SlideShare ist ein Scribd-Unternehmen logo
1 von 62
Downloaden Sie, um offline zu lesen
Marshalltown Wastewater Treatment 
Plant Phosphorus Removal Upgrade

         Iowa State University
            Steven Dickey
             Dan Fleege
Overview
•   Marshalltown overview
•   Problem statement and proposal
•   Biowin modeling results
•   Recommendation
•   Questions
Marshalltown, Iowa


           Marshalltown




     Des Moines
Marshalltown Water Pollution Control 
                Plant
• Began service in 1940
• Currently serves 26,000 people
• Plant divided into 2 processes
  – Mechanical plant to treat municipal waste
  – Sequencing Batch Reactor to treat hog waste
• Effluent combined before UV disinfection
• Methane capture from stabilization basins
• Sludge land applied after stabilization
Population Projection
Mechanical Plant 1
Mechanical Plant 2
Mechanical Plant 3
Sequencing Batch Reactor Plant
Aging Infrastructure
Problem Selection and Goals
  1.0 mg/L effluent limit for total phosphorus

• Minimize construction by utilizing existing 
  process equipment and configuration where 
  possible
• Meet simulated permit limits for phosphorus
• Biowin v3 Model similar or better effluent
• Flexibility for plant operator
SBR Plant Proposal
SBR Plant
• Need
  – 1.6 MGD wastewater from a local hog processing 
    plant
  – Hog waste caused “foaming” in biological 
    reactors
  – High Organic Nitrogen Content: 200 mg/L
• Two Sequencing Batch Reactors
  – Operational in 1992
  – 2 MGD capacity
Current SBR Configuration
Influent                                      Effluent




     Stage 1     Stage 2    Stage 3     Stage 4
    Anaerobi     Aerobic     Settle     Decant
        c        120 min    60 min      60 min
    120 min

           Total Cycle Time: 360 min (6 hr)
             Current 15 – 25% P removal
SBR During Aeration
SBR During Settle/Decant
SBR During Settle/Decant
SBR with BPR Process



                                Table 8‐25 Metcalf & Eddy Wastewater Engineering

                   System Properties

• Anaerobic HRT: 1.5 ‐ 3 hr     • SRT range: 20 ‐ 40 days
• Aerobic HRT: 2 ‐ 4 hr         • Settle/decant: 2 hr
• Anoxic HRT: 1 ‐ 3 hr
• HRT range: 6.5 ‐ 12 hr
Proposed SBR Process
Influent                          Alum Addition                     Effluent




      Stage 1     Stage 2   Stage 3          Stage 4   Stage 3   Stage 4
     Anaerobic    Aerobic    Anoxic          Aerobic    Settle   Decant
      120 min     180 min   110 min          10 min    60 min    60 min




                      Cycle time: 540 min = 9 hr
                        HRT range: 6.5 – 12 hr
Expected Performance
                                      SBR 

            Flow     VSS      TSS         BOD       TKN     NH3‐N    Total P
           (MGD)    (mg/L)   (mg/L)      (mg/L)    (mg/L)   (mg/L)   (mg/L)

Influent    1.66     308      367            372    200      160       34



   • Process cannot be simulated in Biowin
   • BOD:P ratio 18:1
   • Compare to Metcalf and Eddy ratios
   • Expect 40 ‐ 60% P Removal
Process Comparison
Existing SBR Process       Proposed SBR Process
• 2 MGD capacity           • 1.33 MGD capacity
• Note: 1.6 MGD average    • 33% flow diversion to 
  annual flow                Mechanical Plant
• 5 Stages                 • 7 Stages
• No anoxic phase          • Anoxic phase
• Total cycle time: 6 hr   • Plant operator flexibility
• No flow diversion to        – Max cycle time: 9 hr
  Mechanical Plant            – HRT range: 6.5 ‐ 9 hr
• 10 – 25% P removal       • 40 – 60% P removal
Mechanical Plant Design
• Treats municipal waste
• Conventional activated sludge system divided 
  into 3 separate plants
• 14 MG Equalization basin
• 14 MGD firm capacity for facility
• Modifications in 1965, 1972, 1982, 1987 and 
  2001
Plant 1 and Plant 2 Identical
Biological Process Plan View
          Tank 1

