SlideShare ist ein Scribd-Unternehmen logo
1 von 15
Downloaden Sie, um offline zu lesen
EC 204: ANLOG CIRCUITS LABORATORY
Experiment 2
Two Stage CE Amplifier
Sachin Rajoria 08010826
Payoj Kissan 08010823
Manzil Zaheer 08010252
To design a two-stage RC coupled CE amplifier with the given specifications.
Objective:
To design a two-stage RC coupled CE amplifier with the following specifications:
 Overall Gain: 𝐴𝐴𝑣𝑣𝑠𝑠
= 1000
o Gain of first stage: |𝐴𝐴1| = 25
o Gain of second stage: |𝐴𝐴2| = 40
 Signal Source Resistance: 𝑅𝑅𝑠𝑠 = 50 Ξ©
 Load resistance: 𝑅𝑅𝐿𝐿 = 1 π‘˜π‘˜Ξ©
 Bandwidth (-3 dB) = 20 Hz – 20 kHz
 Assume range of Ξ² = 100 – 200
Instruments/Materials Required:
1. Supply Voltage: 12V x 1
2. Transistors:
i. NPN transistor 2N2222 x 2
3. Capacitors
i. 1 mF x 2
4. Resistors:
i. 100 Ω x 2
ii. 200 kΩ x 2
iii. 330 Ω x 1
5. Signal Source (Function Generator with 𝑅𝑅𝑠𝑠 = 50 Ξ©) x 1
6. Breadboard x 1
7. Connecting wires
Design Methodology:
The design is simplified to a large extent, if we use top-down approach to solve the problem. Consider
the two-port equivalent of each amplifier stage first and determine the parameters defining the
amplifier. Then we design the internals of each stage of amplifier to match the parameters obtained in
the previous step. Finally, we consider the frequency response of the amplifier.
Two Port Equivalent of a single stage CE amplifier
A general CE amplifier has the circuit as shown in fig. 2 and its small signal two port equivalent as shown
in fig. 1.
𝑉𝑉𝑖𝑖
+
-
𝑍𝑍𝑖𝑖
π‘π‘π‘œπ‘œ
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁
Amplifier
π‘‰π‘‰π‘œπ‘œ
+
-
Input Impedance π’π’π’Šπ’Š:
𝑍𝑍𝑖𝑖 = π‘…π‘…π‘Žπ‘Ž βˆ₯ 𝑅𝑅𝑏𝑏 βˆ₯ 𝛽𝛽(𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’)
Output Impedance 𝒁𝒁𝒐𝒐:
π‘π‘π‘œπ‘œ = π‘Ÿπ‘Ÿπ‘œπ‘œ βˆ₯ 𝑅𝑅𝐢𝐢
For π‘Ÿπ‘Ÿπ‘œπ‘œ β‰₯ 10𝑅𝑅𝐢𝐢,
π‘π‘π‘œπ‘œ β‰… 𝑅𝑅𝐢𝐢 π‘Ÿπ‘Ÿπ‘œπ‘œ β‰₯10𝑅𝑅𝐢𝐢
No Load Voltage gain 𝑨𝑨𝒗𝒗 𝑡𝑡𝑡𝑡
:
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁
=
π‘‰π‘‰π‘œπ‘œ
𝑉𝑉𝑖𝑖
= βˆ’
π‘Ÿπ‘Ÿπ‘œπ‘œ βˆ₯ 𝑅𝑅𝐢𝐢
𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’
Or
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁
=
π‘‰π‘‰π‘œπ‘œ
𝑉𝑉𝑖𝑖
β‰… βˆ’
𝑅𝑅𝐢𝐢
𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’ π‘Ÿπ‘Ÿπ‘œπ‘œ β‰₯10𝑅𝑅𝐢𝐢
Rb
Ra
Rc
Re2
Cc
Cc
Ce
Re1
Q1
π‘‰π‘‰π‘œπ‘œ
+
-
𝑉𝑉𝑖𝑖
+
-
Obtaining the two port parameters of second stage amplifier
Basically the required amplifier has the following form:
For maximum power transfer from second stage of amplifier to the load, we need
π‘π‘π‘œπ‘œ2
= 𝑅𝑅𝐿𝐿 = 1 π‘˜π‘˜Ξ©
So, gain of second stage becomes,
𝐴𝐴𝑣𝑣2
=
𝑅𝑅𝐿𝐿
π‘π‘π‘œπ‘œ2
+ 𝑅𝑅𝐿𝐿
𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿2
𝐴𝐴𝑣𝑣2
=
1
2
𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿2
We are already been given �𝐴𝐴𝑣𝑣2
οΏ½ = 40, therefore we need to have,
�𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿2
οΏ½ = 2�𝐴𝐴𝑣𝑣2
οΏ½ = 80
Complete Design of second stage amplifier
For faithful amplification (i.e. maximum undistorted output voltage swing), the quiescent point should
be near the middle of the load line,
𝑉𝑉𝐢𝐢 = 0.5𝑉𝑉𝐢𝐢𝐢𝐢 = 6𝑉𝑉
𝑉𝑉𝐸𝐸 = 0.1𝑉𝑉𝐢𝐢𝐢𝐢 = 1.2𝑉𝑉
We know from two-port analysis, π‘π‘π‘œπ‘œ2
= 1 π‘˜π‘˜Ξ©, therefore
𝑅𝑅𝐢𝐢 = π‘π‘π‘œπ‘œ = 1 π‘˜π‘˜Ξ©
So, we have a collector current of
𝐼𝐼𝐢𝐢 =
𝑉𝑉𝐢𝐢𝐢𝐢 βˆ’ 𝑉𝑉𝐢𝐢
𝑅𝑅𝐢𝐢
=
(12 βˆ’ 6) 𝑉𝑉
1 Γ— 103 Ξ©
= 6 π‘šπ‘šπ‘šπ‘š
𝑉𝑉𝑖𝑖2
+
-
π‘‰π‘‰π‘œπ‘œ2
+
-
𝑉𝑉𝑖𝑖1
+
-
𝑍𝑍𝑖𝑖1
π‘π‘π‘œπ‘œ1
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 1
Amplifier I
π‘‰π‘‰π‘œπ‘œ1
+
-
𝑍𝑍𝑖𝑖2
π‘π‘π‘œπ‘œ2
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 2
Amplifier II
𝑅𝑅𝑠𝑠
𝑅𝑅𝐿𝐿𝑉𝑉𝑠𝑠
We can safely assume 𝐼𝐼𝐢𝐢 β‰… 𝐼𝐼𝐸𝐸, therefore 𝐼𝐼𝐸𝐸 = 6π‘šπ‘šπ‘šπ‘š
𝑅𝑅𝐸𝐸 = 𝑅𝑅𝐸𝐸1
+ 𝑅𝑅𝐸𝐸2
=
𝑉𝑉𝐸𝐸
𝐼𝐼𝐸𝐸
=
1.2
6 Γ— 10βˆ’3
= 200 Ω
Under these conditions,
π‘Ÿπ‘Ÿπ‘’π‘’ =
𝑉𝑉𝑑𝑑
𝐼𝐼𝐸𝐸
=
26 Γ— 10βˆ’3
𝑉𝑉
6 Γ— 10βˆ’3 𝐴𝐴
= 4.333 Ξ©
Finally from gain expression we can evaluate 𝑅𝑅𝐸𝐸1
as,
�𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁
οΏ½ = 80 =
𝑅𝑅𝐢𝐢
𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’
80 =
1000
𝑅𝑅𝐸𝐸1
+ 4.333
𝑅𝑅𝐸𝐸1
= 8.167 Ξ©
And so,
𝑅𝑅𝐸𝐸2
= 191.8333 Ξ©
Now, for finding voltage divider resistances π‘…π‘…π‘Žπ‘Ž and 𝑅𝑅𝑏𝑏 , we need that the current flowing through the
potential divider circuit has to be large as compared to the actual base current, 𝐼𝐼𝐡𝐡, so assume a value of
atleast 10 times 𝐼𝐼𝐡𝐡 flowing through the resistor 𝑅𝑅𝑏𝑏.
Approximately the base current is at the most,
𝐼𝐼𝐡𝐡 =
𝐼𝐼𝐢𝐢
𝛽𝛽
=
6π‘šπ‘šπ‘šπ‘š
100
= 60πœ‡πœ‡πœ‡πœ‡
∴ 𝑅𝑅𝑏𝑏 ≀
𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡
10 Γ— 𝐼𝐼𝐡𝐡
=
(1.2 + 0.7) 𝑉𝑉
