SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
10/17/2012




Casting, Forming & Welding
Casting Forming & Welding
              (ME31007) 


                J u au
                Jinu Paul
    Dept. of Mechanical Engineering




                                             1




   Welding ecture
   Welding Lecture – 11
     11 Oct 2012, Thursday 8.30 am‐9.30 am




      Design of Weld
          joints



                                             2




                                                         1
10/17/2012




 Design of Weld joints




(Refer class notes)




                         3




                         4




                                     2
10/17/2012




                5




Example No: 3




                6




                            3
10/17/2012




     Example No: 4




                                             7




Welding ecture
Welding Lecture ‐ 12
12 October 2012, Friday 11.30 am ‐12.30 pm



   Welding Processes‐
     Other fusion 
     Oh f i
   welding processes

                                             8




                                                         4
10/17/2012




                Thermite mixture




           Metallic fuel + Oxidiser  Energy




               Thermite Reaction


Metal oxide + Aluminum 
Metal + Aluminum oxide + 
Heat




• Bimolecular reactions and reaction rates are controlled by
diffusion times between reactants.
• Thermite mixtures of nano-sized reactants reduce the critical
diffusion length thus increasing the overall reaction rate




                                                                          5
10/17/2012




 Thermite Reaction stages




  (1/2)Fe3O4 + Al  Fe + (1/2)FeAl2O4

  2FeO + Al  (3/2)Fe + (1/2)FeAl2O4

  (1/2)FeAl2O4 + (1/3)Al  (1/2)Fe + (2/3)Al2O3




          Thermite types
       Fuels                       Oxidisers
Aluminium,             Boron(III) oxide,
Magnesium,             Silicon(IV) oxide,
Titanium,              Chromium(III) oxide,
Zinc,                  Manganese(IV) oxide,
Silicon,               Iron(III) oxide,
Boron                  Iron(II,III) oxide,
                       Copper(II) oxide
                                     oxide,
                       Lead(II,III,IV) oxide,




                                                          6
10/17/2012




        Thermite welding (TW)
• Heat for coalescence is produced by
  superheated molten metal from the chemical
  reaction of Thermite
• Example: 2Al + Fe2O3  2Fe + Al2O3 + heat
• Filler metal is obtained from the liquid metal
• More in common with casting than it does with
  welding
• Applications in joining of railroad rails and
  repair of cracks in large steel castings and
  forgings such as ingot moulds, large diameter
  shafts, frames for machinery, and ship
  rudders
                                             13




          Thermit welding (TW)




      Fe2O3 + Al  2Fe + Al2O3 + ~850kJ
                                             14




                                                           7
10/17/2012




 High-Energy-Density Beam Welding
            Processes

• Electron beam and
  Electron-beam
• Laser-beam welding
• Focussed beam of electromagnetic energy
  – IR welding
  – Imaged arc welding
  – Microwave welding


                                       15




Comparison of Conventional and
   E/Laser-Beam Welding




                                       16




                                                    8
10/17/2012




    Electron-beam welding (EBW)
 • Uses kinetic energy of
   dense focused electrons
 • Electrons emitted by
   cathode, accelerated by
   ring shaped anode, focused
   by electromagnetic field
 • High energy density 10
   MW/mm2
 • Heat focus on few
   micrometers
 • Vacuum chamber
                                  17




Electron speed Vs
Accelerating 
voltage




                                  18




                                               9
10/17/2012




E-Beam interaction with work piece




                                 19




  Electron-beam penetration Vs
        operating pressure




                                 20




                                             10
10/17/2012




        EBW or LBW of a butt joint




             Melting
Butt joint                   A key   The keyhole
             occurs at the                           The weld
prior t
  i to                       hole    and it molten
                                       d its   lt
             point of                                forms upon
welding                      forms   envelope
             impingement                             solidification
                                     penetrates
             of the E-beam
                                     workpiece


                                                               21




       Laser-beam welding (LBW)




                                                               22




                                                                             11
10/17/2012




            Laser-beam welding
• Coalescence is achieved by the energy of a highly
  concentrated, coherent light beam focused on the
  joint to be welded
• LBW is normally performed with shielding gases
  (e.g., helium, argon, nitrogen, and carbon dioxide)
  to prevent oxidation
• No vacuum chamber is required, no X-rays are
  emitted
• Laser beams can be focused and directed by optical
  lenses and mirrors.
• LBW does not possess the capability for the deep
  welds and high depth-to-width ratios of EBW
                                                             23




                      Example‐1
A carbon dioxide laser with a power output of 1 kW operates in
the continuous wave mode. (For CO2 laser, wavelength = 10
micron = 0.01 mm). Focal length f and diameter of the lens
used is 100 mm and 8 mm respectively. The diameter of laser
beam is 6 mm.

The laser-beam welding operation will join two pieces of steel
plate together as shown in figure. The plates are 25 mm thick.
The unit melting energy is 10 J/mm3. The heat transfer factor is
0.70 and the melting factor is 0.55. Find the velocity of the
laser beam movement if the beam penetrates the full thickness
of the plates?




                                                                          12
10/17/2012




                    Laser beam‐ Depth of 
                    penetration




                                                                           25




                   Focussed IR welding




• Infrared radiation from the sun or an artificial light source can be used
• Radiation is focused into an intense, high-density spot directed onto the work




                                                                                          13
10/17/2012




                 Imaging arc welding




• High energy density due to focussing
• Advantage is freedom from the electromotive Lorentz forces
associated with conventional arc welding




    Comparison of Electron‐Beam and Laser‐
               Beam Welding 
                 EBW                                         LBW

1.
1 Deep penetration in all materials       1.
                                          1 Deep penetration in many materials but
                                                                           materials,
                                          not in metals that reflect laser light/or of
                                          specific wavelengths
2. Very narrow welds                      2. Can be narrow (in keyhole mode)
3. High energy density/low linear         3. Same
4. Best in vacuum, to permit electrons 4. Can operate in air, inert gas, or vacuum
5. Usually requires tight-fitting joints  5. Same
6. Difficult to add filler for deep welds 6. Same
                                  p
7. Equipment is expensive                 7. Same
8. Very efficient electrically (99%)      8. Very inefficient electrically (- 12%)
9. Generates x-ray radiation              9. No x-rays generated



