SlideShare ist ein Scribd-Unternehmen logo

Focused Exploration of Geospatial Context on Linked Open Data

Talk by Dr. Thomas Gottron at the IESD 2014 workshop in Riva del Garda (at ISWC). Abstract The Linked Open Data cloud provides a wide range of different types of information which are interlinked and connected. When a user or application is interested in specific types of information under time constraints it is best to ex- plore this vast knowledge network in a focused and directed way. In this paper we address the novel task of focused exploration of Linked Open Data for geospatial resources, helping journalists in real-time during breaking news stories to find contextual geospatial information related to geoparsed content. After formalising the task of focused exploration, we present and evaluate five approaches based on three different paradigms. Our results on a dataset with 425,338 entities show that focused exploration on the Linked Data cloud is feasible and can be implemented at very high levels of accuracy of more than 98%.

1 von 20
Downloaden Sie, um offline zu lesen
Focused Exploration of Geospatial 
Context on Linked Open Data 
Thomas Gottron, Johannes Schmitz, Stuart E. Middleton 
20 October 2014 
IESD workshop, Riva del Garda 
Thomas Gottron Focused Institute for Web Science and Technolo Egxieplso r a·t i oUnn oifv LeOrDs ity of Koblenz-Landau, Germany 1
Challenge: Focused Exploration of LOD 
• Linked Data entities 
Thomas Gottron Focused Exploration of LOD 2
Challenge: Focused Exploration of LOD 
• Linked Data entities 
• (Semantic) link 
structure 
Thomas Gottron Focused Exploration of LOD 3
Challenge: Focused Exploration of LOD 
• Linked Data entities 
• (Semantic) link 
structure 
• „Relevant“ entities 
Thomas Gottron Focused Exploration of LOD 4
Challenge: Focused Exploration of LOD 
• Linked Data entities 
• (Semantic) link 
structure 
• „Relevant“ entities 
• Seed entity 
Thomas Gottron Focused Exploration of LOD 5
Challenge: Focused Exploration of LOD 
• Linked Data entities 
• (Semantic) link 
structure 
• „Relevant“ entities 
• Seed entity 
? ? 
? ? 
? ? 
Classification: 
Which links lead to 
relevant entities? 
Ranking: 
How probable is a link 
leading to a relevant entity? 
Use Cases: 
Guided exploration 
Focused LOD crawler 
Thomas Gottron Focused Exploration of LOD 6
Anzeige

Recomendados

Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open DataOf Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open DataThomas Gottron
 
Bạn tìm kiếm cái gì giao tiếp
Bạn tìm kiếm cái gì giao tiếpBạn tìm kiếm cái gì giao tiếp
Bạn tìm kiếm cái gì giao tiếpthanhtuand11
 
я стверджуюсь! я утверждаюсь!
я стверджуюсь! я утверждаюсь!я стверджуюсь! я утверждаюсь!
я стверджуюсь! я утверждаюсь!ukr_shana
 
Dr. Santos Manes - Simposio Internacional 'Terapias oncológicas avanzadas'
Dr. Santos Manes - Simposio Internacional 'Terapias oncológicas avanzadas'Dr. Santos Manes - Simposio Internacional 'Terapias oncológicas avanzadas'
Dr. Santos Manes - Simposio Internacional 'Terapias oncológicas avanzadas'Fundación Ramón Areces
 

Más contenido relacionado

Ähnlich wie Focused Exploration of Geospatial Context on Linked Open Data

The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning Jeff Z. Pan
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithmsJulie Iskander
 
Towards advanced data retrieval from learning objects repositories
Towards advanced data retrieval from learning objects repositoriesTowards advanced data retrieval from learning objects repositories
Towards advanced data retrieval from learning objects repositoriesValentina Paunovic
 
Personalised Search for the Social Semantic Web
Personalised Search for the Social Semantic WebPersonalised Search for the Social Semantic Web
Personalised Search for the Social Semantic WebOana Tifrea-Marciuska
 
The Web of Data: do we actually understand what we built?
The Web of Data: do we actually understand what we built?The Web of Data: do we actually understand what we built?
The Web of Data: do we actually understand what we built?Frank van Harmelen
 
Machine Learning Applications in Subsurface Analysis: Case Study in North Sea
Machine Learning Applications in Subsurface Analysis: Case Study in North SeaMachine Learning Applications in Subsurface Analysis: Case Study in North Sea
Machine Learning Applications in Subsurface Analysis: Case Study in North SeaYohanes Nuwara
 