600 Γ— 10βˆ’6 𝐴𝐴
= 3.167 π‘˜π‘˜Ξ©
Also from the voltage divider constraint,
𝑅𝑅𝑏𝑏
𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž
Γ— 𝑉𝑉𝐢𝐢𝐢𝐢 = 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡
𝑅𝑅𝑏𝑏
𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž
Γ— 12 = 1.9
π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏
So, input impedance turns out to be,
𝑍𝑍𝑖𝑖 = π‘…π‘…π‘Žπ‘Ž βˆ₯ 𝑅𝑅𝑏𝑏 βˆ₯ 𝛽𝛽(𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’)
This evaluates to (after taking into account the fact that standard values have to be used),
𝑍𝑍𝑖𝑖 = (10||2||1.25) π‘˜π‘˜β„¦ = 697Ω
Emitter-bypass capacitor for lower frequency response of 20Hz at -3 dB,
𝐢𝐢𝐸𝐸 =
1
2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿
In this case 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐸𝐸2
βˆ₯ (π‘Ÿπ‘Ÿπ‘’π‘’ + 𝑅𝑅𝐸𝐸1
+
π‘π‘π‘œπ‘œ1βˆ₯π‘…π‘…π‘Žπ‘Ž βˆ₯𝑅𝑅𝑏𝑏
𝛽𝛽
) β‰ˆ 16.05 Ξ©,
∴ 𝐢𝐢𝐸𝐸 β‰ˆ 496 πœ‡πœ‡πœ‡πœ‡
Upon use of standard Components
Component Theoretical Desired Value Nearest standard value
𝑅𝑅𝐢𝐢 1 π‘˜π‘˜Ξ© 1 π‘˜π‘˜Ξ©
𝑅𝑅𝐸𝐸1 8.167 Ξ© 8.2 Ξ©
𝑅𝑅𝐸𝐸2 191.833 Ξ© 200 Ξ©
𝑅𝑅𝑏𝑏 3.167 π‘˜π‘˜Ξ© 2 π‘˜π‘˜Ξ©
π‘…π‘…π‘Žπ‘Ž π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏 = 10.6 π‘˜π‘˜Ξ© 10 kΞ©
𝐢𝐢𝑐𝑐 496 πœ‡πœ‡πœ‡πœ‡ 1 π‘šπ‘šπ‘šπ‘š
Obtaining the two port parameters of first stage amplifier
Basically the required amplifier has the following form:
For maximum power transfer from first stage of amplifier to the second stage, we need
π‘π‘π‘œπ‘œ1
= 𝑍𝑍𝑖𝑖2
= 697 Ξ©
But we choose nearest standard value, π‘π‘π‘œπ‘œ1
= 500 Ξ©
We assume that the input impedance of this stage will be near to the input impedance of the second
stage, i.e.
𝑍𝑍𝑖𝑖1
β‰ˆ 𝑍𝑍𝑖𝑖2
β‰ˆ 600 Ξ©
So, gain of first stage becomes,
𝐴𝐴𝑣𝑣𝑠𝑠1
= οΏ½
𝑍𝑍𝑖𝑖1
𝑍𝑍𝑖𝑖1
+ 𝑅𝑅𝑠𝑠
οΏ½ οΏ½
𝑍𝑍𝑖𝑖2
𝑍𝑍𝑖𝑖2
+ π‘π‘π‘œπ‘œ1
οΏ½ 𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1
= οΏ½
600
600 + 50
οΏ½ οΏ½
697
500 + 697
οΏ½ 𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1
𝐴𝐴𝑣𝑣𝑠𝑠1
= 0.5375𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1
We are already been given �𝐴𝐴𝑣𝑣1
οΏ½ = 25, therefore we need to have,
�𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1
οΏ½ = 1.86�𝐴𝐴𝑣𝑣1
οΏ½ = 46.5
Complete Design of second stage amplifier
For faithful amplification (i.e. maximum undistorted output voltage swing) , the quiescent point should
be near the middle of the load line,
𝑉𝑉𝐢𝐢 = 0.5𝑉𝑉𝐢𝐢𝐢𝐢 = 6𝑉𝑉
𝑉𝑉𝐸𝐸 = 0.1𝑉𝑉𝐢𝐢𝐢𝐢 = 1.2𝑉𝑉
We know from two-port analysis, π‘π‘π‘œπ‘œ1
= 500 Ξ©, therefore
𝑅𝑅𝐢𝐢 = π‘π‘π‘œπ‘œ = 500 Ξ©
𝑉𝑉𝑖𝑖2
+
-
π‘‰π‘‰π‘œπ‘œ2
+
-
𝑉𝑉𝑖𝑖1
+
-
𝑍𝑍𝑖𝑖1
π‘π‘π‘œπ‘œ1
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 1
Amplifier I
π‘‰π‘‰π‘œπ‘œ1
+
-
𝑍𝑍𝑖𝑖2
π‘π‘π‘œπ‘œ2
𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 2
Amplifier II
𝑅𝑅𝑠𝑠
𝑅𝑅𝐿𝐿𝑉𝑉𝑠𝑠
So, we have a collector current of
𝐼𝐼𝐢𝐢 =
𝑉𝑉𝐢𝐢𝐢𝐢 βˆ’ 𝑉𝑉𝐢𝐢
𝑅𝑅𝐢𝐢
=
(12 βˆ’ 6) 𝑉𝑉
500 Ξ©
= 12 π‘šπ‘šπ‘šπ‘š
We can safely assume 𝐼𝐼𝐢𝐢 β‰… 𝐼𝐼𝐸𝐸, therefore 𝐼𝐼𝐸𝐸 = 12 π‘šπ‘šπ‘šπ‘š
𝑅𝑅𝐸𝐸 = 𝑅𝑅𝐸𝐸1
+ 𝑅𝑅𝐸𝐸2
=
𝑉𝑉𝐸𝐸
𝐼𝐼𝐸𝐸
=
1.2
12 Γ— 10βˆ’3
= 100 Ω
Under these conditions,
π‘Ÿπ‘Ÿπ‘’π‘’ =
𝑉𝑉𝑑𝑑
𝐼𝐼𝐸𝐸
=
26 Γ— 10βˆ’3
𝑉𝑉
12 Γ— 10βˆ’3 𝐴𝐴
= 2.1667 Ξ©
Finally from gain expression we can evaluate 𝑅𝑅𝐸𝐸1
as,
�𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁
οΏ½ = 46.5 =
𝑅𝑅𝐢𝐢
𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’
46.5 =
500
𝑅𝑅𝐸𝐸1
+ 2.1667
𝑅𝑅𝐸𝐸1
= 8.58 Ξ©
And so,
𝑅𝑅𝐸𝐸2
= 91.42 Ξ©
Now, for finding voltage divider resistances π‘…π‘…π‘Žπ‘Ž and 𝑅𝑅𝑏𝑏 , we need that the current flowing through the
potential divider circuit has to be large as compared to the actual base current, 𝐼𝐼𝐡𝐡, so assume a value of
atleast 10 times 𝐼𝐼𝐡𝐡 flowing through the resistor 𝑅𝑅𝑏𝑏.
Approximately the base current is at the most,
𝐼𝐼𝐡𝐡 =
𝐼𝐼𝐢𝐢
𝛽𝛽
=
12 π‘šπ‘šπ‘šπ‘š
100
= 120πœ‡πœ‡πœ‡πœ‡
∴ 𝑅𝑅𝑏𝑏 ≀
𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡
10 Γ— 𝐼𝐼𝐡𝐡
=
(1.2 + 0.7) 𝑉𝑉
1200 Γ— 10βˆ’6 𝐴𝐴
= 1.67 π‘˜π‘˜Ξ©
Also from the voltage divider constraint,
𝑅𝑅𝑏𝑏
𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž
Γ— 𝑉𝑉𝐢𝐢𝐢𝐢 = 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡
𝑅𝑅𝑏𝑏
𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž
Γ— 12 = 1.9
π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏
So, input impedance turns out to be,
𝑍𝑍𝑖𝑖 = π‘…π‘…π‘Žπ‘Ž βˆ₯ 𝑅𝑅𝑏𝑏 βˆ₯ 𝛽𝛽(𝑅𝑅𝐸𝐸1
+ π‘Ÿπ‘Ÿπ‘’π‘’)
This evaluates to (after taking into account the fact that standard values have to be used),
𝑍𝑍𝑖𝑖 = (10||2||1) π‘˜π‘˜β„¦ = 653Ω
Emitter bypass capacitor for lower frequency response of 20Hz at -3 dB,
𝐢𝐢𝐸𝐸 =
1
2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿
In this case 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐸𝐸2
βˆ₯ (π‘Ÿπ‘Ÿπ‘’π‘’ + 𝑅𝑅𝐸𝐸1
+
𝑅𝑅𝑠𝑠βˆ₯π‘…π‘…π‘Žπ‘Ž βˆ₯𝑅𝑅𝑏𝑏
𝛽𝛽
) β‰ˆ 14.5833 Ξ©,
∴ 𝐢𝐢𝑐𝑐 β‰ˆ 720 πœ‡πœ‡πœ‡πœ‡
Upon use of standard Components
Component Theoretical Desired Value Nearest standard value
𝑅𝑅𝐢𝐢 697 Ξ© 500 Ξ©
𝑅𝑅𝐸𝐸1 8.58 Ξ© 8.2 Ξ©
𝑅𝑅𝐸𝐸2 91.42 Ξ© 100 Ξ©
𝑅𝑅𝑏𝑏 1.67 π‘˜π‘˜Ξ© 2 π‘˜π‘˜Ξ©
π‘…π‘…π‘Žπ‘Ž π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏 = 8.35 π‘˜π‘˜Ξ© 10 kΞ©
𝐢𝐢𝑐𝑐 720 πœ‡πœ‡πœ‡πœ‡ 1 π‘šπ‘šπ‘šπ‘š
Coupling Capacitors:
1. Coupling Capacitor between signal source and first stage amplifier:
The resistance as seen by this coupling capacitor,
𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑠𝑠 + 𝑍𝑍𝑖𝑖1
= 703 Ξ©
So, for lower frequency response at 20Hz (-3 dB)
𝐢𝐢𝑐𝑐 =
1
2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿
= 11.32 πœ‡πœ‡πœ‡πœ‡
2. Coupling Capacitor between first and second stage amplifier:
The resistance as seen by this coupling capacitor,
𝑅𝑅𝑒𝑒𝑒𝑒 = π‘π‘π‘œπ‘œ1
+ 𝑍𝑍𝑖𝑖2
= 1197 Ξ©
So, for lower frequency response at 20Hz (-3 dB)
𝐢𝐢𝑐𝑐 =
1
2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿
= 6.67 πœ‡πœ‡πœ‡πœ‡
But this capacitor should have at least 10 times more capacitance so as to maintain good interaction
between first and second stage of amplifier even at lower frequencies.
∴ 𝐢𝐢𝑐𝑐 = 66.7πœ‡πœ‡πœ‡πœ‡
3. Coupling Capacitor between second stage amplifier and load:
The resistance as seen by this coupling capacitor,
𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐿𝐿 + π‘π‘π‘œπ‘œ2
= 2 π‘˜π‘˜Ξ©
So, for lower frequency response at 20Hz (-3 dB)
𝐢𝐢𝑐𝑐 =
1
2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿
= 4 πœ‡πœ‡πœ‡πœ‡
50Ξ©
Rb
Cc
653Ξ©
Zi1
500Ξ©
Zo1
Cc
697Ξ©
Zi2
1kΞ©
Zo2
Cc
1kΞ©
RL
High Frequency Cutoff
The amplifier has higher cutoff frequency in the range of MHz. But we need an upper cutoff near 20kHz.
So we apply a RC lowpass filter at the output.
The resistance seen by this capacitor,
𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐿𝐿 βˆ₯ π‘π‘π‘œπ‘œ2
= 500 Ξ©
So, for higher frequency response at 20kHz (-3 dB)
𝐢𝐢 =
1
2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐻𝐻
= 16 𝑛𝑛𝑛𝑛
So, we choose a capacitor of capacitance 𝐢𝐢 = 10 𝑛𝑛𝑛𝑛
1kΞ©
Zo2
C
1kΞ©
RL
Fig
ur
e:
Co
m
pl
et
e
Ξ²-
m
1mVpk
1kHz
0Β°
Vin
Vcc
50Ξ©
Rs
2kΞ©
R1
10kΞ©
R2
1kΞ©
Rc
200Ξ©
Re
1kΞ©
Rl
100Β΅F
C1
1mF
Ce
6.5Ξ©
Re
2kΞ©
R1
10kΞ©
R2
500Ξ©
Rc
100Ξ©
Re
100Β΅F
C2
1mF
Ce
2N2222
Q1
2N2222
Q1
8.2Ξ©
Re
100Β΅F
C2
10nF
Ce
Observations:
Keeping the input amplitude (𝑉𝑉𝑠𝑠) small enough to get undistorted output amplitude (π‘‰π‘‰π‘œπ‘œ ) up to Β± 1 V, i.e.
operating in small signal mode.
Sr. No. Frequency 𝑨𝑨𝒗𝒗 𝟏𝟏 𝑨𝑨𝒗𝒗𝒔𝒔
1. 1 Hz 1.940338 5.648164
2. 2 Hz 3.852225 22.23175
3. 4 Hz 7.118051 79.7995
4. 8 Hz 12.465 253.5564
5. 10 Hz 14.5787 350.3958
6. 20 Hz 20.32947 695.9518
7. 40 Hz 23.49171 933.8613
8. 80 Hz 24.59059 1023.351
9. 100 Hz 24.7394 1035.71
10. 200 Hz 24.93458 1051.992
11. 400 Hz 24.98449 1056.122
12. 800 Hz 24.99721 1056.983
13. 1 kHz 24.99887 1056.961
14. 2 kHz 25.00171 1055.901
15. 4 kHz 25.0055 1051.1
16. 8 kHz 25.01816 1032.469
17. 10 kHz 25.02737 1018.579
18. 20 kHz 25.08669 923.7349
19. 40 kHz 25.19986 707.0369
20. 80 kHz 25.29784 434.4106
21. 100 kHz 25.3163 356.3207
22. 1 MHz 25.02633 37.32845
 Midband Amplification: 1018.579
o First Stage: 25.02737
o Second stage: 40.69860
 Cutoff frequency
o Lower: 20Hz
o Higher: 40kHz
Result:
The two stage CE amplifier was successfully built and demonstrated to possess the given amplification
and bandwidth.
Comments:
A recommended output swing of Β±1 𝑉𝑉 is needed. Since our amplifier has a source to output gain of
1000, the signal source swing should be Β±1 π‘šπ‘šπ‘šπ‘š. But the function generator available could not generate
signal of such low swing. So, we were forced to use a voltage divider at the input.
Since the signal source was believed to have a resistance of 50 Ω, we must design the voltage divider in
such a way, so that source resistance still appears to be 50 Ω to the amplifier.
We choose
𝑅𝑅𝑏𝑏 = 50 Ξ©
Now, voltage divider constraint gives
𝑅𝑅𝑏𝑏
π‘…π‘…π‘Žπ‘Ž + 𝑅𝑅𝑠𝑠𝑠𝑠 𝑠𝑠 + 𝑅𝑅𝑏𝑏
Γ— 𝑉𝑉𝑠𝑠 = 1 π‘šπ‘šπ‘šπ‘š
Choose π‘…π‘…π‘Žπ‘Ž = 4.7 π‘˜π‘˜Ξ©, this gives,
50
50 + 50 + 4700
Γ— 𝑉𝑉𝑠𝑠 = 1 π‘šπ‘šπ‘šπ‘š
𝑉𝑉𝑠𝑠 = 96 π‘šπ‘šπ‘šπ‘š
The available function generator can easily give signals with a swing of Β±96 π‘šπ‘šπ‘šπ‘š. The source impedance
as seen by the amplifier is then
𝑅𝑅𝑠𝑠 = 𝑅𝑅𝑏𝑏 βˆ₯ οΏ½π‘…π‘…π‘Žπ‘Ž + 𝑅𝑅𝑠𝑠𝑠𝑠 𝑠𝑠 οΏ½ = 49.5 Ξ©
as required.
96mVpk
1kHz
0Β°
Vs
50Ξ©
Rs
50Ξ©
Rb
4.7kΞ©
Ra