                                                                                  28




                                                                                                14
10/17/2012




           Welding ecture 3
           Welding Lecture ‐ 13
               17 October 2012 9.30 am ‐10.30 am




               Solid state welding 
                    processes



                                                     29




    Solid state/Nonfusion welding
• Accomplish welding by bringing the atoms (or ions or 
  molecules) to equilibrium spacing  through plastic
  molecules) to equilibrium spacing through plastic 
  deformation  application of pressure at 
  temperatures below the melting point of the base 
  material 
• Without the addition of any filler
• Chemical bonds are formed and a weld is produced 
  as a direct result of the continuity obtained, 
       di         l f h         i i     b i d
  always with the added assistance of solid‐state 
  diffusion

                                                     30




                                                                 15
10/17/2012




    Solid state/Nonfusion welding
1. Pressure Welding  By pressure and gross 
   deformation
2. Friction welding  By friction and 
   microscopic deformation
3. Diffusion welding  By diffusion, without or 
   with some deformation
4. Deposition welding  Solid‐state deposition 
   welding


                                                          31




     Pressure WeldingCold welding




• Pressure is used at room temperature to produce 
  coalescence of metals with substantial plastic 
     l          f    t l ith b t ti l l ti
  deformation  No heat
• The faying surfaces must be exceptionally clean
• Cleaning is usually done by degreasing and wire brushing 
  immediately before joining 
                                                          32




                                                                      16
10/17/2012




    Pressure Welding Cold welding
• At least one of the metals to be joined must be highly 
  ductile and not exhibit extreme work hardening
          and not exhibit extreme work hardening
• FCC metals and alloys are best suited for CW. Example‐ Al, 
  Cu, and Pb
• To a lesser degree, Ni and soft alloys of these metals such 
  as brasses, bronzes, babbitt metals (Sn, Cu, Sb, Pb), and 
  pewter (Sn, Cu, Sb, Bi)
  pewter (Sn Cu Sb Bi)
• Precious metals, Au, Ag, Pd, and Pt, are also ideally suited 
  to cold welding, as they are face‐centered cubic (soft) 
  and are almost free of oxides
                                                           33




      Pressure Welding  Cold welding
• Ideal for joining of dissimilar metals  no 
  intermixing of the base metals is required 
• Allows inherent chemical incompatibilities that 
  make fusion welding difficult to be overcome
• E.g.  Cold welding of relatively pure Al to 
  relatively pure Cu  Electrical connections
• Formation of brittle intermetallics (e.g., AI,Cu) 
  either during postweld heat treatment or in 
  service, (resistance heating in the electrical 
  connector)
                                                           34




                                                                         17
10/17/2012




      Micro‐patterning of Organic Electronic 
            Devices by Cold‐Welding




 Calculated normal stress at the interface
 (yy) normalized to the applied pressure (P)
 as a function of distance (x) normalized to
 the stamp half-width (a)
                                                         Figure 1           35




        Micro‐patterning of Organic Electronic 
              Devices by Cold‐Welding
• A prepatterned, metal‐coated stamp composed of a rigid material (Si) is 
  pressed onto an unpatterned film consisting of the organic device layers 
  coated with the same metal contact layer as that used to coat the stamp. 
  coated with the same metal contact layer as that used to coat the stamp.
• Organic layer thickness ~ 100 nm, same thickness for the metal cathode
• When a sufficiently high pressure is applied, an intimate metallic junction is 
  formed between the metal layers on the stamp and the film, leading to a 
  cold‐welded bond (Fig 1, top). 
• To induce selective lift‐off, additional pressure is applied to weaken the 
  metal film at the edge of the stamp (Fig. 1 , middle).
• This additional pressure leads to substrate deformation, which is expected to 
  enhance the local weakening of the metal film. 
• When the stamp and film are separated, the metal cathode breaks sharply, 
  forming a well‐defined patterned electrode (Fig. 1, bottom).

                                                                            36




                                                                                           18
10/17/2012




                  Fabrication of OLEDs




(A) Optical micrograph of an array of 230-mm-diameter Mg-Ag alloy
contacts patterned by cold-welding followed by cathode lift-off. (B) Scanning
electron micrograph (SEM) of the edge of a 12-mm-wide stripe showing a
clearly defined nearly featureless layer pattern.
                                                                          37




 Cold welding of ultrathin gold nanowires




  Singlecrystalline gold nanowires with diameters between 3 and 10 nm
  can be cold-welded together within seconds by mechanical contact alone
                                                                          38




                                                                                       19
10/17/2012




  Head‐to‐head welding of two Au‐ nano rods
a,b, One nanorod (right)
is caused to approach
another (left) until their
front surfaces come into
contact.
contact
c–e, The welding
process is completed
within 1.5 s (c,d)
followed by structure
relaxation (d,e).
f–i, After withdrawal of
the STM probe (f–i), the
as-welded nanowire is
left in the free-standing
state




   (Triangles indicate the front edges of the two nanorods. Arrows indicate the
                                                                                  39
   withdrawing direction of the STM probe. Scale bars, 5 nm)




          Pressure WeldingHot Pressure 
                     Welding
                               HEAT      +    PRESSURE



                                               Vacuum or shielding



                             MACROSCOPIC DEFORMATION




Examples:
                                      COALESCENCE
1) Pressure gas welding
2) Forge welding




                                                                                              20
10/17/2012




Pressure Welding Forge welding (FOW)
• Earliest form of welding 
  still used today by 
  blacksmiths
• Produces the weld by heating 
  work pieces to hot working 
  temperatures and applying 
  blows sufficient to cause 
  deformation at the faying 
  deformation at the faying
  surfaces
• Low‐carbon steels (most 
  commonly forge‐welded 
  metal), high‐carbon steel
                                       41




     Pressure Welding Forge welding


  Schematic of
  typical joint
  designs for (a)
  manual and (b)
  automated forge
  welding
     ldi




                                       42




                                                   21
10/17/2012




       Pressure WeldingRoll Welding




• Pressure applied by rollers  Performed hot or cold
               li d b    ll         f     dh          ld
• Applications  cladding stainless steel to mild or low alloy steel 
  for corrosion resistance
• Making bimetallic strips
• Producing ‘‘sandwich’’ coins for the U.S. mint
                                                                 43




