SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Develop RoboticDevelop Robotic
Manipulator for BasicManipulator for Basic
Operations in GarmentOperations in Garment
ManufacturingManufacturing
Project SupervisorProject Supervisor
Dr. A. M. Harsha S. AbeykoonDr. A. M. Harsha S. Abeykoon
1212 thth
November 2010November 2010
A. M. P. JayamanneA. M. P. Jayamanne
08/9307 (IA)08/9307 (IA)
ContentContent
► Background StudyBackground Study
► Available GripersAvailable Gripers
► ProjectProject
► Design and EvaluationDesign and Evaluation
► Modeling the RobotModeling the Robot
► ControllingControlling
► Error DynamicsError Dynamics
► ConclusionConclusion
The Background StudyThe Background Study
Problems in Garment Industry
► High price competition (low buying power , competition in developing countries)
► Increase labour wages ( around 30 % of total cost)
► Increase material costs ( around 60 % of total cost)
► Reduce labour inflow ( stressfulness due to repetitive work)
► Uncertainties in efficiency due to total human involvement in production
The solutions in practice
► Optimization of production by use of 5S, TPS, Innovation, est.
► Introducing automations to the production floors
► Online system monitoring
► Method shearing
Project
► Robot for pick place operation in Garment manufacturing
10 %
Process of Garment Manufacturing (operations)Process of Garment Manufacturing (operations)
Fabric stores
Trims stores
Cutting
Pattern
Making
Numbering
Fusing Assembling
Washing Finishing
Product
Development
Payback CalculationPayback Calculation
► Monthly wages + overhead per operatorMonthly wages + overhead per operator = 150 US$= 150 US$
► Motors for the robotMotors for the robot = 338 * 4 = 1356 US$= 338 * 4 = 1356 US$
► Electronics and sensorsElectronics and sensors = 1000 US$= 1000 US$
► Mechanical and other accessoriesMechanical and other accessories = 1000 US$= 1000 US$
► Monthly maintenanceMonthly maintenance = 50 US$= 50 US$
Total for robotTotal for robot = 3356 US$= 3356 US$
► PaybackPayback == 30 months30 months
Robot can operate in 2- 10 hour shifts per dayRobot can operate in 2- 10 hour shifts per day
► New paybackNew payback == 15 months15 months
Note – Efficiency changes were not includedNote – Efficiency changes were not included
Available Basic Griping DevicesAvailable Basic Griping Devices
► Vacuumed ejectorsVacuumed ejectors
► Static chargersStatic chargers
► Abrasive padsAbrasive pads
► Mechanical gripers/ BellowsMechanical gripers/ Bellows
► Pneumatic/ solenoid actuated gripersPneumatic/ solenoid actuated gripers
► MagneticMagnetic
► Special griping devicesSpecial griping devices
Kaunas university Lithuania Duerkopp- AdlerKaunas university Lithuania Duerkopp- Adler
Apparel
Industry
Motor
Spring
Holder
Stack
Arm
Cam
Needle
Griper
Pickup
Rotor
ProjectProject
Gather information of
fabrics and there
construction
Develop a grasping
method of fabrics
Do tests in actual
working environments
Method
performs
Study for the
best manipulator
configuration
Design Manipulator
Do kinematics and
dynamic analysis
Decide motors,
drive system,
transform metrics
and velocity matrices
Do model (mechanical)
Electronics and control
Programming
Performance evaluation
YesNo
Grasping MethodGrasping Method
38
32
27.5
95
45
23
23
Measurements used 3-D Model
Physical Model
Enlarged view of Griper
Performance of the MechanismPerformance of the Mechanism
Fabric
Fabric
Thickness
mm
Griper
Depth
mm
Griper Width
mm
Performance
Multiple
Grasp
Basic poplin 0.015 3.0 7.0 good yes
Heavy poplin 0.025 3.0 12.0 good no
Basic twill 0.035 3.5 8.5 not good no
Heavy twill 0.500 4.0 16.0 not good no
Heavy denim 0.650 5.0 17.0 not good no
Basic nit 0.017 2.0 12.0 good yes
Medium nit 0.500 3.0 12.0 not good no
Heavy nit 0.800 3.0 15.0 good yes
Basic interlining 0.200 5.0 16.0 not good yes
Problems and Modifications DoneProblems and Modifications Done
► Force of the cylinder is not enough to close the finger when disturbance
occurs.
• New Cylinder (12*25 mm, DA, Basic )
o Grasping force (17:92mm)- 2.307 kg – 12.48 kg
• Pervious cylinder (8*10 mm, DA, Basic )
o Grasping force (17:92mm)- 0.071kg – 0.1894 kg
► Griper end configuration needed to change for correct griping
► Fabric damage occurred when change the end
► For replacement of Sharpe teeth used trapezoid teeth with 2mm base.
► Use Silicon rubber pad instead of metal surface.
New DesignNew Design
Modified griper end
Performance with ModificationPerformance with Modification
Fabric
Fabric
Thickness
mm
Griper
Depth
mm
Griper Width
mm
Performance
Multiple
Grasp
Basic poplin 0.015 5.0 8.0 good yes
Heavy poplin 0.025 5.0 12.0 good no
Basic twill 0.035 6.0 8.5 good no
Heavy twill 0.500 6.0 13.0 good no
Heavy denim 0.650 7.0 15.0 good no
Basic nit 0.017 2.0 10.0 good yes
Medium nit 0.500 4.0 10.0 good no
Heavy nit 0.800 4.0 12.0 good yes
Basic interlining 0.200 7.0 16.0 not good yes
SeparatorSeparator
1 2
3 4
Changers in Separation UnitChangers in Separation Unit
Previous Design New Design
Canter of orientation
Canter of Grip
ManipulatorManipulator
Y
Z
End Effecter
X
Base Height Adjuster
Model with DH ParametersModel with DH Parameters
X0
Y0
Z0
X1
Y1
Z1
Y3
Z2
X2
X3
Z3
X4
X5
Y4
Y5
Z4Z5
Module X Module Y
Module Z
Link 1 Link 2
Link 3
Link 4
Joint 1
Joint 2
Joint 4
Joint 5
d1
d2
d4
a4 =0
d3 = 0
a2
a1
a3
α5 - Angle
{I}
Link ai
mm
αi
0
di
mm
θi
0
0 0 0 Ia
0
1 60.46 +90 d1
0
2 100.5 0 d2
0
3 -450.2 -90 0 -90
4 0 0 d4
0
5 0 α5
0 0
Link 0
Y2
Manipulator Kinamatic AnalysisManipulator Kinamatic Analysis
Denavit – Hartenberg (DH)
Homogeneous transformation matrix
I
T5 = where, I
T5 = I
T0 . 0
T1 . 1
T2 . 2
T3 . 3
T4 .4
T5
Linear velocity matrix of the griper
where, J =
0 Sα5
Cα5
-289.2 + d4
0 Cα5
- Sα5
- d2
-1 0 0 d1
+ 10
0 0 0 0