Weitere Γ€hnliche Inhalte

Was ist angesagt?

Basics of Oscillator
Basics of OscillatorBasics of Oscillator
Basics of Oscillatorhimanshi gupta
Β 
Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisJess Rangcasajo
Β 
Electronics amplifiers
Electronics   amplifiersElectronics   amplifiers
Electronics amplifierssld1950
Β 
Transient response of RC , RL circuits with step input
Transient response of RC , RL circuits  with step inputTransient response of RC , RL circuits  with step input
Transient response of RC , RL circuits with step inputDr.YNM
Β 
EST 130, Transistor Biasing and Amplification.
EST 130, Transistor Biasing and Amplification.EST 130, Transistor Biasing and Amplification.
EST 130, Transistor Biasing and Amplification.CKSunith1
Β 
Multistage amplifier
Multistage amplifierMultistage amplifier
Multistage amplifierHansraj Meena
Β 
Positive feedback: Oscillators
Positive feedback: OscillatorsPositive feedback: Oscillators
Positive feedback: OscillatorsYeshudas Muttu
Β 
L07 dc and ac load line
L07 dc and ac load lineL07 dc and ac load line
L07 dc and ac load lineSarah Krystelle
Β 
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATORFREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR SwgwmsaBoro
Β 
Eca unit 2
Eca unit 2Eca unit 2
Eca unit 2Pavan Mukku
Β 
Power amplifier ppt
Power amplifier pptPower amplifier ppt
Power amplifier pptKrishna Ece
Β 
Electronics 1 : Chapter # 06 : Bipolar Junction Transistor
Electronics 1 : Chapter # 06 : Bipolar Junction TransistorElectronics 1 : Chapter # 06 : Bipolar Junction Transistor
Electronics 1 : Chapter # 06 : Bipolar Junction TransistorSk_Group
Β 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diodeRAMPRAKASHT1
Β 
Presentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarPresentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarSourabh Kumar
Β 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuittaranjeet10
Β 
Schmitt trigger basics
Schmitt trigger  basicsSchmitt trigger  basics
Schmitt trigger basicsSAQUIB AHMAD
Β 
Dual Input Balanced Output diffrential amp by Ap
Dual Input Balanced Output diffrential amp by ApDual Input Balanced Output diffrential amp by Ap
Dual Input Balanced Output diffrential amp by ApEr. Ashish Pandey
Β 
Presentation on JFET
Presentation on JFETPresentation on JFET
Presentation on JFETMd. Ashraf Uddin
Β 

Was ist angesagt? (20)

Basics of Oscillator
Basics of OscillatorBasics of Oscillator
Basics of Oscillator
Β 
Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
Β 
Electronics amplifiers
Electronics   amplifiersElectronics   amplifiers
Electronics amplifiers
Β 
Transient response of RC , RL circuits with step input
Transient response of RC , RL circuits  with step inputTransient response of RC , RL circuits  with step input
Transient response of RC , RL circuits with step input
Β 
EST 130, Transistor Biasing and Amplification.
EST 130, Transistor Biasing and Amplification.EST 130, Transistor Biasing and Amplification.
EST 130, Transistor Biasing and Amplification.
Β 
EC6202 ELECTRONIC DEVICES AND CIRCUITS NOTES
EC6202 ELECTRONIC DEVICES AND CIRCUITS NOTESEC6202 ELECTRONIC DEVICES AND CIRCUITS NOTES
EC6202 ELECTRONIC DEVICES AND CIRCUITS NOTES
Β 
Multistage amplifier
Multistage amplifierMultistage amplifier
Multistage amplifier
Β 
Positive feedback: Oscillators
Positive feedback: OscillatorsPositive feedback: Oscillators
Positive feedback: Oscillators
Β 
L07 dc and ac load line
L07 dc and ac load lineL07 dc and ac load line
L07 dc and ac load line
Β 
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATORFREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
FREQUENCY ENTRAINMENT IN A WIEN BRIDGE OSCILLATOR
Β 
Bridge ckt eim
Bridge ckt eimBridge ckt eim
Bridge ckt eim
Β 
Eca unit 2
Eca unit 2Eca unit 2
Eca unit 2
Β 
Power amplifier ppt
Power amplifier pptPower amplifier ppt
Power amplifier ppt
Β 
Electronics 1 : Chapter # 06 : Bipolar Junction Transistor
Electronics 1 : Chapter # 06 : Bipolar Junction TransistorElectronics 1 : Chapter # 06 : Bipolar Junction Transistor
Electronics 1 : Chapter # 06 : Bipolar Junction Transistor
Β 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diode
Β 
Presentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarPresentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumar
Β 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuit
Β 
Schmitt trigger basics
Schmitt trigger  basicsSchmitt trigger  basics
Schmitt trigger basics
Β 
Dual Input Balanced Output diffrential amp by Ap
Dual Input Balanced Output diffrential amp by ApDual Input Balanced Output diffrential amp by Ap
Dual Input Balanced Output diffrential amp by Ap
Β 
Presentation on JFET
Presentation on JFETPresentation on JFET
Presentation on JFET
Β 

