SlideShare ist ein Scribd-Unternehmen logo
1 von 51
NUMERICAL DIFFERENTIATION
The derivative of f (x) at x0 is:

f ′( x 0 ) =

Limit
h→ 0

f ( x0 + h) − f ( x0 )
h

An approximation to this is:

f ( x0 + h) − f ( x0 )
f ′( x 0 ) ≈
h

for small values of h.

Forward Difference
Formula
Let f ( x ) = ln x and x0 = 1.8
Find an approximate value for f ′(1.8)

h

f (1.8)

f (1.8 + h)

0.1 0.5877867 0.6418539

f (1.8 + h) − f (1.8)
h
0.5406720

0.01 0.5877867 0.5933268

0.5540100

0.001 0.5877867 0.5883421

0.5554000

The exact value of

f ′(1.8) = 0.55 5
Assume that a function goes through three points:

( x0 , f ( x0 ) ) , ( x1 , f ( x1 ) ) and ( x2 , f ( x2 ) ) .
f ( x) ≈ P( x)
P ( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x2 )
Lagrange Interpolating Polynomial
P ( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x 2 )

( x − x1 )( x − x2 )
P( x) =
f ( x0 )
( x0 − x1 )( x0 − x2 )
( x − x0 )( x − x2 )
+
f ( x1 )
( x1 − x0 )( x1 − x2 )
( x − x0 )( x − x1 )
+
f ( x2 )
( x2 − x0 )( x2 − x1 )
f ′( x ) ≈ P ′( x )

2 x − x1 − x2
P ′( x ) =
f ( x0 )
( x0 − x1 )( x0 − x2 )
2 x − x0 − x2
+
f ( x1 )
( x1 − x0 )( x1 − x2 )
2 x − x0 − x1
+
f ( x2 )
( x2 − x0 )( x2 − x1 )
If the points are equally spaced, i.e.,

x1 = x0 + h and x 2 = x0 + 2h
2 x0 − ( x0 + h) − ( x0 + 2h)
P ′( x0 ) =
f ( x0 )
{ x0 − ( x0 + h)}{ x0 − ( x0 + 2h)}
2 x0 − x0 − ( x0 + 2h)
+
f ( x1 )
{ ( x0 + h) − x0 }{ ( x0 + h) − ( x0 + 2h)}
2 x0 − x0 − ( x0 + h)
+
f ( x2 )
{ ( x0 + 2h) − x0 }{ ( x0 + 2h) − ( x0 + h)}
− 3h
− 2h
−h
P ′( x 0 ) =
f ( x0 ) +
f ( x1 ) + 2 f ( x 2 )
2
2
2h
−h
2h
1
{ − 3 f ( x0 ) + 4 f ( x1 ) − f ( x2 ) }
P ′( x0 ) =
2h
Three-point formula:

1
{ − 3 f ( x0 ) + 4 f ( x0 + h) − f ( x0 + 2h) }
f ′( x0 ) ≈
2h
If the points are equally spaced with x0 in the middle:

x1 = x0 − h and x 2 = x0 + h

2 x0 − ( x0 − h) − ( x0 + h)
P ′( x0 ) =
f ( x0 )
{ x0 − ( x0 − h)}{ ( x0 − ( x0 + h)}
2 x0 − x0 − ( x0 + h)
+
f ( x1 )
{ ( x0 − h) − x0 }{ ( x0 − h) − ( x0 + h)}
2 x0 − x0 − ( x0 − h)
+
f ( x2 )
{ ( x0 + h) − x0 }{ ( x0 + h) − ( x0 − h)}
0
−h
h
P ′( x 0 ) =
f ( x0 ) + 2 f ( x1 ) + 2 f ( x 2 )
2
−h
2h
2h
Another Three-point formula:

1
{ f ( x0 + h) − f ( x0 − h) }
f ′( x0 ) ≈
2h
Alternate approach (Error estimate)
Take Taylor series expansion of f(x+h) about x:
2

3

h ( 2)
h ( 3)
f ( x + h) = f ( x ) + hf ′( x ) +
f ( x) +
f ( x) + 
2
3!
h2 ( 2 )
h3 ( 3 )
f ( x + h) − f ( x ) = hf ′( x ) +
f ( x) +
f ( x) + 
2
3!
f ( x + h) − f ( x )
h ( 2)
h2 ( 3 )
= f ′( x ) + f ( x ) +
f ( x) + 
h
2
3!
.............. (1)
f ( x + h) − f ( x )
= f ′( x ) + O ( h)
h
f ( x + h) − f ( x )
f ′( x ) =
− O ( h)
h
f ( x + h) − f ( x )
f ′( x ) ≈
h