Knowledge engg using & in fol
Knowledge engg using & in folKnowledge engg using & in fol
Knowledge engg using & in folchandsek666
 
machine-learning-with-large-networks-of-people-and-places
machine-learning-with-large-networks-of-people-and-placesmachine-learning-with-large-networks-of-people-and-places
machine-learning-with-large-networks-of-people-and-placesTony Frame
 
10. Getting Spatial
10. Getting Spatial10. Getting Spatial
10. Getting SpatialFAO
 
A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...Petar Ristoski
 
A Review Solving ECDLP Problem Using Pollard S Rho Algorithm
A Review  Solving ECDLP Problem Using Pollard S Rho AlgorithmA Review  Solving ECDLP Problem Using Pollard S Rho Algorithm
A Review Solving ECDLP Problem Using Pollard S Rho AlgorithmZaara Jensen
 
Modeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQL
Modeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQLModeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQL
Modeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQLKostis Kyzirakos
 
Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3Charles Martin
 
Artificial intelligence for Social Good
Artificial intelligence for Social GoodArtificial intelligence for Social Good
Artificial intelligence for Social GoodOana Tifrea-Marciuska
 
[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...
[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...
[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...Asai Masataro
 
Spatial data mining
Spatial data miningSpatial data mining
Spatial data miningMITS Gwalior
 
Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Thomas Gottron
 
Reasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven Recipes
Reasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven RecipesReasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven Recipes
Reasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven RecipesOntotext
 

Ähnlich wie Focused Exploration of Geospatial Context on Linked Open Data (20)

The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
 
Towards advanced data retrieval from learning objects repositories
Towards advanced data retrieval from learning objects repositoriesTowards advanced data retrieval from learning objects repositories
Towards advanced data retrieval from learning objects repositories
 
Personalised Search for the Social Semantic Web
Personalised Search for the Social Semantic WebPersonalised Search for the Social Semantic Web
Personalised Search for the Social Semantic Web
 
The Web of Data: do we actually understand what we built?
The Web of Data: do we actually understand what we built?The Web of Data: do we actually understand what we built?
The Web of Data: do we actually understand what we built?
 
Machine Learning Applications in Subsurface Analysis: Case Study in North Sea
Machine Learning Applications in Subsurface Analysis: Case Study in North SeaMachine Learning Applications in Subsurface Analysis: Case Study in North Sea
Machine Learning Applications in Subsurface Analysis: Case Study in North Sea
 
Knowledge engg using & in fol
Knowledge engg using & in folKnowledge engg using & in fol
Knowledge engg using & in fol
 
machine-learning-with-large-networks-of-people-and-places
machine-learning-with-large-networks-of-people-and-placesmachine-learning-with-large-networks-of-people-and-places
machine-learning-with-large-networks-of-people-and-places
 
10. Getting Spatial
10. Getting Spatial10. Getting Spatial
10. Getting Spatial
 
A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...A Comparison of Propositionalization Strategies for Creating Features from Li...
A Comparison of Propositionalization Strategies for Creating Features from Li...
 
A Survey of Entity Ranking over RDF Graphs
A Survey of Entity Ranking over RDF GraphsA Survey of Entity Ranking over RDF Graphs
A Survey of Entity Ranking over RDF Graphs
 
Labreport
LabreportLabreport
Labreport
 
A Review Solving ECDLP Problem Using Pollard S Rho Algorithm
A Review  Solving ECDLP Problem Using Pollard S Rho AlgorithmA Review  Solving ECDLP Problem Using Pollard S Rho Algorithm
A Review Solving ECDLP Problem Using Pollard S Rho Algorithm
 
Modeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQL
Modeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQLModeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQL
Modeling and Querying Metadata in the Semantic Sensor Web: stRDF and stSPARQL
 
Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3
 
Artificial intelligence for Social Good
Artificial intelligence for Social GoodArtificial intelligence for Social Good
Artificial intelligence for Social Good
 
[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...
[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...
[AAAI-16] Tiebreaking Strategies for A* Search: How to Explore the Final Fron...
 