          Tank 2
                                             Final
                              Tank 5
                                           Clarifier
          Tank 3

          Tank 4



• Tank 1‐4: 90ft x 19ft x 12ft (27.4m x 5.8m x 3.7m)
• Tank 5: 42 ft x 84 ft x 13 ft (12.8m x 25.6m x 4m)
• Total available volume: 128,000 ft³
Plant 1 Flow Diagram
                                                           Waste Activated Sludge
                       Return Activated Sludge
                                                                         P




   Influent       Aerobic

                  Aerobic                        Aerobic
   Influent                                                            Final
                                                                     Clarifier
   Influent       Aerobic


   Influent       Aerobic
                                                                     Effluent
                            Influent

Flow Splitter
Flow Distribution




  Jetflow Injection Points
Mechanical Plant 3
Plant 3
• No modifications
• Still available for periods of high flow
• Available to reduce ammonia‐N levels if 
  necessary
• Alum addition to treat Phosphorus
BPR Systems Considered
•   Anaerobic‐Anoxic‐Oxic (A2/O) 
•   Virginia Initiative Plant (VIP)
•   University of Cape Town (UCT)
•   Bardenpho™ (5‐stage)

• Initial evaluation
    – Compare HRT to available tank volume
    – Eliminated UCT and Bardenpho ™ processes
Preliminary VIP and A²/O Comparison 
         VIP                           A²/O
  Benefits                       Benefits
• Good nitrogen removal      • Good nitrogen removal
• Low oxygen requirement     • Low oxygen removal
• Higher Phosphorus          • Lower HRT
  Removal                    • Less Reactor volume 
                               required
                             • More process flexibility
  Drawbacks
• Additional Recycle Line        Drawbacks
  required                   • Less phosphorus removal 
• Higher HRT                   capability
BOD:P Ratio Comparison
          BPR Process                     BOD/P ratio
          VIP                             15‐20
          A2/O                            20‐25
                        Table 8‐24 Metcalf & Eddy Wastewater Engineering


                                     Max Month Flow           Average Annual 
BPR Process                          BOD/P                    Flow BOD/P
Mechanical Influent                  56                       39
Mechanical with 33% SBR              44                       28
Influent
VIP Process Outline




                                   Table 8‐25 Metcalf & Eddy Wastewater Engineering

                     System Properties

• Anaerobic HRT: 1 ‐ 2 hr        • SRT range: 5 ‐ 10 days
• Anoxic HRT: 1 ‐ 2 hr           • RAS: 80 ‐ 100%
• Aerobic HRT: 4 ‐ 6 hr          • Anoxic recycle: 100 ‐ 200%
• HRT range: 6 ‐ 10 hr           • Aerobic recycle: 100 ‐ 300%
VIP Process Plan View


                   Anaerobic

                   Anoxic                   Final
                                Aerobic
                                          Clarifier
                   Aerobic


                   Aerobic



Flow Splitter
VIP Flow Diagram
                                                             Waste Activated Sludge
                             Return Activated Sludge
                                                                           P



                 Anaerobic

     P           Anoxic                  P
                                                   Aerobic               Final
                                                                       Clarifier
                 Aerobic


                 Aerobic

 Influent                                                              Effluent


Flow Splitter
A2/O Process Outline




                                     Table 8‐25 Metcalf & Eddy Wastewater Engineering


                      System Properties
• Anaerobic HRT: 0.5 ‐ 1.5 hr     • SRT range: 5 ‐ 25 days
• Anoxic HRT: 0.5 ‐ 1 hr          • RAS: 25‐100%
• Aerobic HRT: 4 ‐ 8 hr           • Internal Recycle: 100‐400%
• HRT range: 5 ‐ 10.5 hr
A2/O Process Plan Layout


                Anaerobic

                Anoxic                  Final
                            Aerobic
                                      Clarifier
                Aerobic


                Aerobic



Flow Splitter
A²/O Flow Diagram
                                                          Waste Activated Sludge
                      Return Activated Sludge
                                                                        P



                 Anaerobic

                 Anoxic                 P
                                                Aerobic               Final
                                                                    Clarifier
                 Aerobic