   Pressure WeldingExplosion welding




• Coalescence of two metallic surfaces is caused by the 
  energy of a detonated explosive
  energy of a detonated explosive
• Commonly used to bond two dissimilar metals
• E.g.  To clad one metal on top of a base metal over 
  large areas
                                                                 44




                                                                               22
10/17/2012




  Pressure WeldingExplosion welding: 
              Applications
• Applications include production of corrosion‐
  resistant sheet and making processing equipment 
      it t h t d         ki          i       i     t
  in the chemical and petroleum industries
• E.g. Commercially pure titanium clad to mild steel
• Often performed under water to enhance the 
  shock wave to move and deform material
  shock wave to move and deform material



                                                 45




Compatible 
materials for 
Explosion 
welding




                                                 46




                                                              23
10/17/2012




            2.1 Friction welding (FRW)

• Solid state welding  Coalescence is achieved by 
  frictional heat combined with pressure
  frictional heat combined with pressure
• Friction is induced by mechanical rubbing 
  between two surfaces  usually by rotation of 
  one part relative to the other  raises the 
  temperature at the joint interface to the hot 
  working range  Parts are driven toward each
  working range  Parts are driven toward each 
  other with sufficient force to form a metallurgical 
  bond

                                                              47




         2.1 Friction welding (FRW)

Mechanical Rubbing                  FRICTION HEAT

                                            +        MICROSCOPIC
                                                     DEFORMATION
                                      PRESSURE




    No melting occurs at the faying surfaces        COALESCENCE
    No filler metal, flux, or shielding gases




                                                                          24
10/17/2012




    2.1 Friction welding (FRW)




                                     49




Drive parameter characteristics in FRW




                                     50




                                                 25
10/17/2012




2.2 Friction stir welding (FSW),




                                   51




           FSW Tool




                                               26
10/17/2012




     2.2 Friction stir welding (FSW),
• A rotating tool is fed along the joint 
                            p
  line between two work pieces 
  Generates friction heat 
• Mechanically stirring of the metal to 
  form the weld seam
• The process derives its name from 
  this stirring or mixing action
• FSW is distinguished from
  FSW is distinguished from 
  conventional FRW   Friction heat is 
  generated by a separate wear‐
  resistant tool rather than by the 
  parts themselves
                                            53




     2.2 Friction stir welding (FSW),
• The rotating tool is stepped, 
  consisting of a cylindrical shoulder
  consisting of a cylindrical shoulder
  and a smaller probe projecting 
  beneath it
• The probe has a geometry 
  designed to facilitate the mixing 
  action
• Th h ld
  The shoulder serves to constrain 
                                  i
  the plasticized metal flowing 
  around the probe

                                            54




                                                        27
10/17/2012




      2.2 Friction stir welding (FSW),
• During welding, the shoulder rubs 
  against the top surfaces of the two 
  parts, developing much of the friction 
  heat
• While the probe generates additional 
  heat by mechanically mixing the metal 
  along the butt surfaces
• The heat produced by the combination 
  of friction and mixing does not melt the 
  metal but softens it to a highly plastic 
  condition
                                              55




            Heat generated in FSW



                 (Refer Class notes)




                                                          28
10/17/2012




       2.2 Friction stir welding (FSW),
• Typical applications  butt joints on large aluminium parts
• Other metals, include steel, copper, and titanium, as well as 
  polymers and composites
    l          d        i
• Advantages of FSW
     – Good mechanical properties of the weld joint,
     – Avoidance of toxic fumes, warping, shielding issues, and other 
       problems associated with arc welding,
     – Little distortion or shrinkage
     – Good weld appearance
• Disadvantages include 
     – An exit hole is produced when the tool is withdrawn from the work, 
       and 
     – Heavy‐duty clamping of the parts is required

                                                                           57




      Key benefits of friction stir welding
  Metallurgical benefits         Environmental            Energy benefits
                                   benefits
1. Solid phase process        1. No shielding gas      1. Improved materials
2. Low di t ti of work
2 L     distortion f      k      required                 use (e g joining
                                                               (e.g.,
   piece                      2. No surface cleaning      different thickness)
3. Good dimensional              required                 allows reduction in
   stability and              3. Eliminate grinding       weight
   repeatability                 wastes                2. Only 2.5% of the
4. No loss of alloying        4. Eliminate solvents       energy needed for a
   elements                      required for             laser weld
5.
5 Excellent metallurgical        degreasing            3. Decreased fuel
   properties in the joint    5. Consumable               consumption in light
   area                          materials saving,        weight aircraft,
                                 such as rugs, wire       automotive and ship
6. Fine microstructure                                    applications
7. Absence of cracking           or any other gases
8. Replace multiple parts
   joined by fasteners




                                                                                        29
10/17/2012




    2.3 Ultrasonic welding (USW)




                                               59




    2.3 Ultrasonic welding (USW)
• Two components are held together under 
  modest clamping force
      d t l      i f
• Oscillatory shear stresses of ultrasonic 
  frequency are applied to the interface to 
  cause coalescence
• Oscillatory motion between the two parts
  Oscillatory motion between the two parts 
  breaks down any surface films  allows 
  intimate contact and strong metallurgical 
  bonding between the surfaces
                                               60




                                                           30
10/17/2012




       2.3 Ultrasonic welding (USW)
• Although heating of the contacting surfaces occurs due to 
  interfacial rubbing and plastic deformation, the resulting 
  temperatures are well below the melting point
  temperatures are well below the melting point
• No filler metals, fluxes, or shielding gases are required in 
  USW.
• The oscillatory motion is transmitted to the upper work 
  part by means of a sonotrode, which is coupled to an 
  ultrasonic transducer.  This device converts electrical power 
  ultrasonic transducer. This device converts electrical power
  into high‐frequency vibratory motion. Typical frequencies 
  used in USW are 15 to 75 kHz, with amplitudes of 0.018 to 
  0.13mm 

                                                              61




       2.3 Ultrasonic welding (USW)
• Clamping pressures are well below those used in 
  cold welding and produce no significant plastic 
    ld ldi        d    d        i ifi t l ti
  deformation between the surfaces.
• Welding times under these conditions are less 
  than 1 sec.
• USW operations are generally limited to lap joints
  USW operations are generally limited to lap joints 
  on soft materials such as aluminum and copper.