Forward Difference
Formula

h ( 2)
h2 ( 3 )
O ( h) = f ( x ) +
f ( x) +
2
3!
4h 2 ( 2 )
8h 3 ( 3 )
f ( x + 2h) = f ( x ) + 2hf ′( x ) +
f ( x) +
f ( x) + 
2
3!
4h 2 ( 2 )
8h 3 ( 3 )
f ( x + 2h) − f ( x ) = 2hf ′( x ) +
f ( x) +
f ( x) + 
2
3!
f ( x + 2h ) − f ( x )
2h ( 2 )
4h 2 ( 3 )
= f ′( x ) +
f ( x) +
f ( x) + 
2h
2
3!
................. (2)
f ( x + h) − f ( x )
h ( 2)
h ( 3)
= f ′( x ) + f ( x ) +
f ( x) + 
h
2
3!
.............. (1)
2

f ( x + 2h ) − f ( x )
2h ( 2 )
4h 2 ( 3 )
= f ′( x ) +
f ( x) +
f ( x) + 
2h
2
3!
................. (2)

2 X Eqn. (1) – Eqn. (2)
f ( x + h) − f ( x ) f ( x + 2h) − f ( x )
2
−
h
2h
2 h2 ( 3 )
6 h3 ( 4 )
= f ′( x ) −
f ( x) −
f ( x) − 
3!
4!
− f ( x + 2 h) + 4 f ( x + h) − 3 f ( x )
2h
2
3
2h ( 3 )
6h ( 4 )
′( x ) −
= f
f ( x) −
f ( x) − 
3!
4!
= f ′ ( x ) + O h2

( )
− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
= f ′( x ) + O h2
2h

( )

− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
f ′( x ) =
− O h2
2h

( )

− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
f ′( x ) ≈
2h
Three-point Formula

( )

2 h2 ( 3 )
6 h3 ( 4 )
O h2 = −
f ( x) −
f ( x) − 
3!
4!
The Second Three-point Formula
Take Taylor series expansion of f(x+h) about x:

h2 ( 2 )
h3 ( 3 )
f ( x + h) = f ( x ) + hf ′( x ) +
f ( x) +
f ( x) +
2
3!
Take Taylor series expansion of f(x-h) about x:
2

3

h ( 2)
h ( 3)
f ( x − h) = f ( x ) − hf ′( x ) +
f ( x) −
f ( x) + 
2
3!
Subtract one expression from another

2h 3 ( 3 )
2h 6 ( 6 )
f ( x + h) − f ( x − h) = 2hf ′( x ) +
f ( x) +
f ( x) + 
3!
6!
2h 3 ( 3 )
2h 6 ( 6 )
f ( x + h) − f ( x − h) = 2hf ′( x ) +
f ( x) +
f ( x) + 
3!
6!

f ( x + h) − f ( x − h)
h2 ( 3)
h5 ( 6 )
= f ′( x ) +
f ( x) +
f ( x) + 
2h
3!
6!
f ( x + h) − f ( x − h) h 2 ( 3 )
h5 ( 6 )
f ′( x ) =
−
f ( x) −
f ( x) − 
2h
3!
6!
f ′( x ) =

f ( x + h ) − f ( x − h)
+ O h2
2h

( )

( )

h2 ( 3)
h5 ( 6 )
O h2 = −
f ( x) −
f ( x) − 
3!
6!

f ( x + h) − f ( x − h )
f ′( x ) ≈
2h

Second Three-point Formula
Summary of Errors

f ( x + h) − f ( x )
f ′( x ) ≈
h
Error term

Forward Difference
Formula

h ( 2)
h2 ( 3 )
O ( h) = f ( x ) +
f ( x) +
2
3!
Summary of Errors continued
First Three-point Formula

− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
f ′( x ) ≈
2h

( )

2 h2 ( 3 )
6 h3 ( 4 )
Error term O h2 = −
f ( x) −
f ( x) − 
3!
4!
Summary of Errors continued
Second Three-point Formula

f ( x + h) − f ( x − h )
f ′( x ) ≈
2h

( )

h2 ( 3)
h5 ( 6 )
O h2 = −
f ( x) −
f ( x) − 
Error term
3!
6!
Example:

f ( x ) = xe

x

Find the approximate value of

x

f ( x)

1.9

12.703199

2.0

14.778112

2.1
2.2

17.148957
19.855030

f ′( 2 )

with

h = 0.1
Using the Forward Difference formula:

1
f ′ ( x0 ) ≈ { f ( x0 + h ) − f ( x0 ) }
h

1
f ′ ( 2) ≈
{ f ( 2.1) − f ( 2 ) }
0.1
1
=
{ 17.148957 − 14.778112}
0.1
= 23.708450
Using the 1st Three-point formula:

1
{ − 3 f ( x0 ) + 4 f ( x0 + h) − f ( x0 + 2h) }
f ′( x0 ) ≈
2h

1
[ − 3 f ( 2) + 4 f ( 2.1) − f ( 2.2)]
f ′( 2 ) ≈
2 × 0.1
1
[ − 3 × 14.778112 + 4 × 17.148957
=
0.2
− 19.855030 ]
= 22.032310
Using the 2nd Three-point formula:

1
{ f ( x0 + h) − f ( x0 − h) }
f ′( x0 ) ≈
2h

1
[ f ( 2.1) − f (1.9)]
f ′( 2 ) ≈
2 × 0.1
1
[ 17.148957 − 12.703199
=
0.2
= 22.228790
The exact value of

f ′( 2 ) is : 22.167168

]
Comparison of the results with h = 0.1
The exact value of f ′ ( 2 ) is 22.167168
Formula

f ′ ( 2)

Error

Forward Difference

23.708450

1.541282

1st Three-point

22.032310

0.134858

2nd Three-point

22.228790

0.061622
Second-order Derivative

h2 ( 2 )
h3 ( 3 )
f ( x + h) = f ( x ) + hf ′( x ) +
f ( x) +
f ( x) + 
2
3!
2

3

h ( 2)
h ( 3)
f ( x − h) = f ( x ) − hf ′( x ) +
f ( x) −
f ( x) + 
2
3!
Add these two equations.

2h 2 ( 2 )
2h4 ( 4 )
f ( x + h) + f ( x − h) = 2 f ( x ) +
f ( x) +
f ( x) + 
2
4!
2h2 ( 2 )
2 h4 ( 4 )
f ( x + h) − 2 f ( x ) + f ( x − h) =
f ( x) +
f ( x) +
2
4!
f ( x + h) − 2 f ( x ) + f ( x − h)
2h ( 4 )
( 2)
= f ( x) +
f ( x) + 
2
h
4!
2

f ( x + h ) − 2 f ( x ) + f ( x − h ) 2h 2 ( 4 )
f ( 2) ( x ) =
−
f ( x) + 
2
h
4!
f

( 2)

f ( x + h) − 2 f ( x ) + f ( x − h)
( x) ≈
h2
NUMERICAL INTEGRATION
b

∫ f ( x )dx =
a

area under the curve f(x) between

x = a to x = b.

In many cases a mathematical expression for f(x) is
unknown and in some cases even if f(x) is known its
complex form makes it difficult to perform the integration.
y
f(b)

f(x)

f(a)

x 0 =a

x 0 =b

x
y

f(b)
f(x)
f(a)

x 0 =a

x 0 =b

x
Area of the trapezoid
The length of the two parallel sides of the trapezoid
are: f(a) and f(b)
The height is b-a
b

∫
a

b−a
[ f ( a ) + f ( b )]
f ( x )dx ≈
2
h
= [ f ( a ) + f ( b )]
2
Simpson’s Rule:

∫

x2

x0

x2

f ( x )dx ≈ ∫ P ( x )dx
x0

x1 = x0 + h and x 2 = x0 + 2h
∫

x2
x0

P ( x ) dx =

∫
+
∫
+

x2
x0

x2

x0

∫

x2
x0

( x − x1 )( x − x2 )
f ( x0 ) dx
( x0 − x1 )( x0 − x2 )

( x − x0 )( x − x2 )
f ( x1 ) dx
( x1 − x0 )( x1 − x2 )

( x − x0 )( x − x1 )
f ( x2 ) dx
( x2 − x0 )( x2 − x1 )
∫

x2

x0

x2

f ( x )dx ≈ ∫ P ( x )dx
x0

h
= [ f ( x0 ) + 4 f ( x1 ) + f ( x 2 )]
3
y

f(b)
f(x)
f(a)

x 0 =a

x 0 =b

x
y

f(b)
f(x)
f(a)

x 0 =a

x 0 =b

x
y

f(b)
f(x)
f(a)

x 0 =a

x 0 =b

x
y

f(b)
f(x)
f(a)

x 0 =a

x 0 =b

x
Composite Numerical Integration
Riemann Sum
The area under the curve is subdivided into n
subintervals. Each subinterval is treated as a
rectangle. The area of all subintervals are added
to determine the area under the curve.
There are several variations of Riemann sum as
applied to composite integration.
∆ xIn Left Riemann
= ( b − a) / n
sum,
x1 = a the left-

x2
x3

side sample of
= afunction is
the + ∆ x
used as the
= a + 2∆the
x
height of
individual
M
rectangle.

xi = a + ( i − 1) ∆ x

∫

b
a

n

f ( x ) dx ≈ ∑ f ( xi ) ∆ x
i =1
∆x = ( b − a) / n

In Right Riemann
sum, the right-side
x1 = a + ∆ x
sample of the
x2 = a is used
function+ 2∆ x as
the height of the
x3 = a + 3∆ x
individual rectangle.

