SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
Chapter 3-2
Power Waves and
Power-Gain Expressions
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Maximum Power Transfer
LZ


sE
sZ
V
I


source
impedance
load
impedance
Phasor
s
s L
E
I
Z Z


• The average power dissipated in the load
   
2 2
2 2
2 2
1 1 1
2 2 2
s s L
L rms L L L
s L s L s L
E E R
P I R I R R
Z Z R R X X
 
         
• The maximum power dissipated in the load when s LX X s LR R
s LZ Z

• Maximum power transfer theorem
and
that is (conjugate matched)
• Can we link up the “conjugate matched impedances” and “reflection coefficients” ?
2/31
Department of Electronic Engineering, NTUT
Power Waves
• In this section we discuss the analysis of lumped circuits in
terms of a new set of waves, called power waves.
LZ


sE
sZ
V
I


source
impedance
load
impedance
 Since there is no transmission line, and therefore the characteristic
impedances is not defined.
oZ
d l
LZ
0
 0d
 IN d

 

0
L o
L o
Z Z
Z Z
has no meaning.
No transmission line in between
Can we define the reflection coefficient
w/o transmission lines?
 s sV E Z I
3/31
Department of Electronic Engineering, NTUT
Normalized Impedances (I)
Reference:
[1] K. Kurokawa, “Power waves and the scattering matrix.” IEEE Trans. Microwave Theory and techniques, vol. 13, pp.194-202,
Mar. 1965.
LZ


sE
sZ
V
I


s s sZ R jX 
L L LZ R jX 
• Normalize the impedances with respect to Rs
1 s
s s s
s
X
z r jx j
R
   
L L
L L L
s s
R X
z r jx j
R R
   
4/31
Department of Electronic Engineering, NTUT
Normalized Impedances (II)
1
1
s
s
z rz
z z r

  
 
 U jV  Γ-plane
U
V 1
1
z
z

 

0 
1   1 
• Recall the Smith Chart (Γ-plane)
1 s
s s s
s
X
z r jx j
R
   
L L
L L L
s s
R X
z r jx j
R R
   
 
 
   
   
L s L s L L s ss L s L s
s L s L s L L s s L s L s
r j x x r r jx r jxz r z z Z Z
z r r j x x r r jx r jx z z Z Z
 
       
     
        
z should contains the resistance and reactance of the load
(rL and xL), and the reactance of the source (xs)
• When , the reflection coefficient (maximum power delivering to
the load)
L sZ Z
 0 
5/31
Department of Electronic Engineering, NTUT
Power-waves Representation of One-port Network (I)
  
1
2
p s
s
a V Z I
R
 
 
1
2
p s
s
b V Z I
R
  Res sR Z
• Reflected power wave is equal to zero when the load impedances is
conjugately matched to the source impedance, i.e., .
pb

L sZ Z
where
LZ


sE
sZ pa
pb
V
I


s
p s L s
p s L s
s
V
Zb V Z I Z ZI
Va V Z I Z ZZ
I

  
    
 
p pa b 
• Normalized power waves
pL s
L L p
bZ Z
Z Z a


  

and
6/31
Department of Electronic Engineering, NTUT
Available Power From Source
    
1
2 2
s
p s s s
s s
E
a E Z I Z I
R R

2
2
4
s
p
s
E
a
R
  
1
2
p s
s
a V Z I
R
 s sV E Z I• For and
  
2
2 2
,
1
2 8
s
AVS p p rms
s
E
P a a
R
is the power available from the source.
• Maximum power is delivered to the load when

L sZ Z
    

2
21 1
Re Re
2 2
s
L L L
s L
E
P I Z Z
Z Z
PL attains its maximum value when , and is given by

L sZ Z ,maxL AVSP P
 
2
,max
1
8
s
L AVS
s
E
P P
R
7/31
Department of Electronic Engineering, NTUT
Impedance Mismatch
       
2 2 *1 1 1 1 1
Re
2 2 8 8 2
L p p s s s s
s s
P a b V Z I V Z I V Z I V Z I V I
R R
  
        
2 2 21 1 1
2 2 2
L p p AVS pP a b P b   
 
21
2
p AVS Lb P P
Power dissipated in the load = Available power from source – Reflected power
• When the impedances are mismatched, the power delivering to the
load is
Reflected power = Available power from source – Power dissipated in the load
8/31
Department of Electronic Engineering, NTUT
Generalized Scattering Parameter (I)
1 11 1 12 2p p p p pb S a S a 
2 21 1 22 2p p p p pb S a S a 
  1 1 1 1
1
1
2
pa V Z I
R
  2 2 2 2
2
1
2
pa V Z I
R
 