                                                              62




                                                                          31
10/17/2012




        3. Diffusion welding (DFW)
• Welding process results from the application of heat and 
  p
  pressure, usually in a controlled atmosphere, with 
                   y                      p
  sufficient time allowed for diffusion and coalescence to 
  occur
• Temperatures are well below the melting points of the 
  metals (about 0.5 Tm)
• Plastic deformation at the surfaces is minimal
• The primary mechanism of coalescence is solid state 
  diffusion, which involves migration of atoms across the 
  interface between contacting surfaces 
                                                       63




        3. Diffusion welding (DFW)




                                                       64




                                                                     32
10/17/2012




            3. Diffusion welding (DFW)
• Applications of DFW include the joining of high‐strength 
  and refractory metals in the aerospace and nuclear 
  industries. 
  industries
• The process is used to join both similar and dissimilar 
  metals, and in the latter case a filler layer of a different 
  metal is often sandwiched between the two base metals 
  to promote diffusion.
• The time for diffusion to occur between the faying
  The time for diffusion to occur between the faying 
  surfaces can be significant, requiring more than an hour
  in some applications
• Key parameters of the process‐ temperature, time, and 
  pressure                                                    65




            3. Diffusion welding (DFW)
• Diffusion occurs by an Arrhenius relationship, that is, exponentially 
  with temperature: 

• Where, 
   – D is diffusion coefficient (of the diffusing species) at temperature T, 
   – Do is a constant of proportionality (dependent on the particular diffusing species and 
     host), 
   – Q is the activation energy for diffusion to occur, 
   – k is Boltzmann’s constant, and 
   – T is the temperature on an absolute scale
     T is the temperature on an absolute scale
• In general, diffusion welding begins to take place at a reasonable 
  rate when the temperature exceeds half the absolute melting point 
  of the base or host material(s), and, as a rule‐of‐thumb, the rate of 
  diffusion doubles every time the temperature is raised 
  approximately 30°C                                                66




                                                                                                      33
10/17/2012




         3. Diffusion welding (DFW)
 • Time is important because diffusion takes time to 
   occur, since for atoms to jump from site to site takes 
   occur, since for atoms to jump from site to site takes
   time. Thus, the distance over which diffusion occurs 
   depends on time:

 • Where 
     – x is the diffusion distance
       x is the diffusion distance, 
     – D is the diffusion coefficient (as above), 
     – t is time, and C is a constant for the system.


                                                                 67




        3. Diffusion welding (DFW)‐
                  Features
1. Metals as well as ceramics can be joined directly to form a 
   completely solid state weld
2. Filler can be used to permit increased micro deformation to 
     ll       b                                      f
   provide more contact for bond formation and/or promote more 
   rapid diffusion by providing a faster diffusing species
3. Dissimilar materials either by class or type, including metal‐to‐
   ceramic joints, can be joined directly or with the aid of a 
   compatible filler or intermediate
4. Large areas can be bonded or welded, provided uniform 
   intimate contact can be obtained and sustained
5. No heat‐affected zone as such, since the entire assembly in 
   which the diffusion weld is being made is virtually always heated 
   to the same temperature.
                                                                 68




                                                                               34

Weitere ähnliche Inhalte

Was ist angesagt?

Welding for engineers chapter 1
Welding for engineers   chapter 1Welding for engineers   chapter 1
Welding for engineers chapter 1hakimm
 
ADVANCE WELDING TECHNOLOGY
ADVANCE WELDING TECHNOLOGY ADVANCE WELDING TECHNOLOGY
ADVANCE WELDING TECHNOLOGY Ravi Vishwakarma
 
Welding of copper alloys
Welding of copper alloysWelding of copper alloys
Welding of copper alloysJMB
 
Fundamentals of Manual Metal Arc (MMA) Welding
Fundamentals of Manual Metal Arc (MMA) WeldingFundamentals of Manual Metal Arc (MMA) Welding
Fundamentals of Manual Metal Arc (MMA) WeldingThomas Riggleman
 
Welding of non ferrous alloys
Welding of non ferrous alloysWelding of non ferrous alloys
Welding of non ferrous alloysStephen Raj D
 
Types of welding
Types of weldingTypes of welding
Types of weldingBilalwahla
 
ADVANCED WELDING PROCESS
ADVANCED WELDING PROCESS ADVANCED WELDING PROCESS
ADVANCED WELDING PROCESS HOME
 
Advanced Welding Technology
Advanced Welding TechnologyAdvanced Welding Technology
Advanced Welding Technologyabhibhavesh
 
Sample questions and answers for iwp examinations
Sample questions and answers for iwp examinationsSample questions and answers for iwp examinations
Sample questions and answers for iwp examinationsMalai Kavya
 
Copper-nickel Welding
Copper-nickel WeldingCopper-nickel Welding
Copper-nickel WeldingNelson Loi
 

Was ist angesagt? (16)

Welding for engineers chapter 1
Welding for engineers   chapter 1Welding for engineers   chapter 1
Welding for engineers chapter 1
 
Welding electrode
Welding electrodeWelding electrode
Welding electrode
 
ADVANCE WELDING TECHNOLOGY
ADVANCE WELDING TECHNOLOGY ADVANCE WELDING TECHNOLOGY
ADVANCE WELDING TECHNOLOGY
 
Welding of copper alloys
Welding of copper alloysWelding of copper alloys
Welding of copper alloys
 
Fundamentals of Manual Metal Arc (MMA) Welding
Fundamentals of Manual Metal Arc (MMA) WeldingFundamentals of Manual Metal Arc (MMA) Welding
Fundamentals of Manual Metal Arc (MMA) Welding
 
Welding of non ferrous alloys
Welding of non ferrous alloysWelding of non ferrous alloys
Welding of non ferrous alloys
 
Welding points
Welding pointsWelding points
Welding points
 
Welding lectures 9 10
Welding lectures 9 10Welding lectures 9 10
Welding lectures 9 10
 