M
xi = a + i∆ x
n

∫ f ( x ) dx ≈ ∑ f ( x ) ∆ x
b

a

i =1

i
In the ) / n
∆ x = ( b − aMidpoint
Rule, the sample at
x1 = the (middle1of ∆ x / 2 )
a + 2 ×1 − ) ( the
x2 =subinterval1is( used 2 )
a + ( 2× 2 − ) ∆x /
as the height of the
x3 = individual 1) ( ∆ x / 2 )
a + ( 2×3−
M rectangle.

xi = a + ( 2 × i − 1) ( ∆ x / 2 )
n

∫ f ( x ) dx ≈ ∑ f ( x ) ∆ x
b

a

i =1

i
Composite Trapezoidal Rule:
Divide the interval into n subintervals and apply
Trapezoidal Rule in each subinterval.
b

∫
a


h
f ( x )dx ≈  f ( a ) + 2∑ f ( x k ) + f (b )
2
k =1

n −1

where

b−a
h=
and x k = a + kh for k = 0, 1, 2, ... , n
n
π

Find

∫ sin (x)dx
0

by dividing the interval into 20 subintervals.

n = 20
b−a π
h=
=
n
20
kπ
x k = a + kh =
, k = 0, 1, 2, ....., 20
20
π


h
∫ sin( x )dx ≈ 2  f ( a ) + 2∑ f ( xk ) + f (b)
k =1


0
n −1

19

π 
 kπ 
=
sin( 0 ) + 2∑ sin 20  + sin( π ) 
40 
 
k =1


= 1.995886
Composite Simpson’s Rule:
Divide the interval into n subintervals and apply
Simpson’s Rule on each consecutive pair of subinterval.
Note that n must be even.

b

∫
a

h
f ( x )dx ≈  f ( a ) + 2
3
n/ 2

+ 4∑
k =1

( n / 2 ) −1

∑ f (x
k =1

2k

)


f ( x 2 k −1 ) + f (b )

where

b−a
h=
and x k = a + kh for k = 0, 1, 2, ... , n
n
π

Find

∫ sin (x)dx
0

by dividing the interval into 20 subintervals.

b−a π
n = 20
h=
=
n
20
kπ
x k = a + kh =
, k = 0, 1, 2, ....., 20
20
π

9
π 
 2kπ 
∫ sin( x )dx ≈ 60 sin( 0) + 2∑ sin 20 


k =1

0


 ( 2k − 1)π 
+ 4∑ sin
 + sin( π)
20 

k =1

= 2.000006
10

Weitere ähnliche Inhalte

Was ist angesagt?

Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
Jigisha Dabhi
 

Was ist angesagt? (20)

Runge kutta
Runge kuttaRunge kutta
Runge kutta
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Applications of differential equation
Applications of differential equationApplications of differential equation
Applications of differential equation
 
newton raphson method
newton raphson methodnewton raphson method
newton raphson method
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
Maxima & Minima for IIT JEE | askIITians
Maxima & Minima for IIT JEE | askIITiansMaxima & Minima for IIT JEE | askIITians
Maxima & Minima for IIT JEE | askIITians
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Bisection and fixed point method
Bisection and fixed point methodBisection and fixed point method
Bisection and fixed point method
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Gauss Quadrature Formula
Gauss Quadrature FormulaGauss Quadrature Formula
Gauss Quadrature Formula
 
History and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier AnalaysisHistory and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier Analaysis
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Unit vi
Unit viUnit vi
Unit vi
 
Interpolation
InterpolationInterpolation
Interpolation
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
 

Andere mochten auch

09 numerical differentiation
09 numerical differentiation09 numerical differentiation
09 numerical differentiation
Mohammad Tawfik
 
08 numerical integration 2
08 numerical integration 208 numerical integration 2
08 numerical integration 2
Mohammad Tawfik
 
08 numerical integration
08 numerical integration08 numerical integration
08 numerical integration
Mohammad Tawfik
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178
 

Andere mochten auch (20)

Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
03 open methods
03 open methods03 open methods
03 open methods
 
Applied numerical methods lec11
Applied numerical methods lec11Applied numerical methods lec11
Applied numerical methods lec11
 
09 numerical differentiation
09 numerical differentiation09 numerical differentiation
09 numerical differentiation
 