V
V
V
Z
Y
X



=










−100
010
001












4
2
1
d
d
d



.










−100
010
001










V
V
V
Z
Y
X















4
2
1
d
d
d



=










−100
010
001
.
-1
Where, di = D-H geometrical parameter (joint i variable)
Vi = linear velocities of end effector
αi = End effectors orientation
C = Cos
S = Sin
Dynamic AnalysisDynamic Analysis
Newton - Euler
For end effector,
θ θT = (Ir
+ Kb
) . K1
. (1 + Kp
)
For Z module,
x xT = (m + Kb
. + m . g). (d/2). K1
. (1 + Kp
)
For Y and X modules
x xT = (m + Kb
. ). (d/2). K1
. (1 + Kp
)
Where,
= angular velocity (rpm)
= angular acceleration (rev/sec2
)
= linear velocity of each module (ms-1
)
= linear acceleration of each module (ms-2
)
Ix, Iy, Iz = moment of inertia around axis (kgm2
)
Ir = mass moment of inertia of rotating axis (kgm2
)
T = motor torque (Nm)
K1 = safety factor = 1.7
Kb = bearing damping coefficient = 0.003
Kp = mechanical loss on belt drive= 2%
m = mass of each module (kg)
g = gravity acceleration (ms-2
)
d = Pulley diameter (mm)
θ
θ
x
x
Motor RequirementMotor Requirement
Drive Required
Torque
(Nm)
Motor Torque
(Nm)
Rated Speed
(rpm)
Capacity
(W)
Orientation 0.43 0.64 3000 200
Z 2.269 1.27(use 2:1 gear) 3000 400
Y 2.314 3.18 3000 1000
X 2.314 3.18 3000 1000
Servo Driver
Model – EDC – 08
200VAC
Features – Position Control
232 and pulse control
Encoder Feedback
PID inbuilt
ControllerController
Item Specification
Program executing format Loop scan format, timing
scan format
Program format Instruction, C language,
ladder chart
Dispose speed 0.3us
Power cut retentive Use Flash ROM and Li
battery
User program’s capacity 8000 steps
I/O points Input 18 points
Output 14 points
Interior coil’s points (M) 8512 points
Timer points 620 Points
100mS, 10mS,1mS
Counter points 635 points
16 bits counter set value
K0~32767
32 bits counter set value
K0~2147483647
Data Register ( D ) 4512 words
Flash ROM Register
( FD )
576 words
High speed dispose High speed count, pulse (0
– 20kHz) output, external
Thinget XCM 32 RT-E - 4 Axis motion controller
Programming the PathProgramming the Path
► Use teaching method to feed the points of movement
► Set the pattern number and move points
► In desired point use ‘set’ key to enter
► The motion controller have inbuilt function for linear, clockwise, anticlockwise
interpolation facility which can decide in position programming
X
Y
current
X2,Y2 current
X4,Y4
X target Y target Centre X Centre Y Centre Z Speed
OP PanelOP Panel
OP 320 A OP panel OP Series edit tool
Start
Orientate Gripper Move Z axis in speed 2
Read sensor 1
Yes
No
Move Z axis in speed 1
Encoder 0 +
penetrate height ok
Yes
No
Stop Z axis + grip
Encoder 1 reading
ok
Yes
No
Start segregation
Move X +
Move Y +
Orientate
Encoder x ok +
Encoder Y ok
YesDischarge Griper + Return home
position
No
Sensor 3
Yes
No
Stop
500
700
100
100
2000
100
2000
2000
100
200
100
Time Slots in milliseconds
100
Memory Allocation and ControlMemory Allocation and Control
Data Memory
Program Memory
Runtime volatile
memory
Instruction register
Execute
instruction
Memory
controller
Operation Pattern Grip Data
OP 320 A
Control
proceedings
Main
controller
Current
Position
Velocity
Requested Data
Requested
Data, updated
data
D8000-
FD 0-
D 0 -
Error compensation Data
Z - Module and Gripper Control DiagramZ - Module and Gripper Control Diagram
Griper Controller
Z - module controller
Griper Actuators
5/2 valves
Expander actuators
5/3 valves
Separator actuators
5/2 valves + motor
Z – Servo
Drive (PID)
Z – Motor
Encoder mz
Encoder 0
Z
Encoder 1
Grip
Start
Grip
Fabric
Data
Fabric sense
Distance sense
Constrains
Position Sense 1,2
X,Y module controlX,Y module control
X,Y Controller
Coordinate
generator
Transformation
matrix
Velocity
matrix
Pulse
generator
Clock
Servo Driver – X
+PID control
Servo motor - X
Encoder 1X
Servo Driver – Y
+ PID control
Servo motor - Y
Encoder 1Y
Encoder 2X Encoder 2Y
X position Y position
Encoder 2X Encoder 2Y
X,Y
position
Constrains
Errors/ Accuracy NeededErrors/ Accuracy Needed
► Deflection error (structural)
► Belt driver errors
► Errors due to resolution of motor driver
and encoders
► Controller and programming errors
► Added errors in dynamic motion
Needed Accuracy in Positioning
X, Y - 1.5mm ( Stitching accuracy in garment Production 1/16” – 1.59mm)
±0.75mm
But using guiding mechanism can extend this to 3mm,Then required tolerance is
±1.5mm
Z - 1mm (Griper penetration accuracy – 1mm)
±0.5mm
Coordinate tracking mode
Teaching mode
Deflection ErrorsDeflection Errors
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
100
173.4
246.8
320.2
393.6
467
