory search
Discovery Hub: on-the-fly linked data exploratory searchDiscovery Hub: on-the-fly linked data exploratory search
Discovery Hub: on-the-fly linked data exploratory search
 
Introduction to Recommendation System
Introduction to Recommendation SystemIntroduction to Recommendation System
Introduction to Recommendation System
 
[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label Classification[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label Classification
 
Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação
 
Overview of recommender system
Overview of recommender systemOverview of recommender system
Overview of recommender system
 
Search Quality Evaluation to Help Reproducibility: An Open-source Approach
Search Quality Evaluation to Help Reproducibility: An Open-source ApproachSearch Quality Evaluation to Help Reproducibility: An Open-source Approach
Search Quality Evaluation to Help Reproducibility: An Open-source Approach
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation Systems
 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative Filtering
 
Search Quality Evaluation to Help Reproducibility : an Open Source Approach
Search Quality Evaluation to Help Reproducibility : an Open Source ApproachSearch Quality Evaluation to Help Reproducibility : an Open Source Approach
Search Quality Evaluation to Help Reproducibility : an Open Source Approach
 

Kürzlich hochgeladen

Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfOpen Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfhenrik385807
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxmohammadalnahdi22
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMoumonDas2
 
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Pooja Nehwal
 
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfCTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfhenrik385807
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Chameera Dedduwage
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...Sheetaleventcompany
 
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxNikitaBankoti2
 
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Salam Al-Karadaghi
 
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night EnjoyCall Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night EnjoyPooja Nehwal
 
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024eCommerce Institute
 
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...henrik385807
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceDelhi Call girls
 
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara ServicesVVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara ServicesPooja Nehwal
 
George Lever - eCommerce Day Chile 2024
George Lever -  eCommerce Day Chile 2024George Lever -  eCommerce Day Chile 2024
George Lever - eCommerce Day Chile 2024eCommerce Institute
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...NETWAYS
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AITatiana Gurgel
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Kayode Fayemi
 
Presentation on Engagement in Book Clubs
Presentation on Engagement in Book ClubsPresentation on Engagement in Book Clubs
Presentation on Engagement in Book Clubssamaasim06
 

Kürzlich hochgeladen (20)

Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfOpen Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptx
 
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
 
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfCTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
 
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
 
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
Exploring protein-protein interactions by Weak Affinity Chromatography (WAC) ...
 
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night EnjoyCall Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
Call Girl Number in Khar Mumbai📲 9892124323 💞 Full Night Enjoy
 
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
Andrés Ramírez Gossler, Facundo Schinnea - eCommerce Day Chile 2024
 
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
 
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
 
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara ServicesVVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
 
George Lever - eCommerce Day Chile 2024
George Lever -  eCommerce Day Chile 2024George Lever -  eCommerce Day Chile 2024
George Lever - eCommerce Day Chile 2024
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AI
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
 
Presentation on Engagement in Book Clubs
Presentation on Engagement in Book ClubsPresentation on Engagement in Book Clubs
Presentation on Engagement in Book Clubs
 