Chapter07
Chapter07Chapter07
Chapter07
 
08 numerical integration 2
08 numerical integration 208 numerical integration 2
08 numerical integration 2
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
08 numerical integration
08 numerical integration08 numerical integration
08 numerical integration
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
Complex Variable & Numerical Method
Complex Variable & Numerical MethodComplex Variable & Numerical Method
Complex Variable & Numerical Method
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
YOGA ASANA (RAJEEV TYAGI)
YOGA ASANA (RAJEEV TYAGI)YOGA ASANA (RAJEEV TYAGI)
YOGA ASANA (RAJEEV TYAGI)
 
Top 5 pontoon boat reviews 2017
Top 5 pontoon boat reviews 2017Top 5 pontoon boat reviews 2017
Top 5 pontoon boat reviews 2017
 
Effectiveness of an innovative mHealth intervention to improve coverage of pr...
Effectiveness of an innovative mHealth intervention to improve coverage of pr...Effectiveness of an innovative mHealth intervention to improve coverage of pr...
Effectiveness of an innovative mHealth intervention to improve coverage of pr...
 
ExpoPrint Latin America 2018: The Largest Printing Event in Latin America
ExpoPrint Latin America 2018:  The Largest Printing Event in Latin AmericaExpoPrint Latin America 2018:  The Largest Printing Event in Latin America
ExpoPrint Latin America 2018: The Largest Printing Event in Latin America
 
YOGA asana by TARUN SHARMA
YOGA asana by TARUN SHARMAYOGA asana by TARUN SHARMA
YOGA asana by TARUN SHARMA
 

Ähnlich wie Numerical differentiation integration

8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
klorofila
 

Ähnlich wie Numerical differentiation integration (20)

Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Numerical Methods and Analysis
Numerical Methods and AnalysisNumerical Methods and Analysis
Numerical Methods and Analysis
 
Differntiation
 Differntiation Differntiation
Differntiation
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
Parabola
ParabolaParabola
Parabola
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Vertex
VertexVertex
Vertex
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Combined Functions
Combined FunctionsCombined Functions
Combined Functions
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)
 

Mehr von Tarun Gehlot

Mehr von Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variables
 
Intervals of validity
Intervals of validityIntervals of validity
Intervals of validity
 
Modelling with first order differential equations
Modelling with first order differential equationsModelling with first order differential equations
Modelling with first order differential equations
 
Review taylor series
Review taylor seriesReview taylor series
Review taylor series
 

Kürzlich hochgeladen

Kürzlich hochgeladen (20)

UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 

Numerical differentiation integration

  • 1.
  • 2. NUMERICAL DIFFERENTIATION The derivative of f (x) at x0 is: f ′( x 0 ) = Limit h→ 0 f ( x0 + h) − f ( x0 ) h An approximation to this is: f ( x0 + h) − f ( x0 ) f ′( x 0 ) ≈ h for small values of h. Forward Difference Formula
  • 3. Let f ( x ) = ln x and x0 = 1.8 Find an approximate value for f ′(1.8) h f (1.8) f (1.8 + h) 0.1 0.5877867 0.6418539 f (1.8 + h) − f (1.8) h 0.5406720 0.01 0.5877867 0.5933268 0.5540100 0.001 0.5877867 0.5883421 0.5554000 The exact value of f ′(1.8) = 0.55 5
  • 4. Assume that a function goes through three points: ( x0 , f ( x0 ) ) , ( x1 , f ( x1 ) ) and ( x2 , f ( x2 ) ) . f ( x) ≈ P( x) P ( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x2 ) Lagrange Interpolating Polynomial
  • 5. P ( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x 2 ) ( x − x1 )( x − x2 ) P( x) = f ( x0 ) ( x0 − x1 )( x0 − x2 ) ( x − x0 )( x − x2 ) + f ( x1 ) ( x1 − x0 )( x1 − x2 ) ( x − x0 )( x − x1 ) + f ( x2 ) ( x2 − x0 )( x2 − x1 )
  • 6. f ′( x ) ≈ P ′( x ) 2 x − x1 − x2 P ′( x ) = f ( x0 ) ( x0 − x1 )( x0 − x2 ) 2 x − x0 − x2 + f ( x1 ) ( x1 − x0 )( x1 − x2 ) 2 x − x0 − x1 + f ( x2 ) ( x2 − x0 )( x2 − x1 )
  • 7. If the points are equally spaced, i.e., x1 = x0 + h and x 2 = x0 + 2h 2 x0 − ( x0 + h) − ( x0 + 2h) P ′( x0 ) = f ( x0 ) { x0 − ( x0 + h)}{ x0 − ( x0 + 2h)} 2 x0 − x0 − ( x0 + 2h) + f ( x1 ) { ( x0 + h) − x0 }{ ( x0 + h) − ( x0 + 2h)} 2 x0 − x0 − ( x0 + h) + f ( x2 ) { ( x0 + 2h) − x0 }{ ( x0 + 2h) − ( x0 + h)}
  • 8. − 3h − 2h −h P ′( x 0 ) = f ( x0 ) + f ( x1 ) + 2 f ( x 2 ) 2 2 2h −h 2h 1 { − 3 f ( x0 ) + 4 f ( x1 ) − f ( x2 ) } P ′( x0 ) = 2h Three-point formula: 1 { − 3 f ( x0 ) + 4 f ( x0 + h) − f ( x0 + 2h) } f ′( x0 ) ≈ 2h
  • 9. If the points are equally spaced with x0 in the middle: x1 = x0 − h and x 2 = x0 + h 2 x0 − ( x0 − h) − ( x0 + h) P ′( x0 ) = f ( x0 ) { x0 − ( x0 − h)}{ ( x0 − ( x0 + h)} 2 x0 − x0 − ( x0 + h) + f ( x1 ) { ( x0 − h) − x0 }{ ( x0 − h) − ( x0 + h)} 2 x0 − x0 − ( x0 − h) + f ( x2 ) { ( x0 + h) − x0 }{ ( x0 + h) − ( x0 − h)}
  • 10. 0 −h h P ′( x 0 ) = f ( x0 ) + 2 f ( x1 ) + 2 f ( x 2 ) 2 −h 2h 2h Another Three-point formula: 1 { f ( x0 + h) − f ( x0 − h) } f ′( x0 ) ≈ 2h
  • 11. Alternate approach (Error estimate) Take Taylor series expansion of f(x+h) about x: 2 3 h ( 2) h ( 3) f ( x + h) = f ( x ) + hf ′( x ) + f ( x) + f ( x) +  2 3! h2 ( 2 ) h3 ( 3 ) f ( x + h) − f ( x ) = hf ′( x ) + f ( x) + f ( x) +  2 3! f ( x + h) − f ( x ) h ( 2) h2 ( 3 ) = f ′( x ) + f ( x ) + f ( x) +  h 2 3! .............. (1)
  • 12. f ( x + h) − f ( x ) = f ′( x ) + O ( h) h f ( x + h) − f ( x ) f ′( x ) = − O ( h) h f ( x + h) − f ( x ) f ′( x ) ≈ h Forward Difference Formula h ( 2) h2 ( 3 ) O ( h) = f ( x ) + f ( x) + 2 3!
  • 13. 4h 2 ( 2 ) 8h 3 ( 3 ) f ( x + 2h) = f ( x ) + 2hf ′( x ) + f ( x) + f ( x) +  2 3! 4h 2 ( 2 ) 8h 3 ( 3 ) f ( x + 2h) − f ( x ) = 2hf ′( x ) + f ( x) + f ( x) +  2 3! f ( x + 2h ) − f ( x ) 2h ( 2 ) 4h 2 ( 3 ) = f ′( x ) + f ( x) + f ( x) +  2h 2 3! ................. (2)
  • 14. f ( x + h) − f ( x ) h ( 2) h ( 3) = f ′( x ) + f ( x ) + f ( x) +  h 2 3! .............. (1) 2 f ( x + 2h ) − f ( x ) 2h ( 2 ) 4h 2 ( 3 ) = f ′( x ) + f ( x) + f ( x) +  2h 2 3! ................. (2) 2 X Eqn. (1) – Eqn. (2)
