SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Downloaden Sie, um offline zu lesen
Asgardアーキアのゲノムは
アクチンを制御するプロフィリンをコードしている
2018.10.23
PMID: 30283132
M1 永田 祥平
LETTER https://doi.org/10.1038/s41586-018-0548-6
Genomes of Asgard archaea encode profilins that
regulate actin
Caner Akıl1,2
& Robert C. Robinson1,2,3
*
The origin of the eukaryotic cell is unresolved1,2
. Metagenomics
sequencing has recently identified several potential eukaryotic gene
homologues in Asgard archaea3,4
, consistent with the hypothesis
that the eukaryotic cell evolved from within the Archaea domain.
However, many of these eukaryotic-like sequences are highly
divergent and the organisms have yet to be imaged or cultivated,
which brings into question the extent to which these archaeal
proteins represent functional equivalents of their eukaryotic
counterparts. Here we show that Asgard archaea encode functional
profilins and thereby establish that this archaeal superphylum has a
regulated actin cytoskeleton, one of the hallmarks of the eukaryotic
cell5
. Loki profilin-1, Loki profilin-2 and Odin profilin adopt the
typical profilin fold and are able to interact with rabbit actin—an
interaction that involves proteins from species that diverged more
than 1.2 billion years ago6
. Biochemical experiments reveal that
mammalian actin polymerizes in the presence of Asgard profilins;
however, Loki, Odin and Heimdall profilins impede pointed-end
elongation. These archaeal profilins also retard the spontaneous
nucleation of actin filaments, an effect that is reduced in the presence
of phospholipids. Asgard profilins do not interact with polyproline
motifs and the profilin–polyproline interaction therefore probably
evolved later in the Eukarya lineage. These results suggest that
Asgard archaea possess a primordial, polar, profilin-regulated
actin system, which may be localized to membranes owing to the
sensitivity of Asgard profilins to phospholipids. Because Asgard
archaea are also predicted to encode potential eukaryotic-like genes
involved in membrane-trafficking and endocytosis3,4
, imaging is
now necessary to elucidate whether these organisms are capable of
generating eukaryotic-like membrane dynamics that are regulated
by actin, such as are observed in eukaryotic cell movement,
podosomes and endocytosis.
Recently, metagenomics studies have identified genes from Asgard
archaea (Heimdall, Loki, Thor and Odin) that are homologous to
eukaryotic genes that encode machineries involved in membrane
ca d
Verrucosispora sediminis
Actinomadura sp.
Saccharopolyspora flava
Streptomyces avermitilis
Nocardia soli
1
/LC7/MgLB
2
要旨
真核細胞の起源は明らかになっていない。メタゲノミクス配列決定により,真核細胞がアーキアドメイン内
から進化したという仮説と一致して,Asgardアーキアにおけるいくつかの真核生物と相同と思われる遺伝
子が同定された。しかし,これらの真核生物様配列の多くは高度に多様化しており,生物個体は未だ映像化
または培養されていないので,これらのアーキアタンパク質が真核生物のタンパク質とどの程度の機能的同
等性を示すかが問題となっている。
そこで我々は,Asgardアーキアが機能的なプロフィリンをコードし,それによってこのアーキア上門が
真核細胞の特徴の一つである制御されたアクチン細胞骨格を有することを示す。
① Loki profilin-1,Loki profilin-2,Odin profilinは典型的なプロフィリンフォールドを採用し,ウサギア
クチンと相互作用することができた。(12億年以上前に分岐した種のタンパク質が相互作用する!)
② 生化学的実験により,哺乳動物のアクチンはAsgardプロフィリンの存在下で重合することが明らかに
なった。(しかし,Loki,OdinおよびHeimdallのプロフィリンは尖った伸びを妨げる。)
③ これらの古代のプロフィリンは,リン脂質の存在下で減少するアクチンフィラメントの自発的な核形成を
遅らせる。Asgardプロフィリンはポリプロリンモチーフと相互作用しないため,プロフィリン-ポリプロ
リン相互作用はおそらく後の真核系統において進化した。
これらの結果は,Asgardアーキアが,Asgardプロフィリンのリン脂質に対する感受性のために,膜に局在
化する可能性のある初期の極性,プロフィリン制御アクチン系を有することを示唆している。
Asgard アーキアは,膜輸送およびエンドサイトーシスに関与する潜在的な真核生物様遺伝子もコードする
と予想されているので,これらの生物が真核生物の細胞運動,ポドソームおよびエンドサイトーシスにおい
て観察されるような,アクチンによって調節される真核生物様膜動態を生成することができるかどうかを解
明する必要があり,イメージングが必要と考えられる。
背景
結果
3
背景:生物の分類 -3ドメイン説とその終焉-
http://oceanexplorer.noaa.gov/explorations/06fire/background/microbiology/microbiology.html
Adapted from Woese et al. 1990.
Woeseらによる3ドメイン説の提唱
地球上の細胞型生命は真核生物と原核生物に大別され,原核生物はバクテリアとアーキアに
分類される
4
背景:生物の分類 -3ドメイン説とその終焉-
Williams T a, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504(7479):231‒6.
ion now debatedis whethercorecomponents of the eukaryotic
eage descend from a common ancestor shared with Archaea,
ree-domains tree14
(Fig. 1), which is also often called the ‘uni-
or‘treeof life’15–17
,or from withintheArchaea,asproposed by
ost hypotheses for eukaryotic origins2
. The archaeal-host sce-
the greatest phylogenetic support is the eocyte hypothesis18
,
poses a sister-group relationship between eukaryotes and the
span of time, the accumulation of multiple substitutions in
protein sequences might have erased any signal that would
relationship between archaeal and eukaryotic core genes to
lished21
. However, more recent simulations and empirical s
gest that there are reasons to be cautiously optimistic that thi
case: functional constraints vary across real DNA and protein
so that sites evolve at different rates22–25
. Fast-evolving sites
ll and MolecularBiosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK. 2
Departmentof Life Sciences, Natural History Museum,London SW7 5BD, UK. 3
Cen
Euryarchaeota
Eocytes/Crenarchaeota
Eukaryota
Bacteria
Eocytes/Crenarchaeota
Paraphyletic Archaea
Three-domains hypothesis Eocyte hypothesis
Thaumarchaeota
Aigarchaeota
Korarchaeota
Euryarchaeota
Eocytes/Crenarchaeota
Eukaryota
Bacteria
Euryarchaeota
Eocytes/Crenarchaeota
Monophyletic Archaea
Thaumarchaeota
Aigarchaeota
Korarchaeota TACK TACK
a b
ompeting hypotheses for the origin of the eukaryotic host cell.
d three-domains tree14
depicts cellular life divided into three major
ic groups or domains: the Bacteria, Archaea and Eukaryota—the
enting the host lineage, sometimes also called the nuclear or
plasmic lineage5
, that acquired the mitochondrial endosymbiont.
he Archaea and Eukaryota are most closely related to each other
y share a common ancestor that is not shared with Bacteria.
ed eocyte tree recovers the host-cell lineage nested within the
Archaea as a sister group to the eocytes (which Woese et al.14
call
Crenarchaeota); this implies that, on the basis of the small set of c
there are only two primary domains of life—the Bacteria and the Ar
modern formulation shown here the eocyte hypothesis implies tha
relative of the eukaryotic nuclear lineage is one, or all, of the TAC
which include newly discovered relatives of the eocytes/Crenarcha
Both trees have been traditionally rooted on the bacterial stem, con
some published analyses5–8
.
アーキア
近年,真核生物はアーキアの1系統であると考えられるようになってきた。
➤ 3ドメイン仮説 ➤ エオサイト仮説 (2ドメイン)
→最新の手法で慎重に系統樹を構築した結果,真核生物はアーキアの系統内に入った。
5
背景: 真核生物に最も近いアーキア の発見
➤ 真核生物の特徴を多く持つアーキア(ロキアー
キオータ)の発見 (2015年)
(上部) Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521(7551):173‒9.
(下部) Zaremba-Niedzwiedzka K, Caceres E, Saw J, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard arcahea illuminates the origin of eukaryotic cellular complexity. Nat Publ Gr. Nature
Publishing Group; 2017;541(7637):353‒8.
ARTICLERESEARCH
a
0.1
Lokiarchaeum
sp. GC14_75
Odinarchaeote LCB_4
Heimdallarchaeote AB_125
Thorarchaeote
W
O
R_83
Heimdallarchaeote LC_3
ThorarchaeoteAB_25
Heimdallarchaeote LC_2
Thorarchaeote
W
OR_45
LokiarchaeoteCR_4
LC
LCB
CR
WOR
RP
AB, 0.25 m.b.s.f.
AB, 0.5 m.b.s.f.
AB, 1.25 m.b.s.f.
AB, 1.75 m.b.s.f.
b
c
0.3
Thorarchaeote WOR_83
Odinarchaeote LCB_4
Bathyarchaeota
Lokiarchaeum sp. GC14_75
Thorarchaeote AB_25
Korarchaeota
Aigarchaeota
Heimdallarchaeote LC_3
Heimdallarchaeote AB_125
Euryarchaeota
Odinarchaeote RP_19
Thaumarchaeota
Heimdallarchaeote LC_2
Lokiarchaeote CR_4
Crenarchaeota
91
74
100
100100
82
84
100
100
87
42
100
46
100
85
28
52
97
100
41
94
100
Eukarya
0.2
Heimdallarchaeote LC_2
Lokiarchaeum sp. GC14_75
Aigarchaeota
Heimdallarchaeote LC_3
Thorarchaeote WOR_45
Thaumarchaeota
Crenarchaeota
Odinarchaeote LCB_4
Eukarya
Korarchaeota
Thorarchaeote WOR_83
Lokiarchaeote CR_4
Heimdallarchaeote AB_125
Bathyarchaeota
Thorarchaeote AB_25
1
10.94
1
1
1
1
1
0.99
0.54
1
0.99
1
10.98
1
0.77
0.94
TACK
d
Lokiarchaeum sp. GC14_75
Lokiarchaeote CR_4
Odinarchaeote LCB_4
Thorarchaeote AB_25
Thorarchaeote WOR_45
Thorarchaeote WOR_83
Heimdallarchaeote AB_125
Heimdallarchaeote LC_2
Heimdallarchaeote LC_3
Information
processing
Cell division/
cytoskeleton
DNApolymerase,ε-like
TopoisomeraseIB
RNApolymerase,Afused
RNApolymerase,subunitG
(rpb8)
RibosomalproteinL22e
RibosomalproteinL28e/Mak16
Tubulins*
Actin-relatedprotein(ARP-like)
Conservedlokiactins
Gelsolin-domainproteinProfilin
Endosomal
sorting
Ubiquitin
system
Trafficking
machinery
Ost
complex
ARP2/3complex,subunit4-like
ESCRT-I:steadinessboxdomain
ESCRT-I:Vps28-like
ESCRT-II:Vps25-like
ESCRT-II:EAP30domain
ESCRT-III:Vps2/24/46-like
ESCRT-III:Vps20/32/60-like
Ubiquitin-domainprotein
Ubiquitin-activatingE1candidates
E2-likeubiquitinconjugatingprotein
ExpansionofsmallGTPases
Longin-domainprotein
EukaryoticRLC7familiyprotein
TRAPP-domainprotein
Sec23/24-likeprotein
WD40–Armadillogenecluster
Arrestin-domain
RibophorinI
OST3/OST6-like
STT3-like
Heimdallarchaeota
Lokiarchaeota
Odinarchaeota
Thorarchaeota
Figure 1 | Identification and phylogenomics of Asgard archaea.
a, Maximum-likelihood tree, inferred with RAxML and PROTCATLG
model, based on metagenomic contigs containing conserved ribosomal
proteins (see Methods) revealing the Asgard superphylum. Slow, non-
parametric maximum-likelihood bootstrap support values above 50 and
90 are indicated with empty and filled circles, respectively. Abbreviations
of the sites mentioned are as follows: LC, Loki’s Castle; CR, Colorado
River aquifer (USA); LCB, Lower Culex Basin (Yellowstone National Park,
sequences inferred with RAxML and GTRGAMMA model (c) showing
high support for the phylogenetic affiliation between Asgard archaea and
eukaryotes (support values in red). a–c, Scale bars indicate number of
substitutions per site. Numbers at branches refer to Bayesian posterior
probabilities (b) and slow non-parametric maximum-likelihood bootstrap
values (c). Trees were rooted with Euryarchaeota + DPANN (a, b) and
with Bacteria (c). Branch length value corresponding to cut branch in c is
➤ さらに近いアーキア群:Asgard上門の発見 (2017年)
数多くの「真核生物特異的」なタンパク質を保有
Asgardアーキア:
 Ordin, Loki, Thor, Heimdall
真核生物→
メタゲノム配列ベースで,数多くの真核生物特異的な遺伝子を持つアーキア群が発見され
た。
6
本研究のコンセプト
メタゲノム解析より,真核特異的なはずの遺伝子を持つアーキアが発見された。
① 真核生物の遺伝子とその配列は似ていても,構造的・機能的にも同等なのか?
② そもそもサンプル中の真核遺伝子がアーキアメタゲノムにコンタミしたのでは?
でも..
→ タンパク質立体構造を決定し,その機能を明らかにする!
7
背景:原核生物と真核生物の違い..
原核細胞 真核細胞
核 ない ある
膜で囲まれた細胞内小器官 ない ある
原核細胞 真核細胞
細胞膜
細胞質
DNA
核様体
核
リボソーム
0.1-10 µm
10-100 µm
細胞内骨格 ない ある
Kuroda H. 生命現象と現実社会の比較論 (第7回講義). 2015.
これまで,真核生物の大きな特徴は細胞内骨格であるとされてきた。
8
背景:プロフィリンはアクチンの重合を制御する
アクチン結合タンパク質
単量体のG-アクチンと1:1で結合し,成長しているフィラメントへ
G-アクチンが取り込まれるのを防ぐ。
➤ アクチン
➤ プロフィリン
Kuroda H. 生命現象と現実社会の比較論 (第7回講義). 2015.
G-アクチン F-アクチン
+端, B端, 反矢尻端:
アクチンが重合する側
-端, P端, 矢尻端:
アクチンが解離する側
緑: アクチン
青: プロフィリン
9
本論文の流れ
Fig. 1:Asgardプロフィリンの構造を決定し,Asgardアーキアが真のプ
ロフィリンをコードしていることを示す。
Fig. 2:Asgardプロフィリンが哺乳類アクチンと相互作用し,アクチン重
合を制御する機能を持っていることを示す。
Fig. 3:Asgardプロフィリンと哺乳類アクチンの共結晶構造を決定し,
Asgardアーキアと真核生物が共通のプロフィリン-アクチン相互作用様式
を持つことを示す。
Fig. 4:Asgardプロフィリンとアクチンの相互作用もリン脂質によって制
御されることを示し,アクチン系が膜に局在している可能性を示唆する。
10
Asgardアクチンは真核アクチンと同様の機能・特性を持つと考えられる。
Extended Data Fig.1
Asgardアーキアはアクチンを保有する
ホモログ (相同) = 同一の祖先から進化したもの
nd are here referred to as the ‘Asgard actins’. b, Models of the Asgard
ctins. The Asgard actins were modelled using I-TASSER. The ‘C-score’
s a confidence score for estimating the quality of predicted models,
which is typically in the range of −5 to 2 and in which a high C-score
ignifies a model with a high confidence. Template modelling scores
TM-scores’) range between 0 and 1, and values greater than 0.5 indicate
models of the correct topology and a value of 1 indicates an exact match.
The TM-score and r.m.s.d. are estimated by linear regression, and the
stimated errors are the root-mean-squared TM-score or r.m.s. deviations.
➤ Asgardアクチンの構造モデリング
哺乳類 (真核生物)
アクチン
Asgardアクチン
① 真核アクチンと非常に類似した構造を取る
RMSD: 平均二乗偏差(Root Mean Square Deviation)
タンパク質構造の非類似性や誤りの指標
TM-score: モデル評価の指標.0.0-1.1の値を取り,1.1
は正解構造との肝炎一致を示す。
LETTERRESEARCH
Extended Data Fig. 1 | Asgard actins. a, Phylogenetic tree of the
polymerizing actin fold. This phylogenetic tree reveals that the variability
observed between the Asgard and eukaryotic actins is approximately
similar in magnitude to the variability found within bacterial MreBs
and lower than that observed within bacterial FtsAs or ParMs, which
indicates a probable conservation in function between the Asgard and
and are here referred to as the ‘Asgard actins’. b, Models of the Asgard
actins. The Asgard actins were modelled using I-TASSER. The ‘C-score’
is a confidence score for estimating the quality of predicted models,
which is typically in the range of −5 to 2 and in which a high C-score
signifies a model with a high confidence. Template modelling scores
(‘TM-scores’) range between 0 and 1, and values greater than 0.5 indicate
MreB: アクチンアナログ