 1 1 1 1
1
1
2
pb V Z I
R
Two-port
Network
[Sp]
2pa
2pb
1pa
1pb
Port 1 Port 2

1E
1Z
2I1I

1V


2V



2E
2Z
 1 2 2 2
2
1
2
pb V Z I
R

 
• Considering a two-port network, the generalized scattering matrix [Sp]
is found with respect to a reference impedance Re{Z1} at port 1 and
to Re{Z2} at port 2. If Z1 = Z2 = Zo, [Sp] = [S].
9/31
Department of Electronic Engineering, NTUT
Generalized Scattering Parameter (II)
2
1
11
1 0p
p
p
p a
b
S
a


Two-port
Network
[Sp]
2 0pa 
2pb
1pa
1pb
Port 1 Port 2

1E
1Z
2I1I

1V


2V

2Z
1 11 1 12 2p p p p pb S a S a 
2 21 1 22 2p p p p pb S a S a 
1 1
11
1 1
T
p
T
Z Z
S
Z Z




 2 2 2
1 1 11
1 1
1
2 2
IN p p AVS pP a b P S   
1TZ
• Can we find the power by using [S] but not [Sp] ? Sure! We will talk
about this later.
10/31
Department of Electronic Engineering, NTUT
Example
• Calculate the power waves and the power delivered to the load in the
circuit.
100 50LZ j  


10 0sE  
100 50sZ j  
V
I


   
100 50
10 5.59 26.57
100 50 100 50
L
s
L s
Z j
V E
Z Z j j

    
   
   
10
0.05 A
100 50 100 50
s
L s
E
I
Z Z j j
  
   
   
1 1 10
0.5
2 2 2 100
p s s s s
s s
a V Z I E Z I Z I
R R
      
       
1
1 1 1
10 0.05 100 50 0.05 100 50 0
2 2 2 100
p s s s s
s
b V Z I E Z I Z I j j
R R
 
            
2 21 1
0.125 W
2 2
L p pP a b   (Try ) 1
Re
2
LP VI

11/31
Department of Electronic Engineering, NTUT
Example (I)
• Calculate the generalized parameter Sp11 and Sp21 at 1 GHz in the
lossless, reciprocal, two-port network. Then calculate Sp22 and Sp12.
2 10Z  
1.59 nHL 


1E
1 50 50Z j  


1V


2V
10LZ j 
1TZ
1I 2I
1
1 1 1
1 1
0.167 0T
T
Z
V E E
Z Z
   

1
1 1
1 1
0.0118 45
T
E
I E
Z Z
    

2 1 0.118 45V E   
2 1 0.0118 45I E    
  1 1 1 1
1
1
2
pa V Z I
R
  2 2 2 2
2
1
2
pa V Z I
R
 
 1 1 1 1
1
1
2
pb V Z I
R
 
 2 2 2 2
2
1
2
pb V Z I
R
1 0.071 0pa  
1 0.061 78.69pb  
2 0pa 
2 0.037 45pb   
 For Sp11 and Sp21
12/31
Department of Electronic Engineering, NTUT
Example (II)
 
 2
1 1 1
11
1 1 10
10 10 50 50
0.85 78.69
10 10 50 50
p
p T
p
p Ta
b j jZ Z
S
a Z Z j j


  
    
   
2
2
21
1 0
0.037 45
0.525 45
0.071 0
p
p
p
p a
b
S
a

 
    

2 10Z  
1.59 nHL 


2E
1 50 50Z j  


1V


2V
10LZ j 
2TZ
1I 2I
 For Sp22 and Sp12
1 2 0.833 0V E   1 2 0.0118 45I E     2 2 0.92 5.19V E    2 2 0.0118 45I E   
1 0pa  1 0.083 45pb    2 0.158 0pa   2 0.134 11.32pb  
1
2 2 2
22
2 2 20
0.85 11.3
p
p T
p
p Ta
b Z Z
S
a Z Z



   

1
1
12
2 0
0.083 45
0.525 45
0.158 0
p
p
p
p a
b
S
a

 
    

13/31
Department of Electronic Engineering, NTUT
Power-Gain Expressions (I)
Transistor
[S]
2a
2b
1a
1b
Port 1 Port 2


sE
sZ
out
LZ
in
s L
s o
s
s o
Z Z
Z Z

 

L o
L
L o
Z Z
Z Z

 