Types of welding
Types of weldingTypes of welding
Types of welding
 
ADVANCED WELDING PROCESS
ADVANCED WELDING PROCESS ADVANCED WELDING PROCESS
ADVANCED WELDING PROCESS
 
Advanced Welding Technology
Advanced Welding TechnologyAdvanced Welding Technology
Advanced Welding Technology
 
Sample questions and answers for iwp examinations
Sample questions and answers for iwp examinationsSample questions and answers for iwp examinations
Sample questions and answers for iwp examinations
 
Copper-nickel Welding
Copper-nickel WeldingCopper-nickel Welding
Copper-nickel Welding
 
Iws q&a rev 1
Iws q&a rev 1Iws q&a rev 1
Iws q&a rev 1
 
Welding iv
Welding   ivWelding   iv
Welding iv
 
1.1 welding
1.1 welding1.1 welding
1.1 welding
 

Ähnlich wie Welding lectures 11 13

Welding lectures 11 13
Welding lectures 11 13Welding lectures 11 13
Welding lectures 11 13Suraj Aggarwal
 
Metallization
Metallization Metallization
Metallization GKGanesh2
 
Edm drilling of non conducting materials in deionised water
Edm drilling of non conducting materials in deionised waterEdm drilling of non conducting materials in deionised water
Edm drilling of non conducting materials in deionised waterVaralakshmi Kothuru
 
Studies on the effects of oxidation and its repression in mag welding process
Studies on the effects of oxidation and its repression in mag welding processStudies on the effects of oxidation and its repression in mag welding process
Studies on the effects of oxidation and its repression in mag welding processiaemedu
 
Studies on the effects of oxidation and its repression in mag welding process...
Studies on the effects of oxidation and its repression in mag welding process...Studies on the effects of oxidation and its repression in mag welding process...
Studies on the effects of oxidation and its repression in mag welding process...iaemedu
 
Corrosion and Degradation of Materials-chapter 16
Corrosion and Degradation of Materials-chapter 16Corrosion and Degradation of Materials-chapter 16
Corrosion and Degradation of Materials-chapter 16ssuser2fec01
 
Advanced welding ppt by Shivank
Advanced welding ppt by ShivankAdvanced welding ppt by Shivank
Advanced welding ppt by Shivankshivank Kumar
 
Introduction_to_Electroforming
Introduction_to_ElectroformingIntroduction_to_Electroforming
Introduction_to_ElectroformingKathleen Stillman
 
MP_AMEB05_PPT_26th August-2020.ppt
MP_AMEB05_PPT_26th August-2020.pptMP_AMEB05_PPT_26th August-2020.ppt
MP_AMEB05_PPT_26th August-2020.pptPraveen Kumar
 
Electro Slag Strip Cladding Process
Electro Slag Strip Cladding ProcessElectro Slag Strip Cladding Process
Electro Slag Strip Cladding ProcessIJMER
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumCORE-Materials
 
Yared welding technology[1]
Yared welding technology[1]Yared welding technology[1]
Yared welding technology[1]MuketAgmas
 
Yared welding technology[1]
Yared welding technology[1]Yared welding technology[1]
Yared welding technology[1]MuketAgmas
 

Ähnlich wie Welding lectures 11 13 (20)

Welding lectures 11 13
Welding lectures 11 13Welding lectures 11 13
Welding lectures 11 13
 
Metallization
Metallization Metallization
Metallization
 
Electron Beam Welding
Electron Beam WeldingElectron Beam Welding
Electron Beam Welding
 
Laser Beam Welding
Laser Beam WeldingLaser Beam Welding
Laser Beam Welding
 
group 7
group 7group 7
group 7
 
Electron Beam Welding
Electron Beam WeldingElectron Beam Welding
Electron Beam Welding
 
Edm drilling of non conducting materials in deionised water
Edm drilling of non conducting materials in deionised waterEdm drilling of non conducting materials in deionised water
Edm drilling of non conducting materials in deionised water
 
Studies on the effects of oxidation and its repression in mag welding process
Studies on the effects of oxidation and its repression in mag welding processStudies on the effects of oxidation and its repression in mag welding process
Studies on the effects of oxidation and its repression in mag welding process
 
Studies on the effects of oxidation and its repression in mag welding process...
Studies on the effects of oxidation and its repression in mag welding process...Studies on the effects of oxidation and its repression in mag welding process...
Studies on the effects of oxidation and its repression in mag welding process...
 
Corrosion and Degradation of Materials-chapter 16
Corrosion and Degradation of Materials-chapter 16Corrosion and Degradation of Materials-chapter 16
Corrosion and Degradation of Materials-chapter 16
 
Welding lectures 7 8
Welding lectures 7 8Welding lectures 7 8
Welding lectures 7 8
 
Advanced welding ppt by Shivank
Advanced welding ppt by ShivankAdvanced welding ppt by Shivank
Advanced welding ppt by Shivank
 
Introduction_to_Electroforming
Introduction_to_ElectroformingIntroduction_to_Electroforming
Introduction_to_Electroforming
 
MP_AMEB05_PPT_26th August-2020.ppt
MP_AMEB05_PPT_26th August-2020.pptMP_AMEB05_PPT_26th August-2020.ppt
MP_AMEB05_PPT_26th August-2020.ppt
 
Interconnects.pptx
Interconnects.pptxInterconnects.pptx
Interconnects.pptx
 
Electro Slag Strip Cladding Process
Electro Slag Strip Cladding ProcessElectro Slag Strip Cladding Process
Electro Slag Strip Cladding Process
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on Aluminium
 
Welding
Welding Welding
Welding
 
Yared welding technology[1]
Yared welding technology[1]Yared welding technology[1]
Yared welding technology[1]
 
Yared welding technology[1]
Yared welding technology[1]Yared welding technology[1]
Yared welding technology[1]
 

