SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
Dynamic Vibration Absorber
Dynamic Absorber
F(t)
x1(t)
m1
k1 k2
m2
x2(t)
Primary
system
Secondary
system
Figure: Absorber
www.mechanical-engineering.name
Dynamic Vibration Absorber
Differential equations of motion
From free body diagrams of the masses m1 and m2
m1¨x1 = −k1x1 − k2 (x1 − x2) + Feqsinωt
m2¨x2 = k2 (x1 − x2)
. (1)
Rearranging the Eq.(1)
m1¨x1 + (k1 + k2) x1 − k2x2 = Feqsinωt
m2¨x2 + k2x2 − k2x1 = 0
. (2)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Formulas
For steady state solution, assume solution x1 = X1 sin ωt and
x2 = X2 sin ωt. Substituting for x1 and x2 and their second time
derivatives in Eq.(2), we obtain
k1 + k2 − mω2 X1 − k2X2 sin ωt = Feqsinωt
−k2X1 + k2 − m2ω2 X2 sin ωt = 0 .
(3)
Collecting out common terms and also because sin ωt = 0 at all
time, we get
k1 + k2 − mω2 X1 − k2X2 = Feq
−k2X1 + k2 − m2ω2 X2 = 0 .
(4)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Cramer’s rule
Solving for X1 and X2 using Cramer’s rule, we obtain
X1 =
Feq −k2
0 k2 − m2ω2
∆ω
, X2 =
k1 + k2 − mω2 Feq
−k2 0
∆ω
(5)
The frequency equation is given by
∆ω =
k1 + k2 − mω2 −k2
−k2 k2 − m2ω2 (6)
which semplifies to
∆ω = 0 ⇒ m1m2ω4
− [(k1 + k2) m2 + k2m1] ω2
+ k1k2 = 0 (7)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Frequency equation
Dividing out Eq. (7) by k1k2
m1m2
k1k2
ω4
−
k1 + k2
k1
m2
k2
+
m1
k1
ω2
+ 1 = 0 . (8)
In Eq.(8) the natural frequency of the
main system is ω11 = k1/m1;
auxiliary system is ω22 = k2/m2.
The Eq.(8) may be rewritten as
ω
ω11
2
ω
ω22
2
− 1 +
k2
k1
ω
ω22
2
+
ω
ω11
2
+ 1 = 0 .
(9)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Dynamic Absorber
When the main system and auxiliary system have same natural
frequency ω11 = ω22, let
ω
ω11
= r
ω
ω22
= r . (10)
Letting m2/m1 = µ, Eq.(10) reduces to
r4
− (2 + µ) r2
+ 1 = 0 . (11)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Dynamic Absorber
The new resonance frequencies of tuned system depend on
the mass ratio µ. Let us assume that the resonance occurs at
r ≡ r1 =
ω
ω11
r ≡ r2 =
ω
ω22
. (12)
where the two roots are given by
r2
1 , r2
2 =
2 + µ
2
±
1
2
(2 + µ)2
− 4 . (13)
or
r2
1 , r2
2 = 1 +
µ
2
± 1 +
µ
2
2
− 1 . (14)
When ω11 = ω22, the natural frequencies are given by
ω
ω11
2
= 1 +
µ
2
± 1 +
µ
2
2
− 1 . (15)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Tuned condition
Solving the determinants in Eq.(5) we have



X1 =
Feq k2 − m2ω2
∆ω
=
Feq k2 − m2ω2
k1 + k2 − m1ω2 k2 − m2ω2 − k2
2
X2 =
Feqk2
∆ω
=
Feqk2
k1 + k2 − m1ω2 k2 − m2ω2 − k2
2
.
(16)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Tuned condition
Under tuned condition, substituting k2 = m2ω2, the Eq.(16)
gives