桿状バクテリアの形状を制御

(球状のバクテリアにはない)
➤ Asgardアクチンと真核アクチン・他のアクチン
相同タンパク質との構造ベースの系統関係
ParM: 

構造的にはアクチンに類似
FtsA: チューブリンホモログ
Asgardアクチン
真核生物アクチン
② Asgardアクチンは他の原核生物が持つア
クチン相同タンパク質と異なり,真核生物
アクチンと非常に近接した系統を形成する
真核アクチンと別系統を構成することから,真核のコンタミである可能性は低い
11
プロフィリンとアクチンの各配列相同性一覧
Supplementary Table 1
Supplementary Table 1. Pairwise percentage sequence identities of actins and profilins. a,
Actins. From sequence identity LokiActin, OdinActin, ThorActin and HeimdallActin are referred to
a: アクチン b: プロフィリン
① Asgardアクチンはヒトアクチンと58-60%と
高い配列相同性を示す。
② Asgardプロフィリンとヒトプロフィリン
は11-17%の配列相同性しか示さない。
Asgardプロフィリンの特性・機能を調べる必要がある。
ヒト-Asgard間→
Asgardアクチンはヒトアクチンと非常に類似しているため機能的に同等と考えられるが, プロフィリンはあまり似てないため..
12
Asgardメタゲノムはプロフィリンをコードする
ical profilin fold and are able to interact with rabbit actin—an
eraction that involves proteins from species that diverged more
n 1.2 billion years ago6
. Biochemical experiments reveal that
mmalian actin polymerizes in the presence of Asgard profilins;
wever, Loki, Odin and Heimdall profilins impede pointed-end
by actin, such as are observed in eukaryotic cell movement,
podosomes and endocytosis.
Recently, metagenomics studies have identified genes from Asgard
archaea (Heimdall, Loki, Thor and Odin) that are homologous to
eukaryotic genes that encode machineries involved in membrane
2
c
N
C
Loki
loop
Loki profilin-1
Human profilin
N
C
N
Loki profilin-2
from rabbit α-actin complex
Loki
loop
N
C
from rabbit α-actin complex
Odin profilin
f
N
C
b
a
77
99
82
83
99
83
84
61
69
100
e
N
C
Loki
loop
from rabbit α-actin complex
Loki profilin-1
d
Verrucosispora sediminis
Actinomadura sp.
Saccharopolyspora flava
Streptomyces avermitilis
Nocardia soli
Frankia sp.
Thermus Thermophilus
Candidatus Thorarchaeota 1
Candidatus Thorarchaeota 2
Zea mays
Arabidopsis thaliana
Dictyostelium discoideum
Monosiga brevicollis
Schizosaccharomyces pombe
Saccharomyces cerevisiae
Neurospora crassa
Galdieria sulphuraria
Monodelphis domestica
Homo sapiens
Xenopus tropicalis
Danio rerio
Tetrahymena pyriformis
Paramecium tetraurelia
Noctiluca scintillans
Plasmodium falciparum
Toxoplasma gondii
Trepomonas sp.
Spironucleus salmonicida
Leishmania braziliensis
Trypanosoma brucei
Entamoeba histolytica
Porphyra umbilicalis
Strongylocentrotus purpuratus
Lottia gigantea
Thor profilin
Odin profilin
Heimdall profilin
Loki profilin-3
Loki profilin-1
Loki profilin-2
1
Roadblock/LC7/MgLBEukaryoticprofilins
Asgard
profilins
1 | Asgard metagenomes encode genuine profilins. a, Schematic
he structure of Loki profilin-1. The partially disordered extended
p (Loki loop) is indicated by a dotted line. N and C indicate the
pective termini. Data collection and refinement statistics are found
upplementary Table 2a. b, The structure of human profilin-1 for
mparison (RCSB Protein Data Bank (PDB) code: 1FIL). c, Profilin
logenetic tree of Asgard and eukaryotic profilins calculated from
structure-based sequence alignment using the Asgard profilin structures
in this figure. Protein sequences of the Roadblock/LC7/MgLB group
are used as an outgroup because their structures have similar topologies
to profilins. Sequence and PDB accession codes used in the alignment are
given in Supplementary Table 1b. d–f, Loki profilin-1 (d), Loki profilin-2 (e)
and Odin profilin (f) structures taken from the rabbit α-actin complex
structures. Details are found in Fig. 3.
• Asgardプロフィリンの構造を決定し真のプロフィリンであることを示した。
• 特徴的な構造 (Loki loop)の存在を確認した。
Fig.1
a: Asgardプロフィリン単体の立体構造
b: ヒトプロフィリン単体の立体構造
d,e,f: 哺乳類アクチン複合体構造のAsgardプロフィリン部分
typical profilin fold and are able to interact with rabbit actin—an
interaction that involves proteins from species that diverged more
than 1.2 billion years ago6
. Biochemical experiments reveal that
mammalian actin polymerizes in the presence of Asgard profilins;
however, Loki, Odin and Heimdall profilins impede pointed-end
by actin, such as are observed in eukaryotic cell movement,
podosomes and endocytosis.
Recently, metagenomics studies have identified genes from Asgard
archaea (Heimdall, Loki, Thor and Odin) that are homologous to
eukaryotic genes that encode machineries involved in membrane
c
N
C
Loki
loop
Loki profilin-1
Human profilin
N
C
N
Loki profilin-2
from rabbit α-actin complex
Loki
loop
N
C
from rabbit α-actin complex
Odin profilin
f
N
C
b
a
77
99
82
83
99
83
84
61
69
100
e
N
C
Loki
loop
from rabbit α-actin complex
Loki profilin-1
d
Verrucosispora sediminis
Actinomadura sp.
Saccharopolyspora flava
Streptomyces avermitilis
Nocardia soli
Frankia sp.
Thermus Thermophilus
Candidatus Thorarchaeota 1
Candidatus Thorarchaeota 2
Zea mays
Arabidopsis thaliana
Dictyostelium discoideum
Monosiga brevicollis
Schizosaccharomyces pombe
Saccharomyces cerevisiae
Neurospora crassa
Galdieria sulphuraria
Monodelphis domestica
Homo sapiens
Xenopus tropicalis
Danio rerio
Tetrahymena pyriformis
Paramecium tetraurelia
Noctiluca scintillans
Plasmodium falciparum
Toxoplasma gondii
Trepomonas sp.
Spironucleus salmonicida
Leishmania braziliensis
Trypanosoma brucei
Entamoeba histolytica
Porphyra umbilicalis
Strongylocentrotus purpuratus
Lottia gigantea
Thor profilin
Odin profilin
Heimdall profilin
Loki profilin-3
Loki profilin-1
Loki profilin-2
1
Roadblock/LC7/MgLBEukaryoticprofilins
Asgard
profilins
Fig. 1 | Asgard metagenomes encode genuine profilins. a, Schematic
of the structure of Loki profilin-1. The partially disordered extended
loop (Loki loop) is indicated by a dotted line. N and C indicate the
respective termini. Data collection and refinement statistics are found
in Supplementary Table 2a. b, The structure of human profilin-1 for
comparison (RCSB Protein Data Bank (PDB) code: 1FIL). c, Profilin
phylogenetic tree of Asgard and eukaryotic profilins calculated from
structure-based sequence alignment using the Asgard profilin structures
in this figure. Protein sequences of the Roadblock/LC7/MgLB group
are used as an outgroup because their structures have similar topologies
to profilins. Sequence and PDB accession codes used in the alignment are
given in Supplementary Table 1b. d–f, Loki profilin-1 (d), Loki profilin-2 (e)
and Odin profilin (f) structures taken from the rabbit α-actin complex
structures. Details are found in Fig. 3.
➤ Asgardプロフィリンとヒトプロフィリンの立体構造 ➤ Asgardプロフィリンの系統関係
→外群
真核生物の
プロフィリン
Asgard
プロフィリン
Asgardプロフィリンは真核プロフィリンと
関連しつつも独立した系統を構成する。
部分的に乱れたループ
13
Asgardプロフィリンは哺乳類アクチンの重合を制御する
LETTERRESEARCH
Odin profilin
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Heimdall profilin
Human profilin
versus Odin profilin
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Actin (2 μM)
8 μM
16 μM
32 μM
64 μM
128 μM
Thor profilin
0 10,000 20,000
JYIM01000447
JYIM01000257
Found in archaea Only bacteria Loki profilins Only Asgard Only eukaryotes
8792949487909192919294748292928891919074878596
Loki profilin-3
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
a b c d
e f g h
i
Human profilin Loki profilin-1
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Loki profilin-2
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Thorprofilin
Fig. 2 | Asgard profilins modulate polymerization of mammalian actin
in vitro. a, Pyrene–actin polymerization profiles of 2 µM rabbit α-actin
profilin. Thor profilin was not observed to have profilin activity and is not
included in subsequent discussions of Asgard profilins. h, Comparison of
Asgardプロフィリンは哺乳類アクチンを調節する上で機能的であることを示した。
→Asgardアーキアにはプロフィリン制御のアクチン系が存在することを示唆。
→Thorはプロフィリン活性なしと判断
Fig.2 手法:ピレン-アクチン重合アッセイ
アクチン重合反応に取り込まれると蛍光の増強が起こるピレン標識アクチンを用いて,アクチンの重合/脱重合反応を蛍光で測定
ヒトとOdinのプロフィン性能比較
実線: ヒト,紫: Odin プロフィン
ヒトプロフィリン8倍投入して同程度の性能
縦軸:
↑アクチンが重合