Welding lectures 11 13

  • 1. 10/17/2012 Casting, Forming & Welding Casting Forming & Welding (ME31007)  J u au Jinu Paul Dept. of Mechanical Engineering 1 Welding ecture Welding Lecture – 11 11 Oct 2012, Thursday 8.30 am‐9.30 am Design of Weld joints 2 1
  • 2. 10/17/2012 Design of Weld joints (Refer class notes) 3 4 2
  • 3. 10/17/2012 5 Example No: 3 6 3
  • 4. 10/17/2012 Example No: 4 7 Welding ecture Welding Lecture ‐ 12 12 October 2012, Friday 11.30 am ‐12.30 pm Welding Processes‐ Other fusion  Oh f i welding processes 8 4
  • 5. 10/17/2012 Thermite mixture Metallic fuel + Oxidiser  Energy Thermite Reaction Metal oxide + Aluminum  Metal + Aluminum oxide +  Heat • Bimolecular reactions and reaction rates are controlled by diffusion times between reactants. • Thermite mixtures of nano-sized reactants reduce the critical diffusion length thus increasing the overall reaction rate 5
  • 6. 10/17/2012 Thermite Reaction stages (1/2)Fe3O4 + Al  Fe + (1/2)FeAl2O4 2FeO + Al  (3/2)Fe + (1/2)FeAl2O4 (1/2)FeAl2O4 + (1/3)Al  (1/2)Fe + (2/3)Al2O3 Thermite types Fuels Oxidisers Aluminium, Boron(III) oxide, Magnesium, Silicon(IV) oxide, Titanium, Chromium(III) oxide, Zinc, Manganese(IV) oxide, Silicon, Iron(III) oxide, Boron Iron(II,III) oxide, Copper(II) oxide oxide, Lead(II,III,IV) oxide, 6
  • 7. 10/17/2012 Thermite welding (TW) • Heat for coalescence is produced by superheated molten metal from the chemical reaction of Thermite • Example: 2Al + Fe2O3  2Fe + Al2O3 + heat • Filler metal is obtained from the liquid metal • More in common with casting than it does with welding • Applications in joining of railroad rails and repair of cracks in large steel castings and forgings such as ingot moulds, large diameter shafts, frames for machinery, and ship rudders 13 Thermit welding (TW) Fe2O3 + Al  2Fe + Al2O3 + ~850kJ 14 7
  • 8. 10/17/2012 High-Energy-Density Beam Welding Processes • Electron beam and Electron-beam • Laser-beam welding • Focussed beam of electromagnetic energy – IR welding – Imaged arc welding – Microwave welding 15 Comparison of Conventional and E/Laser-Beam Welding 16 8
  • 9. 10/17/2012 Electron-beam welding (EBW) • Uses kinetic energy of dense focused electrons • Electrons emitted by cathode, accelerated by ring shaped anode, focused by electromagnetic field • High energy density 10 MW/mm2 • Heat focus on few micrometers • Vacuum chamber 17 Electron speed Vs Accelerating  voltage 18 9
  • 10. 10/17/2012 E-Beam interaction with work piece 19 Electron-beam penetration Vs operating pressure 20 10
  • 11. 10/17/2012 EBW or LBW of a butt joint Melting Butt joint A key The keyhole occurs at the The weld prior t i to hole and it molten d its lt point of forms upon welding forms envelope impingement solidification penetrates of the E-beam workpiece 21 Laser-beam welding (LBW) 22 11
  • 12. 10/17/2012 Laser-beam welding • Coalescence is achieved by the energy of a highly concentrated, coherent light beam focused on the joint to be welded • LBW is normally performed with shielding gases (e.g., helium, argon, nitrogen, and carbon dioxide) to prevent oxidation • No vacuum chamber is required, no X-rays are emitted • Laser beams can be focused and directed by optical lenses and mirrors. • LBW does not possess the capability for the deep welds and high depth-to-width ratios of EBW 23 Example‐1 A carbon dioxide laser with a power output of 1 kW operates in the continuous wave mode. (For CO2 laser, wavelength = 10 micron = 0.01 mm). Focal length f and diameter of the lens used is 100 mm and 8 mm respectively. The diameter of laser beam is 6 mm. The laser-beam welding operation will join two pieces of steel plate together as shown in figure. The plates are 25 mm thick. The unit melting energy is 10 J/mm3. The heat transfer factor is 0.70 and the melting factor is 0.55. Find the velocity of the laser beam movement if the beam penetrates the full thickness of the plates? 12
  • 13. 10/17/2012 Laser beam‐ Depth of  penetration 25 Focussed IR welding • Infrared radiation from the sun or an artificial light source can be used • Radiation is focused into an intense, high-density spot directed onto the work 13
  • 14. 10/17/2012 Imaging arc welding • High energy density due to focussing • Advantage is freedom from the electromotive Lorentz forces associated with conventional arc welding Comparison of Electron‐Beam and Laser‐ Beam Welding  EBW LBW 1. 1 Deep penetration in all materials 1. 1 Deep penetration in many materials but materials, not in metals that reflect laser light/or of specific wavelengths 2. Very narrow welds 2. Can be narrow (in keyhole mode) 3. High energy density/low linear 3. Same 4. Best in vacuum, to permit electrons 4. Can operate in air, inert gas, or vacuum 5. Usually requires tight-fitting joints 5. Same 6. Difficult to add filler for deep welds 6. Same p 7. Equipment is expensive 7. Same 8. Very efficient electrically (99%) 8. Very inefficient electrically (- 12%) 9. Generates x-ray radiation 9. No x-rays generated 28 14
  • 15. 10/17/2012 Welding ecture 3 Welding Lecture ‐ 13 17 October 2012 9.30 am ‐10.30 am Solid state welding  processes 29 Solid state/Nonfusion welding • Accomplish welding by bringing the atoms (or ions or  molecules) to equilibrium spacing  through plastic molecules) to equilibrium spacing through plastic  deformation  application of pressure at  temperatures below the melting point of the base  material  • Without the addition of any filler • Chemical bonds are formed and a weld is produced  as a direct result of the continuity obtained,  di l f h i i b i d always with the added assistance of solid‐state  diffusion 30 15
  • 16. 10/17/2012 Solid state/Nonfusion welding 1. Pressure Welding  By pressure and gross  deformation 2. Friction welding  By friction and  microscopic deformation 3. Diffusion welding  By diffusion, without or  with some deformation 4. Deposition welding  Solid‐state deposition  welding 31 Pressure WeldingCold welding • Pressure is used at room temperature to produce  coalescence of metals with substantial plastic  l f t l ith b t ti l l ti deformation  No heat • The faying surfaces must be exceptionally clean • Cleaning is usually done by degreasing and wire brushing  immediately before joining  32 16