X1 =
Feq · 0
k1 + k2 − m1ω2 · 0 − k2
2
= 0
X2 =
Feqk2
k1 + k2 − m1ω2 · 0 − k2
2
= −
Feq
k2
.
(17)
X2 = −
Feq
k2
⇒ −X2k2 = Feq . (18)
Fspring = Fexternal
www.mechanical-engineering.name
Dynamic Vibration Absorber
Application
A machine runs at 5500 rpm. Its forcing frequency is very
near to its natural frequency.
If the nearest frequency of the machine is to be at least 20
per cent from the forced frequency, design a suitable
vibration absorber for the sistem.
Assume the mass of the machine as m1 = 30 kg.
www.mechanical-engineering.name
Dynamic Vibration Absorber
Application
The natural frequency of the system at 478 rpm is
ωn = 2π
478
60
≈ 50 rad/s . (19)
For 20 per cent variation, we obtain
r1 =
ω
ωn
= 0.8 r2 =
ω
ωn
= 1.2 . (20)
From Eq. (11) we have
0.84
− (2 + µ) 0.82
+ 1 = 0 ⇒ µ = 0.202 . (21)
Mass of auxiliary system is
m2 = µ ⇒ m1 = 0.202 × 30 = 6.06 kg . (22)
Stiffness values
k1 =ω2
n × m1 = 502
× 30 = 75000 N/m
⇒ k2 = ω2
n × m2 = 502
× 6.06 = 15150 N/m . (23)
www.mechanical-engineering.name
Dynamic Vibration Absorber
Matlab: Main
tspan = 0 : 0.05 : 10;
y0 = [0; 0; 0; 0];
[t, y] = ode23( Dabsorber , tspan, y0);
subplot(211);
plot(t, y(:, 1));
xlabel( t(Solid line : x1(t)Dotted line : xd1(t)) )
holdon;
plot(t, y(:, 2), −− );
subplot(212);
plot(t, y(:, 3));
xlabel( t(Solid line : x2(t)Dotted line : xd2(t)) );
hold on;
plot(t, y(:, 4), −− );
www.mechanical-engineering.name
Dynamic Vibration Absorber
Matlab: Function
function f = Dabsorber(t, y)
m1 = 30;
m2 = 0.202 ∗ m1;
omegan = 50;
k1 = omegan ∗ omegan ∗ m1;
k2 = omegan ∗ omegan ∗ m2;
omega = 15 ∗ 2 ∗ pi;
Feq = 10;
F = Feq ∗ sin(omega ∗ t);
f = zeros(4, 1);
f(1) = y(2);
f(2) = F/m1 − ((k1 + k2)/m1) ∗ y(1) + (k2/m1) ∗ y(3);
f(3) = y(4);
f(4) = (k2/m2) ∗ y(1) − (k2/m2) ∗ y(3);
www.mechanical-engineering.name
Dynamic Vibration Absorber
Matlab: FRF
clear all
clc
m1 = 30;
m2 = 0.202 ∗ m1;
omegan = 50;
k1 = omegan ∗ omegan ∗ m1;
k2 = omegan ∗ omegan ∗ m2;
Feq = 10;
k = 31;
X1 = zeros(k, 1);
X2 = zeros(k, 1);
omega = zeros(k, 1);
www.mechanical-engineering.name
Dynamic Vibration Absorber
Matlab: FRF
for m = 1 : k
omega(m) = m;
Deltaomega = m1 ∗ m2 ∗ omega(m)4 − ((k1 + k2) ∗ m2 + k2 ∗
m1) ∗ omega(m)2 + k1 ∗ k2;
X1(m) = Feq ∗ (k2 − m2 ∗ omega(m)2)/Deltaomega;
X2(m) = Feq ∗ k2/Deltaomega;
end
plot(omega, X1, omega, X2); legend( X1, X2); grid;
xlabel( Frequency ); ylabel( Amplityde );
title( Frequency Response Functions );
www.mechanical-engineering.name
Dynamic Vibration Absorber
Time history
0 2 4 6 8 10
−10
−5
0
5
10
t(Solidline: x1(t) Dottedline: xd1(t))
0 2 4 6 8 10
−100
−50
0
50
100
t(Solidline: x2(t) Dottedline: xd2(t))
Figure: Time history
www.mechanical-engineering.name
Dynamic Vibration Absorber
Time history
0 2 4 6 8 10
−2
−1.5
−1
−0.5
0
0.5
1
1.5
2
primary system
secondary system
Figure: Time history
www.mechanical-engineering.name
Dynamic Vibration Absorber
FRF
0 50 100 150 200
−5
0
5
10
x 10
−3
Frequency [rad/s]
Amplityde
Frequency Response Functions
X1
X2
Figure: Frequency Response Function
www.mechanical-engineering.name