                 Aerobic

 Influent                                                           Effluent


Flow Splitter
BPR Model Performance
                               Max Month Influent
              Flow     VSS       TSS        BOD         TKN        NH3‐N        Total P
             (MGD)    (mg/L)    (mg/L)     (mg/L)      (mg/L)      (mg/L)       (mg/L)
Projected 
              10.5     196       249        213            26          11           5.0
Mechanical




                               Max Month Effluent
              VSS      TSS      BOD       COD        TKN        NH3‐N       Total P 
             (mg/L)   (mg/L)   (mg/L)    (mg/L)     (mg/L)      (mg/L)      (mg/L)
  VIP         5.1      7.6       3.6      34         2.9        0.93         0.56
  A2/O        7.1      11        4.0      37         2.8        0.71         0.75
BPR Model Performance
                               Average Annual Influent
              Flow     VSS         TSS        BOD         TKN        NH3‐N        Total P
             (MGD)    (mg/L)      (mg/L)     (mg/L)      (mg/L)      (mg/L)       (mg/L)
Projected 
               7.5     162         206        185            35          11           5.0
Mechanical




                             Average Annual Effluent
              VSS      TSS        BOD       COD        TKN        NH3‐N       Total P 
             (mg/L)   (mg/L)     (mg/L)    (mg/L)     (mg/L)      (mg/L)      (mg/L)
  VIP         11       14          5.0      25         4.3         2.2         0.86
  A2/O        5.3      7.5         3.7      30         3.5        0.87         0.79
Equipment Requirements
           VIP                         A2/O
• 4 Additional recycle pumps   • 2 Additional recycle pumps
• Power: 450 HP                • Power: 400HP
• 6 New Recycle Pipes          • 2 New Recycle Pipes
• 3000 Siemens DualAir®        • 3000 Siemens DualAir®
  Diffusers                      Diffusers
• 16 Hayward Gordon ST®        • 16 Hayward Gordon ST®
  Mixers                         Mixers
Chemical Treatment
• Alum addition considered for all plants
• A²/O required no alum addition for any 
  model simulation
• VIP process required alum addition during 
  winter months
• SBR requires a constant chemical addition
Mechanical Plant: Current Flow
          Average Annual Flow                 Max Month Flow
 Biological         Alum Dosage       Biological       Alum Dosage
 Removal                              Removal 
                        ppd                                ppd
 Percentage                           Percentage
                  1.5         2.0                    1.5          2.0
      0          399          532     0             530          707
     10          359          478     10            477          636
     20          319          425     20            424          565
     30          279          372     30            371          495
     40          239          319     40            318          424
     50         199           266     50            265          353
     60          159          213     60            212          283
     70          120          159     70            159          212
     80           80          106     80            106          141
     90           40          53      90             53          71
     100           0              0   100             0              0
Mechanical Plant: Projected Flow
        Average Annual Flow                  Max Month Flow
  Biological       Alum Dosage       Biological       Alum Dosage
  Removal                            Removal 
                       ppd                                ppd
  Percentage                         Percentage
                 1.5         2.0                    1.5          2.0
  0             480          640     0             626          835
  10            432          576     10            563          751
  20            384          512     20            501          668
  30            336          448     30            438          584
  40            288          384     40            376          501
  50            240          320     50            313          417
  60            192          256     60            250          334
  70            144          192     70            188          250
  80             96          128     80            125          167
  90             48          64      90             63          83
  100             0              0   100             0              0
SBR Plant
          Existing Process                  Proposed Process
Biological        Alum Dosage       Biological       Alum Dosage
Removal                             Removal 
                      ppd                                ppd
Percentage                          Percentage
                1.5          2.0                   1.5          2.0
0              727           970    0             486          648
10             655           873    10            438          584
20            582            776    20            389          519
30             509           679    30            340          454
40             436           582    40            292          389
50             364           485    50            243          324
60             291           388    60            195          259
70             218           291    70            146          195
80             145           194    80             97          130
90              73           97     90             49          65
100              0              0   100             0              0
Comparative Analysis
                Qualitative Cost Analysis
                 Initial Cost               Operational
A2/O             $$                         $
VIP              $$$                        $$
Chemical         $                          $$$