  • 15. f ( x + h) − f ( x ) f ( x + 2h) − f ( x ) 2 − h 2h 2 h2 ( 3 ) 6 h3 ( 4 ) = f ′( x ) − f ( x) − f ( x) −  3! 4! − f ( x + 2 h) + 4 f ( x + h) − 3 f ( x ) 2h 2 3 2h ( 3 ) 6h ( 4 ) ′( x ) − = f f ( x) − f ( x) −  3! 4! = f ′ ( x ) + O h2 ( )
  • 16. − f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x ) = f ′( x ) + O h2 2h ( ) − f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x ) f ′( x ) = − O h2 2h ( ) − f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x ) f ′( x ) ≈ 2h Three-point Formula ( ) 2 h2 ( 3 ) 6 h3 ( 4 ) O h2 = − f ( x) − f ( x) −  3! 4!
  • 17. The Second Three-point Formula Take Taylor series expansion of f(x+h) about x: h2 ( 2 ) h3 ( 3 ) f ( x + h) = f ( x ) + hf ′( x ) + f ( x) + f ( x) + 2 3! Take Taylor series expansion of f(x-h) about x: 2 3 h ( 2) h ( 3) f ( x − h) = f ( x ) − hf ′( x ) + f ( x) − f ( x) +  2 3! Subtract one expression from another 2h 3 ( 3 ) 2h 6 ( 6 ) f ( x + h) − f ( x − h) = 2hf ′( x ) + f ( x) + f ( x) +  3! 6!
  • 18. 2h 3 ( 3 ) 2h 6 ( 6 ) f ( x + h) − f ( x − h) = 2hf ′( x ) + f ( x) + f ( x) +  3! 6! f ( x + h) − f ( x − h) h2 ( 3) h5 ( 6 ) = f ′( x ) + f ( x) + f ( x) +  2h 3! 6! f ( x + h) − f ( x − h) h 2 ( 3 ) h5 ( 6 ) f ′( x ) = − f ( x) − f ( x) −  2h 3! 6!
  • 19. f ′( x ) = f ( x + h ) − f ( x − h) + O h2 2h ( ) ( ) h2 ( 3) h5 ( 6 ) O h2 = − f ( x) − f ( x) −  3! 6! f ( x + h) − f ( x − h ) f ′( x ) ≈ 2h Second Three-point Formula
  • 20. Summary of Errors f ( x + h) − f ( x ) f ′( x ) ≈ h Error term Forward Difference Formula h ( 2) h2 ( 3 ) O ( h) = f ( x ) + f ( x) + 2 3!
  • 21. Summary of Errors continued First Three-point Formula − f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x ) f ′( x ) ≈ 2h ( ) 2 h2 ( 3 ) 6 h3 ( 4 ) Error term O h2 = − f ( x) − f ( x) −  3! 4!
  • 22. Summary of Errors continued Second Three-point Formula f ( x + h) − f ( x − h ) f ′( x ) ≈ 2h ( ) h2 ( 3) h5 ( 6 ) O h2 = − f ( x) − f ( x) −  Error term 3! 6!
  • 23. Example: f ( x ) = xe x Find the approximate value of x f ( x) 1.9 12.703199 2.0 14.778112 2.1 2.2 17.148957 19.855030 f ′( 2 ) with h = 0.1
  • 24. Using the Forward Difference formula: 1 f ′ ( x0 ) ≈ { f ( x0 + h ) − f ( x0 ) } h 1 f ′ ( 2) ≈ { f ( 2.1) − f ( 2 ) } 0.1 1 = { 17.148957 − 14.778112} 0.1 = 23.708450
  • 25. Using the 1st Three-point formula: 1 { − 3 f ( x0 ) + 4 f ( x0 + h) − f ( x0 + 2h) } f ′( x0 ) ≈ 2h 1 [ − 3 f ( 2) + 4 f ( 2.1) − f ( 2.2)] f ′( 2 ) ≈ 2 × 0.1 1 [ − 3 × 14.778112 + 4 × 17.148957 = 0.2 − 19.855030 ] = 22.032310
  • 26. Using the 2nd Three-point formula: 1 { f ( x0 + h) − f ( x0 − h) } f ′( x0 ) ≈ 2h 1 [ f ( 2.1) − f (1.9)] f ′( 2 ) ≈ 2 × 0.1 1 [ 17.148957 − 12.703199 = 0.2 = 22.228790 The exact value of f ′( 2 ) is : 22.167168 ]
  • 27. Comparison of the results with h = 0.1 The exact value of f ′ ( 2 ) is 22.167168 Formula f ′ ( 2) Error Forward Difference 23.708450 1.541282 1st Three-point 22.032310 0.134858 2nd Three-point 22.228790 0.061622
  • 28. Second-order Derivative h2 ( 2 ) h3 ( 3 ) f ( x + h) = f ( x ) + hf ′( x ) + f ( x) + f ( x) +  2 3! 2 3 h ( 2) h ( 3) f ( x − h) = f ( x ) − hf ′( x ) + f ( x) − f ( x) +  2 3! Add these two equations. 2h 2 ( 2 ) 2h4 ( 4 ) f ( x + h) + f ( x − h) = 2 f ( x ) + f ( x) + f ( x) +  2 4! 2h2 ( 2 ) 2 h4 ( 4 ) f ( x + h) − 2 f ( x ) + f ( x − h) = f ( x) + f ( x) + 2 4!