Γ„hnlich wie Two-stage CE amplifier

Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...AIMST University
Β 
Two Stage Amplifier
Two Stage AmplifierTwo Stage Amplifier
Two Stage AmplifierJacob Ramey
Β 
Frequency Response.pptx
Frequency Response.pptxFrequency Response.pptx
Frequency Response.pptxDebasishMohanta16
Β 
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Analogue ModulationLecture Notes:  EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes: EEEC6440315 Communication Systems - Analogue ModulationAIMST University
Β 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulationVishal kakade
Β 
ECE6420 Final Project Report
ECE6420 Final Project ReportECE6420 Final Project Report
ECE6420 Final Project ReportTianhao Li
Β 
14 activefilters
14 activefilters14 activefilters
14 activefiltersYou-Yin Chen
Β 
Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Aravinda Koithyar
Β 
High pass filter analysis complete
High pass filter analysis completeHigh pass filter analysis complete
High pass filter analysis completeRob Holoboff
Β 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingvimala elumalai
Β 
EEE 117L Network Analysis Laboratory Lab 1 1
EEE 117L Network Analysis Laboratory  Lab 1     1  EEE 117L Network Analysis Laboratory  Lab 1     1
EEE 117L Network Analysis Laboratory Lab 1 1 EvonCanales257
Β 
Small signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiersSmall signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiersPRAVEENA N G
Β 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
Β 
Oscillators
OscillatorsOscillators
Oscillatorsj naga sai
Β 
Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...
Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...
Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...jicywig
Β 

Γ„hnlich wie Two-stage CE amplifier (20)

Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
Β 
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Noise In Two-Port ...
Β 
Two Stage Amplifier
Two Stage AmplifierTwo Stage Amplifier
Two Stage Amplifier
Β 
Frequency Response.pptx
Frequency Response.pptxFrequency Response.pptx
Frequency Response.pptx
Β 
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes:  EEEC6440315 Communication Systems - Analogue ModulationLecture Notes:  EEEC6440315 Communication Systems - Analogue Modulation
Lecture Notes: EEEC6440315 Communication Systems - Analogue Modulation
Β 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
Β 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
Β 
ECE6420 Final Project Report
ECE6420 Final Project ReportECE6420 Final Project Report
ECE6420 Final Project Report
Β 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
Β 
14 activefilters
14 activefilters14 activefilters
14 activefilters
Β 
Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4
Β 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
Β 
High pass filter analysis complete
High pass filter analysis completeHigh pass filter analysis complete
High pass filter analysis complete
Β 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processing
Β 
EEE 117L Network Analysis Laboratory Lab 1 1
EEE 117L Network Analysis Laboratory  Lab 1     1  EEE 117L Network Analysis Laboratory  Lab 1     1
EEE 117L Network Analysis Laboratory Lab 1 1
Β 
Analysis
AnalysisAnalysis
Analysis
Β 
Small signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiersSmall signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiers
Β 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
Β 
Oscillators
OscillatorsOscillators
Oscillators
Β 
Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...
Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...
Introduction to Engineering Experimentation 3rd Edition by Wheeler Solutions ...
Β 

KΓΌrzlich hochgeladen

Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
Β 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
Β 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
Β 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
Β 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
Β 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 

KΓΌrzlich hochgeladen (20)

Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Β 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
Β 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
Β 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
Β 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
Β 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
Β 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
Β 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 