540.4
613.8
687.2
760.6
834
Distance (mm)
Deflection(mm)
4.347kg 6.697kg 9.047kg
Y - Module Y -Module
0
0.5
1
1.5
2
2.5
3
302 442.3 582.6 722.9 863.2 1003.5 1143.8 1284.1 1424.4 1564.7
Distance (mm)
Deflection(mm)
6.93kg 9.193kg 11.693kg
X - Module
Deflection ErrorDeflection Error
1.61 1.44 1.26 1.09 0.91 0.74 0.56 0.43 0.21
210
270
330
390
450
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.60-0.70
0.50-0.60
0.40-0.50
0.30-0.40
0.20-0.30
0.10-0.20
0.00-0.10
ez(mm)
e (mm)
z (mm)
Note – Maximum Y axis error is 0.0012mm , there fore this is not taken in the process
θ
ez
e
D dw
z
ez = z.e /D
Assuming θ<<< 1
Deflexion Error in X axis
Belt Driver ErrorsBelt Driver Errors
► Belt use in system MXL, 3 mm Pitch
► Belt positioning error given by Stock- Drive Products Canada – 0.002mm
► Pulley slack 0.1mm
► The maximum error 0.1002 mm - and this is not considered in the controller
programming
Errors - Resolution of Motor, DriverErrors - Resolution of Motor, Driver
and Encodersand Encoders
► Pulses per revolution - 1 ~ 10000, setting in motion – 5000, (0 – 3000 rpm)
► Pulley diameter - d - 50mm,
► positioning accuracy - - 0.03mm,
► Encoder out - 2500 ppr
► Electronic gear ratio - 1 ~ 65535/ 1 ~ 65535, setting - 1:2, - 5000 ppr
5000/dπ
Precision Control of Depth –Z -MotionPrecision Control of Depth –Z -Motion
TURCK
Part No – Ni15-M30-LIU
Sense – 2 – 12mm
60 Hz
OMRON
Part No – E2K-X15ME1 2M
OMRON
Part No – E3X-DA21F-S
250 μs
OMRON
Part No – E2K-X15ME1 2M
Pulse dispose speed at 500 rpm - 41500 pps
Pulse generate speed - 24 μs
Sensor reading speed - 250 μs
Pulse overshoot when sensor reads - 10
Error - 0.03 * 10 – 0.3mm
250 μs
New DesignPrevious design
Note – Controller and programming errors will be corrected while real model in implementation
Added errors in dynamic motionAdded errors in dynamic motion
► Tested actual Z module for position errors
Stepper Motor
A10k- S545W
1Nm
Step -0.36
With 2:1 Pulley
Resolution - 1000
Driver
MD2U-Md20
Micro step
1,2,4,5,8,10,16
,20
Used ratio - 5
Encoder
E30S4
Res. – 1024
Use 1:5 pulley
Resolution
5120
Z module
Weight- 3.38 kg
Controller
Thinget XC3 - 34
Speed – 28000 pps, (required 25000pps)
Ramp up/Down – 0.1s
ConstrainsConstrains
Speed
TimeTime slot for operation
Motion signals feeds to steppers must be in above pattern
Max. Increase of speed from 0 – 300 rpm by 0.1 S
Same output given to motion control cannot assigned twice in any manner
Material data have to use in grip configuration and Z - motion
Height have to maintain not to roll the fabric piece
Data identified in deflection analysis have to combine with position data
Final positions in power failure or any other disturbance have to store
Z - movement would independently handle with sensor data and X-Y point
Bearing clearance errors has to be added to coordinate system with direction
Use of interpolation method to assign path configuration and speed
Z - axis
Z - Motion Accuracy ChartZ - Motion Accuracy Chart
10 50 100 150 200 250 300
50
2000
50
100
150
200
250
300
350
300-350
250-300
200-250
150-200
100-150
50-100
0-50
Speed (rpm)
Finishedposition(mm)
Actual position (mm)Position
(mm)
Speed
(rpm) 50 100 150 200 250 300
10 57 107 157.1 207 257 307
50 57 107 157 207 257.1 307
100 57 107 157 207.3 257 307.2
150 57 107 157.1 207.3 257.3 307.2
200 57.2 107.5 157.3 207.5 257.3 307.2
250 57.7 107.8 158 207.7 257.4 307.5
300 58 108.1 158.1 208 257.4 307.6
ConclusionConclusion
► It is needed to employ robots in garment industryIt is needed to employ robots in garment industry
► The cost is a barrierThe cost is a barrier
► The problem of segregating fabric can sorted by new griper and separatorThe problem of segregating fabric can sorted by new griper and separator
► Required accuracy levels can match with available hardwareRequired accuracy levels can match with available hardware
► Separation process have to be fine tuned after model implementationSeparation process have to be fine tuned after model implementation
► Much involvement needed in actual implementation in production linesMuch involvement needed in actual implementation in production lines
► More Researches needed to implement and fine tune griper to Some fabricsMore Researches needed to implement and fine tune griper to Some fabrics
(Nit)(Nit)
► Still robot speed is same time of manual labour, need attentionStill robot speed is same time of manual labour, need attention
Hope the robot will run in actual production process in nearHope the robot will run in actual production process in near
future..future..
Thank YouThank You
Q&A Session..Q&A Session..