Recommender Systems and Linked Open Data

  • 1. Recommender Systems and Linked Open Data Tommaso Di Noia Polytechnic University of Bari ITALY 11th Reasoning Web Summer School – Berlin August 1, 2015 tommaso.dinoia@poliba.it @TommasoDiNoia
  • 2. Agenda • A quick introduction to Linked Open Data • Recommender systems • Evaluation • Recommender Systems and Linked Open Data
  • 3. LINKED OPEN DATA A quick introduction to
  • 4. Linked Open Data the Giant Global Graph
  • 5. Linked (Open) Data Some definitions: – A method of publishing data on the Web – (An instance of) the Web of Data – A huge database distributed in the Web – Linked Data is the Semantic Web done right
  • 6. Web vs Linked Data Web Linked Data Analogy File System Database Designed for Men Machines (Software Agents) Main elements Documents Things Links between Documents Things Semantics Implicit Explicit Courtesy of Prof. Enrico Motta, The Open University, Milton Keynes – Uk – Semantic Web: Technologies and Applications.
  • 10. URI • Every resource/entity/thing/relation is identified by a (unique) URI – URI: <http://dbpedia.org/resource/Berlin> – CURIE: dbpedia:Berlin – URI: <http://purl.org/dc/terms/subject> – CURIE: dcterms:subject
  • 11. Which vocabularies/ontologies? • Most popular on http://prefix.cc (July 25, 2015) – YAGO: http://yago-knowledge.org/resource/ – FOAF: http://xmlns.com/foaf/0.1/ – DBpedia Ontology: http://dbpedia.org/ontology/ – DBpedia Properties: http://dbpedia.org/property/
  • 12. Which vocabularies/ontologies? • Most popular on http://lov.okfn.org (July 25, 2015) – VANN: http://purl.org/vocab/vann/ – SKOS: http://www.w3.org/2004/02/skos/core – FOAF – DCTERMS – DCE: http://purl.org/dc/elements/1.1/
  • 13. RDF – Resource Description Framework • Basic element: triple [subject] [predicate] [object] URI URI URI | Literal "string"@lang | "string"^^datatype
  • 14. RDF – Resource Description Framework dbpedia:Berlin dbo:country dbpedia:Germany . dbpedia:Berlin rdfs:label "Berlin"@en . dbpedia:Berlin rdfs:label "Berlino"@it . dbpedia:Berlin dbo:populationTotal "3517424"^^xsd:integer . dbpedia:Berlin dcterms:subject category:Capitals_in_Europe . dbpedia:Berlin rdf:type yago:UrbanArea108675967 . dbpedia:Germany dbo:language dbpedia:German_Language . dbpedia:Germany dbo:firstDriverCountry dbpedia:2014_German_Grand_Prix .
  • 15. RDF – Resource Description Framework Germany Berlin 2014_German_Grand_Prix German_Language Capitals_in_Europe UrbanArea108675967 "Berlin"@en "Berlin"@it "3517424"^^xsd:integer country language firstDriverCountry type subject label populationTotal
  • 16. RDFS and OWL in two statements dbo:country rdfs:range dbo:Country . dbpedia:Berlin owl:sameAs freebase:Berlin .
  • 17. SPARQL PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX dcterms: <http://purl.org/dc/terms/> PREFIX category: <http://dbpedia.org/resource/Category:> SELECT DISTINCT ?name ?city WHERE { ?city dcterms:subject category:Capitals_in_Europe. ?city rdfs:label ?name . ?city dbo:populationTotal ?population . FILTER (?population < 30000). }
  • 18. SPARQL curl -g -H 'Accept: application/json' 'http://dbpedia.org/sparql?query=SELECT+DISTINCT+?name+?city+WHERE+{?city+dcterms:su bject+category:Capitals_in_Europe+.+?city+rdfs:label+?name+.+?city+dbpedia- owl:populationTotal+?population+.+FILTER+(?population+<+30000)+.}'
  • 20. 60 seconds in the Web
  • 21. Personalized Information Access • Help the user in finding the information they might be interested in • Consider their preferences/past behaviour • Filter irrelevant information
  • 22. Recommender Systems • Help users in dealing with Information/Choice Overload • Help to match users with items