Spatial data mining
Spatial data miningSpatial data mining
Spatial data mining
 
Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data
 
Reasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven Recipes
Reasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven RecipesReasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven Recipes
Reasoning with Big Knowledge Graphs: Choices, Pitfalls and Proven Recipes
 

Mehr von REVEAL - Social Media Verification

Geoparsing and Real-time Social Media Analytics - technical and social challe...
Geoparsing and Real-time Social Media Analytics - technical and social challe...Geoparsing and Real-time Social Media Analytics - technical and social challe...
Geoparsing and Real-time Social Media Analytics - technical and social challe...REVEAL - Social Media Verification
 
Veracity & Velocity of Social Media Content during Breaking News
Veracity & Velocity of Social Media Content during Breaking NewsVeracity & Velocity of Social Media Content during Breaking News
Veracity & Velocity of Social Media Content during Breaking NewsREVEAL - Social Media Verification
 
"Extracting Attributed Verification and Debunking Reports from Social Media: ...
"Extracting Attributed Verification and Debunking Reports from Social Media: ..."Extracting Attributed Verification and Debunking Reports from Social Media: ...
"Extracting Attributed Verification and Debunking Reports from Social Media: ...REVEAL - Social Media Verification
 
Verification of UGC/Eyewitness Media: Challenges and Approaches
Verification of UGC/Eyewitness Media: Challenges and Approaches Verification of UGC/Eyewitness Media: Challenges and Approaches
Verification of UGC/Eyewitness Media: Challenges and Approaches REVEAL - Social Media Verification
 
Web image size prediction for efficient focused image crawling
Web image size prediction for efficient focused image crawlingWeb image size prediction for efficient focused image crawling
Web image size prediction for efficient focused image crawlingREVEAL - Social Media Verification
 
Geotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling ApproachGeotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling ApproachREVEAL - Social Media Verification
 
Mediarevealr: A social multimedia monitoring and intelligence system for Web ...
Mediarevealr: A social multimedia monitoring and intelligence system for Web ...Mediarevealr: A social multimedia monitoring and intelligence system for Web ...
Mediarevealr: A social multimedia monitoring and intelligence system for Web ...REVEAL - Social Media Verification
 
Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany
 Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany
Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, GermanyREVEAL - Social Media Verification
 
News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...
News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...
News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...REVEAL - Social Media Verification
 
TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...
TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...
TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...REVEAL - Social Media Verification
 

Mehr von REVEAL - Social Media Verification (16)

Geoparsing and Real-time Social Media Analytics - technical and social challe...
Geoparsing and Real-time Social Media Analytics - technical and social challe...Geoparsing and Real-time Social Media Analytics - technical and social challe...
Geoparsing and Real-time Social Media Analytics - technical and social challe...
 
Veracity & Velocity of Social Media Content during Breaking News
Veracity & Velocity of Social Media Content during Breaking NewsVeracity & Velocity of Social Media Content during Breaking News
Veracity & Velocity of Social Media Content during Breaking News
 
REVEAL Project - Trust and Credibility Analysis
REVEAL Project - Trust and Credibility AnalysisREVEAL Project - Trust and Credibility Analysis
REVEAL Project - Trust and Credibility Analysis
 
"Extracting Attributed Verification and Debunking Reports from Social Media: ...
"Extracting Attributed Verification and Debunking Reports from Social Media: ..."Extracting Attributed Verification and Debunking Reports from Social Media: ...
"Extracting Attributed Verification and Debunking Reports from Social Media: ...
 
Prix Italia 2015 - Verification in Social Newsgathering
Prix Italia 2015 - Verification in Social NewsgatheringPrix Italia 2015 - Verification in Social Newsgathering
Prix Italia 2015 - Verification in Social Newsgathering
 
Verification of UGC/Eyewitness Media: Challenges and Approaches
Verification of UGC/Eyewitness Media: Challenges and Approaches Verification of UGC/Eyewitness Media: Challenges and Approaches
Verification of UGC/Eyewitness Media: Challenges and Approaches
 
Web image size prediction for efficient focused image crawling
Web image size prediction for efficient focused image crawlingWeb image size prediction for efficient focused image crawling
Web image size prediction for efficient focused image crawling
 
News-oriented multimedia search over multiple social networks
News-oriented multimedia search over multiple social networksNews-oriented multimedia search over multiple social networks
News-oriented multimedia search over multiple social networks
 
WWW2015 - RDSM2015 Workshop - Trust and Credibility Analysis
WWW2015 - RDSM2015 Workshop - Trust and Credibility AnalysisWWW2015 - RDSM2015 Workshop - Trust and Credibility Analysis
WWW2015 - RDSM2015 Workshop - Trust and Credibility Analysis
 
Geotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling ApproachGeotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling Approach
 
Mediarevealr: A social multimedia monitoring and intelligence system for Web ...
Mediarevealr: A social multimedia monitoring and intelligence system for Web ...Mediarevealr: A social multimedia monitoring and intelligence system for Web ...
Mediarevealr: A social multimedia monitoring and intelligence system for Web ...
 
Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany
 Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany
Cross-Media Konferenz "Think Cross - Change Media" in Magdeburg, Germany
 
News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...
News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...
News Impact Summit - Verification, Investigation and Digital Ethics – Hamburg...
 
TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...
TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...
TRIDEC and REVEAL projects: Geoparsing and Geosemantic knowledge model for tr...
 
Reveal - Social Media Verification - poster
Reveal - Social Media Verification - posterReveal - Social Media Verification - poster
Reveal - Social Media Verification - poster
 
REVEAL - Social Media Verification - brochure
REVEAL - Social Media Verification - brochureREVEAL - Social Media Verification - brochure
REVEAL - Social Media Verification - brochure
 

Último

"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Product School
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERNRonnelBaroc
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsInflectra
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceSusan Ibach
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxVotarikari Shravan
 
Curtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfCurtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfDomotica daVinci
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanDatabarracks
 
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner,  Challenge Like a VC by former CPO, TripadvisorAct Like an Owner,  Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner, Challenge Like a VC by former CPO, TripadvisorProduct School
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor FesenkoFwdays
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura RochniakFwdays
 
H3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxH3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxMemory Fabric Forum
 
"Running Open-Source LLM models on Kubernetes", Volodymyr Tsap
"Running Open-Source LLM models on Kubernetes",  Volodymyr Tsap"Running Open-Source LLM models on Kubernetes",  Volodymyr Tsap
"Running Open-Source LLM models on Kubernetes", Volodymyr TsapFwdays
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...DianaGray10
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...ISPMAIndia
 
Traffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptxTraffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptxharimaxwell0712
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?MENGSAYLOEM1
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...UiPathCommunity
 
Bit N Build Poland
Bit N Build PolandBit N Build Poland
Bit N Build PolandGDSC PJATK
 
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...MarcovanHurne2
 

Último (20)

"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data science
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
 
Curtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfCurtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdf
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response Plan
 
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner,  Challenge Like a VC by former CPO, TripadvisorAct Like an Owner,  Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak
 
H3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxH3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptx
 
"Running Open-Source LLM models on Kubernetes", Volodymyr Tsap
"Running Open-Source LLM models on Kubernetes",  Volodymyr Tsap"Running Open-Source LLM models on Kubernetes",  Volodymyr Tsap
"Running Open-Source LLM models on Kubernetes", Volodymyr Tsap
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
 
Traffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptxTraffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptx
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
 