                Operational Performance
                 Flexibility                Simplicity
A2/O             **                         **
VIP              *                          *
Chemical         ***                        ***
Recommendation
           Implement A²/O system

•   Lowest relative cost
•   Most operator flexibility
•   Least construction required
•   Capable of meeting effluent standard
•   Better ammonia‐N removal in winter models
Design Objective Achieved?
• Minimum construction
  – SBR system remain physically unaltered
  – Construction in areas of aging concrete
  – Only two new recycle pumps needed for the 
    recommended A2/O design
• A2/O meets proposed permit limits
• Flexibility for plant operator 
  – Recycle rates
  – SRT
  – SBR phases 
Special Thanks
•   Lance Aldrich ‐ Design information
•   Eric Evans ‐ Biown
•   Kris Evans ‐ Mentor
•   Fred Beyer
    – Monthly monitoring reports
    – Plant tours
    – Design information
• IWPCA
Questions?

Weitere ähnliche Inhalte

Was ist angesagt?

Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Shimadzu Scientific Instruments
 
MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)
MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)
MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)Pedro Maria Gonzalez
 
PattersonEWRI2014 (1)
PattersonEWRI2014 (1)PattersonEWRI2014 (1)
PattersonEWRI2014 (1)John Maziuk
 
SDGE Environmental Lab
SDGE Environmental LabSDGE Environmental Lab
SDGE Environmental LabLydia Pellecer
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesChiral Technologies Worldwide
 
Green Site Project results
Green Site Project resultsGreen Site Project results
Green Site Project resultsPetra Scanferla
 
Haytham CV 2015 final October
Haytham CV 2015 final OctoberHaytham CV 2015 final October
Haytham CV 2015 final OctoberHaytham Aly
 
Laboratory Maintenance installation Commissioning Engineer
Laboratory Maintenance installation Commissioning EngineerLaboratory Maintenance installation Commissioning Engineer
Laboratory Maintenance installation Commissioning EngineerKamran Saeed
 

Was ist angesagt? (20)

Expanding Your High Performance Liquid Chromatography and Ultra High Performa...
Expanding Your High Performance Liquid Chromatography and Ultra High Performa...Expanding Your High Performance Liquid Chromatography and Ultra High Performa...
Expanding Your High Performance Liquid Chromatography and Ultra High Performa...
 
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
Can we keep the cost of analysis of haloacetic acids (HAAs) down by using an ...
 
MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)
MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)
MOVING BED BIOFILM BIOREACTOR (MBBR). DESIGN BASIS (II)
 
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
 
Leak Detector AWMA Paper
Leak Detector AWMA PaperLeak Detector AWMA Paper
Leak Detector AWMA Paper
 
PattersonEWRI2014 (1)
PattersonEWRI2014 (1)PattersonEWRI2014 (1)
PattersonEWRI2014 (1)
 
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
 
SDGE Environmental Lab
SDGE Environmental LabSDGE Environmental Lab
SDGE Environmental Lab
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixtures
 
HPLC course 1
HPLC course 1HPLC course 1
HPLC course 1
 
Green Site Project results
Green Site Project resultsGreen Site Project results
Green Site Project results
 
Hank Rawlins
Hank RawlinsHank Rawlins
Hank Rawlins
 
What CPC can bring to your natural compounds purification?
What CPC can bring to your natural compounds purification?What CPC can bring to your natural compounds purification?
What CPC can bring to your natural compounds purification?
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
 
Haytham CV 2015 final October
Haytham CV 2015 final OctoberHaytham CV 2015 final October
Haytham CV 2015 final October
 
Pool side testing
Pool side testingPool side testing
Pool side testing
 
BDI Dec 2016 Sodium
BDI Dec 2016 SodiumBDI Dec 2016 Sodium
BDI Dec 2016 Sodium
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
Optimizing solid core_30955
 
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
 
Laboratory Maintenance installation Commissioning Engineer
Laboratory Maintenance installation Commissioning EngineerLaboratory Maintenance installation Commissioning Engineer
Laboratory Maintenance installation Commissioning Engineer
 

Ähnlich wie WEFTEC Presentation

GBI Remediation Presentation
GBI Remediation PresentationGBI Remediation Presentation
GBI Remediation PresentationJim Chamness
 