↓プロフィンによって重合が制御 (抑制)されている
ゲルゾリン (gelsolin): アクチン繊維を切断し,その末端に
留まることでその後のアクチン重合を阻害 (キャップ)する。
※ゲルソリン-アクチンは片側 (P端)からしか重合できない。線: ウサギαアクチンのみ
線: ウサギαアクチン + ⃝⃝プロフィリン
a-f:
赤: アクチンのみで重合開始
青: 非蛍光アクチンシード存在下で重合開始
黒: ゲルゾリン結合状態の非蛍光アクチンシード存在下で重合開始
d, e: OrdinとHeimdallプロフィリンはゲルゾリン-アクチン
のP端からの伸長を防ぐ能力が弱い。
14
Loki profilin遺伝子とその周辺領域
maintenance and function, including trafficking, N-glycosylation,
ribosomes, endosomal sorting complexes required for transport, the
ubiquitination system, and cytoskeletal processes that include actin and
eukaryotic profilins (7–24%) (Supplementary Table 1b). T
questions about their authenticity. To address this issue,
explored the properties of Asgard profilin-like proteins.
Odin profilin
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Human profi
versus Odin pr
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Actin (2 μM)
8 μM
16 μM
32 μM
64 μM
128 μM
Thor profilin
0 10,000 20,000
JYIM01000447
JYIM01000257
Found in archaea Only bacteria Loki profilins Only Asgard Only eukaryotes
8792949487909192919294748292928891919074878596
Loki profilin-3
0 50 100 150
0
20
40
60
80
Time (min)
Fluorescence(AU)
e f g h
i
0 50 100 150 200 250
Time (min)
0 50 100 150
Time (min)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
Time (min)
0 50 100 150 200 250
Time (min)
Thorprofilin
Fig. 2 | Asgard profilins modulate polymerization of mammalian actin
in vitro. a, Pyrene–actin polymerization profiles of 2 µM rabbit α-actin
(dashes, 10% pyrene–actin) or 2 µM rabbit α-actin with 128 µM human
profilin-1 (dots) either initiated alone (red), initiated in the presence of
0.3 µM non-fluorescent actin seeds (blue), or initiated in the presence
of 0.3 µM non-fluorescent gelsolin-capped actin seeds (black).
b–f, Polymerization profiles as in a, using the specified Asgard profilin
at 256 µM (instead of 128 µM human profilin-1). Loki profilin-3 and, to
a lesser extent, Loki profilin-1 showed a marked increase in fluorescence
on mixing with pyrene–actin; however, their profiles appear to be typical
for Asgard profilins, albeit superimposed upon the initial increases. The
basis of the increase is unknown, but we speculate that it may be due to
oligomer formation. Titrations and expansions of the lag phase regions
are in Extended Data Figs. 2, 3. g, Pyrene–actin polymerization profiles
of 2 µM rabbit α-actin titrated with increasing concentrations of Thor
profilin. Thor profilin was not observed to have profilin activity
included in subsequent discussions of Asgard profilins. h, Com
the inhibition of actin nucleation in the pyrene–actin assay reve
human profilin-1 (solid lines; red 2 µM, green 4 µM, orange 32 
approximately eightfold more potent than Odin profilin (purple
16 µM, dots 64 µM, dots-and-dashes 256 µM). Actin control (2 
shown as a solid black line. Comparisons for other Asgard profi
shown in Extended Data Fig. 3b. i, Schematic alignment of the p
contigs that contain the Loki profilin-1 and Loki profilin-2 gene
Lines connect homologous genes, with nucleotide percentage id
indicated below (Supplementary Table 3b). Genes with homolo
previously found in archaea are coloured blue, and genes curren
to Asgard archaea are coloured red. Genes with homologues tha
been found to date in bacteria or eukaryotes are coloured black
respectively. The Loki profilins are in green. AU, arbitrary units
Fig.2
Loki profilin-1のcontig→
Loki profilin-2のcontig→
Lokiプロフィリン遺伝子 (緑色)とその遺伝子周辺領域含めて全体的に相同性が認められる。
→ Loki profilin-1, 2は2つの異なるLokiアーキア系統であり,真核生物のコンタミではないことを確認。
15
Asgardプロフィリンと哺乳類アクチン複合体の共結晶構造
LETTER RESEARCH
of Loki profilin-1 on the two ends of actin filaments. Low concentra-
tions of human profilin-1 or Loki profilin-1 did not slow elongation at
the barbed ends (Extended Data Figs. 2, 3). Higher concentrations of
human profilin-1 and Loki profilin-1 showed small decreases in elon-
gation rates (Fig. 2a, b), consistent with dynamic barbed end binding by
profilin10
, but at least tenfold more archaeal profilin than human pro-
filin was required to achieve similar effects (Extended Data Figs. 2, 3).
Gelsolin–actin seeds grow only at the pointed ends. As with lower
concentrations of human profilin-1, high concentrations of Loki
profilin-1 partially inhibited the elongation of pointed ends (Fig. 2a, b).
Spontaneous polymerization of actin monomers depends on a slow,
rate-limiting nucleation step. Loki profilin-1 slowed the time course
of actin polymerization, but required concentrations that were more
than 30 times higher than those required when using human profilin-1
(Fig. 2a, b). Because barbed ends elongate under these conditions, this
experiment demonstrates that high concentrations of Loki profilin-1
inhibit spontaneous nucleation; presumably, the higher concentrations
of Loki profilin-1 that are required are due to its low affinity for rabbit
α-actin. These data suggest that, despite the divergence between
Lokiarchaeota and eukaryotes, Loki profilin-1 is partially functional
in regulating mammalian actin in vitro, which in turn indicates a
profilin-regulated actin system in these archaea.
To demonstrate that the Loki profilin-1 activity is not an isolated case
that may be due to eukaryotic contamination in the metagenomes, we
produced five other potential Asgard profilins for the in vitro assays
(Extended Data Fig. 3c). Loki profilin-2 shares 87% and 91% identity
with Loki profilin-1 at amino acid and nucleotide levels, respectively.
Comparison of their parent contigs reveals global homology and a high
percentage of typical archaeal genes (Fig. 2i). Thus, Loki profilin-1
and Loki profilin-2 appear to come from two related strains of
Lokiarchaeota.Lokiprofilin-2displayedsimilaractivitytoLokiprofilin-1
in the polymerization assay (Fig. 2c). Heimdall profilin showed a lesser,
but measurable, ability to inhibit spontaneous actin nucleation (Fig. 2d),
whereas Odin profilin (Fig. 2e) and Loki profilin-3 (Fig. 2f) showed
higher activity relative to Loki profilin-1. The presence of the Loki
loop in Loki profilin-1 and Loki profilin-2, but not in Loki profilin-3,
indicates possible functional divergence (Extended Data Fig. 5a).
Thor profilin displayed no measurable ability to inhibit actin nuclea-
a
b
c
Loki
profilin-1
Loki
profilin-2
Loki
loop
Loki
loop
Actin
1 1
2
2
3
4
3
4
C
N
C
N
Odin
profilin
24
C
N
d
180
LETTER RESEARCH
of Loki profilin-1 on the two ends of actin filaments. Low concentra-
tions of human profilin-1 or Loki profilin-1 did not slow elongation at
the barbed ends (Extended Data Figs. 2, 3). Higher concentrations of
human profilin-1 and Loki profilin-1 showed small decreases in elon-
gation rates (Fig. 2a, b), consistent with dynamic barbed end binding by
profilin10
, but at least tenfold more archaeal profilin than human pro-
filin was required to achieve similar effects (Extended Data Figs. 2, 3).
Gelsolin–actin seeds grow only at the pointed ends. As with lower
concentrations of human profilin-1, high concentrations of Loki
profilin-1 partially inhibited the elongation of pointed ends (Fig. 2a, b).
Spontaneous polymerization of actin monomers depends on a slow,
rate-limiting nucleation step. Loki profilin-1 slowed the time course
of actin polymerization, but required concentrations that were more
than 30 times higher than those required when using human profilin-1
(Fig. 2a, b). Because barbed ends elongate under these conditions, this
experiment demonstrates that high concentrations of Loki profilin-1
inhibit spontaneous nucleation; presumably, the higher concentrations
of Loki profilin-1 that are required are due to its low affinity for rabbit
α-actin. These data suggest that, despite the divergence between
Lokiarchaeota and eukaryotes, Loki profilin-1 is partially functional
in regulating mammalian actin in vitro, which in turn indicates a
profilin-regulated actin system in these archaea.
To demonstrate that the Loki profilin-1 activity is not an isolated case
that may be due to eukaryotic contamination in the metagenomes, we
produced five other potential Asgard profilins for the in vitro assays
(Extended Data Fig. 3c). Loki profilin-2 shares 87% and 91% identity
with Loki profilin-1 at amino acid and nucleotide levels, respectively.
Comparison of their parent contigs reveals global homology and a high
percentage of typical archaeal genes (Fig. 2i). Thus, Loki profilin-1
and Loki profilin-2 appear to come from two related strains of
Lokiarchaeota.Lokiprofilin-2displayedsimilaractivitytoLokiprofilin-1
in the polymerization assay (Fig. 2c). Heimdall profilin showed a lesser,
but measurable, ability to inhibit spontaneous actin nucleation (Fig. 2d),
whereas Odin profilin (Fig. 2e) and Loki profilin-3 (Fig. 2f) showed
higher activity relative to Loki profilin-1. The presence of the Loki
loop in Loki profilin-1 and Loki profilin-2, but not in Loki profilin-3,
indicates possible functional divergence (Extended Data Fig. 5a).
Thor profilin displayed no measurable ability to inhibit actin nuclea-
tion (Fig. 2g). Odin profilin was approximately eightfold less potent in
inhibiting spontaneous actin nucleation, relative to human profilin-1
(Fig. 2h). Odin profilin and Heimdall profilin showed very weak abili-
ties to prevent pointed-end elongation in the gelsolin–actin seed assay.
These data demonstrate that actin-regulating profilins are present in
a
b
c
Loki
profilin-1
Loki
profilin-2
Loki
loop
Loki
loop
Actin
1 1
2
2
3
4
3
4
C
N
C
N
Odin
profilin
Actin
2
24
4
C
N
d
180
Fig.3
Asgardアーキアと真核生物が共通のプロフィリン-アクチン相互作用様式を持つことを示し
た。
➤ Lokiプロフィリン-1
地熱環境に生息Odinのプロフィリンは最もコンパクトな構造を取る
filin was requ
Gelsolin–ac
concentrati
profilin-1 pa
Spontaneou
rate-limiting
of actin poly
than 30 time
(Fig. 2a, b). B
experiment
inhibit spont
of Loki profi
α-actin. Th
Lokiarchaeo
in regulatin
profilin-regu
To demon
that may be d
produced fiv
(Extended D
with Loki pr
Comparison
percentage o
and Loki pr
Lokiarchaeot
in the polym
but measurab
whereas Od
higher activ
loop in Loki
indicates po
Thor profilin
tion (Fig. 2g)
inhibiting sp
(Fig. 2h). Od
ties to preven
These data d
three branch
collected from
(Loki and He
Tobetteru
determined t
and Odin pr
and Loki pro
a similar ori
b
c
Loki
profilin-1
Loki
profilin-2
Loki
loop
Loki
loop
1 1
3
3
C
N
C
N
Human
profilin
Odin
profilin
Actin
1 1
2
2
3
4
3
4
C
N
C
N
d
Fig. 3 | The structures of the Loki profilin-1, Loki profilin-2 and
Odin profilin complexes with rabbit α-actin. a, Back and front views
of the structure of the Loki profilin-1–rabbit α-actin complex. Rabbit
α-actin is shown as a surface and Loki profilin-1 is shown in schematic
concentrati
profilin-1 pa
Spontaneou
rate-limiting
of actin poly
than 30 time
(Fig. 2a, b). B
experiment
inhibit spont
of Loki profi
α-actin. Th
Lokiarchaeo
in regulatin
profilin-regu
To demon
that may be d
produced fiv
(Extended D
with Loki pr
Comparison
percentage o
and Loki pr
Lokiarchaeot
in the polym
but measurab
whereas Od
higher activ
loop in Loki
indicates po
Thor profilin
tion (Fig. 2g)
inhibiting sp
(Fig. 2h). Od
ties to preven
These data d
three branch
collected from
(Loki and He
Tobetteru
determined t
and Odin pr
and Loki pro
a similar ori
(Fig. 1b, d, e,
Loki profilin
(Extended D
b
c
Loki
profilin-1
Loki
profilin-2
Loki
loop
Loki
loop
1 1
3
3
C
N
C
N
Human
profilin
Odin
profilin
Actin
1 1
2
2
3
4
3
4
C
N
C
N
d
Fig. 3 | The structures of the Loki profilin-1, Loki profilin-2 and
Odin profilin complexes with rabbit α-actin. a, Back and front views
of the structure of the Loki profilin-1–rabbit α-actin complex. Rabbit
α-actin is shown as a surface and Loki profilin-1 is shown in schematic
representation. b, The Loki profilin-2–rabbit α-actin complex. c, The
Odin profilin–rabbit α-actin complex. d, Structure of the published
➤ Lokiプロフィリン-2
➤ ヒトプロフィリン-1➤ Odinプロフィリン
ウサギαアクチン →
数字はサブドメインを示す
(比較用)
・LokiプロフィリンのC末端ヘリックスは,ヒトプロフィリン-1と比較して,アクチンサブドメイン1上の結合部位からわずかにずれる。
・Lokiループはアクチンとの結合で整列し,アクチンサブドメイン3の表面に近接して存在する。
16
Asgardプロフィリンと真核プロフィリンの差異
LETTERRESEARCH
20
40
60
80
orescence(AU)
20
40
60
80
orescence(AU)
20
40
60
80orescence(AU)
20
40
60
80
orescence(AU)
K69
K90
K71 K58
K60
K71
K60
i j k l
e f g h
Asn9
Tyr6
Human profilin
Trp3
Trp31
Tyr139
His133
Leu134
N Polyproline
N-helix
C-helix
C
Ile32
Ile5
Ile8
Asp11
Lys129
Leu130
Leu133
N-helix
Loki profilin-1
C-helix
a b c d
Val32
Ile5
Ile8
Asp11
Lys129
Leu130
Leu133
N-helix
Loki profilin-2
C-helix
Ile28
Leu3
Leu6
Arg9
Gln114
Leu115
Ile118
N-helix
Odin profilin
C-helix
Fig.4
芳香族アミノ酸:フェニルアラニン (Phe),トリプトファン (Trp),ヒスチジン (His),チロシン (Tyr),etc.
➤ プロフィリン上のポリプロリン結合領域
真核生物のプロフィリンは,プロフィリンのN末端およびC末端ヘリックスの間にある芳香族残基との相互作用により,
ポリプロリンモチーフに結合することによって,アクチンフィラメント核形成および伸長機械に組み込まれる。
Asgardプロフィリンには芳香族残基によるポリプロリン結合溝が存在しない。
→Asgardメタゲノムには真核生物様のポリプロリンリッチなアクチン核形成また
は伸長タンパク質の遺伝子が存在せず,一致する結果。
→プロフィリン‒ポリプロリン間の相互作用は,真核生物ドメイン系統で後に進化したのでは。
AsgardプロフィリンがAsgardメタゲノムに由来し,真核生物のコンタミではないことを裏付け
る。
17
Asgardプロフィリンと真核プロフィリンの差異
LETTERRESEARCH
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
0 50 100 150 200 250
0
20
40
60
80
Time (min)
Fluorescence(AU)
Actin (2 μM)
hP (10 μM)
PIP2 (20 μM)
PIP2 (40 μM)
PIP2 (160 μM)
K69
K90
K71 K58
K60
K71
K60
i j k l
e f g h
Actin (2 μM)
LokiP1 (50 μM)
PIP2 (50 μM)
PIP2 (100 μM)
PIP2 (200 μM)
Actin (2 μM)
LokiP2 (50 μM)
PIP2 (50 μM)
PIP2 (100 μM)
PIP2 (200 μM)
Actin (2 μM)
OdinP (50 μM)
PIP2 (50 μM)
PIP2 (100 μM)
PIP2 (200 μM)
Asn9
Tyr6
Human profilin
Trp3
Trp31
Tyr139
His133
Leu134
N Polyproline
N-helix
C-helix
C
Ile32
Ile5
Ile8
Asp11
Lys129
Leu130
Leu133
N-helix
Loki profilin-1
C-helix
a b c d
Val32
Ile5
Ile8
Asp11
Lys129
Leu130
Leu133
N-helix
Loki profilin-2
C-helix
Ile28
Leu3
Leu6
Arg9
Gln114
Leu115
Ile118
N-helix
Odin profilin
C-helix
Fig. 4 | Asgard profilins do not bind to polyproline motifs but are
sensitive to phospholipids. a, The polyproline-binding site on human
profilin-1 (PDB code: 2PAV)12
. The polyproline ligand is shown in
black, with the respective termini labelled as N or C, and the residues on
human profilin-1 that interact with the polyproline motif are labelled
in blue. b–d, Equivalent residues to those shown in a, from the Loki
profilin-1 (b), Loki profilin-2 (c) and Odin profilin (d) structures. In the
structures of Asgard profilins, the N- and C-terminal helices are tightly
in e, for structures of Loki profilin-1 (f), Loki profilin-2 (g) and Odin
profilin (h) complexes with actin, with the basic residues indicated. Views
rotated by 180° are shown in Extended Data Fig. 7a. i, Pyrene–actin
polymerization profiles of rabbit α-actin (2 µM, orange) supplemented
with human profilin-1 (hP, 10 µM, pink) and subsequently with increasing
concentrations of PtdIns-(4,5)-P2(1,2-dipalmitoyl) (blue), a soluble
version of PIP2. j–l, Similar polymerization profiles to those shown in i, for
Loki profilin-1 (LokiP1, j), Loki profilin-2 (LokiP2, k) and Odin profilin
Fig.4
ホスファチジルイノシトール-4,5-ビホスフェート (PtdIns (4,5) P2 ; PIP2):真核細胞膜でアクチンを調節するための
機能性リン脂質
e-f: タンパク質の電荷分析. 青: 正電荷,赤: 負電荷
➤ ヒトプロフィリン ➤ Lokiプロフィリン-1 ➤ Lokiプロフィリン-2 ➤ Odinプロフィリン-1
塩基性残基
i-l: PIP2とプロフィリンのアクチン重合阻害能との関連
Asgardプロフィリンとアクチンの相互作用もリン脂質によって制御される。
→ 膜に局在している可能性を示唆。
PIP2はAsgardプロフィリンと弱く相互作用し,プロフィリンによるアクチン重合阻害を抑制する
18
総括
まとめ/掲載理由
本論文では,これまで配列レベルでしか存在が予測されていなかったAsgardアーキアプロ
フィリンが実際に真核生物プロフィリンと酷似した立体構造を取ることを明らかにし,真
核生物のアクチンと相互作用して重合を制御することを示した。
これらは真核生物が持つ細胞骨格系の原型と考えられ,真核生物がアーキアから進化した
ことを強く裏付けた。
感想
• 構造決定タンパク質選定の目の付け所が良い。
• Asgardアーキアのアクチンの立体構造・相互作用はどうなっているのか。
• 核の起源についても気になるところではある。
organisms — an archaeal host cell1–3
and a
bacterium from which eukaryotic organelles
called mitochondria emerged4
. Some insights
into the biological properties of the host have
come from the closest known archaeal rela-
tives of eukaryotes, the Asgard superphylum5,6
.
The genomes of organisms belonging to this
archaeal group encode a suite of proteins
typically involved in functions or processes
thought to be eukaryote-specific. The func-
tions of these ‘eukaryotic genes’ in Asgard
archaea have been elusive, but in a paper in
Nature, Akıl and Robinson7
provide evidence
that some of them encode proteins that are
structurally and functionally similar to their
eukaryotic counterparts.
Apart from their nucleus and energy-
producing mitochondria, eukaryotic cells
are characterized by a complex internal sys-
tem of membrane-bound compartments (the
endomembrane system), and by a dynamic
network of proteins such as actin, called the
cytoskeleton. The latter gives the cells their
shape and structure, but is also involved in a
variety of cellular processes specific to eukary-
otes8
. These features are thought to have been
present in the last common ancestor of all
eukaryotes, which lived about 1.8 billion years
ago9
, but no life forms have been found that
represent an intermediate between eukaryotes
and their bacterial and archaeal ancestors.
The seemingly sudden emergence of cellu-
lar complexity in the eukaryotic lineage is a
conundrum for evolutionary biologists.
Several of the proteins produced by Asgard
archaea are evolutionarily related to proteins
that in eukaryotes modulate complex cellular
processes5,6
. The identification of these pro-
teins raised the question of whether Asgard
archaea have some primitive versions of
certain eukaryotic properties. If they do, it
would suggest that the last archaeal ancestor
of eukaryotes already displayed a certain —
albeit probably limited — degree of cellular
ota and Heimdallarchaeota)5,6
is based solely
on metagenomics analyses. The cells have yet
to be observed under a microscope, and have
not been cultured in vitro. Nevertheless, Akıl
and Robinson were determined to gain insight
into the properties of Asgard proteins related
totheeukaryoticproteinsactinandprofilin.In
eukaryotes, profilin regulates the polymeriza-
tion of actin into filaments of the cytoskeleton.
These filaments have pivotal roles in processes
that include vesicle and organelle movement,
cell-shape formation and phagocytosis8
, in
whichcellsingestforeignparticlesorothercells.
To produce Asgard profilins, Akıl and
Robinson expressed these proteins in the bac-
terium Escherichia coli using a circular DNA
Asgardprofilinscouldinteractwitheukaryotic
actins. Remarkably, despite being separated by
2 billion to 3 billion years of evolution9
, several
of the Asgard profilins bound to mammalian
actinandregulateditspolymerizationkinetics.
Asgard and mammalian profilins seem to have
similar effects on mammalian actin, although
the Asgard proteins act less efficiently. These
results suggest that Asgard archaea harbour a
profilin-regulated actin cytoskeleton — a cel-
lular feature generally regarded as a defining
characteristic of eukaryotic cells (Fig. 1).
The inference of a primitive dynamic actin
cytoskeleton in Asgard archaea sheds light
on the biological properties of the ancestor
of eukaryotes. In eukaryotic cells, the energy
Figure 1 | Cellular complexity along the tree of life. The Eukarya (organisms whose cells harbour
DNA in a nucleus) are thought to have arisen from a merger between their last archaeal ancestor and a
bacterium. In addition to a nucleus, eukaryotes have several characteristics that are thought to separate
them from archaea, including: a complex internal system of membranes called endomembranes; a
structural feature called the actin cytoskeleton, the dynamics of which are regulated by the protein
profilin; and energy-producing organelles called mitochondria, which arose from the bacterial partner.
But Akıl and Robinson7
provide evidence that members of the Asgard superphylum — an extant group of
archaea thought to be related to eukaryotes — harbour a primitive profilin-regulated actin cytoskeleton.
If the last archaeal ancestor of eukaryotes had this feature, it might have enabled the cell to wrap around its
presumed bacterial partner. In addition, it is possible that Asgard archaea and the last archaeal ancestor of
eukaryotes carry primitive endomembrane systems. (Cells and cellular features are not drawn to scale.)
Bacterial
partner
Eukarya
Last archaeal ancestor
of eukaryotes
Asgard
archaea
Other
archaea
Mitochondrion
Nucleus
Actin
cytoskeleton
Primitive
endomembrane
system
Primitive actin
cytoskeleton
DNA
Cytoskeleton-
mediated interaction?
Profilin
Endomembrane
system
Eme L, Ettema TJG. The eukaryotic ancestor shapes up. Nature. 2018;562(7727):352‒3.
19
Fig. 1補足データ
Extended Data Fig. 2
Appendix
LETTER RESEARCH
Extended Data Fig. 2 | Titration data. Titration data for the polymerization profiles that are shown in Fig. 2a–f.
20
Fig. 2補足データ
Extended Data Fig. 3
Appendix
LETTERRESEARCH
b: Fig. 2h補足
a: Fig. 2a-f補足
21
構造に基づく配列アライメント
Extended Data Fig. 5
LETTERRCH
Extended Data Fig. 5 | See next page for caption.
Appendix
a: プロフィリン,b: アクチン
Lokiループ
↓
アクチン結合サイトは真核とアーキアで同じ領域にあるが,
アミノ酸配列はあまり保存されていない。
Odinアクチンの翻訳開始位置。
フレームシフトの可能性あり。