1 11 1 12 2b S a S a 
2 21 1 22 2b S a S a 
• Consider a microwave amplifier with the source and load reflection
coefficients and measured in a Zo system:s L
• For the transistor, the input and output traveling waves measured in a
Zo system (this is very practical) :
14/31
Department of Electronic Engineering, NTUT
Power-Gain Expressions (II)


sE
sZ
s
LZ
L
Transistor
[S]
The reflection coefficients and S-parameters are separately measured
in a Zo (usually 50 Ω) system
Transistor
[S]
2a
2b
1a
1b


sE
sZ
out
LZ
in
s L
After connecting them all together
The goal is to find the input and output
power relations.
1b
1a 2a
2b
15/31
Department of Electronic Engineering, NTUT
Input Reflection Coefficient
1
1
in
b
a
 
2 2La b 
2 21 1 22 2Lb S a S b   21 1
2
221 L
S a
b
S

 
Transistor
[S]
2a
2b
1a
1b


sE
sZ
out
LZ
in
s L
• After connecting the circuits together, the first step is to find the new
input coefficient , which is the result coming from and .in  S L




1 11 1 12 2b S a S a 
2 21 1 22 2b S a S a 

1 12 21
11
1 221
L
in
L
b S S
S
a S

   
 
12 21
1 11 1 12 2 11 1 1
221
L
L
L
S S
b S a S b S a a
S

    
 
a1 is your input, so the goal here is to find the reflected wave b1
1 11 1 12 2b S a S a 
a1 is your input, to find b1 = you need to find a2
to find a2 = you need to find b2

the relationship between b2 and a1
16/31
Department of Electronic Engineering, NTUT
Output Reflection Coefficient
2
2 0s
out
E
b
a 
 
1 1sa b 
1 11 1 12 2sb S b S a   12 2
1
111 s
S a
b
S

 
12 21
2 21 1 22 2 2 22 2
111
s
s
s
S S
b S b S a a S a
S

    
 
12 212
22
2 110
1
s
s
out
sE
S Sb
S
a S

   
 
Transistor
[S]
2a
2b
1a
1b


sE
sZ
out
LZ
in
s L
• After connecting the circuits together, the second step is to find the
new output coefficient , which is the result coming from and .out  S s


1 11 1 12 2b S a S a 
2 21 1 22 2b S a S a 




The same procedure as finding is applied.in
17/31
Department of Electronic Engineering, NTUT
The Available Power and Input Power (I)


sE
sZ
s
1a
1b
• After finding out the input/output refection coefficients, let’s now deal
with the power.
in
Since we have got , we can discard the circuits
connected after the source right here.
in
1 1s sV E I Z 


1V
1I
  1 1
1 1 1 1 1s s s s
o
V V
V V V E I I Z E Z
Z
 
     
        
 
1 1 1 1
1 1 1s s s s s
o o o
V V V V
V E Z V E Z Z V
Z Z Z
   
   
       
 
1 1
o s o
s
o s s o
Z Z Z
V E V
Z Z Z Z
   
   
  
• Use the normalized power waves
1 1
1 1
s o s o
s s
o s s oo o o
E Z Z ZV V
a a b
Z Z Z ZZ Z Z
 
 
      
  
where , , ands o
s
o s
E Z
a
Z Z


1
1
o
V
b
Z

 s o
s
s o
Z Z
Z Z

 

18/31
Department of Electronic Engineering, NTUT
The Available Power and Input Power (II)
1 1inb a 
1 1 1s s s s ina a b a a       1
1
s
s in
a
a 
  
 
2
2 2 2 2 2
1 1 1 2
11 1 1 1
1
2 2 2 2 1
in
in in s
s in
P a b a a
 
     
  
• The available power from source
2 2
2 2 2
2 2 22 2
1 11 1 1 1
2 2 2 11 1
in s
s s
AVS in s s s
ss s
P P a a a

 
   
   
    
  2 2
2
2
2 2
1 111
2 1 1
s in
in
in s AVS AVS s
s in s in
P a P P M
    
  
     
• Ms is known as the source mismatch factor (or mismatch loss).


sE
sZ
s
1a
1b
in


1V
1I
Pin
19/31
Department of Electronic Engineering, NTUT
The Available Power and Output Power (II)
LZ
L
out Since we have got , the circuits looking into the output
port (with source) can be simplified as a Thevenin’s
equivalent circuit.
out


thE
outZ 2a
2b


LV
LI
LZ
L
out
 2 2 2 2
2 2 2
1 1 1
1
2 2 2
L LP b a b    
• The power delivered to the load ZL
2
2
2
11
2 1
L
L th
out L
P b
 