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. Some definitions – In its most common formulation, the recommendation problem is reduced to the problem of estimating ratings for the items that have not been seen by a user. [G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender Systems:A survey of the State-of-the-Artand Possible Extension. TKDE, 2005.] – Recommender Systems (RSs) are software tools and techniques providingsuggestions for items to be of use to a user. [F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook. Springer, 2011.]
  • 28. The problem • Estimate a utility function to automatically predict how much a user will like an item which is unknown to them. Input Set of users Set of items Utility function 𝑈 = {𝑢1, … , 𝑢 𝑀} 𝑋 = {𝑥1, …, 𝑥 𝑁} 𝑓: 𝑈 × 𝑋 → 𝑅 ∀ 𝑢 ∈ 𝑈, 𝑥 𝑢 ′ = arg 𝑚𝑎𝑥 𝑥∈𝑋 𝑓(𝑢, 𝑥) Output
  • 29. The rating matrix 5 1 2 4 3 ?? 2 4 5 3 5 2 4 3 2 4 1 3 3 5 1 5 2 4 4 4 5 3 5 2 TheMatrix Titanic Iloveshopping Argo LoveActually Thehangover Tommaso Vito Phuong Jessica Paolo
  • 30. The rating matrix (in the real world) 5 ? ? 4 3 ? 2 4 5 ? 5 ? ? 3 ? 4 ? 3 3 5 ? 5 2 ? 4 4 5 ? 5 2 TheMatrix Titanic Iloveshopping Argo LoveActually Thehangover Tommaso Vito Phuong Jessica Paolo
  • 31. How sparse is a rating matrix?
  • 33. Rating Prediction vs Ranking Best Worst
  • 34. Recommendation techniques • Content-based • Collaborative filtering • Demographic • Knowledge-based • Community-based • Hybrid recommender systems
  • 35. Collaborative Recommender Systems Collaborative RSs recommend items to a user by identifying other users with a similar profile Recommender System User profile Users Item7 Item15 Item11 … Top-N Recommendations Item1, 5 Item2, 1 Item5, 4 Item10, 5 …. …. Item1, 4 Item2, 2 Item5, 5 Item10, 3 …. Item1, 4 Item2, 2 Item5, 5 Item10, 3 …. Item1, 4 Item2, 2 Item5, 5 Item10, 3 ….
  • 36. Content-based Recommender Systems Recommender System User profile Item7 Item15 Item11 … Top-N Recommendations Item1, 5 Item2, 1 Item5, 4 Item10, 5 …. Items Item1 Item2 Item100 Item’s descriptions …. CB-RSs recommend items to a user based on their description and on the profile of the user’s interests
  • 37. Knowledge-based Recommender Systems Recommender System Item7 Item15 Item11 … Top-N Recommendations Items Item1 Item2 Item100Item’s descriptions …. KB-RSs recommend items to a user based on their description and domain knowledge encoded in a knowledge base Knowledge-base
  • 38. Collaborative Filtering • Memory-based – Mainly based on k-NN – Does not require any preliminary model building phase • Model-based – Learn a predictive model before computing recommendations
  • 40. User-based Collaborative Recommendation 5 1 2 4 3 ?? 2 4 5 3 5 2 4 3 2 4 1 3 3 5 1 5 2 4 4 4 5 3 5 2 TheMatrix Titanic Iloveshopping Argo LoveActually Thehangover Tommaso Vito Phuong Jessica Paolo Pearson’s correlation coefficient Rate prediction = 𝑋
  • 41. Item-based Collaborative Recommendation 5 1 2 4 3 ?? 2 4 5 3 5 2 4 3 2 4 1 3 3 5 1 5 2 4 4 4 5 3 5 2 TheMatrix Titanic Iloveshopping Argo LoveActually Thehangover 𝑠𝑖𝑚 𝑥𝑖, 𝑥𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗 |𝑥𝑖| ∗ |𝑥𝑗| = σ 𝑟𝑢,𝑥 𝑖 ∗ 𝑟𝑢,𝑥 𝑗𝑢 σ 𝑟𝑢,𝑥 𝑖 2 𝑢 ∗ σ 𝑟𝑢,𝑥 2 𝑢 Cosine Similarity Rate prediction 𝑟ǁ 𝑢𝑖, 𝑥′ = σ 𝑠𝑖𝑚 𝑥Ԧ, 𝑥Ԧ′ ∗ 𝑟𝑥,𝑢 𝑖𝑥∈𝑋 𝑢 𝑖 σ 𝑠𝑖𝑚 𝑥Ԧ, 𝑥Ԧ′𝑥∈𝑋 𝑢 𝑖 Adjusted Cosine Similarity = 𝑋 𝑢𝑖 Tommaso Vito Phuong Jessica Paolo
  • 42. CF drawbacks • Sparsity / Cold-start – New user – New item • Grey sheep problem
  • 43. Content-Based Recommender Systems • Items are described in terms of attributes/features • A finite set of values is associated to each feature • Item representation is a (Boolean) vector
  • 44. Content-based CB-RSs try to recommend items similar* to those a given user has liked in the past [P. Lops, M. de Gemmis, G. Semeraro. Content-based Recommender Systems: Stateof the Art and Trends. Recommender Systems Handbook. 2011] • Heuristic-based – Usually adopt techniques borrowed from IR • Model-based – Often we have a model for each user (*) similar from a content-based perspective