  • 17. 10/17/2012 Pressure Welding Cold welding • At least one of the metals to be joined must be highly  ductile and not exhibit extreme work hardening and not exhibit extreme work hardening • FCC metals and alloys are best suited for CW. Example‐ Al,  Cu, and Pb • To a lesser degree, Ni and soft alloys of these metals such  as brasses, bronzes, babbitt metals (Sn, Cu, Sb, Pb), and  pewter (Sn, Cu, Sb, Bi) pewter (Sn Cu Sb Bi) • Precious metals, Au, Ag, Pd, and Pt, are also ideally suited  to cold welding, as they are face‐centered cubic (soft)  and are almost free of oxides 33 Pressure Welding  Cold welding • Ideal for joining of dissimilar metals  no  intermixing of the base metals is required  • Allows inherent chemical incompatibilities that  make fusion welding difficult to be overcome • E.g.  Cold welding of relatively pure Al to  relatively pure Cu  Electrical connections • Formation of brittle intermetallics (e.g., AI,Cu)  either during postweld heat treatment or in  service, (resistance heating in the electrical  connector) 34 17
  • 18. 10/17/2012 Micro‐patterning of Organic Electronic  Devices by Cold‐Welding Calculated normal stress at the interface (yy) normalized to the applied pressure (P) as a function of distance (x) normalized to the stamp half-width (a) Figure 1 35 Micro‐patterning of Organic Electronic  Devices by Cold‐Welding • A prepatterned, metal‐coated stamp composed of a rigid material (Si) is  pressed onto an unpatterned film consisting of the organic device layers  coated with the same metal contact layer as that used to coat the stamp.  coated with the same metal contact layer as that used to coat the stamp. • Organic layer thickness ~ 100 nm, same thickness for the metal cathode • When a sufficiently high pressure is applied, an intimate metallic junction is  formed between the metal layers on the stamp and the film, leading to a  cold‐welded bond (Fig 1, top).  • To induce selective lift‐off, additional pressure is applied to weaken the  metal film at the edge of the stamp (Fig. 1 , middle). • This additional pressure leads to substrate deformation, which is expected to  enhance the local weakening of the metal film.  • When the stamp and film are separated, the metal cathode breaks sharply,  forming a well‐defined patterned electrode (Fig. 1, bottom). 36 18
  • 19. 10/17/2012 Fabrication of OLEDs (A) Optical micrograph of an array of 230-mm-diameter Mg-Ag alloy contacts patterned by cold-welding followed by cathode lift-off. (B) Scanning electron micrograph (SEM) of the edge of a 12-mm-wide stripe showing a clearly defined nearly featureless layer pattern. 37 Cold welding of ultrathin gold nanowires Singlecrystalline gold nanowires with diameters between 3 and 10 nm can be cold-welded together within seconds by mechanical contact alone 38 19
  • 20. 10/17/2012 Head‐to‐head welding of two Au‐ nano rods a,b, One nanorod (right) is caused to approach another (left) until their front surfaces come into contact. contact c–e, The welding process is completed within 1.5 s (c,d) followed by structure relaxation (d,e). f–i, After withdrawal of the STM probe (f–i), the as-welded nanowire is left in the free-standing state (Triangles indicate the front edges of the two nanorods. Arrows indicate the 39 withdrawing direction of the STM probe. Scale bars, 5 nm) Pressure WeldingHot Pressure  Welding HEAT + PRESSURE Vacuum or shielding MACROSCOPIC DEFORMATION Examples: COALESCENCE 1) Pressure gas welding 2) Forge welding 20
  • 21. 10/17/2012 Pressure Welding Forge welding (FOW) • Earliest form of welding  still used today by  blacksmiths • Produces the weld by heating  work pieces to hot working  temperatures and applying  blows sufficient to cause  deformation at the faying  deformation at the faying surfaces • Low‐carbon steels (most  commonly forge‐welded  metal), high‐carbon steel 41 Pressure Welding Forge welding Schematic of typical joint designs for (a) manual and (b) automated forge welding ldi 42 21
  • 22. 10/17/2012 Pressure WeldingRoll Welding • Pressure applied by rollers  Performed hot or cold li d b ll f dh ld • Applications  cladding stainless steel to mild or low alloy steel  for corrosion resistance • Making bimetallic strips • Producing ‘‘sandwich’’ coins for the U.S. mint 43 Pressure WeldingExplosion welding • Coalescence of two metallic surfaces is caused by the  energy of a detonated explosive energy of a detonated explosive • Commonly used to bond two dissimilar metals • E.g.  To clad one metal on top of a base metal over  large areas 44 22
  • 23. 10/17/2012 Pressure WeldingExplosion welding:  Applications • Applications include production of corrosion‐ resistant sheet and making processing equipment  it t h t d ki i i t in the chemical and petroleum industries • E.g. Commercially pure titanium clad to mild steel • Often performed under water to enhance the  shock wave to move and deform material shock wave to move and deform material 45 Compatible  materials for  Explosion  welding 46 23
  • 24. 10/17/2012 2.1 Friction welding (FRW) • Solid state welding  Coalescence is achieved by  frictional heat combined with pressure frictional heat combined with pressure • Friction is induced by mechanical rubbing  between two surfaces  usually by rotation of  one part relative to the other  raises the  temperature at the joint interface to the hot  working range  Parts are driven toward each working range  Parts are driven toward each  other with sufficient force to form a metallurgical  bond 47 2.1 Friction welding (FRW) Mechanical Rubbing FRICTION HEAT + MICROSCOPIC DEFORMATION PRESSURE No melting occurs at the faying surfaces COALESCENCE No filler metal, flux, or shielding gases 24
  • 25. 10/17/2012 2.1 Friction welding (FRW) 49 Drive parameter characteristics in FRW 50 25
  • 27. 10/17/2012 2.2 Friction stir welding (FSW), • A rotating tool is fed along the joint  p line between two work pieces  Generates friction heat  • Mechanically stirring of the metal to  form the weld seam • The process derives its name from  this stirring or mixing action • FSW is distinguished from FSW is distinguished from  conventional FRW   Friction heat is  generated by a separate wear‐ resistant tool rather than by the  parts themselves 53 2.2 Friction stir welding (FSW), • The rotating tool is stepped,  consisting of a cylindrical shoulder consisting of a cylindrical shoulder and a smaller probe projecting  beneath it • The probe has a geometry  designed to facilitate the mixing  action • Th h ld The shoulder serves to constrain  i the plasticized metal flowing  around the probe 54 27