  
• The available power from the network
2
2
1 1
2 1L out
AVN L th
out
P P b
 
 
 
  2 2
2
1 1
1
L out
L AVN AVN L
out L
P P P M
   
 
  
• ML is known as the load mismatch factor (or mismatch loss).
20/31
Department of Electronic Engineering, NTUT
Definition of the Power Gains
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
• The power gain L
p
in
P
G
P

• The transducer power gain L
T p s
AVS
P
G G M
P
 
• The available power gain AVN T
A
AVS L
P G
G
P M
 
p TG G
A TG G
• When the Input and output are matched: p T AG G G 
From the amplifier input to load
From the source to load
21/31
Department of Electronic Engineering, NTUT
Power Gain
 
 
2 2
2
2 2
1
1
1
2
1
1
2
L
L
p
in
in
bP
G
P a
 
 
 
21 1
2
221 L
S a
b
S

 
2
2
212 2
22
11
1 1
L
p
in L
G S
S
 

   
• The Power Gain Gp
where
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
22/31
Department of Electronic Engineering, NTUT
Transducer Power Gain
• The Transducer Power Gain GT
L L in in
T p p s
AVS in AVS AVS
P P P P
G G G M
P P P P
   
2 2 2 2
2 2
21 212 2 2 2
22 11
1 1 1 1
1 1 1 1
s L s L
T
s in L s out L
G S S
S S
       
 
         
  2 2
2
1 1
1
s in
s
s in
M
   

  
where
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
23/31
Department of Electronic Engineering, NTUT
Available Power Gain
• The Available Power Gain GA
AVN L AVN AVN T
A T
AVS AVS L L L
P P P P G
G G
P P P P M
   
2
2
212 2
11
1 1
1 1
s
A
s out
G S
S
 

   
Transistor
[S]

sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
  2 2
2
1 1
1
L out
L
out L
M
   

  
where
24/31
Department of Electronic Engineering, NTUT
Two-port Network Matrices
• Several ways that are commonly used to represent the
two-port network:
Impedance matrix : z-parameter
Admittance matrix : y-parameter
Hybrid matrix : h-parameter
ABCD matrix : ABCD parameters
Scattering matrix : S-parameter
• These matrices describe the relationship between the
input/output voltages and currents except the scattering
matrix which describes the relationship between the
input/output traveling waves (or power waves).
25/31
Department of Electronic Engineering, NTUT
Two-port Network Representation
 z-parameter
 y-parameter
 h-parameter
 ABCD parameters
1 11 12 1
2 21 22 2
v z z i
v z z i
     
     
     
1 11 1 12 2v z i z i 
2 21 1 22 2v z i z i 
1 11 12 1
2 21 22 2
i y y v
i y y v
     
     
     
1 11 12 1
2 21 22 2
v h h i
i h h v
     
     
     
1 2
1 2
v vA B
i iC D
    
         
Two-port
network


1v
1i 2i


2v
Port 1 Port 2
26/31
Department of Electronic Engineering, NTUT
Conversion Between the Network Parameter
• This table is provided at page 62 in the textbook.
27/31
Department of Electronic Engineering, NTUT
Series Connection
• Series Connection: use z-parameter
1 11 1 11 11 12 12
2 22 2 21 21 22 22
a b a b a b
a b a b a b
v iv v z z z z
v iv v z z z z
        
       
        
28/31
Department of Electronic Engineering, NTUT
Shunt Connection
• Shunt Connection: use y-parameter
1 11 1 11 11 12 12
2 22 2 21 21 22 22
a b a b a b
a b a b a b
i vi i y y y y
i vi i y y y y
        
       
        
29/31
Department of Electronic Engineering, NTUT
Cascade Circuits
• Cascade Circuits : use ABCD parameters (chain)
1 1 2 2
1 1 2 2
a a ba a a a b b
a a ba a a a b b
v v v vA B A B A B
i i i iC D C D C D
           
             
             
30/31
Department of Electronic Engineering, NTUT
Summary
• The power delivered to the load can be calculated by using three
methods:
(1) Real power dissipated at load ( )
(2) Power waves (generalized [Sp], linked with reflections)
(3) Traveling waves ([S], it’s practical and useful in amplifier design)
 Re 2L L LP V I

• Available power from source (maximum average power the source can
provide when matched) :
  
2
2 2
,
1
2 8
s
AVS p p rms
s
E
P a a
R
2 2 21 1 1
2 2 2
L p p AVS pP a b P b   
• When mismatch occurs:
Power wave
Power wave
L p inP G P L T AVSP G P
• Power gains (defined with traveling waves, circuitries are separately
measured in a Zo system) :
31/31