  • 45. CB drawbacks • Content overspecialization • Portfolio effect • Sparsity / Cold-start – New user
  • 46. Knowledge-based Recommender Systems • Conversational approaches • Reasoning techniques – Case-based reasoning – Constraint reasoning
  • 47. Hybrid recommender systems • Weighted • Switching • Mixed • Feature combination • Cascade • Feature augmentation • Meta-level Robin D. Burke. Hybrid recommender systems:Survey and experiments. User Model. User-Adapt. Interact., 12(4):331–370, 2002.
  • 50. Protocols • Rated test-items • All unrated items: compute a score for every item not rated by the user (also items not appearing in the user test set)
  • 51. Accuracy metrics for rating prediction 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟
  • 52. MAE and RMSE drawback • Not very suitable for top-N recommendation – Errors in the highest part of the recommendation list are considered in the same way as the ones in the lowest part
  • 53. Accuracy metrics for top-N recommendation 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @ 𝑁 𝑃𝑢@𝑁 = |𝐿 𝑢 𝑁 ∩ 𝑇𝑆 𝑢 + | 𝑁 𝑅𝑒𝑐𝑎𝑙𝑙 @ 𝑁 𝑅 𝑢@𝑁 = |𝐿 𝑢 𝑁 ∩ 𝑇𝑆 𝑢 +| |𝑇𝑆 𝑢 + | 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑖𝑛 @ 𝑁 𝐿 𝑢 𝑁 is the recommendation list up to the N-th element 𝑇𝑆 𝑢 + is the set of relevant test items for 𝑢 𝐼𝐷𝐶𝐺@𝑁 indicates the score Obtained by an ideal ranking of 𝐿 𝑢 𝑁
  • 54. Is all about precision?
  • 55. Is all about precision? • Diversity – Avoid to recommend only items in a small subset of the catalog – Suggest diverse items in the recommendation list • Novelty – Recommend items in the long tail • Serendipity – Suggest unexpected but interesting items
  • 57. Diversity 𝐼𝑛𝑡𝑟𝑎 − 𝐿𝑖𝑠𝑡 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐼𝐿𝐷 𝑢@𝑁 = 1 2 ⋅ ෍ ෍ 1 − 𝑠𝑖𝑚 𝑥𝑖, 𝑥𝑗 𝑥 𝑗∈𝐿 𝑢 𝑁𝑥 𝑖∈𝐿 𝑢 𝑛 𝐼𝐿𝐷@𝑁 = 1 |𝑈| ⋅ ෍ 𝐼𝐿𝐷 𝑢@𝑁 𝑢∈𝑈 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐴𝐷𝑖𝑛@𝑁 = | ‫ڂ‬ 𝐿 𝑢(𝑁)𝑢∈𝑈 | |𝑋|
  • 59. Content-Based Recommender Systems P. Lops, M. de Gemmis, G. Semeraro. Content-based recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach, B. Shapira, editors, Recommender Systems Hankbook: A complete Guide for Research Scientists& Practitioners
  • 60. Content-Based Recommender Systems P. Lops, M. de Gemmis, G. Semeraro. Content-based recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach, B. Shapira, editors, Recommender Systems Hankbook: A complete Guide for Research Scientists& Practitioners
  • 61. Need of domain knowledge! We need rich descriptionsof the items! No suggestion is availableif the analyzed content does not contain enough information to discriminateitems the user might like from items the user might not like.* (*) P. Lops,M. de Gemmis,G.Semeraro.Content-basedRecommenderSystems:State of the ArtandTrends.In:P.Kantor,F.Ricci,L. Rokach andB. Shapira, editors,RecommenderSystemsHandbook:A CompleteGuide forResearchScientists&Practitioners The quality of CB recommendations are correlated with the quality of the features that are explicitly associated with the items. Limited Content Analysis
  • 62. Traditional Content-based RecSys • Base on keyword/attribute -based item representations • Rely on the quality of the content-analyzer to extract expressive item features • Lack of knowledge about the items
  • 63. Semantic-aware approaches Traditional Ontological/Semantic Recommender Systems make use of limited domain ontologies;
  • 64. What about Linked Data? Use Linked Datato mitigate the limitedcontent analysis issue • Plenty of structureddata available • No Content Analyzer required Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
  • 65. Why RS + LOD • Multi-Domain knowledge