  • 29. f ( x + h) − 2 f ( x ) + f ( x − h) 2h ( 4 ) ( 2) = f ( x) + f ( x) +  2 h 4! 2 f ( x + h ) − 2 f ( x ) + f ( x − h ) 2h 2 ( 4 ) f ( 2) ( x ) = − f ( x) +  2 h 4! f ( 2) f ( x + h) − 2 f ( x ) + f ( x − h) ( x) ≈ h2
  • 30. NUMERICAL INTEGRATION b ∫ f ( x )dx = a area under the curve f(x) between x = a to x = b. In many cases a mathematical expression for f(x) is unknown and in some cases even if f(x) is known its complex form makes it difficult to perform the integration.
  • 33. Area of the trapezoid The length of the two parallel sides of the trapezoid are: f(a) and f(b) The height is b-a b ∫ a b−a [ f ( a ) + f ( b )] f ( x )dx ≈ 2 h = [ f ( a ) + f ( b )] 2
  • 34. Simpson’s Rule: ∫ x2 x0 x2 f ( x )dx ≈ ∫ P ( x )dx x0 x1 = x0 + h and x 2 = x0 + 2h
  • 35. ∫ x2 x0 P ( x ) dx = ∫ + ∫ + x2 x0 x2 x0 ∫ x2 x0 ( x − x1 )( x − x2 ) f ( x0 ) dx ( x0 − x1 )( x0 − x2 ) ( x − x0 )( x − x2 ) f ( x1 ) dx ( x1 − x0 )( x1 − x2 ) ( x − x0 )( x − x1 ) f ( x2 ) dx ( x2 − x0 )( x2 − x1 )
  • 36. ∫ x2 x0 x2 f ( x )dx ≈ ∫ P ( x )dx x0 h = [ f ( x0 ) + 4 f ( x1 ) + f ( x 2 )] 3
  • 42. Riemann Sum The area under the curve is subdivided into n subintervals. Each subinterval is treated as a rectangle. The area of all subintervals are added to determine the area under the curve. There are several variations of Riemann sum as applied to composite integration.
  • 43. ∆ xIn Left Riemann = ( b − a) / n sum, x1 = a the left- x2 x3 side sample of = afunction is the + ∆ x used as the = a + 2∆the x height of individual M rectangle. xi = a + ( i − 1) ∆ x ∫ b a n f ( x ) dx ≈ ∑ f ( xi ) ∆ x i =1
  • 44. ∆x = ( b − a) / n In Right Riemann sum, the right-side x1 = a + ∆ x sample of the x2 = a is used function+ 2∆ x as the height of the x3 = a + 3∆ x individual rectangle. M xi = a + i∆ x n ∫ f ( x ) dx ≈ ∑ f ( x ) ∆ x b a i =1 i
  • 45. In the ) / n ∆ x = ( b − aMidpoint Rule, the sample at x1 = the (middle1of ∆ x / 2 ) a + 2 ×1 − ) ( the x2 =subinterval1is( used 2 ) a + ( 2× 2 − ) ∆x / as the height of the x3 = individual 1) ( ∆ x / 2 ) a + ( 2×3− M rectangle. xi = a + ( 2 × i − 1) ( ∆ x / 2 ) n ∫ f ( x ) dx ≈ ∑ f ( x ) ∆ x b a i =1 i
  • 46. Composite Trapezoidal Rule: Divide the interval into n subintervals and apply Trapezoidal Rule in each subinterval. b ∫ a  h f ( x )dx ≈  f ( a ) + 2∑ f ( x k ) + f (b ) 2 k =1  n −1 where b−a h= and x k = a + kh for k = 0, 1, 2, ... , n n
  • 47. π Find ∫ sin (x)dx 0 by dividing the interval into 20 subintervals. n = 20 b−a π h= = n 20 kπ x k = a + kh = , k = 0, 1, 2, ....., 20 20
  • 48. π  h ∫ sin( x )dx ≈ 2  f ( a ) + 2∑ f ( xk ) + f (b) k =1   0 n −1 19  π   kπ  = sin( 0 ) + 2∑ sin 20  + sin( π )  40    k =1  = 1.995886
  • 49. Composite Simpson’s Rule: Divide the interval into n subintervals and apply Simpson’s Rule on each consecutive pair of subinterval. Note that n must be even. b ∫ a h f ( x )dx ≈  f ( a ) + 2 3 n/ 2 + 4∑ k =1 ( n / 2 ) −1 ∑ f (x k =1 2k )  f ( x 2 k −1 ) + f (b ) 
  • 50. where b−a h= and x k = a + kh for k = 0, 1, 2, ... , n n π Find ∫ sin (x)dx 0 by dividing the interval into 20 subintervals. b−a π n = 20 h= = n 20 kπ x k = a + kh = , k = 0, 1, 2, ....., 20 20
  • 51. π 9 π   2kπ  ∫ sin( x )dx ≈ 60 sin( 0) + 2∑ sin 20    k =1  0   ( 2k − 1)π  + 4∑ sin  + sin( π) 20   k =1  = 2.000006 10