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
PA linearity
PA linearityPA linearity
PA linearity
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)
 

Andere mochten auch

Andere mochten auch (12)

Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Ähnlich wie RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions

tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
kiran93845
 
Adobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfAdobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdf
kt5830207
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
Elisée Ndjabu
 
EPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptEPE352 DC-DC converter.ppt
EPE352 DC-DC converter.ppt
ssuser4c4e76
 
Transformers in Electrical Engineering - An extended Lecture
Transformers in Electrical Engineering - An extended LectureTransformers in Electrical Engineering - An extended Lecture
Transformers in Electrical Engineering - An extended Lecture
binzbinz3
 

Ähnlich wie RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions (20)

Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16Eet3082 binod kumar sahu lecturer_16
Eet3082 binod kumar sahu lecturer_16
 
lecture33.pptx
lecture33.pptxlecture33.pptx
lecture33.pptx
 
Power divider, combiner and coupler.ppt
Power divider, combiner and coupler.pptPower divider, combiner and coupler.ppt
Power divider, combiner and coupler.ppt
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 
Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptx
 
Adobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfAdobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdf
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
EPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptEPE352 DC-DC converter.ppt
EPE352 DC-DC converter.ppt
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Transformers in Electrical Engineering - An extended Lecture
Transformers in Electrical Engineering - An extended LectureTransformers in Electrical Engineering - An extended Lecture
Transformers in Electrical Engineering - An extended Lecture
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
Unit 1
Unit 1Unit 1
Unit 1
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ
 
Presentation1
Presentation1Presentation1
Presentation1
 

Mehr von Simen Li

Mehr von Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 

Kürzlich hochgeladen

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Kürzlich hochgeladen (20)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 

RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions

  • 1. Chapter 3-2 Power Waves and Power-Gain Expressions Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Maximum Power Transfer LZ   sE sZ V I   source impedance load impedance Phasor s s L E I Z Z   • The average power dissipated in the load     2 2 2 2 2 2 1 1 1 2 2 2 s s L L rms L L L s L s L s L E E R P I R I R R Z Z R R X X             • The maximum power dissipated in the load when s LX X s LR R s LZ Z  • Maximum power transfer theorem and that is (conjugate matched) • Can we link up the “conjugate matched impedances” and “reflection coefficients” ? 2/31
  • 3. Department of Electronic Engineering, NTUT Power Waves • In this section we discuss the analysis of lumped circuits in terms of a new set of waves, called power waves. LZ   sE sZ V I   source impedance load impedance  Since there is no transmission line, and therefore the characteristic impedances is not defined. oZ d l LZ 0  0d  IN d     0 L o L o Z Z Z Z has no meaning. No transmission line in between Can we define the reflection coefficient w/o transmission lines?  s sV E Z I 3/31
  • 4. Department of Electronic Engineering, NTUT Normalized Impedances (I) Reference: [1] K. Kurokawa, “Power waves and the scattering matrix.” IEEE Trans. Microwave Theory and techniques, vol. 13, pp.194-202, Mar. 1965. LZ   sE sZ V I   s s sZ R jX  L L LZ R jX  • Normalize the impedances with respect to Rs 1 s s s s s X z r jx j R     L L L L L s s R X z r jx j R R     4/31
  • 5. Department of Electronic Engineering, NTUT Normalized Impedances (II) 1 1 s s z rz z z r        U jV  Γ-plane U V 1 1 z z     0  1   1  • Recall the Smith Chart (Γ-plane) 1 s s s s s X z r jx j R     L L L L L s s R X z r jx j R R                 L s L s L L s ss L s L s s L s L s L L s s L s L s r j x x r r jx r jxz r z z Z Z z r r j x x r r jx r jx z z Z Z                          z should contains the resistance and reactance of the load (rL and xL), and the reactance of the source (xs) • When , the reflection coefficient (maximum power delivering to the load) L sZ Z  0  5/31
  • 6. Department of Electronic Engineering, NTUT Power-waves Representation of One-port Network (I)    1 2 p s s a V Z I R     1 2 p s s b V Z I R   Res sR Z • Reflected power wave is equal to zero when the load impedances is conjugately matched to the source impedance, i.e., . pb  L sZ Z where LZ   sE sZ pa pb V I   s p s L s p s L s s V Zb V Z I Z ZI Va V Z I Z ZZ I            p pa b  • Normalized power waves pL s L L p bZ Z Z Z a       and 6/31
  • 7. Department of Electronic Engineering, NTUT Available Power From Source      1 2 2 s p s s s s s E a E Z I Z I R R  2 2 4 s p s E a R    1 2 p s s a V Z I R  s sV E Z I• For and    2 2 2 , 1 2 8 s AVS p p rms s E P a a R is the power available from the source. • Maximum power is delivered to the load when  L sZ Z       2 21 1 Re Re 2 2 s L L L s L E P I Z Z Z Z PL attains its maximum value when , and is given by  L sZ Z ,maxL AVSP P   2 ,max 1 8 s L AVS s E P P R 7/31
  • 8. Department of Electronic Engineering, NTUT Impedance Mismatch         2 2 *1 1 1 1 1 Re 2 2 8 8 2 L p p s s s s s s P a b V Z I V Z I V Z I V Z I V I R R             2 2 21 1 1 2 2 2 L p p AVS pP a b P b      21 2 p AVS Lb P P Power dissipated in the load = Available power from source – Reflected power • When the impedances are mismatched, the power delivering to the load is Reflected power = Available power from source – Power dissipated in the load 8/31
  • 9. Department of Electronic Engineering, NTUT Generalized Scattering Parameter (I) 1 11 1 12 2p p p p pb S a S a  2 21 1 22 2p p p p pb S a S a    1 1 1 1 1 1 2 pa V Z I R   2 2 2 2 2 1 2 pa V Z I R    1 1 1 1 1 1 2 pb V Z I R Two-port Network [Sp] 2pa 2pb 1pa 1pb Port 1 Port 2  1E 1Z 2I1I  1V   2V    2E 2Z  1 2 2 2 2 1 2 pb V Z I R    • Considering a two-port network, the generalized scattering matrix [Sp] is found with respect to a reference impedance Re{Z1} at port 1 and to Re{Z2} at port 2. If Z1 = Z2 = Zo, [Sp] = [S]. 9/31
  • 10. Department of Electronic Engineering, NTUT Generalized Scattering Parameter (II) 2 1 11 1 0p p p p a b S a   Two-port Network [Sp] 2 0pa  2pb 1pa 1pb Port 1 Port 2  1E 1Z 2I1I  1V   2V  2Z 1 11 1 12 2p p p p pb S a S a  2 21 1 22 2p p p p pb S a S a  1 1 11 1 1 T p T Z Z S Z Z      2 2 2 1 1 11 1 1 1 2 2 IN p p AVS pP a b P S    1TZ • Can we find the power by using [S] but not [Sp] ? Sure! We will talk about this later. 10/31