  • 66. Why RS + LOD • Standardized access to data PREFIX dbpedia: <http://dbpedia.org/resource/> PREFIX dbo: <http://dbpedia.org/ontology/> SELECT ?actor WHERE { dbpedia:Pulp_Fiction dbo:starring ?actor . } PREFIX yago: <http://yago-knowledge.org/resource/> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX dbpedia-owl: <http://dbpedia.org/ontology/> CONSTRUCT{ ?book ?p ?o . ?book yago:linksTo ?yagolink . } WHERE{ SERVICE <http://live.dbpedia.org/sparql> { ?book rdf:type dbpedia-owl:Book . ?book ?p ?o . ?book owl:sameAs ?yago . FILTER(regex(str(?yago),"http://yago-knowledge.org/resource/")) . } SERVICE <http://lod2.openlinksw.com/sparql> { ?yago yago:linksTo ?yagolink . } }
  • 67. Why RS + LOD • Semantic Analysis
  • 68. A high level architecture
  • 69. Item Linker • Direct Item Linking • Item Description Linking
  • 76. Direct Item Linking • The easy way SELECT DISTINCT ?uri, ?title WHERE { ?uri rdf:type dbpedia-owl:Film. ?uri rdfs:label ?title. FILTER langMatches(lang(?title), "EN") . FILTER regex(?title, "matrix", "i") }
  • 77. Direct item Linking • Other approaches – DBpedia Lookup https://github.com/dbpedia/lookup – Silk Framework http://silk-framework.com/
  • 81. Item Graph Analyzer • Build your own knowledge graph – Select relevant properties. Possible solutions: • Ontological properties • Categorical properties • Frequent properties – Explore the graph up to a limited depth
  • 82. Which LOD RSs? • Content-based – Heuristic-based – Model based • Hybrid • Knowledge-based
  • 84. Linked Data as a structured information source for item descriptions Rich item descriptions
  • 85. Different item features representations • Direct properties • Property paths • Node paths • Neighborhoods • …
  • 86. Datasets Subset of Movielens mapped to DBpedia Subset of Last.fm mapped to DBpedia Subset of The Library Thing mapped to DBpedia Mappings http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
  • 90. Vector Space Model for LOD Righteous Kill starring director subject/broader genre Heat RobertDeNiro JohnAvnet Serialkillerfilms Drama AlPacino BrianDennehy Heistfilms Crimefilms starring RobertDeNiro AlPacino BrianDennehy Righteous Kill Heat … …
  • 91. Vector Space Model for LOD Righteous Kill STARRING Al Pacino (v1) Robert De Niro (v2) Brian Dennehy (v3) Righteous Kill (m1) X X X Heat (m2) X X Heat Righteous Kill (x1) wv1,x1 wv2,x1 wv3,x1 Heat (x2) wv1,x2 wv2,x2 0 𝑤 𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 = 𝑡𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 ∗ 𝑖𝑑𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜
  • 92. Vector Space Model for LOD Righteous Kill STARRING Al Pacino (v1) Robert De Niro (v2) Brian Dennehy (v3) Righteous Kill (m1) X X X Heat (m2) X X Heat Righteous Kill (x1) wv1,x1 wv2,x1 wv3,x1 Heat (x2) wv1,x2 wv2,x2 0 𝑤 𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 = 𝑡𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜,𝐻𝑒𝑎𝑡 ∗ 𝑖𝑑𝑓𝐴𝑙𝑃𝑎𝑐𝑖𝑛𝑜 𝑡𝑓 ∈ {0,1}
  • 93. Vector Space Model for LOD + + + … = 𝒔𝒊𝒎 𝒔𝒕𝒂𝒓𝒓𝒊𝒏𝒈(𝒙𝒊, 𝒙𝒋) = 𝒘 𝒗 𝟏,𝒙𝒊 ∗ 𝒘 𝒗 𝟏,𝒙𝒋 + 𝒘 𝒗 𝟐,𝒙𝒊 ∗ 𝒘 𝒗 𝟐,𝒙𝒋 + 𝒘 𝒗 𝟑,𝒙𝒊 ∗ 𝒘 𝒗 𝟑,𝒙𝒋 𝒘 𝒗 𝟏,𝒙𝒊 𝟐 + 𝒘 𝒗 𝟐,𝒙𝒊 𝟐 + 𝒘 𝒗 𝟑,𝒙𝒊 𝟐 ∗ 𝒘 𝒗 𝟏,𝒙𝒋 𝟐 + 𝒘 𝒗 𝟐,𝒙𝒋 𝟐 + 𝒘 𝒗 𝟑,𝒙𝒋 𝟐 𝜶 𝒔𝒕𝒂𝒓𝒓𝒊𝒏𝒈 ∗ 𝒔𝒊𝒎 𝒔𝒕𝒂𝒓𝒓𝒊𝒏𝒈(𝒙𝒊, 𝒙𝒋) 𝜶 𝒅𝒊𝒓𝒆𝒄𝒕𝒐𝒓 ∗ 𝒔𝒊𝒎 𝒅𝒊𝒓𝒆𝒄𝒕𝒐𝒓(𝒙𝒊, 𝒙𝒋) 𝜶 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 ∗ 𝒔𝒊𝒎 𝒔𝒖𝒃𝒋𝒆𝒄𝒕(𝒙𝒊, 𝒙𝒋) 𝒔𝒊𝒎 (𝒙𝒊, 𝒙𝒋)
  • 94. VSM Content-based Recommender We predict the rating using a Nearest NeighborClassifier wherein the similarity measure is a linear combination of localpropertysimilarities TommasoDi Noia,Roberto Mirizzi,VitoClaudioOstuni,Davide Romito, Markus Zanker.LinkedOpenDatatosupportContent-basedRecommenderSystems.8th International Conference on SemanticSystems(I-SEMANTICS) - 2012
  • 95. VSM Content-based Recommender We predict the rating using a Nearest NeighborClassifier wherein the similarity measure is a linear combination of localpropertysimilarities Selected properties