Bit N Build Poland
Bit N Build PolandBit N Build Poland
Bit N Build Poland
 
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
 

Focused Exploration of Geospatial Context on Linked Open Data

  • 1. Focused Exploration of Geospatial Context on Linked Open Data Thomas Gottron, Johannes Schmitz, Stuart E. Middleton 20 October 2014 IESD workshop, Riva del Garda Thomas Gottron Focused Institute for Web Science and Technolo Egxieplso r a·t i oUnn oifv LeOrDs ity of Koblenz-Landau, Germany 1
  • 2. Challenge: Focused Exploration of LOD • Linked Data entities Thomas Gottron Focused Exploration of LOD 2
  • 3. Challenge: Focused Exploration of LOD • Linked Data entities • (Semantic) link structure Thomas Gottron Focused Exploration of LOD 3
  • 4. Challenge: Focused Exploration of LOD • Linked Data entities • (Semantic) link structure • „Relevant“ entities Thomas Gottron Focused Exploration of LOD 4
  • 5. Challenge: Focused Exploration of LOD • Linked Data entities • (Semantic) link structure • „Relevant“ entities • Seed entity Thomas Gottron Focused Exploration of LOD 5
  • 6. Challenge: Focused Exploration of LOD • Linked Data entities • (Semantic) link structure • „Relevant“ entities • Seed entity ? ? ? ? ? ? Classification: Which links lead to relevant entities? Ranking: How probable is a link leading to a relevant entity? Use Cases: Guided exploration Focused LOD crawler Thomas Gottron Focused Exploration of LOD 6
  • 7. Focused exploration of Geospatial Context Rovereto Relevant entities: Locations semantically related to seed entities Bensheim (Germany) Thomas Gottron Focused Exploration of LOD 7
  • 8. Focused Exploration: Formalisation • E: set of entities (URIs) • R: set of RDF triples (s,p,o) s∈ L – Restricted to s,o ∈ E wgs84:long • L⊆E: relevant entities -1.404 – For us: Locations with coordinates • Task: for given s‘ and all (s‘,p,o) ∈ R – Classification: Predict which o are in L – Ranking: Sort object entities o starting from the one presumed most probable to be relevant wgs84:lat 50.897 Thomas Gottron Focused Exploration of LOD 8
  • 9. 5 Approaches • Based on 3 paradigms: – Schema semantics (1 approach) – Supervised machine learning (2 approaches) – Information Retrieval inspired (2 approaches) Thomas Gottron Focused Exploration of LOD 9
  • 10. Exploration based on Schema Semantics • Exploit rdfs:range definitions of link predicates rdfs:range dbpedia:Place rdfs:subClassOf dbponto:twinCity dbpedia:City • Follow links which lead to locations Thomas Gottron Focused Exploration of LOD 10
  • 11. Exploration based on Schema Semantics s Classification p1 p2 • Range of any pi is a location? àLabel = relevant o pm Ranking Location? • Re-use classification: – Relevant before irrelevant ... Thomas Gottron Focused Exploration of LOD 11
  • 12. Supervised Machine Learning • Use incoming link predicates as features – Learn predicates which typically leading to locations p4 p6 p2 p3 o‘ o xxx wgs84:lat yyy wgs84:long • Train a classifier (e.g. Naive Bayes) 2 Variations: Use all or only observed predicates Thomas Gottron Focused Exploration of LOD 12
  • 13. Supervised Machine Learning s Classification • p1 P(o ∈ L) > P(o ∉ L)? àLabel = relevant o pm Ranking Location? • Rank by odds: p2 ... O(o ∈ L) = P(o ∈ L) P(o ∉ L) Thomas Gottron Focused Exploration of LOD 13
  • 14. IR Inspired Approaches • Discriminativeness of predicates (inspired by tf-idf) • Property relevance frequency: • Inverse property frequency • Combine into prf-ipf and prr-ipf • Total score ρ: aggregate over all predicates prf = c(p, L) ipf = log c(∗,∗) c(p,∗) " # $ Thomas Gottron Focused Exploration of LOD 14 % & ' o p3 2nd Variation: prr: normalised prf
  • 15. IR Inspired Approaches s Classification p1 p2 • Determine threshold – Nearest centroid o pm Ranking Location? • Rank by score ... ρ prr-ipf (o) Thomas Gottron Focused Exploration of LOD 15
  • 16. Evaluation • Metrics: – Ranking: • ROC curves • AUC – Classification: • Precision • Recall • F1 • Accuracy • Cross validation: – 10-times / 10-fold – Averages 99,951 entities 1,728,633 links 425,338 entities 128,171 relevant Seed Exploration owl:sameAs Thomas Gottron Focused Exploration of LOD 16
  • 17. Performance (Ranking) 1 0.8 0.6 0.4 0.2 0 ROC 1 0.975 0.95 0 0.025 0.05 0 0.2 0.4 0.6 0.8 1 random Schema Semantics NB (all predicates) NB (present predicates) prf-ipf prr-ipf Thomas Gottron Focused Exploration of LOD 17
  • 18. Performance (Classification & Ranking) 2. Average performance of approaches († indicates significant improvements confidence level ⇢ = 0.01) Method Recall Precision F1 Accuracy AUC Schema Scemantics 0.1188 0.8119 0.2073 0.7262 0.5552 NB (all predicates) 0.9906 0.9491 † 0.9694 † 0.9812 0.9970 NB (observed predicates) 0.9943 0.9436 0.9683 0.9804 0.9968 prf-ipf 0.8512 † 0.9754 0.9091 0.9487 0.9958 prr-ipf † 0.9973 0.9240 0.9592 0.9745 0.9769 performance in bold. Furthermore, we marked the results where we had a significant over the second best method at confidence level of ⇢ = 0.01. The aggregated basically Thomas Gottron confirm the observations Focused Exploration made of above. LOD In general, when considering 18
  • 19. Summary • Focused exploration feasible • ML approach performing best • Future work: – Other data sets – Generalise scenario (more than locations) – Better approaches using more features Thomas Gottron Focused Exploration of LOD 19
  • 20. Questions? Thomas Gottron Institute for Web Science and Technologies Universität Koblenz-Landau gottron@uni-koblenz.de Thomas Gottron Focused Institute for Web Science and Technolo Egxieplso r a·t i oUnn oifv LeOrDs ity of Koblenz-Landau, Germany 20