Weitere ähnliche Inhalte

Was ist angesagt?

Work, power and machines with pitucres
Work, power and machines with pitucresWork, power and machines with pitucres
Work, power and machines with pitucres
Allyse Fritz
 

Was ist angesagt? (12)

Ijmet 10 01_098
Ijmet 10 01_098Ijmet 10 01_098
Ijmet 10 01_098
 
GOKART PROJECT
GOKART PROJECTGOKART PROJECT
GOKART PROJECT
 
GRA400 Jingdiao High Speed Machining Center
GRA400 Jingdiao High Speed Machining CenterGRA400 Jingdiao High Speed Machining Center
GRA400 Jingdiao High Speed Machining Center
 
Vibration Analysis of deep groove ball bearing using Finite Element Analysis
Vibration Analysis of deep groove ball bearing using Finite Element AnalysisVibration Analysis of deep groove ball bearing using Finite Element Analysis
Vibration Analysis of deep groove ball bearing using Finite Element Analysis
 
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer GearboxIRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
IRJET- Experimental Stress Analysis of Worm Wheel used in Crate Washer Gearbox
 
Optimization of micro machining processes
Optimization of micro machining processesOptimization of micro machining processes
Optimization of micro machining processes
 
IRJET - Design and Manufacturing of Sunflower Threshing Machine
IRJET - Design and Manufacturing of Sunflower Threshing MachineIRJET - Design and Manufacturing of Sunflower Threshing Machine
IRJET - Design and Manufacturing of Sunflower Threshing Machine
 
IRJET- Estimating Crushing Force of Cone Crusher using Analytical Method
IRJET- Estimating Crushing Force of Cone Crusher using Analytical MethodIRJET- Estimating Crushing Force of Cone Crusher using Analytical Method
IRJET- Estimating Crushing Force of Cone Crusher using Analytical Method
 
30420140501001 2
30420140501001 230420140501001 2
30420140501001 2
 
Presentation of G Clef Bending Technology
Presentation of G Clef Bending TechnologyPresentation of G Clef Bending Technology
Presentation of G Clef Bending Technology
 
Work, power and machines with pitucres
Work, power and machines with pitucresWork, power and machines with pitucres
Work, power and machines with pitucres
 
Work, power and machines with pitucres
Work, power and machines with pitucresWork, power and machines with pitucres
Work, power and machines with pitucres
 

Andere mochten auch

Andere mochten auch (7)

KSDG BaaS Intro
KSDG BaaS IntroKSDG BaaS Intro
KSDG BaaS Intro
 
使用內建shader: Transparent Shader Family
使用內建shader: Transparent Shader Family使用內建shader: Transparent Shader Family
使用內建shader: Transparent Shader Family
 
Unity Shader教學: 初窺Shader 從內建Normal Shader Family認識Unity Shader
Unity Shader教學: 初窺Shader 從內建Normal Shader Family認識Unity ShaderUnity Shader教學: 初窺Shader 從內建Normal Shader Family認識Unity Shader
Unity Shader教學: 初窺Shader 從內建Normal Shader Family認識Unity Shader
 
Unity Photon server 基礎設施
Unity Photon server 基礎設施Unity Photon server 基礎設施
Unity Photon server 基礎設施
 
C# Game Server
C# Game ServerC# Game Server
C# Game Server
 
保哥線上講堂:LINQ 快速上手
保哥線上講堂:LINQ 快速上手保哥線上講堂:LINQ 快速上手
保哥線上講堂:LINQ 快速上手
 
[系列活動] 機器學習速遊
[系列活動] 機器學習速遊[系列活動] 機器學習速遊
[系列活動] 機器學習速遊
 

Ähnlich wie progress review 3 new

Ct & Port Cranes Psa 22jan07
Ct & Port Cranes Psa 22jan07Ct & Port Cranes Psa 22jan07
Ct & Port Cranes Psa 22jan07
krishnan.R
 
GP03 Trash Compactor G07
GP03 Trash Compactor G07GP03 Trash Compactor G07
GP03 Trash Compactor G07
Casey Stribrny
 

Ähnlich wie progress review 3 new (20)

B012460814
B012460814B012460814
B012460814
 
Design of Automatic Wall Climbing Equipment For Cleaning Glass Surfaces With ...
Design of Automatic Wall Climbing Equipment For Cleaning Glass Surfaces With ...Design of Automatic Wall Climbing Equipment For Cleaning Glass Surfaces With ...
Design of Automatic Wall Climbing Equipment For Cleaning Glass Surfaces With ...
 