  • 96. VSM Content-based Recommender We predict the rating using a Nearest NeighborClassifier wherein the similarity measure is a linear combination of localpropertysimilarities heuristic-based → model-based
  • 97. Property subset evaluation The subject+broader solution is better than only subject or subject+more broaders. The best solution is achieved with subject+broader+ genres. Too many broaders introduce noise. Rated test items protocol
  • 98. Evaluation against other content-based approaches Rated test items protocol
  • 99. Evaluation against other approaches Rated test items protocol
  • 101. Path-based features Analysis of complex relations between the user preferences and the target item Vito ClaudioOstuni, Tommaso Di Noia, Eugenio Di Sciascio, Roberto Mirizzi. Top-N Recommendations from Implicit Feedback leveragingLinked Open Data. 7th Conference on Recommender Systems (RecSys ) – 2013
  • 102. Data model I1 i2 i3 i4 u1 1 1 0 0 u2 1 0 1 0 u3 0 1 1 0 u4 0 1 0 1 Implicit Feedback Matrix Knowledge Graph ^ S 
  • 103. Data model Implicit Feedback Matrix Knowledge Graph ^ S  I1 i2 i3 i4 u1 1 1 0 0 u2 1 0 1 0 u3 0 1 1 0 u4 0 1 0 1
  • 104. Data model Implicit Feedback Matrix Knowledge Graph ^ S  I1 i2 i3 i4 u1 1 1 0 0 u2 1 0 1 0 u3 0 1 1 0 u4 0 1 0 1
  • 105. Path-based features Path: acyclic sequence of relations ( s , .. rl , .. rL ) Frequency of j-th path in the sub-graph related to u and x • The more the paths, the more the relevance of the item. • Different paths have different meaning. • Not all types of paths are relevant. u3 s i2 p2 e1 p1 i1  (s, p2 , p1)
  • 106. Problem formulation Feature vector Set of irrelevant items for u Set of relevantitems for u Training Set Sample of irrelevant items for u 𝑋 𝑢 + = 𝑥 ∈ 𝑋 𝑠Ƹ 𝑢 𝑥 = 1} 𝑋 𝑢 − = 𝑥 ∈ 𝑋 𝑠Ƹ 𝑢 𝑥 = 0} 𝑋 𝑢 −∗ ⊆ 𝑋 𝑢 − 𝑤𝑢𝑥 ∈ ℝ 𝐷 TR = ‫ڂ‬ < 𝑤𝑢𝑥, 𝑠Ƹ 𝑢 𝑥 > 𝑥 ∈ (𝑋 𝑢 + ∪ 𝑋 𝑢 −∗ )}𝑢
  • 110. u1 u2 u3 e1 e3 e4 e2 e5 u4 Path-based features path(1) (s, s, s) : 2 path(2) (s, p2, p1) : 1 x1 x2 x3 x4
  • 111. u1 u2 u3 e1 e3 e4 e2 e5 u4 Path-based features path(1) (s, s, s) : 2 path(2) (s, p2, p1) : 2 x1 x2 x3 x4
  • 112. u1 u2 u3 e1 e3 e4 e2 e5 u4 Path-based features path(1) (s, s, s) : 2 path(2) (s, p2, p1) : 2 path(3) (s, p2, p3, p1) : 1 x1 x2 x3 x4
  • 113. Path-based features path(1) (s, s, s) : 2 path(2) (s, p2, p1) : 2 path(3) (s, p2, p3, p1) : 1 u1 u2 u3 e1 e3 e4 e2 e5 u4 x1 x2 x3 x4
  • 114. Evaluation of different ranking functions 0 0,1 0,2 0,3 0,4 0,5 0,6 given 5 given 10 given 20 given 30 given 50 given All recall@5 userprofile size Movielens BagBoo GBRT Sum
  • 115. Evaluation of different ranking functions 0 0,1 0,2 0,3 0,4 0,5 0,6 given 5 given 10 given 20 given All recall@5 userprofile size Last.fm BagBoo GBRT Sum
  • 116. Comparative approaches • BPRMF, Bayesian Personalized Ranking for Matrix Factorization • BPRLin, Linear Model optimized for BPR (Hybrid alg.) • SLIM, Sparse Linear Methods for Top-N Recommender Systems • SMRMF, Soft Margin Ranking Matrix Factorization MyMediaLite
  • 117. Comparison with other approaches 0 0,1 0,2 0,3 0,4 0,5 0,6 given 5 given 10 given 20 given 30 given 50 given All userprofile size Movielens SPrank BPRMF SLIM BPRLin SMRMF precision@5
  • 118. Comparison with other approaches 0 0,1 0,2 0,3 0,4 0,5 0,6 given 5 given 10 given 20 given All userprofile size Last.fm SPrank BPRMF SLIM BPRLin SMRMF precision@5
  • 120. Graph-based Item Representation The Godfather Mafia_films Gangster_films American Gangster Films_about_organized_crime _in_the_United_States Best_Picture_Academy _Award_winners Best_Thriller_Empire _Award_winners Films_shot_in_New_York_City subject subject subject subject subject subject subject Vito Claudio Ostuni, Tommaso Di Noia, Roberto Mirizzi, Eugenio Di Sciascio. A Linked Data Recommender Systemusing a Neighborhood-based Graph Kernel. The15th International Conferenceon Electronic Commerceand Web Technologies –2014