Weitere ähnliche Inhalte

Was ist angesagt?

Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9Lopamudra Nayak
 
CRISPR: Opportunities and Challenges Webinar
CRISPR: Opportunities and Challenges WebinarCRISPR: Opportunities and Challenges Webinar
CRISPR: Opportunities and Challenges WebinarPreScouter
 
Homo sapiens (human pepsin) NCBI GENBANK
Homo sapiens (human pepsin) NCBI GENBANKHomo sapiens (human pepsin) NCBI GENBANK
Homo sapiens (human pepsin) NCBI GENBANKShreyaBhatt23
 
Research project
Research project Research project
Research project Dingquan Yu
 
CRISPR-Cas9: The new frontier of Genome Engineering
CRISPR-Cas9: The new frontier of Genome EngineeringCRISPR-Cas9: The new frontier of Genome Engineering
CRISPR-Cas9: The new frontier of Genome EngineeringSt Xaviers
 
CRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and HowCRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and HowHorizonDiscovery
 
Institute of Learning in Retirement - Miami University (Ohio)
Institute of Learning in Retirement - Miami University (Ohio)Institute of Learning in Retirement - Miami University (Ohio)
Institute of Learning in Retirement - Miami University (Ohio)Andor Kiss
 
Research Abstract
Research AbstractResearch Abstract
Research AbstractJohn O'Hara
 
Genetica forense curso 2012
Genetica forense curso 2012Genetica forense curso 2012
Genetica forense curso 2012braguetin
 
CRISPR A Genome Editing Tool
CRISPR A Genome Editing ToolCRISPR A Genome Editing Tool
CRISPR A Genome Editing ToolA. Rakha
 
Comparative analysis of gene regulation in mouse rat and human
Comparative analysis of gene regulation in mouse rat and humanComparative analysis of gene regulation in mouse rat and human
Comparative analysis of gene regulation in mouse rat and humanconstantina mylona
 
ZINC FINGER NUCLEASE TECHNOLOGY
ZINC FINGER NUCLEASE TECHNOLOGYZINC FINGER NUCLEASE TECHNOLOGY
ZINC FINGER NUCLEASE TECHNOLOGYPriyesh Waghmare
 

Was ist angesagt? (20)

Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9
 
CRISPR: Opportunities and Challenges Webinar
CRISPR: Opportunities and Challenges WebinarCRISPR: Opportunities and Challenges Webinar
CRISPR: Opportunities and Challenges Webinar
 
Homo sapiens (human pepsin) NCBI GENBANK
Homo sapiens (human pepsin) NCBI GENBANKHomo sapiens (human pepsin) NCBI GENBANK
Homo sapiens (human pepsin) NCBI GENBANK
 
Research project
Research project Research project
Research project
 
Crispr
CrisprCrispr
Crispr
 
Crispr
CrisprCrispr
Crispr
 
CRISPR-Cas9: The new frontier of Genome Engineering
CRISPR-Cas9: The new frontier of Genome EngineeringCRISPR-Cas9: The new frontier of Genome Engineering
CRISPR-Cas9: The new frontier of Genome Engineering
 
e. coli
e. colie. coli
e. coli
 
CRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and HowCRISPR Screening: the What, Why and How
CRISPR Screening: the What, Why and How
 
Institute of Learning in Retirement - Miami University (Ohio)
Institute of Learning in Retirement - Miami University (Ohio)Institute of Learning in Retirement - Miami University (Ohio)
Institute of Learning in Retirement - Miami University (Ohio)
 
Research Abstract
Research AbstractResearch Abstract
Research Abstract
 
Genetica forense curso 2012
Genetica forense curso 2012Genetica forense curso 2012
Genetica forense curso 2012
 
P27_BEKAERT (1)
P27_BEKAERT (1)P27_BEKAERT (1)
P27_BEKAERT (1)
 
Louisville2
Louisville2Louisville2
Louisville2
 
CRISPR A Genome Editing Tool
CRISPR A Genome Editing ToolCRISPR A Genome Editing Tool
CRISPR A Genome Editing Tool
 
Comparative analysis of gene regulation in mouse rat and human
Comparative analysis of gene regulation in mouse rat and humanComparative analysis of gene regulation in mouse rat and human
Comparative analysis of gene regulation in mouse rat and human
 
GKA deel 1 college 5
GKA deel 1 college 5GKA deel 1 college 5
GKA deel 1 college 5
 
Crispr cas 9
Crispr cas 9Crispr cas 9
Crispr cas 9
 
Crispr
CrisprCrispr
Crispr
 
ZINC FINGER NUCLEASE TECHNOLOGY
ZINC FINGER NUCLEASE TECHNOLOGYZINC FINGER NUCLEASE TECHNOLOGY
ZINC FINGER NUCLEASE TECHNOLOGY
 

Ähnlich wie [論文紹介] Asgardアーキアのゲノムはアクチンを制御するプロフィリンをコードしている (Genomes of Asgard archaea encode profilins that regulate actin)

MIB200A at UCDavis Module: Microbial Phylogeny; Class 4
MIB200A at UCDavis Module: Microbial Phylogeny; Class 4MIB200A at UCDavis Module: Microbial Phylogeny; Class 4
MIB200A at UCDavis Module: Microbial Phylogeny; Class 4Jonathan Eisen
 