  • 11. Department of Electronic Engineering, NTUT Example • Calculate the power waves and the power delivered to the load in the circuit. 100 50LZ j     10 0sE   100 50sZ j   V I       100 50 10 5.59 26.57 100 50 100 50 L s L s Z j V E Z Z j j               10 0.05 A 100 50 100 50 s L s E I Z Z j j            1 1 10 0.5 2 2 2 100 p s s s s s s a V Z I E Z I Z I R R                1 1 1 1 10 0.05 100 50 0.05 100 50 0 2 2 2 100 p s s s s s b V Z I E Z I Z I j j R R                2 21 1 0.125 W 2 2 L p pP a b   (Try ) 1 Re 2 LP VI  11/31
  • 12. Department of Electronic Engineering, NTUT Example (I) • Calculate the generalized parameter Sp11 and Sp21 at 1 GHz in the lossless, reciprocal, two-port network. Then calculate Sp22 and Sp12. 2 10Z   1.59 nHL    1E 1 50 50Z j     1V   2V 10LZ j  1TZ 1I 2I 1 1 1 1 1 1 0.167 0T T Z V E E Z Z      1 1 1 1 1 0.0118 45 T E I E Z Z       2 1 0.118 45V E    2 1 0.0118 45I E       1 1 1 1 1 1 2 pa V Z I R   2 2 2 2 2 1 2 pa V Z I R    1 1 1 1 1 1 2 pb V Z I R    2 2 2 2 2 1 2 pb V Z I R 1 0.071 0pa   1 0.061 78.69pb   2 0pa  2 0.037 45pb     For Sp11 and Sp21 12/31
  • 13. Department of Electronic Engineering, NTUT Example (II)    2 1 1 1 11 1 1 10 10 10 50 50 0.85 78.69 10 10 50 50 p p T p p Ta b j jZ Z S a Z Z j j               2 2 21 1 0 0.037 45 0.525 45 0.071 0 p p p p a b S a          2 10Z   1.59 nHL    2E 1 50 50Z j     1V   2V 10LZ j  2TZ 1I 2I  For Sp22 and Sp12 1 2 0.833 0V E   1 2 0.0118 45I E     2 2 0.92 5.19V E    2 2 0.0118 45I E    1 0pa  1 0.083 45pb    2 0.158 0pa   2 0.134 11.32pb   1 2 2 2 22 2 2 20 0.85 11.3 p p T p p Ta b Z Z S a Z Z         1 1 12 2 0 0.083 45 0.525 45 0.158 0 p p p p a b S a          13/31
  • 14. Department of Electronic Engineering, NTUT Power-Gain Expressions (I) Transistor [S] 2a 2b 1a 1b Port 1 Port 2   sE sZ out LZ in s L s o s s o Z Z Z Z     L o L L o Z Z Z Z     1 11 1 12 2b S a S a  2 21 1 22 2b S a S a  • Consider a microwave amplifier with the source and load reflection coefficients and measured in a Zo system:s L • For the transistor, the input and output traveling waves measured in a Zo system (this is very practical) : 14/31
  • 15. Department of Electronic Engineering, NTUT Power-Gain Expressions (II)   sE sZ s LZ L Transistor [S] The reflection coefficients and S-parameters are separately measured in a Zo (usually 50 Ω) system Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L After connecting them all together The goal is to find the input and output power relations. 1b 1a 2a 2b 15/31
  • 16. Department of Electronic Engineering, NTUT Input Reflection Coefficient 1 1 in b a   2 2La b  2 21 1 22 2Lb S a S b   21 1 2 221 L S a b S    Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L • After connecting the circuits together, the first step is to find the new input coefficient , which is the result coming from and .in  S L     1 11 1 12 2b S a S a  2 21 1 22 2b S a S a   1 12 21 11 1 221 L in L b S S S a S        12 21 1 11 1 12 2 11 1 1 221 L L L S S b S a S b S a a S         a1 is your input, so the goal here is to find the reflected wave b1 1 11 1 12 2b S a S a  a1 is your input, to find b1 = you need to find a2 to find a2 = you need to find b2  the relationship between b2 and a1 16/31
  • 17. Department of Electronic Engineering, NTUT Output Reflection Coefficient 2 2 0s out E b a    1 1sa b  1 11 1 12 2sb S b S a   12 2 1 111 s S a b S    12 21 2 21 1 22 2 2 22 2 111 s s s S S b S b S a a S a S         12 212 22 2 110 1 s s out sE S Sb S a S        Transistor [S] 2a 2b 1a 1b   sE sZ out LZ in s L • After connecting the circuits together, the second step is to find the new output coefficient , which is the result coming from and .out  S s   1 11 1 12 2b S a S a  2 21 1 22 2b S a S a      The same procedure as finding is applied.in 17/31
  • 18. Department of Electronic Engineering, NTUT The Available Power and Input Power (I)   sE sZ s 1a 1b • After finding out the input/output refection coefficients, let’s now deal with the power. in Since we have got , we can discard the circuits connected after the source right here. in 1 1s sV E I Z    1V 1I   1 1 1 1 1 1 1s s s s o V V V V V E I I Z E Z Z                    1 1 1 1 1 1 1s s s s s o o o V V V V V E Z V E Z Z V Z Z Z                   1 1 o s o s o s s o Z Z Z V E V Z Z Z Z            • Use the normalized power waves 1 1 1 1 s o s o s s o s s oo o o E Z Z ZV V a a b Z Z Z ZZ Z Z               where , , ands o s o s E Z a Z Z   1 1 o V b Z   s o s s o Z Z Z Z     18/31
  • 19. Department of Electronic Engineering, NTUT The Available Power and Input Power (II) 1 1inb a  1 1 1s s s s ina a b a a       1 1 s s in a a       2 2 2 2 2 2 1 1 1 2 11 1 1 1 1 2 2 2 2 1 in in in s s in P a b a a            • The available power from source 2 2 2 2 2 2 2 22 2 1 11 1 1 1 2 2 2 11 1 in s s s AVS in s s s ss s P P a a a                   2 2 2 2 2 2 1 111 2 1 1 s in in in s AVS AVS s s in s in P a P P M               • Ms is known as the source mismatch factor (or mismatch loss).   sE sZ s 1a 1b in   1V 1I Pin 19/31