PGA600 - 3 axis Graphite Mill
PGA600 - 3 axis Graphite MillPGA600 - 3 axis Graphite Mill
PGA600 - 3 axis Graphite Mill
 
Joystick Operated Steering System
Joystick Operated Steering SystemJoystick Operated Steering System
Joystick Operated Steering System
 
DESIGN & ANALYSIS OF HEAVY-DUTY OVERHEAD CONVEYOR SYSTEM
DESIGN & ANALYSIS OF HEAVY-DUTY OVERHEAD CONVEYOR SYSTEMDESIGN & ANALYSIS OF HEAVY-DUTY OVERHEAD CONVEYOR SYSTEM
DESIGN & ANALYSIS OF HEAVY-DUTY OVERHEAD CONVEYOR SYSTEM
 
Study and Analysis of Tire Changing Machine Components
Study and Analysis of Tire Changing Machine ComponentsStudy and Analysis of Tire Changing Machine Components
Study and Analysis of Tire Changing Machine Components
 
Universal Testing Machine
Universal Testing MachineUniversal Testing Machine
Universal Testing Machine
 
IRJET- Design Development and Automation of Roasting System
IRJET-  	  Design Development and Automation of Roasting SystemIRJET-  	  Design Development and Automation of Roasting System
IRJET- Design Development and Automation of Roasting System
 
Ct & Port Cranes Psa 22 Jan07
Ct & Port Cranes Psa 22 Jan07Ct & Port Cranes Psa 22 Jan07
Ct & Port Cranes Psa 22 Jan07
 
Ct & Port Cranes Psa 22jan07
Ct & Port Cranes Psa 22jan07Ct & Port Cranes Psa 22jan07
Ct & Port Cranes Psa 22jan07
 
Mitsubishi ac servos melservo solutions
Mitsubishi ac servos melservo solutionsMitsubishi ac servos melservo solutions
Mitsubishi ac servos melservo solutions
 
Mitsubishi ac servos melservo solutions dienhathe.vn
Mitsubishi ac servos melservo solutions dienhathe.vnMitsubishi ac servos melservo solutions dienhathe.vn
Mitsubishi ac servos melservo solutions dienhathe.vn
 
Taguchi method for analysing the lathe machine
Taguchi method for analysing the lathe machineTaguchi method for analysing the lathe machine
Taguchi method for analysing the lathe machine
 
Design and Optimization of Steering System
Design and Optimization of Steering SystemDesign and Optimization of Steering System
Design and Optimization of Steering System
 
IRJET- Regenerative Suspension System
IRJET- Regenerative Suspension SystemIRJET- Regenerative Suspension System
IRJET- Regenerative Suspension System
 
Design of geneva wheel based auto-roll punching machine
Design of geneva wheel based auto-roll punching machineDesign of geneva wheel based auto-roll punching machine
Design of geneva wheel based auto-roll punching machine
 
Design and Fabrication of Tamarind Seed Removal Machine
Design and Fabrication of Tamarind Seed Removal MachineDesign and Fabrication of Tamarind Seed Removal Machine
Design and Fabrication of Tamarind Seed Removal Machine
 
Design and Fabrication of Tamarind Seed Removal Machine
Design and Fabrication of Tamarind Seed Removal MachineDesign and Fabrication of Tamarind Seed Removal Machine
Design and Fabrication of Tamarind Seed Removal Machine
 
GP03 Trash Compactor G07
GP03 Trash Compactor G07GP03 Trash Compactor G07
GP03 Trash Compactor G07
 
IRJET- Structural Analysis and Optimization of ‘C’ Frame of Mechanical Press
IRJET- Structural Analysis and Optimization of ‘C’ Frame of Mechanical PressIRJET- Structural Analysis and Optimization of ‘C’ Frame of Mechanical Press
IRJET- Structural Analysis and Optimization of ‘C’ Frame of Mechanical Press
 

Mehr von pathishe73

Presentation drawinbg
Presentation drawinbgPresentation drawinbg
Presentation drawinbg
pathishe73
 
print electrical Model (1)
print electrical Model (1)print electrical Model (1)
print electrical Model (1)
pathishe73
 
Some Brandix Facilities And Process Equpments
Some Brandix Facilities And Process EqupmentsSome Brandix Facilities And Process Equpments
Some Brandix Facilities And Process Equpments
pathishe73
 
Design a model of OWC plant for Sri
Design a model of OWC plant for SriDesign a model of OWC plant for Sri
Design a model of OWC plant for Sri
pathishe73
 

Mehr von pathishe73 (11)

bristal 12
bristal 12bristal 12
bristal 12
 
Presentation drawinbg
Presentation drawinbgPresentation drawinbg
Presentation drawinbg
 
print electrical Model (1)
print electrical Model (1)print electrical Model (1)
print electrical Model (1)
 
Presentation1
Presentation1Presentation1
Presentation1
 
Some Brandix Facilities And Process Equpments
Some Brandix Facilities And Process EqupmentsSome Brandix Facilities And Process Equpments
Some Brandix Facilities And Process Equpments
 
Presentation3
Presentation3Presentation3
Presentation3
 
4l
4l4l
4l
 
3a)
3a)3a)
3a)
 
Presentation2
Presentation2Presentation2
Presentation2
 
Design a model of OWC plant for Sri
Design a model of OWC plant for SriDesign a model of OWC plant for Sri
Design a model of OWC plant for Sri
 