The Phylogenetic Tree of Life: a Two Domain System?
The Phylogenetic Tree of Life: a Two Domain System?The Phylogenetic Tree of Life: a Two Domain System?
The Phylogenetic Tree of Life: a Two Domain System?Jack Dazley
 
What Are Archaea And Bacteria Be Classified As Two...
What Are Archaea And Bacteria Be Classified As Two...What Are Archaea And Bacteria Be Classified As Two...
What Are Archaea And Bacteria Be Classified As Two...Monica Turner
 
EVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of Life
EVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of LifeEVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of Life
EVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of LifeJonathan Eisen
 
The need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuks
The need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuksThe need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuks
The need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuksJonathan Eisen
 
REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA
REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA
REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA Shruti Gupta
 
Compare and contrast eukaryotic and prokaryotic cells. Why do you th.pdf
Compare and contrast eukaryotic and prokaryotic cells. Why do you th.pdfCompare and contrast eukaryotic and prokaryotic cells. Why do you th.pdf
Compare and contrast eukaryotic and prokaryotic cells. Why do you th.pdfseasonsnu
 
Distinction in the Major Paper
Distinction in the Major PaperDistinction in the Major Paper
Distinction in the Major PaperNathaniel Brown
 
Molecular Systematics and Biodiversity
Molecular Systematics and BiodiversityMolecular Systematics and Biodiversity
Molecular Systematics and BiodiversitySarwar A.D
 
Classification And Taxonomy Of The World
Classification And Taxonomy Of The WorldClassification And Taxonomy Of The World
Classification And Taxonomy Of The WorldKim Moore
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentationKashyap Kumar
 

Ähnlich wie [論文紹介] Asgardアーキアのゲノムはアクチンを制御するプロフィリンをコードしている (Genomes of Asgard archaea encode profilins that regulate actin) (20)

replicación ADN.pdf
replicación ADN.pdfreplicación ADN.pdf
replicación ADN.pdf
 
Mundo viral
Mundo viralMundo viral
Mundo viral
 
MIB200A at UCDavis Module: Microbial Phylogeny; Class 4
MIB200A at UCDavis Module: Microbial Phylogeny; Class 4MIB200A at UCDavis Module: Microbial Phylogeny; Class 4
MIB200A at UCDavis Module: Microbial Phylogeny; Class 4
 
Archaebacteria.
Archaebacteria.Archaebacteria.
Archaebacteria.
 
The Phylogenetic Tree of Life: a Two Domain System?
The Phylogenetic Tree of Life: a Two Domain System?The Phylogenetic Tree of Life: a Two Domain System?
The Phylogenetic Tree of Life: a Two Domain System?
 
What Are Archaea And Bacteria Be Classified As Two...
What Are Archaea And Bacteria Be Classified As Two...What Are Archaea And Bacteria Be Classified As Two...
What Are Archaea And Bacteria Be Classified As Two...
 
EVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of Life
EVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of LifeEVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of Life
EVE161: Microbial Phylogenomics - Class 3 - Woese and the Tree of Life
 
The need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuks
The need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuksThe need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuks
The need for a phylogeny driven genomic encyclopedia of eukaryotes #SMBEEuks
 
REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA
REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA
REVIEW THE STATUS OF GENOME ANALYSIS OF CULTURED ARCHAEA
 
Compare and contrast eukaryotic and prokaryotic cells. Why do you th.pdf
Compare and contrast eukaryotic and prokaryotic cells. Why do you th.pdfCompare and contrast eukaryotic and prokaryotic cells. Why do you th.pdf
Compare and contrast eukaryotic and prokaryotic cells. Why do you th.pdf
 
Astrovirus
AstrovirusAstrovirus
Astrovirus
 
Distinction in the Major Paper
Distinction in the Major PaperDistinction in the Major Paper
Distinction in the Major Paper
 
Molecular Systematics and Biodiversity
Molecular Systematics and BiodiversityMolecular Systematics and Biodiversity
Molecular Systematics and Biodiversity
 
Classification And Taxonomy Of The World
Classification And Taxonomy Of The WorldClassification And Taxonomy Of The World
Classification And Taxonomy Of The World
 
Fall project
Fall projectFall project
Fall project
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentation
 
Sandlund
SandlundSandlund
Sandlund
 
L1203.full
L1203.fullL1203.full
L1203.full
 
Ch. 14 Evolution
Ch. 14 EvolutionCh. 14 Evolution
Ch. 14 Evolution
 
Pielak_DevBiol2004
Pielak_DevBiol2004Pielak_DevBiol2004
Pielak_DevBiol2004
 

Mehr von Shohei Nagata

Microsoft Ignite November 2021 最新アップデート - Azure Synapse Analytics
Microsoft Ignite November 2021 最新アップデート - Azure Synapse AnalyticsMicrosoft Ignite November 2021 最新アップデート - Azure Synapse Analytics
Microsoft Ignite November 2021 最新アップデート - Azure Synapse AnalyticsShohei Nagata
 
Microsoft AI と深層学習
Microsoft AI と深層学習Microsoft AI と深層学習
Microsoft AI と深層学習Shohei Nagata
 
[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達
[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達
[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達Shohei Nagata
 
[カンデル神経科学輪読会] 第5章 イオンチャネル
[カンデル神経科学輪読会] 第5章 イオンチャネル[カンデル神経科学輪読会] 第5章 イオンチャネル
[カンデル神経科学輪読会] 第5章 イオンチャネルShohei Nagata
 
[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...
[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...
[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...Shohei Nagata
 
[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...
[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...
[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...Shohei Nagata
 
[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...
[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...
[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...Shohei Nagata
 
pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)
pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)
pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)Shohei Nagata
 

Mehr von Shohei Nagata (8)

Microsoft Ignite November 2021 最新アップデート - Azure Synapse Analytics
Microsoft Ignite November 2021 最新アップデート - Azure Synapse AnalyticsMicrosoft Ignite November 2021 最新アップデート - Azure Synapse Analytics
Microsoft Ignite November 2021 最新アップデート - Azure Synapse Analytics
 
Microsoft AI と深層学習
Microsoft AI と深層学習Microsoft AI と深層学習
Microsoft AI と深層学習
 
[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達
[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達
[カンデル神経科学輪読会] 第9章 神経筋シナプスでのシグナル伝達:チャネルの直接的開口を介したシナプス伝達
 
[カンデル神経科学輪読会] 第5章 イオンチャネル
[カンデル神経科学輪読会] 第5章 イオンチャネル[カンデル神経科学輪読会] 第5章 イオンチャネル
[カンデル神経科学輪読会] 第5章 イオンチャネル
 
[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...
[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...
[論文紹介] 微生物パンゲノムにおける抗ファージ防御システムの系統的発見 (Systematic discovery of antiphage defen...
 
[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...
[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...
[論文紹介] 古代の伝染性がん系統の体細胞進化と世界的拡大 (Somatic evolution and global expansion of an a...
 
[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...
[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...
[論文紹介] 切り出された直鎖状イントロンが酵母の増殖を調節する (Excised linear introns regulate growth in y...
 
pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)
pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)
pylearn2を用いた Deep Learning (E-Cell sprint 2014 発表内容)
 

Kürzlich hochgeladen

Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfSumit Kumar yadav
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLkantirani197
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Silpa
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxSilpa
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxSilpa
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 

Kürzlich hochgeladen (20)

Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 

[論文紹介] Asgardアーキアのゲノムはアクチンを制御するプロフィリンをコードしている (Genomes of Asgard archaea encode profilins that regulate actin)