  • 20. Department of Electronic Engineering, NTUT The Available Power and Output Power (II) LZ L out Since we have got , the circuits looking into the output port (with source) can be simplified as a Thevenin’s equivalent circuit. out   thE outZ 2a 2b   LV LI LZ L out  2 2 2 2 2 2 2 1 1 1 1 2 2 2 L LP b a b     • The power delivered to the load ZL 2 2 2 11 2 1 L L th out L P b       • The available power from the network 2 2 1 1 2 1L out AVN L th out P P b         2 2 2 1 1 1 L out L AVN AVN L out L P P P M          • ML is known as the load mismatch factor (or mismatch loss). 20/31
  • 21. Department of Electronic Engineering, NTUT Definition of the Power Gains Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML • The power gain L p in P G P  • The transducer power gain L T p s AVS P G G M P   • The available power gain AVN T A AVS L P G G P M   p TG G A TG G • When the Input and output are matched: p T AG G G  From the amplifier input to load From the source to load 21/31
  • 22. Department of Electronic Engineering, NTUT Power Gain     2 2 2 2 2 1 1 1 2 1 1 2 L L p in in bP G P a       21 1 2 221 L S a b S    2 2 212 2 22 11 1 1 L p in L G S S        • The Power Gain Gp where Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 22/31
  • 23. Department of Electronic Engineering, NTUT Transducer Power Gain • The Transducer Power Gain GT L L in in T p p s AVS in AVS AVS P P P P G G G M P P P P     2 2 2 2 2 2 21 212 2 2 2 22 11 1 1 1 1 1 1 1 1 s L s L T s in L s out L G S S S S                       2 2 2 1 1 1 s in s s in M         where Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 23/31
  • 24. Department of Electronic Engineering, NTUT Available Power Gain • The Available Power Gain GA AVN L AVN AVN T A T AVS AVS L L L P P P P G G G P P P P M     2 2 212 2 11 1 1 1 1 s A s out G S S        Transistor [S]  sE sZ LZ PAVNPAVS PLPin Ms interface interface ML   2 2 2 1 1 1 L out L out L M         where 24/31
  • 25. Department of Electronic Engineering, NTUT Two-port Network Matrices • Several ways that are commonly used to represent the two-port network: Impedance matrix : z-parameter Admittance matrix : y-parameter Hybrid matrix : h-parameter ABCD matrix : ABCD parameters Scattering matrix : S-parameter • These matrices describe the relationship between the input/output voltages and currents except the scattering matrix which describes the relationship between the input/output traveling waves (or power waves). 25/31
  • 26. Department of Electronic Engineering, NTUT Two-port Network Representation  z-parameter  y-parameter  h-parameter  ABCD parameters 1 11 12 1 2 21 22 2 v z z i v z z i                   1 11 1 12 2v z i z i  2 21 1 22 2v z i z i  1 11 12 1 2 21 22 2 i y y v i y y v                   1 11 12 1 2 21 22 2 v h h i i h h v                   1 2 1 2 v vA B i iC D                Two-port network   1v 1i 2i   2v Port 1 Port 2 26/31
  • 27. Department of Electronic Engineering, NTUT Conversion Between the Network Parameter • This table is provided at page 62 in the textbook. 27/31
  • 28. Department of Electronic Engineering, NTUT Series Connection • Series Connection: use z-parameter 1 11 1 11 11 12 12 2 22 2 21 21 22 22 a b a b a b a b a b a b v iv v z z z z v iv v z z z z                           28/31
  • 29. Department of Electronic Engineering, NTUT Shunt Connection • Shunt Connection: use y-parameter 1 11 1 11 11 12 12 2 22 2 21 21 22 22 a b a b a b a b a b a b i vi i y y y y i vi i y y y y                           29/31
  • 30. Department of Electronic Engineering, NTUT Cascade Circuits • Cascade Circuits : use ABCD parameters (chain) 1 1 2 2 1 1 2 2 a a ba a a a b b a a ba a a a b b v v v vA B A B A B i i i iC D C D C D                                         30/31
  • 31. Department of Electronic Engineering, NTUT Summary • The power delivered to the load can be calculated by using three methods: (1) Real power dissipated at load ( ) (2) Power waves (generalized [Sp], linked with reflections) (3) Traveling waves ([S], it’s practical and useful in amplifier design)  Re 2L L LP V I  • Available power from source (maximum average power the source can provide when matched) :    2 2 2 , 1 2 8 s AVS p p rms s E P a a R 2 2 21 1 1 2 2 2 L p p AVS pP a b P b    • When mismatch occurs: Power wave Power wave L p inP G P L T AVSP G P • Power gains (defined with traveling waves, circuitries are separately measured in a Zo system) : 31/31