Presentation1
Presentation1Presentation1
Presentation1
 

progress review 3 new

  • 1. Develop RoboticDevelop Robotic Manipulator for BasicManipulator for Basic Operations in GarmentOperations in Garment ManufacturingManufacturing Project SupervisorProject Supervisor Dr. A. M. Harsha S. AbeykoonDr. A. M. Harsha S. Abeykoon 1212 thth November 2010November 2010 A. M. P. JayamanneA. M. P. Jayamanne 08/9307 (IA)08/9307 (IA)
  • 2. ContentContent ► Background StudyBackground Study ► Available GripersAvailable Gripers ► ProjectProject ► Design and EvaluationDesign and Evaluation ► Modeling the RobotModeling the Robot ► ControllingControlling ► Error DynamicsError Dynamics ► ConclusionConclusion
  • 3. The Background StudyThe Background Study Problems in Garment Industry ► High price competition (low buying power , competition in developing countries) ► Increase labour wages ( around 30 % of total cost) ► Increase material costs ( around 60 % of total cost) ► Reduce labour inflow ( stressfulness due to repetitive work) ► Uncertainties in efficiency due to total human involvement in production The solutions in practice ► Optimization of production by use of 5S, TPS, Innovation, est. ► Introducing automations to the production floors ► Online system monitoring ► Method shearing Project ► Robot for pick place operation in Garment manufacturing 10 %
  • 4. Process of Garment Manufacturing (operations)Process of Garment Manufacturing (operations) Fabric stores Trims stores Cutting Pattern Making Numbering Fusing Assembling Washing Finishing Product Development
  • 5. Payback CalculationPayback Calculation ► Monthly wages + overhead per operatorMonthly wages + overhead per operator = 150 US$= 150 US$ ► Motors for the robotMotors for the robot = 338 * 4 = 1356 US$= 338 * 4 = 1356 US$ ► Electronics and sensorsElectronics and sensors = 1000 US$= 1000 US$ ► Mechanical and other accessoriesMechanical and other accessories = 1000 US$= 1000 US$ ► Monthly maintenanceMonthly maintenance = 50 US$= 50 US$ Total for robotTotal for robot = 3356 US$= 3356 US$ ► PaybackPayback == 30 months30 months Robot can operate in 2- 10 hour shifts per dayRobot can operate in 2- 10 hour shifts per day ► New paybackNew payback == 15 months15 months Note – Efficiency changes were not includedNote – Efficiency changes were not included
  • 6. Available Basic Griping DevicesAvailable Basic Griping Devices ► Vacuumed ejectorsVacuumed ejectors ► Static chargersStatic chargers ► Abrasive padsAbrasive pads ► Mechanical gripers/ BellowsMechanical gripers/ Bellows ► Pneumatic/ solenoid actuated gripersPneumatic/ solenoid actuated gripers ► MagneticMagnetic ► Special griping devicesSpecial griping devices Kaunas university Lithuania Duerkopp- AdlerKaunas university Lithuania Duerkopp- Adler Apparel Industry Motor Spring Holder Stack Arm Cam Needle Griper Pickup Rotor
  • 7. ProjectProject Gather information of fabrics and there construction Develop a grasping method of fabrics Do tests in actual working environments Method performs Study for the best manipulator configuration Design Manipulator Do kinematics and dynamic analysis Decide motors, drive system, transform metrics and velocity matrices Do model (mechanical) Electronics and control Programming Performance evaluation YesNo
  • 8. Grasping MethodGrasping Method 38 32 27.5 95 45 23 23 Measurements used 3-D Model Physical Model Enlarged view of Griper
  • 9. Performance of the MechanismPerformance of the Mechanism Fabric Fabric Thickness mm Griper Depth mm Griper Width mm Performance Multiple Grasp Basic poplin 0.015 3.0 7.0 good yes Heavy poplin 0.025 3.0 12.0 good no Basic twill 0.035 3.5 8.5 not good no Heavy twill 0.500 4.0 16.0 not good no Heavy denim 0.650 5.0 17.0 not good no Basic nit 0.017 2.0 12.0 good yes Medium nit 0.500 3.0 12.0 not good no Heavy nit 0.800 3.0 15.0 good yes Basic interlining 0.200 5.0 16.0 not good yes
  • 10. Problems and Modifications DoneProblems and Modifications Done ► Force of the cylinder is not enough to close the finger when disturbance occurs. • New Cylinder (12*25 mm, DA, Basic ) o Grasping force (17:92mm)- 2.307 kg – 12.48 kg • Pervious cylinder (8*10 mm, DA, Basic ) o Grasping force (17:92mm)- 0.071kg – 0.1894 kg ► Griper end configuration needed to change for correct griping ► Fabric damage occurred when change the end ► For replacement of Sharpe teeth used trapezoid teeth with 2mm base. ► Use Silicon rubber pad instead of metal surface.
  • 12. Performance with ModificationPerformance with Modification Fabric Fabric Thickness mm Griper Depth mm Griper Width mm Performance Multiple Grasp Basic poplin 0.015 5.0 8.0 good yes Heavy poplin 0.025 5.0 12.0 good no Basic twill 0.035 6.0 8.5 good no Heavy twill 0.500 6.0 13.0 good no Heavy denim 0.650 7.0 15.0 good no Basic nit 0.017 2.0 10.0 good yes Medium nit 0.500 4.0 10.0 good no Heavy nit 0.800 4.0 12.0 good yes Basic interlining 0.200 7.0 16.0 not good yes
  • 14. Changers in Separation UnitChangers in Separation Unit Previous Design New Design Canter of orientation Canter of Grip