  • 28. 10/17/2012 2.2 Friction stir welding (FSW), • During welding, the shoulder rubs  against the top surfaces of the two  parts, developing much of the friction  heat • While the probe generates additional  heat by mechanically mixing the metal  along the butt surfaces • The heat produced by the combination  of friction and mixing does not melt the  metal but softens it to a highly plastic  condition 55 Heat generated in FSW (Refer Class notes) 28
  • 29. 10/17/2012 2.2 Friction stir welding (FSW), • Typical applications  butt joints on large aluminium parts • Other metals, include steel, copper, and titanium, as well as  polymers and composites l d i • Advantages of FSW – Good mechanical properties of the weld joint, – Avoidance of toxic fumes, warping, shielding issues, and other  problems associated with arc welding, – Little distortion or shrinkage – Good weld appearance • Disadvantages include  – An exit hole is produced when the tool is withdrawn from the work,  and  – Heavy‐duty clamping of the parts is required 57 Key benefits of friction stir welding Metallurgical benefits Environmental Energy benefits benefits 1. Solid phase process 1. No shielding gas 1. Improved materials 2. Low di t ti of work 2 L distortion f k required use (e g joining (e.g., piece 2. No surface cleaning different thickness) 3. Good dimensional required allows reduction in stability and 3. Eliminate grinding weight repeatability wastes 2. Only 2.5% of the 4. No loss of alloying 4. Eliminate solvents energy needed for a elements required for laser weld 5. 5 Excellent metallurgical degreasing 3. Decreased fuel properties in the joint 5. Consumable consumption in light area materials saving, weight aircraft, such as rugs, wire automotive and ship 6. Fine microstructure applications 7. Absence of cracking or any other gases 8. Replace multiple parts joined by fasteners 29
  • 30. 10/17/2012 2.3 Ultrasonic welding (USW) 59 2.3 Ultrasonic welding (USW) • Two components are held together under  modest clamping force d t l i f • Oscillatory shear stresses of ultrasonic  frequency are applied to the interface to  cause coalescence • Oscillatory motion between the two parts Oscillatory motion between the two parts  breaks down any surface films  allows  intimate contact and strong metallurgical  bonding between the surfaces 60 30
  • 31. 10/17/2012 2.3 Ultrasonic welding (USW) • Although heating of the contacting surfaces occurs due to  interfacial rubbing and plastic deformation, the resulting  temperatures are well below the melting point temperatures are well below the melting point • No filler metals, fluxes, or shielding gases are required in  USW. • The oscillatory motion is transmitted to the upper work  part by means of a sonotrode, which is coupled to an  ultrasonic transducer.  This device converts electrical power  ultrasonic transducer. This device converts electrical power into high‐frequency vibratory motion. Typical frequencies  used in USW are 15 to 75 kHz, with amplitudes of 0.018 to  0.13mm  61 2.3 Ultrasonic welding (USW) • Clamping pressures are well below those used in  cold welding and produce no significant plastic  ld ldi d d i ifi t l ti deformation between the surfaces. • Welding times under these conditions are less  than 1 sec. • USW operations are generally limited to lap joints USW operations are generally limited to lap joints  on soft materials such as aluminum and copper. 62 31
  • 32. 10/17/2012 3. Diffusion welding (DFW) • Welding process results from the application of heat and  p pressure, usually in a controlled atmosphere, with  y p sufficient time allowed for diffusion and coalescence to  occur • Temperatures are well below the melting points of the  metals (about 0.5 Tm) • Plastic deformation at the surfaces is minimal • The primary mechanism of coalescence is solid state  diffusion, which involves migration of atoms across the  interface between contacting surfaces  63 3. Diffusion welding (DFW) 64 32
  • 33. 10/17/2012 3. Diffusion welding (DFW) • Applications of DFW include the joining of high‐strength  and refractory metals in the aerospace and nuclear  industries.  industries • The process is used to join both similar and dissimilar  metals, and in the latter case a filler layer of a different  metal is often sandwiched between the two base metals  to promote diffusion. • The time for diffusion to occur between the faying The time for diffusion to occur between the faying  surfaces can be significant, requiring more than an hour in some applications • Key parameters of the process‐ temperature, time, and  pressure 65 3. Diffusion welding (DFW) • Diffusion occurs by an Arrhenius relationship, that is, exponentially  with temperature:  • Where,  – D is diffusion coefficient (of the diffusing species) at temperature T,  – Do is a constant of proportionality (dependent on the particular diffusing species and  host),  – Q is the activation energy for diffusion to occur,  – k is Boltzmann’s constant, and  – T is the temperature on an absolute scale T is the temperature on an absolute scale • In general, diffusion welding begins to take place at a reasonable  rate when the temperature exceeds half the absolute melting point  of the base or host material(s), and, as a rule‐of‐thumb, the rate of  diffusion doubles every time the temperature is raised  approximately 30°C 66 33
  • 34. 10/17/2012 3. Diffusion welding (DFW) • Time is important because diffusion takes time to  occur, since for atoms to jump from site to site takes  occur, since for atoms to jump from site to site takes time. Thus, the distance over which diffusion occurs  depends on time: • Where  – x is the diffusion distance x is the diffusion distance,  – D is the diffusion coefficient (as above),  – t is time, and C is a constant for the system. 67 3. Diffusion welding (DFW)‐ Features 1. Metals as well as ceramics can be joined directly to form a  completely solid state weld 2. Filler can be used to permit increased micro deformation to  ll b f provide more contact for bond formation and/or promote more  rapid diffusion by providing a faster diffusing species 3. Dissimilar materials either by class or type, including metal‐to‐ ceramic joints, can be joined directly or with the aid of a  compatible filler or intermediate 4. Large areas can be bonded or welded, provided uniform  intimate contact can be obtained and sustained 5. No heat‐affected zone as such, since the entire assembly in  which the diffusion weld is being made is virtually always heated  to the same temperature. 68 34