  • 121. Graph-based Item Representation The Godfather Mafia_films Films_about_organized_crime Gangster_films American Gangster Films_about_organized_crime _in_the_United_States Films_about_organized_ crime_by_country Best_Picture_Academy _Award_winners Best_Thriller_Empire _Award_winners Awards_for_best_film Films_shot_in_New_York_City subject subject subject broader broader broader broader broader subject subject subject subject
  • 122. Graph-based Item Representation The Godfather Mafia_films Films_about_organized_crime Gangster_films American Gangster Films_about_organized_crime _in_the_United_States Films_about_organized_ crime_by_country Best_Picture_Academy _Award_winners Best_Thriller_Empire _Award_winners Awards_for_best_film Films_shot_in_New_York_City subject subject subject broader broader broader broader broader subject subject subject subject
  • 123. Graph-based Item Representation The Godfather Mafia_films Films_about_organized_crime Gangster_films American Gangster Films_about_organized_crime _in_the_United_States Films_about_organized_ crime_by_country Best_Picture_Academy _Award_winners Best_Thriller_Empire _Award_winners Awards_for_best_film Films_shot_in_New_York_City subject subject subject broader broader broader broader broader broader subject subject subject subject
  • 124. Graph-based Item Representation The Godfather Mafia_films Films_about_organized_crime Gangster_films American Gangster Films_about_organized_crime _in_the_United_States Films_about_organized_ crime_by_country Best_Picture_Academy _Award_winners Best_Thriller_Empire _Award_winners Awards_for_best_film Films_shot_in_New_York_City subject subject subject broader broader broader broader broader broader subject subject subject subject Exploit entities descriptions
  • 125. h-hop Item Neighborhood Graph The Godfather Mafia_films Films_about_organized_crime Gangster_films Best_Picture_Academy _Award_winners Awards_for_best_film Films_shot_in_New_York_City subject subject subject broader broader broader
  • 126. Kernel Methods Work by embedding data in a vector space and looking for linear patterns in such space 𝑥 → 𝜙(𝑥) [Kernel Methods for General PatternAnalysis. Nello Cristianini . http://www.kernel-methods.net/tutorials/KMtalk.pdf] 𝜙(𝑥) 𝜙 𝑥Input space Feature space We can work in the new space F by specifying an inner product function between points in it 𝑘 𝑥𝑖, 𝑥𝑗 = < 𝜙(𝑥𝑖), 𝜙(𝑥𝑗)>
  • 127. h-hop Item Entity-based Neighborhood Graph Kernel Explicit computation of the feature map entity importance in the item neighborhood graph 𝑘 𝐺ℎ 𝑥𝑖, 𝑥𝑗 = 𝜙 𝐺ℎ 𝑥𝑖 , 𝜙 𝐺ℎ 𝑥𝑗 𝜙 𝐺ℎ 𝑥𝑖 = (𝑤𝑥𝑖,𝑒1 , 𝑤𝑥𝑖,𝑒2 , …, 𝑤𝑥𝑖,𝑒 𝑚 , … , 𝑤 𝑥𝑖,𝑒 𝑡 )
  • 128. Explicit computation of the feature map # edges involving 𝑒 𝑚 at l hops from 𝑥𝑖 a.k.a. frequency of the entity in the item neighborhood graph factor taking into account at which hop the entity appears h-hop Item Entity-based Neighborhood Graph Kernel 𝑘 𝐺ℎ 𝑥𝑖, 𝑥𝑗 = 𝜙 𝐺ℎ 𝑥𝑖 , 𝜙 𝐺ℎ 𝑥𝑗 𝜙 𝐺ℎ 𝑥𝑖 = (𝑤𝑥𝑖,𝑒1 , 𝑤𝑥𝑖,𝑒2 , …, 𝑤𝑥𝑖,𝑒 𝑚 , … , 𝑤 𝑥𝑖,𝑒 𝑡 )
  • 129. Weights computation example i e1 e2 p3 p2 e4 e5 p3 p3 h=2 𝑐 𝑃෠1 𝑥 𝑖 ,𝑒1 = 2 𝑐 𝑃෠1 𝑥 𝑖 ,𝑒2 = 1 𝑐 𝑃෠2 𝑥 𝑖 ,𝑒4 = 1 𝑐 𝑃෠2 𝑥 𝑖 ,𝑒5 = 2
  • 130. Weights computation example i e1 e2 p3 p2 e4 e5 p3 p3 h=2 𝑐 𝑃෠1 𝑥 𝑖 ,𝑒1 = 2 𝑐 𝑃෠1 𝑥 𝑖 ,𝑒2 = 1 𝑐 𝑃෠2 𝑥 𝑖 ,𝑒4 = 1 𝑐 𝑃෠2 𝑥 𝑖 ,𝑒5 = 2 Informative entity about the item even if not directly related to it
  • 131. Experimental Settings • Trained a SVM Regression model for each user • Accuracy Evaluation: Precision, Recall • Novelty Evaluation: Entropy-based Novelty (All Items protocol) [the lower the better]
  • 133. Comparative approaches •NB: 1-hop item neigh. + Naive Bayes classifier •VSM: 1-hop item neigh. Vector Space Model (tf-idf) + SVM regr •WK: 2-hop item neigh. Walk-based kernel + SVM regr