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingGerard B. Hawkins
 
Spe 59781 leo
Spe 59781 leoSpe 59781 leo
Spe 59781 leotomk2220
 
Mini-fluidic Silver Based Solvent Extraction
Mini-fluidic Silver Based Solvent ExtractionMini-fluidic Silver Based Solvent Extraction
Mini-fluidic Silver Based Solvent ExtractionKirubanandan Shanmugam
 
Design of Mini-fluidic reactor for Extraction
Design of Mini-fluidic reactor for ExtractionDesign of Mini-fluidic reactor for Extraction
Design of Mini-fluidic reactor for ExtractionKirubanandan Shanmugam
 
Spartan Environmental Technologies Presentation
Spartan Environmental Technologies PresentationSpartan Environmental Technologies Presentation
Spartan Environmental Technologies PresentationARSacco
 
Hmt Oil Water Separator Presentation
Hmt Oil Water Separator PresentationHmt Oil Water Separator Presentation
Hmt Oil Water Separator PresentationRob Leary
 
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdfOPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdfPremBaboo4
 
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdfOPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdfPremBaboo4
 
griffenberg_retrofitting_aeration_basin (1).pdf
griffenberg_retrofitting_aeration_basin (1).pdfgriffenberg_retrofitting_aeration_basin (1).pdf
griffenberg_retrofitting_aeration_basin (1).pdfJoseCosta245342
 
Multifunctional hydrotropes
Multifunctional hydrotropesMultifunctional hydrotropes
Multifunctional hydrotropesSorel Muresan
 
4 b = 58 p 45 basic ur plant description 06.09.2021-1
4 b = 58 p  45 basic ur plant description 06.09.2021-14 b = 58 p  45 basic ur plant description 06.09.2021-1
4 b = 58 p 45 basic ur plant description 06.09.2021-1ameermudasar
 
Design Presentation
Design PresentationDesign Presentation
Design Presentationabh_2050
 
2 STP (1) [Compatibility Mode] ppt stp.pdf
2 STP (1) [Compatibility Mode] ppt stp.pdf2 STP (1) [Compatibility Mode] ppt stp.pdf
2 STP (1) [Compatibility Mode] ppt stp.pdfssuser47ed14
 
InterEGR Presentation
InterEGR PresentationInterEGR Presentation
InterEGR Presentationxterm11
 
Varnish in turbine lube
Varnish in turbine lubeVarnish in turbine lube
Varnish in turbine lubebocah666
 

Ähnlich wie WEFTEC Presentation (20)

GBI Remediation Presentation
GBI Remediation PresentationGBI Remediation Presentation
GBI Remediation Presentation
 
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
 
Spe 59781 leo
Spe 59781 leoSpe 59781 leo
Spe 59781 leo
 
Mini-fluidic Silver Based Solvent Extraction
Mini-fluidic Silver Based Solvent ExtractionMini-fluidic Silver Based Solvent Extraction
Mini-fluidic Silver Based Solvent Extraction
 
Design of Mini-fluidic reactor for Extraction
Design of Mini-fluidic reactor for ExtractionDesign of Mini-fluidic reactor for Extraction
Design of Mini-fluidic reactor for Extraction
 
Spartan Environmental Technologies Presentation
Spartan Environmental Technologies PresentationSpartan Environmental Technologies Presentation
Spartan Environmental Technologies Presentation
 
MBBR PRESENTATION
MBBR PRESENTATIONMBBR PRESENTATION
MBBR PRESENTATION
 
Hmt Oil Water Separator Presentation
Hmt Oil Water Separator PresentationHmt Oil Water Separator Presentation
Hmt Oil Water Separator Presentation
 
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdfOPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
 
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdfOPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
OPERATION AND TROUBLE SHOOTING IN UREA SYNTHESI SSECTION.pdf
 
griffenberg_retrofitting_aeration_basin (1).pdf
griffenberg_retrofitting_aeration_basin (1).pdfgriffenberg_retrofitting_aeration_basin (1).pdf
griffenberg_retrofitting_aeration_basin (1).pdf
 
Multifunctional hydrotropes
Multifunctional hydrotropesMultifunctional hydrotropes
Multifunctional hydrotropes
 