  • 1. Asgardアーキアのゲノムは アクチンを制御するプロフィリンをコードしている 2018.10.23 PMID: 30283132 M1 永田 祥平 LETTER https://doi.org/10.1038/s41586-018-0548-6 Genomes of Asgard archaea encode profilins that regulate actin Caner Akıl1,2 & Robert C. Robinson1,2,3 * The origin of the eukaryotic cell is unresolved1,2 . Metagenomics sequencing has recently identified several potential eukaryotic gene homologues in Asgard archaea3,4 , consistent with the hypothesis that the eukaryotic cell evolved from within the Archaea domain. However, many of these eukaryotic-like sequences are highly divergent and the organisms have yet to be imaged or cultivated, which brings into question the extent to which these archaeal proteins represent functional equivalents of their eukaryotic counterparts. Here we show that Asgard archaea encode functional profilins and thereby establish that this archaeal superphylum has a regulated actin cytoskeleton, one of the hallmarks of the eukaryotic cell5 . Loki profilin-1, Loki profilin-2 and Odin profilin adopt the typical profilin fold and are able to interact with rabbit actin—an interaction that involves proteins from species that diverged more than 1.2 billion years ago6 . Biochemical experiments reveal that mammalian actin polymerizes in the presence of Asgard profilins; however, Loki, Odin and Heimdall profilins impede pointed-end elongation. These archaeal profilins also retard the spontaneous nucleation of actin filaments, an effect that is reduced in the presence of phospholipids. Asgard profilins do not interact with polyproline motifs and the profilin–polyproline interaction therefore probably evolved later in the Eukarya lineage. These results suggest that Asgard archaea possess a primordial, polar, profilin-regulated actin system, which may be localized to membranes owing to the sensitivity of Asgard profilins to phospholipids. Because Asgard archaea are also predicted to encode potential eukaryotic-like genes involved in membrane-trafficking and endocytosis3,4 , imaging is now necessary to elucidate whether these organisms are capable of generating eukaryotic-like membrane dynamics that are regulated by actin, such as are observed in eukaryotic cell movement, podosomes and endocytosis. Recently, metagenomics studies have identified genes from Asgard archaea (Heimdall, Loki, Thor and Odin) that are homologous to eukaryotic genes that encode machineries involved in membrane ca d Verrucosispora sediminis Actinomadura sp. Saccharopolyspora flava Streptomyces avermitilis Nocardia soli 1 /LC7/MgLB
  • 2. 2 要旨 真核細胞の起源は明らかになっていない。メタゲノミクス配列決定により,真核細胞がアーキアドメイン内 から進化したという仮説と一致して,Asgardアーキアにおけるいくつかの真核生物と相同と思われる遺伝 子が同定された。しかし,これらの真核生物様配列の多くは高度に多様化しており,生物個体は未だ映像化 または培養されていないので,これらのアーキアタンパク質が真核生物のタンパク質とどの程度の機能的同 等性を示すかが問題となっている。 そこで我々は,Asgardアーキアが機能的なプロフィリンをコードし,それによってこのアーキア上門が 真核細胞の特徴の一つである制御されたアクチン細胞骨格を有することを示す。 ① Loki profilin-1,Loki profilin-2,Odin profilinは典型的なプロフィリンフォールドを採用し,ウサギア クチンと相互作用することができた。(12億年以上前に分岐した種のタンパク質が相互作用する!) ② 生化学的実験により,哺乳動物のアクチンはAsgardプロフィリンの存在下で重合することが明らかに なった。(しかし,Loki,OdinおよびHeimdallのプロフィリンは尖った伸びを妨げる。) ③ これらの古代のプロフィリンは,リン脂質の存在下で減少するアクチンフィラメントの自発的な核形成を 遅らせる。Asgardプロフィリンはポリプロリンモチーフと相互作用しないため,プロフィリン-ポリプロ リン相互作用はおそらく後の真核系統において進化した。 これらの結果は,Asgardアーキアが,Asgardプロフィリンのリン脂質に対する感受性のために,膜に局在 化する可能性のある初期の極性,プロフィリン制御アクチン系を有することを示唆している。 Asgard アーキアは,膜輸送およびエンドサイトーシスに関与する潜在的な真核生物様遺伝子もコードする と予想されているので,これらの生物が真核生物の細胞運動,ポドソームおよびエンドサイトーシスにおい て観察されるような,アクチンによって調節される真核生物様膜動態を生成することができるかどうかを解 明する必要があり,イメージングが必要と考えられる。 背景 結果
  • 3. 3 背景:生物の分類 -3ドメイン説とその終焉- http://oceanexplorer.noaa.gov/explorations/06fire/background/microbiology/microbiology.html Adapted from Woese et al. 1990. Woeseらによる3ドメイン説の提唱 地球上の細胞型生命は真核生物と原核生物に大別され,原核生物はバクテリアとアーキアに 分類される
  • 4. 4 背景:生物の分類 -3ドメイン説とその終焉- Williams T a, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504(7479):231‒6. ion now debatedis whethercorecomponents of the eukaryotic eage descend from a common ancestor shared with Archaea, ree-domains tree14 (Fig. 1), which is also often called the ‘uni- or‘treeof life’15–17 ,or from withintheArchaea,asproposed by ost hypotheses for eukaryotic origins2 . The archaeal-host sce- the greatest phylogenetic support is the eocyte hypothesis18 , poses a sister-group relationship between eukaryotes and the span of time, the accumulation of multiple substitutions in protein sequences might have erased any signal that would relationship between archaeal and eukaryotic core genes to lished21 . However, more recent simulations and empirical s gest that there are reasons to be cautiously optimistic that thi case: functional constraints vary across real DNA and protein so that sites evolve at different rates22–25 . Fast-evolving sites ll and MolecularBiosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK. 2 Departmentof Life Sciences, Natural History Museum,London SW7 5BD, UK. 3 Cen Euryarchaeota Eocytes/Crenarchaeota Eukaryota Bacteria Eocytes/Crenarchaeota Paraphyletic Archaea Three-domains hypothesis Eocyte hypothesis Thaumarchaeota Aigarchaeota Korarchaeota Euryarchaeota Eocytes/Crenarchaeota Eukaryota Bacteria Euryarchaeota Eocytes/Crenarchaeota Monophyletic Archaea Thaumarchaeota Aigarchaeota Korarchaeota TACK TACK a b ompeting hypotheses for the origin of the eukaryotic host cell. d three-domains tree14 depicts cellular life divided into three major ic groups or domains: the Bacteria, Archaea and Eukaryota—the enting the host lineage, sometimes also called the nuclear or plasmic lineage5 , that acquired the mitochondrial endosymbiont. he Archaea and Eukaryota are most closely related to each other y share a common ancestor that is not shared with Bacteria. ed eocyte tree recovers the host-cell lineage nested within the Archaea as a sister group to the eocytes (which Woese et al.14 call Crenarchaeota); this implies that, on the basis of the small set of c there are only two primary domains of life—the Bacteria and the Ar modern formulation shown here the eocyte hypothesis implies tha relative of the eukaryotic nuclear lineage is one, or all, of the TAC which include newly discovered relatives of the eocytes/Crenarcha Both trees have been traditionally rooted on the bacterial stem, con some published analyses5–8 . アーキア 近年,真核生物はアーキアの1系統であると考えられるようになってきた。 ➤ 3ドメイン仮説 ➤ エオサイト仮説 (2ドメイン) →最新の手法で慎重に系統樹を構築した結果,真核生物はアーキアの系統内に入った。
  • 5. 5 背景: 真核生物に最も近いアーキア の発見 ➤ 真核生物の特徴を多く持つアーキア(ロキアー キオータ)の発見 (2015年) (上部) Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521(7551):173‒9. (下部) Zaremba-Niedzwiedzka K, Caceres E, Saw J, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard arcahea illuminates the origin of eukaryotic cellular complexity. Nat Publ Gr. Nature Publishing Group; 2017;541(7637):353‒8. ARTICLERESEARCH a 0.1 Lokiarchaeum sp. GC14_75 Odinarchaeote LCB_4 Heimdallarchaeote AB_125 Thorarchaeote W O R_83 Heimdallarchaeote LC_3 ThorarchaeoteAB_25 Heimdallarchaeote LC_2 Thorarchaeote W OR_45 LokiarchaeoteCR_4 LC LCB CR WOR RP AB, 0.25 m.b.s.f. AB, 0.5 m.b.s.f. AB, 1.25 m.b.s.f. AB, 1.75 m.b.s.f. b c 0.3 Thorarchaeote WOR_83 Odinarchaeote LCB_4 Bathyarchaeota Lokiarchaeum sp. GC14_75 Thorarchaeote AB_25 Korarchaeota Aigarchaeota Heimdallarchaeote LC_3 Heimdallarchaeote AB_125 Euryarchaeota Odinarchaeote RP_19 Thaumarchaeota Heimdallarchaeote LC_2 Lokiarchaeote CR_4 Crenarchaeota 91 74 100 100100 82 84 100 100 87 42 100 46 100 85 28 52 97 100 41 94 100 Eukarya 0.2 Heimdallarchaeote LC_2 Lokiarchaeum sp. GC14_75 Aigarchaeota Heimdallarchaeote LC_3 Thorarchaeote WOR_45 Thaumarchaeota Crenarchaeota Odinarchaeote LCB_4 Eukarya Korarchaeota Thorarchaeote WOR_83 Lokiarchaeote CR_4 Heimdallarchaeote AB_125 Bathyarchaeota Thorarchaeote AB_25 1 10.94 1 1 1 1 1 0.99 0.54 1 0.99 1 10.98 1 0.77 0.94 TACK d Lokiarchaeum sp. GC14_75 Lokiarchaeote CR_4 Odinarchaeote LCB_4 Thorarchaeote AB_25 Thorarchaeote WOR_45 Thorarchaeote WOR_83 Heimdallarchaeote AB_125 Heimdallarchaeote LC_2 Heimdallarchaeote LC_3 Information processing Cell division/ cytoskeleton DNApolymerase,ε-like TopoisomeraseIB RNApolymerase,Afused RNApolymerase,subunitG (rpb8) RibosomalproteinL22e RibosomalproteinL28e/Mak16 Tubulins* Actin-relatedprotein(ARP-like) Conservedlokiactins Gelsolin-domainproteinProfilin Endosomal sorting Ubiquitin system Trafficking machinery Ost complex ARP2/3complex,subunit4-like ESCRT-I:steadinessboxdomain ESCRT-I:Vps28-like ESCRT-II:Vps25-like ESCRT-II:EAP30domain ESCRT-III:Vps2/24/46-like ESCRT-III:Vps20/32/60-like Ubiquitin-domainprotein Ubiquitin-activatingE1candidates E2-likeubiquitinconjugatingprotein ExpansionofsmallGTPases Longin-domainprotein EukaryoticRLC7familiyprotein TRAPP-domainprotein Sec23/24-likeprotein WD40–Armadillogenecluster Arrestin-domain RibophorinI OST3/OST6-like STT3-like Heimdallarchaeota Lokiarchaeota Odinarchaeota Thorarchaeota Figure 1 | Identification and phylogenomics of Asgard archaea. a, Maximum-likelihood tree, inferred with RAxML and PROTCATLG model, based on metagenomic contigs containing conserved ribosomal proteins (see Methods) revealing the Asgard superphylum. Slow, non- parametric maximum-likelihood bootstrap support values above 50 and 90 are indicated with empty and filled circles, respectively. Abbreviations of the sites mentioned are as follows: LC, Loki’s Castle; CR, Colorado River aquifer (USA); LCB, Lower Culex Basin (Yellowstone National Park, sequences inferred with RAxML and GTRGAMMA model (c) showing high support for the phylogenetic affiliation between Asgard archaea and eukaryotes (support values in red). a–c, Scale bars indicate number of substitutions per site. Numbers at branches refer to Bayesian posterior probabilities (b) and slow non-parametric maximum-likelihood bootstrap values (c). Trees were rooted with Euryarchaeota + DPANN (a, b) and with Bacteria (c). Branch length value corresponding to cut branch in c is ➤ さらに近いアーキア群:Asgard上門の発見 (2017年) 数多くの「真核生物特異的」なタンパク質を保有 Asgardアーキア:  Ordin, Loki, Thor, Heimdall 真核生物→ メタゲノム配列ベースで,数多くの真核生物特異的な遺伝子を持つアーキア群が発見され た。
  • 7. 7 背景:原核生物と真核生物の違い.. 原核細胞 真核細胞 核 ない ある 膜で囲まれた細胞内小器官 ない ある 原核細胞 真核細胞 細胞膜 細胞質 DNA 核様体 核 リボソーム 0.1-10 µm 10-100 µm 細胞内骨格 ない ある Kuroda H. 生命現象と現実社会の比較論 (第7回講義). 2015. これまで,真核生物の大きな特徴は細胞内骨格であるとされてきた。
  • 8. 8 背景:プロフィリンはアクチンの重合を制御する アクチン結合タンパク質 単量体のG-アクチンと1:1で結合し,成長しているフィラメントへ G-アクチンが取り込まれるのを防ぐ。 ➤ アクチン ➤ プロフィリン Kuroda H. 生命現象と現実社会の比較論 (第7回講義). 2015. G-アクチン F-アクチン +端, B端, 反矢尻端: アクチンが重合する側 -端, P端, 矢尻端: アクチンが解離する側 緑: アクチン 青: プロフィリン
  • 9. 9 本論文の流れ Fig. 1:Asgardプロフィリンの構造を決定し,Asgardアーキアが真のプ ロフィリンをコードしていることを示す。 Fig. 2:Asgardプロフィリンが哺乳類アクチンと相互作用し,アクチン重 合を制御する機能を持っていることを示す。 Fig. 3:Asgardプロフィリンと哺乳類アクチンの共結晶構造を決定し, Asgardアーキアと真核生物が共通のプロフィリン-アクチン相互作用様式 を持つことを示す。 Fig. 4:Asgardプロフィリンとアクチンの相互作用もリン脂質によって制 御されることを示し,アクチン系が膜に局在している可能性を示唆する。
  • 10. 10 Asgardアクチンは真核アクチンと同様の機能・特性を持つと考えられる。 Extended Data Fig.1 Asgardアーキアはアクチンを保有する ホモログ (相同) = 同一の祖先から進化したもの nd are here referred to as the ‘Asgard actins’. b, Models of the Asgard ctins. The Asgard actins were modelled using I-TASSER. The ‘C-score’ s a confidence score for estimating the quality of predicted models, which is typically in the range of −5 to 2 and in which a high C-score ignifies a model with a high confidence. Template modelling scores TM-scores’) range between 0 and 1, and values greater than 0.5 indicate models of the correct topology and a value of 1 indicates an exact match. The TM-score and r.m.s.d. are estimated by linear regression, and the stimated errors are the root-mean-squared TM-score or r.m.s. deviations. ➤ Asgardアクチンの構造モデリング 哺乳類 (真核生物) アクチン Asgardアクチン ① 真核アクチンと非常に類似した構造を取る RMSD: 平均二乗偏差(Root Mean Square Deviation) タンパク質構造の非類似性や誤りの指標 TM-score: モデル評価の指標.0.0-1.1の値を取り,1.1 は正解構造との肝炎一致を示す。 LETTERRESEARCH Extended Data Fig. 1 | Asgard actins. a, Phylogenetic tree of the polymerizing actin fold. This phylogenetic tree reveals that the variability observed between the Asgard and eukaryotic actins is approximately similar in magnitude to the variability found within bacterial MreBs and lower than that observed within bacterial FtsAs or ParMs, which indicates a probable conservation in function between the Asgard and and are here referred to as the ‘Asgard actins’. b, Models of the Asgard actins. The Asgard actins were modelled using I-TASSER. The ‘C-score’ is a confidence score for estimating the quality of predicted models, which is typically in the range of −5 to 2 and in which a high C-score signifies a model with a high confidence. Template modelling scores (‘TM-scores’) range between 0 and 1, and values greater than 0.5 indicate MreB: アクチンアナログ 桿状バクテリアの形状を制御 (球状のバクテリアにはない) ➤ Asgardアクチンと真核アクチン・他のアクチン 相同タンパク質との構造ベースの系統関係 ParM: 構造的にはアクチンに類似 FtsA: チューブリンホモログ Asgardアクチン 真核生物アクチン ② Asgardアクチンは他の原核生物が持つア クチン相同タンパク質と異なり,真核生物 アクチンと非常に近接した系統を形成する 真核アクチンと別系統を構成することから,真核のコンタミである可能性は低い
  • 11. 11 プロフィリンとアクチンの各配列相同性一覧 Supplementary Table 1 Supplementary Table 1. Pairwise percentage sequence identities of actins and profilins. a, Actins. From sequence identity LokiActin, OdinActin, ThorActin and HeimdallActin are referred to a: アクチン b: プロフィリン ① Asgardアクチンはヒトアクチンと58-60%と 高い配列相同性を示す。 ② Asgardプロフィリンとヒトプロフィリン は11-17%の配列相同性しか示さない。 Asgardプロフィリンの特性・機能を調べる必要がある。 ヒト-Asgard間→ Asgardアクチンはヒトアクチンと非常に類似しているため機能的に同等と考えられるが, プロフィリンはあまり似てないため..