Two-stage CE amplifier

  • 1. EC 204: ANLOG CIRCUITS LABORATORY Experiment 2 Two Stage CE Amplifier Sachin Rajoria 08010826 Payoj Kissan 08010823 Manzil Zaheer 08010252 To design a two-stage RC coupled CE amplifier with the given specifications.
  • 2. Objective: To design a two-stage RC coupled CE amplifier with the following specifications:  Overall Gain: 𝐴𝐴𝑣𝑣𝑠𝑠 = 1000 o Gain of first stage: |𝐴𝐴1| = 25 o Gain of second stage: |𝐴𝐴2| = 40  Signal Source Resistance: 𝑅𝑅𝑠𝑠 = 50 Ξ©  Load resistance: 𝑅𝑅𝐿𝐿 = 1 π‘˜π‘˜Ξ©  Bandwidth (-3 dB) = 20 Hz – 20 kHz  Assume range of Ξ² = 100 – 200 Instruments/Materials Required: 1. Supply Voltage: 12V x 1 2. Transistors: i. NPN transistor 2N2222 x 2 3. Capacitors i. 1 mF x 2 4. Resistors: i. 100 Ω x 2 ii. 200 kΩ x 2 iii. 330 Ω x 1 5. Signal Source (Function Generator with 𝑅𝑅𝑠𝑠 = 50 Ξ©) x 1 6. Breadboard x 1 7. Connecting wires Design Methodology: The design is simplified to a large extent, if we use top-down approach to solve the problem. Consider the two-port equivalent of each amplifier stage first and determine the parameters defining the amplifier. Then we design the internals of each stage of amplifier to match the parameters obtained in the previous step. Finally, we consider the frequency response of the amplifier. Two Port Equivalent of a single stage CE amplifier A general CE amplifier has the circuit as shown in fig. 2 and its small signal two port equivalent as shown in fig. 1. 𝑉𝑉𝑖𝑖 + - 𝑍𝑍𝑖𝑖 π‘π‘π‘œπ‘œ 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 Amplifier π‘‰π‘‰π‘œπ‘œ + -
  • 3. Input Impedance π’π’π’Šπ’Š: 𝑍𝑍𝑖𝑖 = π‘…π‘…π‘Žπ‘Ž βˆ₯ 𝑅𝑅𝑏𝑏 βˆ₯ 𝛽𝛽(𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’) Output Impedance 𝒁𝒁𝒐𝒐: π‘π‘π‘œπ‘œ = π‘Ÿπ‘Ÿπ‘œπ‘œ βˆ₯ 𝑅𝑅𝐢𝐢 For π‘Ÿπ‘Ÿπ‘œπ‘œ β‰₯ 10𝑅𝑅𝐢𝐢, π‘π‘π‘œπ‘œ β‰… 𝑅𝑅𝐢𝐢 π‘Ÿπ‘Ÿπ‘œπ‘œ β‰₯10𝑅𝑅𝐢𝐢 No Load Voltage gain 𝑨𝑨𝒗𝒗 𝑡𝑡𝑡𝑡 : 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 = π‘‰π‘‰π‘œπ‘œ 𝑉𝑉𝑖𝑖 = βˆ’ π‘Ÿπ‘Ÿπ‘œπ‘œ βˆ₯ 𝑅𝑅𝐢𝐢 𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’ Or 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 = π‘‰π‘‰π‘œπ‘œ 𝑉𝑉𝑖𝑖 β‰… βˆ’ 𝑅𝑅𝐢𝐢 𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’ π‘Ÿπ‘Ÿπ‘œπ‘œ β‰₯10𝑅𝑅𝐢𝐢 Rb Ra Rc Re2 Cc Cc Ce Re1 Q1 π‘‰π‘‰π‘œπ‘œ + - 𝑉𝑉𝑖𝑖 + -
  • 4. Obtaining the two port parameters of second stage amplifier Basically the required amplifier has the following form: For maximum power transfer from second stage of amplifier to the load, we need π‘π‘π‘œπ‘œ2 = 𝑅𝑅𝐿𝐿 = 1 π‘˜π‘˜Ξ© So, gain of second stage becomes, 𝐴𝐴𝑣𝑣2 = 𝑅𝑅𝐿𝐿 π‘π‘π‘œπ‘œ2 + 𝑅𝑅𝐿𝐿 𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿2 𝐴𝐴𝑣𝑣2 = 1 2 𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿2 We are already been given �𝐴𝐴𝑣𝑣2 οΏ½ = 40, therefore we need to have, �𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿2 οΏ½ = 2�𝐴𝐴𝑣𝑣2 οΏ½ = 80 Complete Design of second stage amplifier For faithful amplification (i.e. maximum undistorted output voltage swing), the quiescent point should be near the middle of the load line, 𝑉𝑉𝐢𝐢 = 0.5𝑉𝑉𝐢𝐢𝐢𝐢 = 6𝑉𝑉 𝑉𝑉𝐸𝐸 = 0.1𝑉𝑉𝐢𝐢𝐢𝐢 = 1.2𝑉𝑉 We know from two-port analysis, π‘π‘π‘œπ‘œ2 = 1 π‘˜π‘˜Ξ©, therefore 𝑅𝑅𝐢𝐢 = π‘π‘π‘œπ‘œ = 1 π‘˜π‘˜Ξ© So, we have a collector current of 𝐼𝐼𝐢𝐢 = 𝑉𝑉𝐢𝐢𝐢𝐢 βˆ’ 𝑉𝑉𝐢𝐢 𝑅𝑅𝐢𝐢 = (12 βˆ’ 6) 𝑉𝑉 1 Γ— 103 Ξ© = 6 π‘šπ‘šπ‘šπ‘š 𝑉𝑉𝑖𝑖2 + - π‘‰π‘‰π‘œπ‘œ2 + - 𝑉𝑉𝑖𝑖1 + - 𝑍𝑍𝑖𝑖1 π‘π‘π‘œπ‘œ1 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 1 Amplifier I π‘‰π‘‰π‘œπ‘œ1 + - 𝑍𝑍𝑖𝑖2 π‘π‘π‘œπ‘œ2 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 2 Amplifier II 𝑅𝑅𝑠𝑠 𝑅𝑅𝐿𝐿𝑉𝑉𝑠𝑠
  • 5. We can safely assume 𝐼𝐼𝐢𝐢 β‰… 𝐼𝐼𝐸𝐸, therefore 𝐼𝐼𝐸𝐸 = 6π‘šπ‘šπ‘šπ‘š 𝑅𝑅𝐸𝐸 = 𝑅𝑅𝐸𝐸1 + 𝑅𝑅𝐸𝐸2 = 𝑉𝑉𝐸𝐸 𝐼𝐼𝐸𝐸 = 1.2 6 Γ— 10βˆ’3 = 200 Ω Under these conditions, π‘Ÿπ‘Ÿπ‘’π‘’ = 𝑉𝑉𝑑𝑑 𝐼𝐼𝐸𝐸 = 26 Γ— 10βˆ’3 𝑉𝑉 6 Γ— 10βˆ’3 𝐴𝐴 = 4.333 Ξ© Finally from gain expression we can evaluate 𝑅𝑅𝐸𝐸1 as, �𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 οΏ½ = 80 = 𝑅𝑅𝐢𝐢 𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’ 80 = 1000 𝑅𝑅𝐸𝐸1 + 4.333 𝑅𝑅𝐸𝐸1 = 8.167 Ξ© And so, 𝑅𝑅𝐸𝐸2 = 191.8333 Ξ© Now, for finding voltage divider resistances π‘…π‘…π‘Žπ‘Ž and 𝑅𝑅𝑏𝑏 , we need that the current flowing through the potential divider circuit has to be large as compared to the actual base current, 𝐼𝐼𝐡𝐡, so assume a value of atleast 10 times 𝐼𝐼𝐡𝐡 flowing through the resistor 𝑅𝑅𝑏𝑏. Approximately the base current is at the most, 𝐼𝐼𝐡𝐡 = 𝐼𝐼𝐢𝐢 𝛽𝛽 = 6π‘šπ‘šπ‘šπ‘š 100 = 60πœ‡πœ‡πœ‡πœ‡ ∴ 𝑅𝑅𝑏𝑏 ≀ 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡 10 Γ— 𝐼𝐼𝐡𝐡 = (1.2 + 0.7) 𝑉𝑉 600 Γ— 10βˆ’6 𝐴𝐴 = 3.167 π‘˜π‘˜Ξ© Also from the voltage divider constraint, 𝑅𝑅𝑏𝑏 𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž Γ— 𝑉𝑉𝐢𝐢𝐢𝐢 = 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡 𝑅𝑅𝑏𝑏 𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž Γ— 12 = 1.9 π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏 So, input impedance turns out to be, 𝑍𝑍𝑖𝑖 = π‘…π‘…π‘Žπ‘Ž βˆ₯ 𝑅𝑅𝑏𝑏 βˆ₯ 𝛽𝛽(𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’)