4 b = 58 p 45 basic ur plant description 06.09.2021-1
4 b = 58 p  45 basic ur plant description 06.09.2021-14 b = 58 p  45 basic ur plant description 06.09.2021-1
4 b = 58 p 45 basic ur plant description 06.09.2021-1
 
Acid Stimulation.pdf
Acid Stimulation.pdfAcid Stimulation.pdf
Acid Stimulation.pdf
 
Design Presentation
Design PresentationDesign Presentation
Design Presentation
 
Aicc 2012 meeting_centerlining_croker
Aicc 2012 meeting_centerlining_crokerAicc 2012 meeting_centerlining_croker
Aicc 2012 meeting_centerlining_croker
 
2 STP (1) [Compatibility Mode] ppt stp.pdf
2 STP (1) [Compatibility Mode] ppt stp.pdf2 STP (1) [Compatibility Mode] ppt stp.pdf
2 STP (1) [Compatibility Mode] ppt stp.pdf
 
InterEGR Presentation
InterEGR PresentationInterEGR Presentation
InterEGR Presentation
 
Setawwa 2010, 29-58 choules
Setawwa   2010, 29-58 choulesSetawwa   2010, 29-58 choules
Setawwa 2010, 29-58 choules
 
Varnish in turbine lube
Varnish in turbine lubeVarnish in turbine lube
Varnish in turbine lube
 