  • 12. 12 Asgardメタゲノムはプロフィリンをコードする ical profilin fold and are able to interact with rabbit actin—an eraction that involves proteins from species that diverged more n 1.2 billion years ago6 . Biochemical experiments reveal that mmalian actin polymerizes in the presence of Asgard profilins; wever, Loki, Odin and Heimdall profilins impede pointed-end by actin, such as are observed in eukaryotic cell movement, podosomes and endocytosis. Recently, metagenomics studies have identified genes from Asgard archaea (Heimdall, Loki, Thor and Odin) that are homologous to eukaryotic genes that encode machineries involved in membrane 2 c N C Loki loop Loki profilin-1 Human profilin N C N Loki profilin-2 from rabbit α-actin complex Loki loop N C from rabbit α-actin complex Odin profilin f N C b a 77 99 82 83 99 83 84 61 69 100 e N C Loki loop from rabbit α-actin complex Loki profilin-1 d Verrucosispora sediminis Actinomadura sp. Saccharopolyspora flava Streptomyces avermitilis Nocardia soli Frankia sp. Thermus Thermophilus Candidatus Thorarchaeota 1 Candidatus Thorarchaeota 2 Zea mays Arabidopsis thaliana Dictyostelium discoideum Monosiga brevicollis Schizosaccharomyces pombe Saccharomyces cerevisiae Neurospora crassa Galdieria sulphuraria Monodelphis domestica Homo sapiens Xenopus tropicalis Danio rerio Tetrahymena pyriformis Paramecium tetraurelia Noctiluca scintillans Plasmodium falciparum Toxoplasma gondii Trepomonas sp. Spironucleus salmonicida Leishmania braziliensis Trypanosoma brucei Entamoeba histolytica Porphyra umbilicalis Strongylocentrotus purpuratus Lottia gigantea Thor profilin Odin profilin Heimdall profilin Loki profilin-3 Loki profilin-1 Loki profilin-2 1 Roadblock/LC7/MgLBEukaryoticprofilins Asgard profilins 1 | Asgard metagenomes encode genuine profilins. a, Schematic he structure of Loki profilin-1. The partially disordered extended p (Loki loop) is indicated by a dotted line. N and C indicate the pective termini. Data collection and refinement statistics are found upplementary Table 2a. b, The structure of human profilin-1 for mparison (RCSB Protein Data Bank (PDB) code: 1FIL). c, Profilin logenetic tree of Asgard and eukaryotic profilins calculated from structure-based sequence alignment using the Asgard profilin structures in this figure. Protein sequences of the Roadblock/LC7/MgLB group are used as an outgroup because their structures have similar topologies to profilins. Sequence and PDB accession codes used in the alignment are given in Supplementary Table 1b. d–f, Loki profilin-1 (d), Loki profilin-2 (e) and Odin profilin (f) structures taken from the rabbit α-actin complex structures. Details are found in Fig. 3. • Asgardプロフィリンの構造を決定し真のプロフィリンであることを示した。 • 特徴的な構造 (Loki loop)の存在を確認した。 Fig.1 a: Asgardプロフィリン単体の立体構造 b: ヒトプロフィリン単体の立体構造 d,e,f: 哺乳類アクチン複合体構造のAsgardプロフィリン部分 typical profilin fold and are able to interact with rabbit actin—an interaction that involves proteins from species that diverged more than 1.2 billion years ago6 . Biochemical experiments reveal that mammalian actin polymerizes in the presence of Asgard profilins; however, Loki, Odin and Heimdall profilins impede pointed-end by actin, such as are observed in eukaryotic cell movement, podosomes and endocytosis. Recently, metagenomics studies have identified genes from Asgard archaea (Heimdall, Loki, Thor and Odin) that are homologous to eukaryotic genes that encode machineries involved in membrane c N C Loki loop Loki profilin-1 Human profilin N C N Loki profilin-2 from rabbit α-actin complex Loki loop N C from rabbit α-actin complex Odin profilin f N C b a 77 99 82 83 99 83 84 61 69 100 e N C Loki loop from rabbit α-actin complex Loki profilin-1 d Verrucosispora sediminis Actinomadura sp. Saccharopolyspora flava Streptomyces avermitilis Nocardia soli Frankia sp. Thermus Thermophilus Candidatus Thorarchaeota 1 Candidatus Thorarchaeota 2 Zea mays Arabidopsis thaliana Dictyostelium discoideum Monosiga brevicollis Schizosaccharomyces pombe Saccharomyces cerevisiae Neurospora crassa Galdieria sulphuraria Monodelphis domestica Homo sapiens Xenopus tropicalis Danio rerio Tetrahymena pyriformis Paramecium tetraurelia Noctiluca scintillans Plasmodium falciparum Toxoplasma gondii Trepomonas sp. Spironucleus salmonicida Leishmania braziliensis Trypanosoma brucei Entamoeba histolytica Porphyra umbilicalis Strongylocentrotus purpuratus Lottia gigantea Thor profilin Odin profilin Heimdall profilin Loki profilin-3 Loki profilin-1 Loki profilin-2 1 Roadblock/LC7/MgLBEukaryoticprofilins Asgard profilins Fig. 1 | Asgard metagenomes encode genuine profilins. a, Schematic of the structure of Loki profilin-1. The partially disordered extended loop (Loki loop) is indicated by a dotted line. N and C indicate the respective termini. Data collection and refinement statistics are found in Supplementary Table 2a. b, The structure of human profilin-1 for comparison (RCSB Protein Data Bank (PDB) code: 1FIL). c, Profilin phylogenetic tree of Asgard and eukaryotic profilins calculated from structure-based sequence alignment using the Asgard profilin structures in this figure. Protein sequences of the Roadblock/LC7/MgLB group are used as an outgroup because their structures have similar topologies to profilins. Sequence and PDB accession codes used in the alignment are given in Supplementary Table 1b. d–f, Loki profilin-1 (d), Loki profilin-2 (e) and Odin profilin (f) structures taken from the rabbit α-actin complex structures. Details are found in Fig. 3. ➤ Asgardプロフィリンとヒトプロフィリンの立体構造 ➤ Asgardプロフィリンの系統関係 →外群 真核生物の プロフィリン Asgard プロフィリン Asgardプロフィリンは真核プロフィリンと 関連しつつも独立した系統を構成する。 部分的に乱れたループ
  • 13. 13 Asgardプロフィリンは哺乳類アクチンの重合を制御する LETTERRESEARCH Odin profilin 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Heimdall profilin Human profilin versus Odin profilin 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Actin (2 μM) 8 μM 16 μM 32 μM 64 μM 128 μM Thor profilin 0 10,000 20,000 JYIM01000447 JYIM01000257 Found in archaea Only bacteria Loki profilins Only Asgard Only eukaryotes 8792949487909192919294748292928891919074878596 Loki profilin-3 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) a b c d e f g h i Human profilin Loki profilin-1 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Loki profilin-2 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Thorprofilin Fig. 2 | Asgard profilins modulate polymerization of mammalian actin in vitro. a, Pyrene–actin polymerization profiles of 2 µM rabbit α-actin profilin. Thor profilin was not observed to have profilin activity and is not included in subsequent discussions of Asgard profilins. h, Comparison of Asgardプロフィリンは哺乳類アクチンを調節する上で機能的であることを示した。 →Asgardアーキアにはプロフィリン制御のアクチン系が存在することを示唆。 →Thorはプロフィリン活性なしと判断 Fig.2 手法:ピレン-アクチン重合アッセイ アクチン重合反応に取り込まれると蛍光の増強が起こるピレン標識アクチンを用いて,アクチンの重合/脱重合反応を蛍光で測定 ヒトとOdinのプロフィン性能比較 実線: ヒト,紫: Odin プロフィン ヒトプロフィリン8倍投入して同程度の性能 縦軸: ↑アクチンが重合 ↓プロフィンによって重合が制御 (抑制)されている ゲルゾリン (gelsolin): アクチン繊維を切断し,その末端に 留まることでその後のアクチン重合を阻害 (キャップ)する。 ※ゲルソリン-アクチンは片側 (P端)からしか重合できない。線: ウサギαアクチンのみ 線: ウサギαアクチン + ⃝⃝プロフィリン a-f: 赤: アクチンのみで重合開始 青: 非蛍光アクチンシード存在下で重合開始 黒: ゲルゾリン結合状態の非蛍光アクチンシード存在下で重合開始 d, e: OrdinとHeimdallプロフィリンはゲルゾリン-アクチン のP端からの伸長を防ぐ能力が弱い。
  • 14. 14 Loki profilin遺伝子とその周辺領域 maintenance and function, including trafficking, N-glycosylation, ribosomes, endosomal sorting complexes required for transport, the ubiquitination system, and cytoskeletal processes that include actin and eukaryotic profilins (7–24%) (Supplementary Table 1b). T questions about their authenticity. To address this issue, explored the properties of Asgard profilin-like proteins. Odin profilin 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Human profi versus Odin pr 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Actin (2 μM) 8 μM 16 μM 32 μM 64 μM 128 μM Thor profilin 0 10,000 20,000 JYIM01000447 JYIM01000257 Found in archaea Only bacteria Loki profilins Only Asgard Only eukaryotes 8792949487909192919294748292928891919074878596 Loki profilin-3 0 50 100 150 0 20 40 60 80 Time (min) Fluorescence(AU) e f g h i 0 50 100 150 200 250 Time (min) 0 50 100 150 Time (min) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 Time (min) 0 50 100 150 200 250 Time (min) Thorprofilin Fig. 2 | Asgard profilins modulate polymerization of mammalian actin in vitro. a, Pyrene–actin polymerization profiles of 2 µM rabbit α-actin (dashes, 10% pyrene–actin) or 2 µM rabbit α-actin with 128 µM human profilin-1 (dots) either initiated alone (red), initiated in the presence of 0.3 µM non-fluorescent actin seeds (blue), or initiated in the presence of 0.3 µM non-fluorescent gelsolin-capped actin seeds (black). b–f, Polymerization profiles as in a, using the specified Asgard profilin at 256 µM (instead of 128 µM human profilin-1). Loki profilin-3 and, to a lesser extent, Loki profilin-1 showed a marked increase in fluorescence on mixing with pyrene–actin; however, their profiles appear to be typical for Asgard profilins, albeit superimposed upon the initial increases. The basis of the increase is unknown, but we speculate that it may be due to oligomer formation. Titrations and expansions of the lag phase regions are in Extended Data Figs. 2, 3. g, Pyrene–actin polymerization profiles of 2 µM rabbit α-actin titrated with increasing concentrations of Thor profilin. Thor profilin was not observed to have profilin activity included in subsequent discussions of Asgard profilins. h, Com the inhibition of actin nucleation in the pyrene–actin assay reve human profilin-1 (solid lines; red 2 µM, green 4 µM, orange 32  approximately eightfold more potent than Odin profilin (purple 16 µM, dots 64 µM, dots-and-dashes 256 µM). Actin control (2  shown as a solid black line. Comparisons for other Asgard profi shown in Extended Data Fig. 3b. i, Schematic alignment of the p contigs that contain the Loki profilin-1 and Loki profilin-2 gene Lines connect homologous genes, with nucleotide percentage id indicated below (Supplementary Table 3b). Genes with homolo previously found in archaea are coloured blue, and genes curren to Asgard archaea are coloured red. Genes with homologues tha been found to date in bacteria or eukaryotes are coloured black respectively. The Loki profilins are in green. AU, arbitrary units Fig.2 Loki profilin-1のcontig→ Loki profilin-2のcontig→ Lokiプロフィリン遺伝子 (緑色)とその遺伝子周辺領域含めて全体的に相同性が認められる。 → Loki profilin-1, 2は2つの異なるLokiアーキア系統であり,真核生物のコンタミではないことを確認。
  • 15. 15 Asgardプロフィリンと哺乳類アクチン複合体の共結晶構造 LETTER RESEARCH of Loki profilin-1 on the two ends of actin filaments. Low concentra- tions of human profilin-1 or Loki profilin-1 did not slow elongation at the barbed ends (Extended Data Figs. 2, 3). Higher concentrations of human profilin-1 and Loki profilin-1 showed small decreases in elon- gation rates (Fig. 2a, b), consistent with dynamic barbed end binding by profilin10 , but at least tenfold more archaeal profilin than human pro- filin was required to achieve similar effects (Extended Data Figs. 2, 3). Gelsolin–actin seeds grow only at the pointed ends. As with lower concentrations of human profilin-1, high concentrations of Loki profilin-1 partially inhibited the elongation of pointed ends (Fig. 2a, b). Spontaneous polymerization of actin monomers depends on a slow, rate-limiting nucleation step. Loki profilin-1 slowed the time course of actin polymerization, but required concentrations that were more than 30 times higher than those required when using human profilin-1 (Fig. 2a, b). Because barbed ends elongate under these conditions, this experiment demonstrates that high concentrations of Loki profilin-1 inhibit spontaneous nucleation; presumably, the higher concentrations of Loki profilin-1 that are required are due to its low affinity for rabbit α-actin. These data suggest that, despite the divergence between Lokiarchaeota and eukaryotes, Loki profilin-1 is partially functional in regulating mammalian actin in vitro, which in turn indicates a profilin-regulated actin system in these archaea. To demonstrate that the Loki profilin-1 activity is not an isolated case that may be due to eukaryotic contamination in the metagenomes, we produced five other potential Asgard profilins for the in vitro assays (Extended Data Fig. 3c). Loki profilin-2 shares 87% and 91% identity with Loki profilin-1 at amino acid and nucleotide levels, respectively. Comparison of their parent contigs reveals global homology and a high percentage of typical archaeal genes (Fig. 2i). Thus, Loki profilin-1 and Loki profilin-2 appear to come from two related strains of Lokiarchaeota.Lokiprofilin-2displayedsimilaractivitytoLokiprofilin-1 in the polymerization assay (Fig. 2c). Heimdall profilin showed a lesser, but measurable, ability to inhibit spontaneous actin nucleation (Fig. 2d), whereas Odin profilin (Fig. 2e) and Loki profilin-3 (Fig. 2f) showed higher activity relative to Loki profilin-1. The presence of the Loki loop in Loki profilin-1 and Loki profilin-2, but not in Loki profilin-3, indicates possible functional divergence (Extended Data Fig. 5a). Thor profilin displayed no measurable ability to inhibit actin nuclea- a b c Loki profilin-1 Loki profilin-2 Loki loop Loki loop Actin 1 1 2 2 3 4 3 4 C N C N Odin profilin 24 C N d 180 LETTER RESEARCH of Loki profilin-1 on the two ends of actin filaments. Low concentra- tions of human profilin-1 or Loki profilin-1 did not slow elongation at the barbed ends (Extended Data Figs. 2, 3). Higher concentrations of human profilin-1 and Loki profilin-1 showed small decreases in elon- gation rates (Fig. 2a, b), consistent with dynamic barbed end binding by profilin10 , but at least tenfold more archaeal profilin than human pro- filin was required to achieve similar effects (Extended Data Figs. 2, 3). Gelsolin–actin seeds grow only at the pointed ends. As with lower concentrations of human profilin-1, high concentrations of Loki profilin-1 partially inhibited the elongation of pointed ends (Fig. 2a, b). Spontaneous polymerization of actin monomers depends on a slow, rate-limiting nucleation