  • 6. This evaluates to (after taking into account the fact that standard values have to be used), 𝑍𝑍𝑖𝑖 = (10||2||1.25) π‘˜π‘˜β„¦ = 697Ω Emitter-bypass capacitor for lower frequency response of 20Hz at -3 dB, 𝐢𝐢𝐸𝐸 = 1 2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿 In this case 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐸𝐸2 βˆ₯ (π‘Ÿπ‘Ÿπ‘’π‘’ + 𝑅𝑅𝐸𝐸1 + π‘π‘π‘œπ‘œ1βˆ₯π‘…π‘…π‘Žπ‘Ž βˆ₯𝑅𝑅𝑏𝑏 𝛽𝛽 ) β‰ˆ 16.05 Ξ©, ∴ 𝐢𝐢𝐸𝐸 β‰ˆ 496 πœ‡πœ‡πœ‡πœ‡ Upon use of standard Components Component Theoretical Desired Value Nearest standard value 𝑅𝑅𝐢𝐢 1 π‘˜π‘˜Ξ© 1 π‘˜π‘˜Ξ© 𝑅𝑅𝐸𝐸1 8.167 Ξ© 8.2 Ξ© 𝑅𝑅𝐸𝐸2 191.833 Ξ© 200 Ξ© 𝑅𝑅𝑏𝑏 3.167 π‘˜π‘˜Ξ© 2 π‘˜π‘˜Ξ© π‘…π‘…π‘Žπ‘Ž π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏 = 10.6 π‘˜π‘˜Ξ© 10 kΞ© 𝐢𝐢𝑐𝑐 496 πœ‡πœ‡πœ‡πœ‡ 1 π‘šπ‘šπ‘šπ‘š
  • 7. Obtaining the two port parameters of first stage amplifier Basically the required amplifier has the following form: For maximum power transfer from first stage of amplifier to the second stage, we need π‘π‘π‘œπ‘œ1 = 𝑍𝑍𝑖𝑖2 = 697 Ξ© But we choose nearest standard value, π‘π‘π‘œπ‘œ1 = 500 Ξ© We assume that the input impedance of this stage will be near to the input impedance of the second stage, i.e. 𝑍𝑍𝑖𝑖1 β‰ˆ 𝑍𝑍𝑖𝑖2 β‰ˆ 600 Ξ© So, gain of first stage becomes, 𝐴𝐴𝑣𝑣𝑠𝑠1 = οΏ½ 𝑍𝑍𝑖𝑖1 𝑍𝑍𝑖𝑖1 + 𝑅𝑅𝑠𝑠 οΏ½ οΏ½ 𝑍𝑍𝑖𝑖2 𝑍𝑍𝑖𝑖2 + π‘π‘π‘œπ‘œ1 οΏ½ 𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1 = οΏ½ 600 600 + 50 οΏ½ οΏ½ 697 500 + 697 οΏ½ 𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1 𝐴𝐴𝑣𝑣𝑠𝑠1 = 0.5375𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1 We are already been given �𝐴𝐴𝑣𝑣1 οΏ½ = 25, therefore we need to have, �𝐴𝐴𝑣𝑣 𝑁𝑁 𝐿𝐿1 οΏ½ = 1.86�𝐴𝐴𝑣𝑣1 οΏ½ = 46.5 Complete Design of second stage amplifier For faithful amplification (i.e. maximum undistorted output voltage swing) , the quiescent point should be near the middle of the load line, 𝑉𝑉𝐢𝐢 = 0.5𝑉𝑉𝐢𝐢𝐢𝐢 = 6𝑉𝑉 𝑉𝑉𝐸𝐸 = 0.1𝑉𝑉𝐢𝐢𝐢𝐢 = 1.2𝑉𝑉 We know from two-port analysis, π‘π‘π‘œπ‘œ1 = 500 Ξ©, therefore 𝑅𝑅𝐢𝐢 = π‘π‘π‘œπ‘œ = 500 Ξ© 𝑉𝑉𝑖𝑖2 + - π‘‰π‘‰π‘œπ‘œ2 + - 𝑉𝑉𝑖𝑖1 + - 𝑍𝑍𝑖𝑖1 π‘π‘π‘œπ‘œ1 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 1 Amplifier I π‘‰π‘‰π‘œπ‘œ1 + - 𝑍𝑍𝑖𝑖2 π‘π‘π‘œπ‘œ2 𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 2 Amplifier II 𝑅𝑅𝑠𝑠 𝑅𝑅𝐿𝐿𝑉𝑉𝑠𝑠
  • 8. So, we have a collector current of 𝐼𝐼𝐢𝐢 = 𝑉𝑉𝐢𝐢𝐢𝐢 βˆ’ 𝑉𝑉𝐢𝐢 𝑅𝑅𝐢𝐢 = (12 βˆ’ 6) 𝑉𝑉 500 Ξ© = 12 π‘šπ‘šπ‘šπ‘š We can safely assume 𝐼𝐼𝐢𝐢 β‰… 𝐼𝐼𝐸𝐸, therefore 𝐼𝐼𝐸𝐸 = 12 π‘šπ‘šπ‘šπ‘š 𝑅𝑅𝐸𝐸 = 𝑅𝑅𝐸𝐸1 + 𝑅𝑅𝐸𝐸2 = 𝑉𝑉𝐸𝐸 𝐼𝐼𝐸𝐸 = 1.2 12 Γ— 10βˆ’3 = 100 Ω Under these conditions, π‘Ÿπ‘Ÿπ‘’π‘’ = 𝑉𝑉𝑑𝑑 𝐼𝐼𝐸𝐸 = 26 Γ— 10βˆ’3 𝑉𝑉 12 Γ— 10βˆ’3 𝐴𝐴 = 2.1667 Ξ© Finally from gain expression we can evaluate 𝑅𝑅𝐸𝐸1 as, �𝐴𝐴𝑣𝑣 𝑁𝑁𝑁𝑁 οΏ½ = 46.5 = 𝑅𝑅𝐢𝐢 𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’ 46.5 = 500 𝑅𝑅𝐸𝐸1 + 2.1667 𝑅𝑅𝐸𝐸1 = 8.58 Ξ© And so, 𝑅𝑅𝐸𝐸2 = 91.42 Ξ© Now, for finding voltage divider resistances π‘…π‘…π‘Žπ‘Ž and 𝑅𝑅𝑏𝑏 , we need that the current flowing through the potential divider circuit has to be large as compared to the actual base current, 𝐼𝐼𝐡𝐡, so assume a value of atleast 10 times 𝐼𝐼𝐡𝐡 flowing through the resistor 𝑅𝑅𝑏𝑏. Approximately the base current is at the most, 𝐼𝐼𝐡𝐡 = 𝐼𝐼𝐢𝐢 𝛽𝛽 = 12 π‘šπ‘šπ‘šπ‘š 100 = 120πœ‡πœ‡πœ‡πœ‡ ∴ 𝑅𝑅𝑏𝑏 ≀ 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡 10 Γ— 𝐼𝐼𝐡𝐡 = (1.2 + 0.7) 𝑉𝑉 1200 Γ— 10βˆ’6 𝐴𝐴 = 1.67 π‘˜π‘˜Ξ© Also from the voltage divider constraint, 𝑅𝑅𝑏𝑏 𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž Γ— 𝑉𝑉𝐢𝐢𝐢𝐢 = 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝐡𝐡𝐡𝐡 𝑅𝑅𝑏𝑏 𝑅𝑅𝑏𝑏 + π‘…π‘…π‘Žπ‘Ž Γ— 12 = 1.9 π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏
  • 9. So, input impedance turns out to be, 𝑍𝑍𝑖𝑖 = π‘…π‘…π‘Žπ‘Ž βˆ₯ 𝑅𝑅𝑏𝑏 βˆ₯ 𝛽𝛽(𝑅𝑅𝐸𝐸1 + π‘Ÿπ‘Ÿπ‘’π‘’) This evaluates to (after taking into account the fact that standard values have to be used), 𝑍𝑍𝑖𝑖 = (10||2||1) π‘˜π‘˜β„¦ = 653Ω Emitter bypass capacitor for lower frequency response of 20Hz at -3 dB, 𝐢𝐢𝐸𝐸 = 1 2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿 In this case 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐸𝐸2 βˆ₯ (π‘Ÿπ‘Ÿπ‘’π‘’ + 𝑅𝑅𝐸𝐸1 + 𝑅𝑅𝑠𝑠βˆ₯π‘…π‘…π‘Žπ‘Ž βˆ₯𝑅𝑅𝑏𝑏 𝛽𝛽 ) β‰ˆ 14.5833 Ξ©, ∴ 𝐢𝐢𝑐𝑐 β‰ˆ 720 πœ‡πœ‡πœ‡πœ‡ Upon use of standard Components Component Theoretical Desired Value Nearest standard value 𝑅𝑅𝐢𝐢 697 Ξ© 500 Ξ© 𝑅𝑅𝐸𝐸1 8.58 Ξ© 8.2 Ξ© 𝑅𝑅𝐸𝐸2 91.42 Ξ© 100 Ξ© 𝑅𝑅𝑏𝑏 1.67 π‘˜π‘˜Ξ© 2 π‘˜π‘˜Ξ© π‘…π‘…π‘Žπ‘Ž π‘…π‘…π‘Žπ‘Ž β‰ˆ 5.3 𝑅𝑅𝑏𝑏 = 8.35 π‘˜π‘˜Ξ© 10 kΞ© 𝐢𝐢𝑐𝑐 720 πœ‡πœ‡πœ‡πœ‡ 1 π‘šπ‘šπ‘šπ‘š
  • 10. Coupling Capacitors: 1. Coupling Capacitor between signal source and first stage amplifier: The resistance as seen by this coupling capacitor, 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑠𝑠 + 𝑍𝑍𝑖𝑖1 = 703 Ξ© So, for lower frequency response at 20Hz (-3 dB) 𝐢𝐢𝑐𝑐 = 1 2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿 = 11.32 πœ‡πœ‡πœ‡πœ‡ 2. Coupling Capacitor between first and second stage amplifier: The resistance as seen by this coupling capacitor, 𝑅𝑅𝑒𝑒𝑒𝑒 = π‘π‘π‘œπ‘œ1 + 𝑍𝑍𝑖𝑖2 = 1197 Ξ© So, for lower frequency response at 20Hz (-3 dB) 𝐢𝐢𝑐𝑐 = 1 2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿 = 6.67 πœ‡πœ‡πœ‡πœ‡ But this capacitor should have at least 10 times more capacitance so as to maintain good interaction between first and second stage of amplifier even at lower frequencies. ∴ 𝐢𝐢𝑐𝑐 = 66.7πœ‡πœ‡πœ‡πœ‡ 3. Coupling Capacitor between second stage amplifier and load: The resistance as seen by this coupling capacitor, 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐿𝐿 + π‘π‘π‘œπ‘œ2 = 2 π‘˜π‘˜Ξ© So, for lower frequency response at 20Hz (-3 dB) 𝐢𝐢𝑐𝑐 = 1 2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐿𝐿 = 4 πœ‡πœ‡πœ‡πœ‡ 50Ξ© Rb Cc 653Ξ© Zi1 500Ξ© Zo1 Cc 697Ξ© Zi2 1kΞ© Zo2 Cc 1kΞ© RL
  • 11. High Frequency Cutoff The amplifier has higher cutoff frequency in the range of MHz. But we need an upper cutoff near 20kHz. So we apply a RC lowpass filter at the output. The resistance seen by this capacitor, 𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐿𝐿 βˆ₯ π‘π‘π‘œπ‘œ2 = 500 Ξ© So, for higher frequency response at 20kHz (-3 dB) 𝐢𝐢 = 1 2πœ‹πœ‹π‘…π‘…π‘’π‘’π‘’π‘’ 𝑓𝑓𝐻𝐻 = 16 𝑛𝑛𝑛𝑛 So, we choose a capacitor of capacitance 𝐢𝐢 = 10 𝑛𝑛𝑛𝑛 1kΞ© Zo2 C 1kΞ© RL
  • 13. Observations: Keeping the input amplitude (𝑉𝑉𝑠𝑠) small enough to get undistorted output amplitude (π‘‰π‘‰π‘œπ‘œ ) up to Β± 1 V, i.e. operating in small signal mode. Sr. No. Frequency 𝑨𝑨𝒗𝒗 𝟏𝟏 𝑨𝑨𝒗𝒗𝒔𝒔 1. 1 Hz 1.940338 5.648164 2. 2 Hz 3.852225 22.23175 3. 4 Hz 7.118051 79.7995 4. 8 Hz 12.465 253.5564 5. 10 Hz 14.5787 350.3958 6. 20 Hz 20.32947 695.9518 7. 40 Hz 23.49171 933.8613 8. 80 Hz 24.59059 1023.351 9. 100 Hz 24.7394 1035.71 10. 200 Hz 24.93458 1051.992 11. 400 Hz 24.98449 1056.122 12. 800 Hz 24.99721 1056.983 13. 1 kHz 24.99887 1056.961 14. 2 kHz 25.00171 1055.901 15. 4 kHz 25.0055 1051.1 16. 8 kHz 25.01816 1032.469 17. 10 kHz 25.02737 1018.579 18. 20 kHz 25.08669 923.7349 19. 40 kHz 25.19986 707.0369 20. 80 kHz 25.29784 434.4106 21. 100 kHz 25.3163 356.3207 22. 1 MHz 25.02633 37.32845  Midband Amplification: 1018.579 o First Stage: 25.02737 o Second stage: 40.69860  Cutoff frequency o Lower: 20Hz o Higher: 40kHz
  • 14.
  • 15. Result: The two stage CE amplifier was successfully built and demonstrated to possess the given amplification and bandwidth. Comments: A recommended output swing of Β±1 𝑉𝑉 is needed. Since our amplifier has a source to output gain of 1000, the signal source swing should be Β±1 π‘šπ‘šπ‘šπ‘š. But the function generator available could not generate signal of such low swing. So, we were forced to use a voltage divider at the input. Since the signal source was believed to have a resistance of 50 Ω, we must design the voltage divider in such a way, so that source resistance still appears to be 50 Ω to the amplifier. We choose 𝑅𝑅𝑏𝑏 = 50 Ξ© Now, voltage divider constraint gives 𝑅𝑅𝑏𝑏 π‘…π‘…π‘Žπ‘Ž + 𝑅𝑅𝑠𝑠𝑠𝑠 𝑠𝑠 + 𝑅𝑅𝑏𝑏 Γ— 𝑉𝑉𝑠𝑠 = 1 π‘šπ‘šπ‘šπ‘š Choose π‘…π‘…π‘Žπ‘Ž = 4.7 π‘˜π‘˜Ξ©, this gives, 50 50 + 50 + 4700 Γ— 𝑉𝑉𝑠𝑠 = 1 π‘šπ‘šπ‘šπ‘š 𝑉𝑉𝑠𝑠 = 96 π‘šπ‘šπ‘šπ‘š The available function generator can easily give signals with a swing of Β±96 π‘šπ‘šπ‘šπ‘š. The source impedance as seen by the amplifier is then 𝑅𝑅𝑠𝑠 = 𝑅𝑅𝑏𝑏 βˆ₯ οΏ½π‘…π‘…π‘Žπ‘Ž + 𝑅𝑅𝑠𝑠𝑠𝑠 𝑠𝑠 οΏ½ = 49.5 Ξ© as required. 96mVpk 1kHz 0Β° Vs 50Ξ© Rs 50Ξ© Rb 4.7kΞ© Ra