WEFTEC Presentation

  • 1. Marshalltown Wastewater Treatment  Plant Phosphorus Removal Upgrade Iowa State University Steven Dickey Dan Fleege
  • 2. Overview • Marshalltown overview • Problem statement and proposal • Biowin modeling results • Recommendation • Questions
  • 3.
  • 4. Marshalltown, Iowa Marshalltown Des Moines
  • 5. Marshalltown Water Pollution Control  Plant • Began service in 1940 • Currently serves 26,000 people • Plant divided into 2 processes – Mechanical plant to treat municipal waste – Sequencing Batch Reactor to treat hog waste • Effluent combined before UV disinfection • Methane capture from stabilization basins • Sludge land applied after stabilization
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22. Problem Selection and Goals 1.0 mg/L effluent limit for total phosphorus • Minimize construction by utilizing existing  process equipment and configuration where  possible • Meet simulated permit limits for phosphorus • Biowin v3 Model similar or better effluent • Flexibility for plant operator
  • 24. SBR Plant • Need – 1.6 MGD wastewater from a local hog processing  plant – Hog waste caused “foaming” in biological  reactors – High Organic Nitrogen Content: 200 mg/L • Two Sequencing Batch Reactors – Operational in 1992 – 2 MGD capacity
  • 25. Current SBR Configuration Influent Effluent Stage 1 Stage 2 Stage 3 Stage 4 Anaerobi Aerobic Settle Decant c 120 min 60 min 60 min 120 min Total Cycle Time: 360 min (6 hr) Current 15 – 25% P removal
  • 27.
  • 30. SBR with BPR Process Table 8‐25 Metcalf & Eddy Wastewater Engineering System Properties • Anaerobic HRT: 1.5 ‐ 3 hr • SRT range: 20 ‐ 40 days • Aerobic HRT: 2 ‐ 4 hr • Settle/decant: 2 hr • Anoxic HRT: 1 ‐ 3 hr • HRT range: 6.5 ‐ 12 hr
  • 31. Proposed SBR Process Influent Alum Addition Effluent Stage 1 Stage 2 Stage 3 Stage 4 Stage 3 Stage 4 Anaerobic  Aerobic Anoxic  Aerobic Settle Decant 120 min 180 min 110 min 10 min 60 min 60 min Cycle time: 540 min = 9 hr HRT range: 6.5 – 12 hr
  • 32. Expected Performance SBR  Flow  VSS  TSS BOD TKN NH3‐N Total P (MGD) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Influent 1.66 308 367 372 200 160 34 • Process cannot be simulated in Biowin • BOD:P ratio 18:1 • Compare to Metcalf and Eddy ratios • Expect 40 ‐ 60% P Removal
  • 33. Process Comparison Existing SBR Process Proposed SBR Process • 2 MGD capacity • 1.33 MGD capacity • Note: 1.6 MGD average  • 33% flow diversion to  annual flow Mechanical Plant • 5 Stages • 7 Stages • No anoxic phase • Anoxic phase • Total cycle time: 6 hr • Plant operator flexibility • No flow diversion to  – Max cycle time: 9 hr Mechanical Plant – HRT range: 6.5 ‐ 9 hr • 10 – 25% P removal • 40 – 60% P removal
  • 34. Mechanical Plant Design • Treats municipal waste • Conventional activated sludge system divided  into 3 separate plants • 14 MG Equalization basin • 14 MGD firm capacity for facility • Modifications in 1965, 1972, 1982, 1987 and  2001
  • 36. Biological Process Plan View Tank 1 Tank 2 Final Tank 5 Clarifier Tank 3 Tank 4 • Tank 1‐4: 90ft x 19ft x 12ft (27.4m x 5.8m x 3.7m) • Tank 5: 42 ft x 84 ft x 13 ft (12.8m x 25.6m x 4m) • Total available volume: 128,000 ft³
  • 37. Plant 1 Flow Diagram Waste Activated Sludge Return Activated Sludge P Influent Aerobic Aerobic Aerobic Influent Final Clarifier Influent Aerobic Influent Aerobic Effluent Influent Flow Splitter
  • 40. Plant 3 • No modifications • Still available for periods of high flow • Available to reduce ammonia‐N levels if  necessary • Alum addition to treat Phosphorus
  • 41. BPR Systems Considered • Anaerobic‐Anoxic‐Oxic (A2/O)  • Virginia Initiative Plant (VIP) • University of Cape Town (UCT) • Bardenpho™ (5‐stage) • Initial evaluation – Compare HRT to available tank volume – Eliminated UCT and Bardenpho ™ processes
  • 42. Preliminary VIP and A²/O Comparison  VIP A²/O Benefits Benefits • Good nitrogen removal • Good nitrogen removal • Low oxygen requirement • Low oxygen removal • Higher Phosphorus  • Lower HRT Removal • Less Reactor volume  required • More process flexibility Drawbacks • Additional Recycle Line  Drawbacks required • Less phosphorus removal  • Higher HRT capability
  • 43. BOD:P Ratio Comparison BPR Process BOD/P ratio VIP 15‐20 A2/O 20‐25 Table 8‐24 Metcalf & Eddy Wastewater Engineering Max Month Flow  Average Annual  BPR Process BOD/P Flow BOD/P Mechanical Influent 56 39 Mechanical with 33% SBR  44 28 Influent