  • 16. Model with DH ParametersModel with DH Parameters X0 Y0 Z0 X1 Y1 Z1 Y3 Z2 X2 X3 Z3 X4 X5 Y4 Y5 Z4Z5 Module X Module Y Module Z Link 1 Link 2 Link 3 Link 4 Joint 1 Joint 2 Joint 4 Joint 5 d1 d2 d4 a4 =0 d3 = 0 a2 a1 a3 α5 - Angle {I} Link ai mm αi 0 di mm θi 0 0 0 0 Ia 0 1 60.46 +90 d1 0 2 100.5 0 d2 0 3 -450.2 -90 0 -90 4 0 0 d4 0 5 0 α5 0 0 Link 0 Y2
  • 17. Manipulator Kinamatic AnalysisManipulator Kinamatic Analysis Denavit – Hartenberg (DH) Homogeneous transformation matrix I T5 = where, I T5 = I T0 . 0 T1 . 1 T2 . 2 T3 . 3 T4 .4 T5 Linear velocity matrix of the griper where, J = 0 Sα5 Cα5 -289.2 + d4 0 Cα5 - Sα5 - d2 -1 0 0 d1 + 10 0 0 0 0           V V V Z Y X    =           −100 010 001             4 2 1 d d d    .           −100 010 001           V V V Z Y X                4 2 1 d d d    =           −100 010 001 . -1 Where, di = D-H geometrical parameter (joint i variable) Vi = linear velocities of end effector αi = End effectors orientation C = Cos S = Sin
  • 18. Dynamic AnalysisDynamic Analysis Newton - Euler For end effector, θ θT = (Ir + Kb ) . K1 . (1 + Kp ) For Z module, x xT = (m + Kb . + m . g). (d/2). K1 . (1 + Kp ) For Y and X modules x xT = (m + Kb . ). (d/2). K1 . (1 + Kp ) Where, = angular velocity (rpm) = angular acceleration (rev/sec2 ) = linear velocity of each module (ms-1 ) = linear acceleration of each module (ms-2 ) Ix, Iy, Iz = moment of inertia around axis (kgm2 ) Ir = mass moment of inertia of rotating axis (kgm2 ) T = motor torque (Nm) K1 = safety factor = 1.7 Kb = bearing damping coefficient = 0.003 Kp = mechanical loss on belt drive= 2% m = mass of each module (kg) g = gravity acceleration (ms-2 ) d = Pulley diameter (mm) θ θ x x
  • 19. Motor RequirementMotor Requirement Drive Required Torque (Nm) Motor Torque (Nm) Rated Speed (rpm) Capacity (W) Orientation 0.43 0.64 3000 200 Z 2.269 1.27(use 2:1 gear) 3000 400 Y 2.314 3.18 3000 1000 X 2.314 3.18 3000 1000 Servo Driver Model – EDC – 08 200VAC Features – Position Control 232 and pulse control Encoder Feedback PID inbuilt
  • 20. ControllerController Item Specification Program executing format Loop scan format, timing scan format Program format Instruction, C language, ladder chart Dispose speed 0.3us Power cut retentive Use Flash ROM and Li battery User program’s capacity 8000 steps I/O points Input 18 points Output 14 points Interior coil’s points (M) 8512 points Timer points 620 Points 100mS, 10mS,1mS Counter points 635 points 16 bits counter set value K0~32767 32 bits counter set value K0~2147483647 Data Register ( D ) 4512 words Flash ROM Register ( FD ) 576 words High speed dispose High speed count, pulse (0 – 20kHz) output, external Thinget XCM 32 RT-E - 4 Axis motion controller
  • 21. Programming the PathProgramming the Path ► Use teaching method to feed the points of movement ► Set the pattern number and move points ► In desired point use ‘set’ key to enter ► The motion controller have inbuilt function for linear, clockwise, anticlockwise interpolation facility which can decide in position programming X Y current X2,Y2 current X4,Y4 X target Y target Centre X Centre Y Centre Z Speed
  • 22. OP PanelOP Panel OP 320 A OP panel OP Series edit tool
  • 23. Start Orientate Gripper Move Z axis in speed 2 Read sensor 1 Yes No Move Z axis in speed 1 Encoder 0 + penetrate height ok Yes No Stop Z axis + grip Encoder 1 reading ok Yes No Start segregation Move X + Move Y + Orientate Encoder x ok + Encoder Y ok YesDischarge Griper + Return home position No Sensor 3 Yes No Stop 500 700 100 100 2000 100 2000 2000 100 200 100 Time Slots in milliseconds 100
  • 24. Memory Allocation and ControlMemory Allocation and Control Data Memory Program Memory Runtime volatile memory Instruction register Execute instruction Memory controller Operation Pattern Grip Data OP 320 A Control proceedings Main controller Current Position Velocity Requested Data Requested Data, updated data D8000- FD 0- D 0 - Error compensation Data
  • 25. Z - Module and Gripper Control DiagramZ - Module and Gripper Control Diagram Griper Controller Z - module controller Griper Actuators 5/2 valves Expander actuators 5/3 valves Separator actuators 5/2 valves + motor Z – Servo Drive (PID) Z – Motor Encoder mz Encoder 0 Z Encoder 1 Grip Start Grip Fabric Data Fabric sense Distance sense Constrains Position Sense 1,2
  • 26. X,Y module controlX,Y module control X,Y Controller Coordinate generator Transformation matrix Velocity matrix Pulse generator Clock Servo Driver – X +PID control Servo motor - X Encoder 1X Servo Driver – Y + PID control Servo motor - Y Encoder 1Y Encoder 2X Encoder 2Y X position Y position Encoder 2X Encoder 2Y X,Y position Constrains
  • 27. Errors/ Accuracy NeededErrors/ Accuracy Needed ► Deflection error (structural) ► Belt driver errors ► Errors due to resolution of motor driver and encoders ► Controller and programming errors ► Added errors in dynamic motion Needed Accuracy in Positioning X, Y - 1.5mm ( Stitching accuracy in garment Production 1/16” – 1.59mm) ±0.75mm But using guiding mechanism can extend this to 3mm,Then required tolerance is ±1.5mm Z - 1mm (Griper penetration accuracy – 1mm) ±0.5mm Coordinate tracking mode Teaching mode