  • 134. Comparison with other approaches (i) 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Prec@10 [20/80] Prec@10 [40/60] Prec@10 [80/20] NK-bestPrec NK-bestEntr NB VSM WK Rated test items protocol
  • 135. Comparison with other approaches (ii) 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 EBN@10 [20/80] EBN@10 [40/60] EBN@10 [80/20] NK-bestPrec NK-bestEntr NB VSM WK
  • 137. The FreeSound case study Vito ClaudioOstuni, Sergio Oramas, Tommaso Di Noia, Xavier Serra, Eugenio Di Sciascio. A Semantic Hybrid Approach for Sound Recommendation. 24th World Wide Web Conference - 2015
  • 138. FreeSound Knowledge Graph Item textual descriptions enrichment: Entity Linking tools can be used to enrich item textual descriptions with LOD
  • 139. Explicit computation of the feature map # sequences and subsequences of nodes from 𝑥𝑖 to em Normalization factor h-hop Item Node-Based Neighborhood Graph Kernel 𝜙 𝐺ℎ 𝑥𝑖 = (𝑤𝑥𝑖,𝑝∗1 , …, 𝑤𝑥𝑖,𝑝∗ 𝑚 , … , 𝑤 𝑥𝑖,𝑝∗ 𝑡 ) 𝑘 𝐺ℎ 𝑥𝑖, 𝑥𝑗 = 𝜙 𝐺ℎ 𝑥𝑖 , 𝜙 𝐺ℎ 𝑥𝑗
  • 140. Hybrid Recommendation via Feature Combination The hybridizations is based on the combination of different data sources Final approach: collaborative + LOD + textual description + tags Users who rated the item u1 u2 u3 …. entity1 entity2 …. keyw1 keyw2 … tag1 … entities from the knowledge graph (explicit feature mapping) Keywords extracted from the textual description tags associated to the item Item Feature Vector
  • 144. • Feature combination hybrid approach • adding collaborative features to item contentfeature vectors can improve considerably recommendation accuracy • Semantic Enrichment • semantics can help in improving differentperformances beyond accuracy such as novelty and catalog coverage Hybrid approaches: some lessons learnt
  • 146. Select the domain(s) of your RS SELECT count(?i) AS ?num ?c WHERE { ?i a ?c . FILTER(regex(?c, "^http://dbpedia.org/ontology")) . } ORDER BY DESC(?num)
  • 147. Does the LOD dataset selection matter?
  • 148. A comparison between DBpedia and Freebase Accuracy Coverage Diversity Novelty Freebase + + - - DBpedia - - + + Phuong Nguyen, Paolo Tomeo, Tommaso Di Noia, Eugenio Di Sciascio. Content-based recommendationsvia DBpedia and Freebase: a casestudy in the music domain. The14th International Semantic Web Conference - ISWC 2015
  • 149. A comparison between DBpedia and Freebase Accuracy Coverage Diversity Novelty 1-hop - - - + 2-hop + + + - Phuong Nguyen, Paolo Tomeo, Tommaso Di Noia, Eugenio Di Sciascio. Content-based recommendationsvia DBpedia and Freebase: a casestudy in the music domain. The14th International Semantic Web Conference - ISWC 2015
  • 150. Conclusions • Linked Open Data to enrich the contentdescriptionsof item • Exploit differentcharacteristcsof the semantic network to represent/learnfeatures • Improved accuracy • Improved novelty • Improved Aggregate Diversity • Entity linking for a better expoitationof text-based data • Select the right approach, dataset,set of properties to build your RS
  • 151. Open issues • Generalize to graph pattern extraction to represent features • Automatically select the triples related to the domain of interest • Automatically select meaningful properties to represent items • Analysis with respect to «knowledge coverage» of the dataset – What is the best approach?
  • 152. Not covered here • User profile • Preferences • Context-aware • Knowledge-based approaches • …
  • 153. Many thanks to the RecSys crew @ SisInf Lab Roberto Mirizzi now at Yahoo! CA Vito Claudio Ostuni now at Jessica Rosati Phd Fellowship Awardee @ Paolo Tomeo Jindřich Mynarz Phuong Nguyen Sergio Oramas Aleksandra Karpus Visiting Students and PostDoc
  • 154. Recommender Systems and Linked Open Data Tommaso Di Noia Polytechnic University of Bari ITALY 11th Reasoning Web Summer School – Berlin August 1, 2015 tommaso.dinoia@poliba.it @TommasoDiNoia