  • 44. VIP Process Outline Table 8‐25 Metcalf & Eddy Wastewater Engineering System Properties • Anaerobic HRT: 1 ‐ 2 hr • SRT range: 5 ‐ 10 days • Anoxic HRT: 1 ‐ 2 hr • RAS: 80 ‐ 100% • Aerobic HRT: 4 ‐ 6 hr • Anoxic recycle: 100 ‐ 200% • HRT range: 6 ‐ 10 hr • Aerobic recycle: 100 ‐ 300%
  • 45. VIP Process Plan View Anaerobic Anoxic Final Aerobic Clarifier Aerobic Aerobic Flow Splitter
  • 46. VIP Flow Diagram Waste Activated Sludge Return Activated Sludge P Anaerobic P Anoxic P Aerobic Final Clarifier Aerobic Aerobic Influent Effluent Flow Splitter
  • 47. A2/O Process Outline Table 8‐25 Metcalf & Eddy Wastewater Engineering System Properties • Anaerobic HRT: 0.5 ‐ 1.5 hr • SRT range: 5 ‐ 25 days • Anoxic HRT: 0.5 ‐ 1 hr • RAS: 25‐100% • Aerobic HRT: 4 ‐ 8 hr • Internal Recycle: 100‐400% • HRT range: 5 ‐ 10.5 hr
  • 48. A2/O Process Plan Layout Anaerobic Anoxic Final Aerobic Clarifier Aerobic Aerobic Flow Splitter
  • 49. A²/O Flow Diagram Waste Activated Sludge Return Activated Sludge P Anaerobic Anoxic P Aerobic Final Clarifier Aerobic Aerobic Influent Effluent Flow Splitter
  • 50. BPR Model Performance Max Month Influent Flow  VSS  TSS BOD TKN NH3‐N Total P (MGD) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Projected  10.5 196 249 213 26 11 5.0 Mechanical Max Month Effluent VSS TSS  BOD  COD  TKN  NH3‐N  Total P  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) VIP 5.1 7.6 3.6 34 2.9 0.93 0.56 A2/O 7.1 11 4.0 37 2.8 0.71 0.75
  • 51. BPR Model Performance Average Annual Influent Flow  VSS  TSS BOD TKN NH3‐N Total P (MGD) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Projected  7.5 162 206 185 35 11 5.0 Mechanical Average Annual Effluent VSS TSS  BOD  COD  TKN  NH3‐N  Total P  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) VIP 11 14 5.0 25 4.3 2.2 0.86 A2/O 5.3 7.5 3.7 30 3.5 0.87 0.79
  • 52. Equipment Requirements VIP A2/O • 4 Additional recycle pumps • 2 Additional recycle pumps • Power: 450 HP • Power: 400HP • 6 New Recycle Pipes • 2 New Recycle Pipes • 3000 Siemens DualAir® • 3000 Siemens DualAir® Diffusers Diffusers • 16 Hayward Gordon ST® • 16 Hayward Gordon ST® Mixers Mixers
  • 53. Chemical Treatment • Alum addition considered for all plants • A²/O required no alum addition for any  model simulation • VIP process required alum addition during  winter months • SBR requires a constant chemical addition
  • 54. Mechanical Plant: Current Flow Average Annual Flow Max Month Flow Biological  Alum Dosage Biological  Alum Dosage Removal  Removal  ppd ppd Percentage Percentage 1.5 2.0 1.5 2.0 0 399 532 0 530 707 10 359 478 10 477 636 20 319 425 20 424 565 30 279 372 30 371 495 40 239 319 40 318 424 50 199 266 50 265 353 60 159 213 60 212 283 70 120 159 70 159 212 80 80 106 80 106 141 90 40 53 90 53 71 100 0 0 100 0 0
  • 55. Mechanical Plant: Projected Flow Average Annual Flow Max Month Flow Biological  Alum Dosage Biological  Alum Dosage Removal  Removal  ppd ppd Percentage Percentage 1.5 2.0 1.5 2.0 0 480 640 0 626 835 10 432 576 10 563 751 20 384 512 20 501 668 30 336 448 30 438 584 40 288 384 40 376 501 50 240 320 50 313 417 60 192 256 60 250 334 70 144 192 70 188 250 80 96 128 80 125 167 90 48 64 90 63 83 100 0 0 100 0 0
  • 56. SBR Plant Existing Process Proposed Process Biological  Alum Dosage Biological  Alum Dosage Removal  Removal  ppd ppd Percentage Percentage 1.5 2.0 1.5 2.0 0 727 970 0 486 648 10 655 873 10 438 584 20 582 776 20 389 519 30 509 679 30 340 454 40 436 582 40 292 389 50 364 485 50 243 324 60 291 388 60 195 259 70 218 291 70 146 195 80 145 194 80 97 130 90 73 97 90 49 65 100 0 0 100 0 0
  • 57. Comparative Analysis Qualitative Cost Analysis Initial Cost Operational A2/O $$ $ VIP $$$ $$ Chemical $ $$$ Operational Performance Flexibility Simplicity A2/O ** ** VIP * * Chemical *** ***
  • 58. Recommendation Implement A²/O system • Lowest relative cost • Most operator flexibility • Least construction required • Capable of meeting effluent standard • Better ammonia‐N removal in winter models
  • 59. Design Objective Achieved? • Minimum construction – SBR system remain physically unaltered – Construction in areas of aging concrete – Only two new recycle pumps needed for the  recommended A2/O design • A2/O meets proposed permit limits • Flexibility for plant operator  – Recycle rates – SRT – SBR phases 
  • 60. Special Thanks • Lance Aldrich ‐ Design information • Eric Evans ‐ Biown • Kris Evans ‐ Mentor • Fred Beyer – Monthly monitoring reports – Plant tours – Design information • IWPCA
  • 61.