  • 28. Deflection ErrorsDeflection Errors -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 100 173.4 246.8 320.2 393.6 467 540.4 613.8 687.2 760.6 834 Distance (mm) Deflection(mm) 4.347kg 6.697kg 9.047kg Y - Module Y -Module 0 0.5 1 1.5 2 2.5 3 302 442.3 582.6 722.9 863.2 1003.5 1143.8 1284.1 1424.4 1564.7 Distance (mm) Deflection(mm) 6.93kg 9.193kg 11.693kg X - Module
  • 29. Deflection ErrorDeflection Error 1.61 1.44 1.26 1.09 0.91 0.74 0.56 0.43 0.21 210 270 330 390 450 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60-0.70 0.50-0.60 0.40-0.50 0.30-0.40 0.20-0.30 0.10-0.20 0.00-0.10 ez(mm) e (mm) z (mm) Note – Maximum Y axis error is 0.0012mm , there fore this is not taken in the process θ ez e D dw z ez = z.e /D Assuming θ<<< 1 Deflexion Error in X axis
  • 30. Belt Driver ErrorsBelt Driver Errors ► Belt use in system MXL, 3 mm Pitch ► Belt positioning error given by Stock- Drive Products Canada – 0.002mm ► Pulley slack 0.1mm ► The maximum error 0.1002 mm - and this is not considered in the controller programming Errors - Resolution of Motor, DriverErrors - Resolution of Motor, Driver and Encodersand Encoders ► Pulses per revolution - 1 ~ 10000, setting in motion – 5000, (0 – 3000 rpm) ► Pulley diameter - d - 50mm, ► positioning accuracy - - 0.03mm, ► Encoder out - 2500 ppr ► Electronic gear ratio - 1 ~ 65535/ 1 ~ 65535, setting - 1:2, - 5000 ppr 5000/dπ
  • 31. Precision Control of Depth –Z -MotionPrecision Control of Depth –Z -Motion TURCK Part No – Ni15-M30-LIU Sense – 2 – 12mm 60 Hz OMRON Part No – E2K-X15ME1 2M OMRON Part No – E3X-DA21F-S 250 μs OMRON Part No – E2K-X15ME1 2M Pulse dispose speed at 500 rpm - 41500 pps Pulse generate speed - 24 μs Sensor reading speed - 250 μs Pulse overshoot when sensor reads - 10 Error - 0.03 * 10 – 0.3mm 250 μs New DesignPrevious design Note – Controller and programming errors will be corrected while real model in implementation
  • 32. Added errors in dynamic motionAdded errors in dynamic motion ► Tested actual Z module for position errors Stepper Motor A10k- S545W 1Nm Step -0.36 With 2:1 Pulley Resolution - 1000 Driver MD2U-Md20 Micro step 1,2,4,5,8,10,16 ,20 Used ratio - 5 Encoder E30S4 Res. – 1024 Use 1:5 pulley Resolution 5120 Z module Weight- 3.38 kg Controller Thinget XC3 - 34 Speed – 28000 pps, (required 25000pps) Ramp up/Down – 0.1s
  • 33. ConstrainsConstrains Speed TimeTime slot for operation Motion signals feeds to steppers must be in above pattern Max. Increase of speed from 0 – 300 rpm by 0.1 S Same output given to motion control cannot assigned twice in any manner Material data have to use in grip configuration and Z - motion Height have to maintain not to roll the fabric piece Data identified in deflection analysis have to combine with position data Final positions in power failure or any other disturbance have to store Z - movement would independently handle with sensor data and X-Y point Bearing clearance errors has to be added to coordinate system with direction Use of interpolation method to assign path configuration and speed Z - axis
  • 34. Z - Motion Accuracy ChartZ - Motion Accuracy Chart 10 50 100 150 200 250 300 50 2000 50 100 150 200 250 300 350 300-350 250-300 200-250 150-200 100-150 50-100 0-50 Speed (rpm) Finishedposition(mm) Actual position (mm)Position (mm) Speed (rpm) 50 100 150 200 250 300 10 57 107 157.1 207 257 307 50 57 107 157 207 257.1 307 100 57 107 157 207.3 257 307.2 150 57 107 157.1 207.3 257.3 307.2 200 57.2 107.5 157.3 207.5 257.3 307.2 250 57.7 107.8 158 207.7 257.4 307.5 300 58 108.1 158.1 208 257.4 307.6
  • 35. ConclusionConclusion ► It is needed to employ robots in garment industryIt is needed to employ robots in garment industry ► The cost is a barrierThe cost is a barrier ► The problem of segregating fabric can sorted by new griper and separatorThe problem of segregating fabric can sorted by new griper and separator ► Required accuracy levels can match with available hardwareRequired accuracy levels can match with available hardware ► Separation process have to be fine tuned after model implementationSeparation process have to be fine tuned after model implementation ► Much involvement needed in actual implementation in production linesMuch involvement needed in actual implementation in production lines ► More Researches needed to implement and fine tune griper to Some fabricsMore Researches needed to implement and fine tune griper to Some fabrics (Nit)(Nit) ► Still robot speed is same time of manual labour, need attentionStill robot speed is same time of manual labour, need attention Hope the robot will run in actual production process in nearHope the robot will run in actual production process in near future..future..
  • 36. Thank YouThank You Q&A Session..Q&A Session..