step. Loki profilin-1 slowed the time course of actin polymerization, but required concentrations that were more than 30 times higher than those required when using human profilin-1 (Fig. 2a, b). Because barbed ends elongate under these conditions, this experiment demonstrates that high concentrations of Loki profilin-1 inhibit spontaneous nucleation; presumably, the higher concentrations of Loki profilin-1 that are required are due to its low affinity for rabbit α-actin. These data suggest that, despite the divergence between Lokiarchaeota and eukaryotes, Loki profilin-1 is partially functional in regulating mammalian actin in vitro, which in turn indicates a profilin-regulated actin system in these archaea. To demonstrate that the Loki profilin-1 activity is not an isolated case that may be due to eukaryotic contamination in the metagenomes, we produced five other potential Asgard profilins for the in vitro assays (Extended Data Fig. 3c). Loki profilin-2 shares 87% and 91% identity with Loki profilin-1 at amino acid and nucleotide levels, respectively. Comparison of their parent contigs reveals global homology and a high percentage of typical archaeal genes (Fig. 2i). Thus, Loki profilin-1 and Loki profilin-2 appear to come from two related strains of Lokiarchaeota.Lokiprofilin-2displayedsimilaractivitytoLokiprofilin-1 in the polymerization assay (Fig. 2c). Heimdall profilin showed a lesser, but measurable, ability to inhibit spontaneous actin nucleation (Fig. 2d), whereas Odin profilin (Fig. 2e) and Loki profilin-3 (Fig. 2f) showed higher activity relative to Loki profilin-1. The presence of the Loki loop in Loki profilin-1 and Loki profilin-2, but not in Loki profilin-3, indicates possible functional divergence (Extended Data Fig. 5a). Thor profilin displayed no measurable ability to inhibit actin nuclea- tion (Fig. 2g). Odin profilin was approximately eightfold less potent in inhibiting spontaneous actin nucleation, relative to human profilin-1 (Fig. 2h). Odin profilin and Heimdall profilin showed very weak abili- ties to prevent pointed-end elongation in the gelsolin–actin seed assay. These data demonstrate that actin-regulating profilins are present in a b c Loki profilin-1 Loki profilin-2 Loki loop Loki loop Actin 1 1 2 2 3 4 3 4 C N C N Odin profilin Actin 2 24 4 C N d 180 Fig.3 Asgardアーキアと真核生物が共通のプロフィリン-アクチン相互作用様式を持つことを示し た。 ➤ Lokiプロフィリン-1 地熱環境に生息Odinのプロフィリンは最もコンパクトな構造を取る filin was requ Gelsolin–ac concentrati profilin-1 pa Spontaneou rate-limiting of actin poly than 30 time (Fig. 2a, b). B experiment inhibit spont of Loki profi α-actin. Th Lokiarchaeo in regulatin profilin-regu To demon that may be d produced fiv (Extended D with Loki pr Comparison percentage o and Loki pr Lokiarchaeot in the polym but measurab whereas Od higher activ loop in Loki indicates po Thor profilin tion (Fig. 2g) inhibiting sp (Fig. 2h). Od ties to preven These data d three branch collected from (Loki and He Tobetteru determined t and Odin pr and Loki pro a similar ori b c Loki profilin-1 Loki profilin-2 Loki loop Loki loop 1 1 3 3 C N C N Human profilin Odin profilin Actin 1 1 2 2 3 4 3 4 C N C N d Fig. 3 | The structures of the Loki profilin-1, Loki profilin-2 and Odin profilin complexes with rabbit α-actin. a, Back and front views of the structure of the Loki profilin-1–rabbit α-actin complex. Rabbit α-actin is shown as a surface and Loki profilin-1 is shown in schematic concentrati profilin-1 pa Spontaneou rate-limiting of actin poly than 30 time (Fig. 2a, b). B experiment inhibit spont of Loki profi α-actin. Th Lokiarchaeo in regulatin profilin-regu To demon that may be d produced fiv (Extended D with Loki pr Comparison percentage o and Loki pr Lokiarchaeot in the polym but measurab whereas Od higher activ loop in Loki indicates po Thor profilin tion (Fig. 2g) inhibiting sp (Fig. 2h). Od ties to preven These data d three branch collected from (Loki and He Tobetteru determined t and Odin pr and Loki pro a similar ori (Fig. 1b, d, e, Loki profilin (Extended D b c Loki profilin-1 Loki profilin-2 Loki loop Loki loop 1 1 3 3 C N C N Human profilin Odin profilin Actin 1 1 2 2 3 4 3 4 C N C N d Fig. 3 | The structures of the Loki profilin-1, Loki profilin-2 and Odin profilin complexes with rabbit α-actin. a, Back and front views of the structure of the Loki profilin-1–rabbit α-actin complex. Rabbit α-actin is shown as a surface and Loki profilin-1 is shown in schematic representation. b, The Loki profilin-2–rabbit α-actin complex. c, The Odin profilin–rabbit α-actin complex. d, Structure of the published ➤ Lokiプロフィリン-2 ➤ ヒトプロフィリン-1➤ Odinプロフィリン ウサギαアクチン → 数字はサブドメインを示す (比較用) ・LokiプロフィリンのC末端ヘリックスは,ヒトプロフィリン-1と比較して,アクチンサブドメイン1上の結合部位からわずかにずれる。 ・Lokiループはアクチンとの結合で整列し,アクチンサブドメイン3の表面に近接して存在する。
  • 16. 16 Asgardプロフィリンと真核プロフィリンの差異 LETTERRESEARCH 20 40 60 80 orescence(AU) 20 40 60 80 orescence(AU) 20 40 60 80orescence(AU) 20 40 60 80 orescence(AU) K69 K90 K71 K58 K60 K71 K60 i j k l e f g h Asn9 Tyr6 Human profilin Trp3 Trp31 Tyr139 His133 Leu134 N Polyproline N-helix C-helix C Ile32 Ile5 Ile8 Asp11 Lys129 Leu130 Leu133 N-helix Loki profilin-1 C-helix a b c d Val32 Ile5 Ile8 Asp11 Lys129 Leu130 Leu133 N-helix Loki profilin-2 C-helix Ile28 Leu3 Leu6 Arg9 Gln114 Leu115 Ile118 N-helix Odin profilin C-helix Fig.4 芳香族アミノ酸:フェニルアラニン (Phe),トリプトファン (Trp),ヒスチジン (His),チロシン (Tyr),etc. ➤ プロフィリン上のポリプロリン結合領域 真核生物のプロフィリンは,プロフィリンのN末端およびC末端ヘリックスの間にある芳香族残基との相互作用により, ポリプロリンモチーフに結合することによって,アクチンフィラメント核形成および伸長機械に組み込まれる。 Asgardプロフィリンには芳香族残基によるポリプロリン結合溝が存在しない。 →Asgardメタゲノムには真核生物様のポリプロリンリッチなアクチン核形成また は伸長タンパク質の遺伝子が存在せず,一致する結果。 →プロフィリン‒ポリプロリン間の相互作用は,真核生物ドメイン系統で後に進化したのでは。 AsgardプロフィリンがAsgardメタゲノムに由来し,真核生物のコンタミではないことを裏付け る。
  • 17. 17 Asgardプロフィリンと真核プロフィリンの差異 LETTERRESEARCH 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) 0 50 100 150 200 250 0 20 40 60 80 Time (min) Fluorescence(AU) Actin (2 μM) hP (10 μM) PIP2 (20 μM) PIP2 (40 μM) PIP2 (160 μM) K69 K90 K71 K58 K60 K71 K60 i j k l e f g h Actin (2 μM) LokiP1 (50 μM) PIP2 (50 μM) PIP2 (100 μM) PIP2 (200 μM) Actin (2 μM) LokiP2 (50 μM) PIP2 (50 μM) PIP2 (100 μM) PIP2 (200 μM) Actin (2 μM) OdinP (50 μM) PIP2 (50 μM) PIP2 (100 μM) PIP2 (200 μM) Asn9 Tyr6 Human profilin Trp3 Trp31 Tyr139 His133 Leu134 N Polyproline N-helix C-helix C Ile32 Ile5 Ile8 Asp11 Lys129 Leu130 Leu133 N-helix Loki profilin-1 C-helix a b c d Val32 Ile5 Ile8 Asp11 Lys129 Leu130 Leu133 N-helix Loki profilin-2 C-helix Ile28 Leu3 Leu6 Arg9 Gln114 Leu115 Ile118 N-helix Odin profilin C-helix Fig. 4 | Asgard profilins do not bind to polyproline motifs but are sensitive to phospholipids. a, The polyproline-binding site on human profilin-1 (PDB code: 2PAV)12 . The polyproline ligand is shown in black, with the respective termini labelled as N or C, and the residues on human profilin-1 that interact with the polyproline motif are labelled in blue. b–d, Equivalent residues to those shown in a, from the Loki profilin-1 (b), Loki profilin-2 (c) and Odin profilin (d) structures. In the structures of Asgard profilins, the N- and C-terminal helices are tightly in e, for structures of Loki profilin-1 (f), Loki profilin-2 (g) and Odin profilin (h) complexes with actin, with the basic residues indicated. Views rotated by 180° are shown in Extended Data Fig. 7a. i, Pyrene–actin polymerization profiles of rabbit α-actin (2 µM, orange) supplemented with human profilin-1 (hP, 10 µM, pink) and subsequently with increasing concentrations of PtdIns-(4,5)-P2(1,2-dipalmitoyl) (blue), a soluble version of PIP2. j–l, Similar polymerization profiles to those shown in i, for Loki profilin-1 (LokiP1, j), Loki profilin-2 (LokiP2, k) and Odin profilin Fig.4 ホスファチジルイノシトール-4,5-ビホスフェート (PtdIns (4,5) P2 ; PIP2):真核細胞膜でアクチンを調節するための 機能性リン脂質 e-f: タンパク質の電荷分析. 青: 正電荷,赤: 負電荷 ➤ ヒトプロフィリン ➤ Lokiプロフィリン-1 ➤ Lokiプロフィリン-2 ➤ Odinプロフィリン-1 塩基性残基 i-l: PIP2とプロフィリンのアクチン重合阻害能との関連 Asgardプロフィリンとアクチンの相互作用もリン脂質によって制御される。 → 膜に局在している可能性を示唆。 PIP2はAsgardプロフィリンと弱く相互作用し,プロフィリンによるアクチン重合阻害を抑制する
  • 18. 18 総括 まとめ/掲載理由 本論文では,これまで配列レベルでしか存在が予測されていなかったAsgardアーキアプロ フィリンが実際に真核生物プロフィリンと酷似した立体構造を取ることを明らかにし,真 核生物のアクチンと相互作用して重合を制御することを示した。 これらは真核生物が持つ細胞骨格系の原型と考えられ,真核生物がアーキアから進化した ことを強く裏付けた。 感想 • 構造決定タンパク質選定の目の付け所が良い。 • Asgardアーキアのアクチンの立体構造・相互作用はどうなっているのか。 • 核の起源についても気になるところではある。 organisms — an archaeal host cell1–3 and a bacterium from which eukaryotic organelles called mitochondria emerged4 . Some insights into the biological properties of the host have come from the closest known archaeal rela- tives of eukaryotes, the Asgard superphylum5,6 . The genomes of organisms belonging to this archaeal group encode a suite of proteins typically involved in functions or processes thought to be eukaryote-specific. The func- tions of these ‘eukaryotic genes’ in Asgard archaea have been elusive, but in a paper in Nature, Akıl and Robinson7 provide evidence that some of them encode proteins that are structurally and functionally similar to their eukaryotic counterparts. Apart from their nucleus and energy- producing mitochondria, eukaryotic cells are characterized by a complex internal sys- tem of membrane-bound compartments (the endomembrane system), and by a dynamic network of proteins such as actin, called the cytoskeleton. The latter gives the cells their shape and structure, but is also involved in a variety of cellular processes specific to eukary- otes8 . These features are thought to have been present in the last common ancestor of all eukaryotes, which lived about 1.8 billion years ago9 , but no life forms have been found that represent an intermediate between eukaryotes and their bacterial and archaeal ancestors. The seemingly sudden emergence of cellu- lar complexity in the eukaryotic lineage is a conundrum for evolutionary biologists. Several of the proteins produced by Asgard archaea are evolutionarily related to proteins that in eukaryotes modulate complex cellular processes5,6 . The identification of these pro- teins raised the question of whether Asgard archaea have some primitive versions of certain eukaryotic properties. If they do, it would suggest that the last archaeal ancestor of eukaryotes already displayed a certain — albeit probably limited — degree of cellular ota and Heimdallarchaeota)5,6 is based solely on metagenomics analyses. The cells have yet to be observed under a microscope, and have not been cultured in vitro. Nevertheless, Akıl and Robinson were determined to gain insight into the properties of Asgard proteins related totheeukaryoticproteinsactinandprofilin.In eukaryotes, profilin regulates the polymeriza- tion of actin into filaments of the cytoskeleton. These filaments have pivotal roles in processes that include vesicle and organelle movement, cell-shape formation and phagocytosis8 , in whichcellsingestforeignparticlesorothercells. To produce Asgard profilins, Akıl and Robinson expressed these proteins in the bac- terium Escherichia coli using a circular DNA Asgardprofilinscouldinteractwitheukaryotic actins. Remarkably, despite being separated by 2 billion to 3 billion years of evolution9 , several of the Asgard profilins bound to mammalian actinandregulateditspolymerizationkinetics. Asgard and mammalian profilins seem to have similar effects on mammalian actin, although the Asgard proteins act less efficiently. These results suggest that Asgard archaea harbour a profilin-regulated actin cytoskeleton — a cel- lular feature generally regarded as a defining characteristic of eukaryotic cells (Fig. 1). The inference of a primitive dynamic actin cytoskeleton in Asgard archaea sheds light on the biological properties of the ancestor of eukaryotes. In eukaryotic cells, the energy Figure 1 | Cellular complexity along the tree of life. The Eukarya (organisms whose cells harbour DNA in a nucleus) are thought to have arisen from a merger between their last archaeal ancestor and a bacterium. In addition to a nucleus, eukaryotes have several characteristics that are thought to separate them from archaea, including: a complex internal system of membranes called endomembranes; a structural feature called the actin cytoskeleton, the dynamics of which are regulated by the protein profilin; and energy-producing organelles called mitochondria, which arose from the bacterial partner. But Akıl and Robinson7 provide evidence that members of the Asgard superphylum — an extant group of archaea thought to be related to eukaryotes — harbour a primitive profilin-regulated actin cytoskeleton. If the last archaeal ancestor of eukaryotes had this feature, it might have enabled the cell to wrap around its presumed bacterial partner. In addition, it is possible that Asgard archaea and the last archaeal ancestor of eukaryotes carry primitive endomembrane systems. (Cells and cellular features are not drawn to scale.) Bacterial partner Eukarya Last archaeal ancestor of eukaryotes Asgard archaea Other archaea Mitochondrion Nucleus Actin cytoskeleton Primitive endomembrane system Primitive actin cytoskeleton DNA Cytoskeleton- mediated interaction? Profilin Endomembrane system Eme L, Ettema TJG. The eukaryotic ancestor shapes up. Nature. 2018;562(7727):352‒3.
  • 19. 19 Fig. 1補足データ Extended Data Fig. 2 Appendix LETTER RESEARCH Extended Data Fig. 2 | Titration data. Titration data for the polymerization profiles that are shown in Fig. 2a–f.
  • 20. 20 Fig. 2補足データ Extended Data Fig. 3 Appendix LETTERRESEARCH b: Fig. 2h補足 a: Fig. 2a-f補足
  • 21. 21 構造に基づく配列アライメント Extended Data Fig. 5 LETTERRCH Extended Data Fig. 5 | See next page for caption. Appendix a: プロフィリン,b: アクチン Lokiループ ↓ アクチン結合サイトは真核とアーキアで同じ領域にあるが, アミノ酸配列はあまり保存されていない。 Odinアクチンの翻訳開始位置。 フレームシフトの可能性あり。