Weitere ähnliche Inhalte

Was ist angesagt?

Cad lecture-3
Cad lecture-3Cad lecture-3
Cad lecture-3
27273737
 
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Jay Patel
 
Design of transmission elements
Design of transmission elementsDesign of transmission elements
Design of transmission elements
shone john
 

Was ist angesagt? (20)

Mechatronics
MechatronicsMechatronics
Mechatronics
 
Fundamentals of vibration
Fundamentals of vibrationFundamentals of vibration
Fundamentals of vibration
 
Cnc technology
Cnc technology Cnc technology
Cnc technology
 
Micromachining
Micromachining Micromachining
Micromachining
 
Lec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdfLec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdf
 
Mechanical vibration note
Mechanical vibration note Mechanical vibration note
Mechanical vibration note
 
Static and Dynamic Balancing of Rotating Mass
Static and Dynamic Balancing of Rotating MassStatic and Dynamic Balancing of Rotating Mass
Static and Dynamic Balancing of Rotating Mass
 
report on electromagnetic breaking system
report on electromagnetic breaking systemreport on electromagnetic breaking system
report on electromagnetic breaking system
 
1.7 force analysis in spur gear
1.7 force analysis in spur gear1.7 force analysis in spur gear
1.7 force analysis in spur gear
 
Hydraulic and Pneumatic Drive System
Hydraulic and Pneumatic Drive SystemHydraulic and Pneumatic Drive System
Hydraulic and Pneumatic Drive System
 
Cad lecture-3
Cad lecture-3Cad lecture-3
Cad lecture-3
 
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
 
Static and dynamic force analysis
Static and dynamic force analysisStatic and dynamic force analysis
Static and dynamic force analysis
 
Electromagnetic suspension system in two wheelers
Electromagnetic suspension system in two wheelersElectromagnetic suspension system in two wheelers
Electromagnetic suspension system in two wheelers
 
General steps of finite element analysis
General steps of finite element analysisGeneral steps of finite element analysis
General steps of finite element analysis
 
Edm new
Edm newEdm new
Edm new
 
Design of Machine Elements By V B Bhandari 3Ed.pdf
Design of Machine Elements By V B Bhandari 3Ed.pdfDesign of Machine Elements By V B Bhandari 3Ed.pdf
Design of Machine Elements By V B Bhandari 3Ed.pdf
 
Detection of Gear Fault Using Vibration Analysis
Detection of Gear Fault Using Vibration AnalysisDetection of Gear Fault Using Vibration Analysis
Detection of Gear Fault Using Vibration Analysis
 
Modeling of mechanical_systems
Modeling of mechanical_systemsModeling of mechanical_systems
Modeling of mechanical_systems
 
Design of transmission elements
Design of transmission elementsDesign of transmission elements
Design of transmission elements
 

Ähnlich wie Absorber

L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
Sam Alalimi
 
VIBRATIONS AND WAVES TUTORIAL#2
VIBRATIONS AND WAVES TUTORIAL#2VIBRATIONS AND WAVES TUTORIAL#2
VIBRATIONS AND WAVES TUTORIAL#2
Farhan Ab Rahman
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
Abdul Rahman
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
Springer
 

Ähnlich wie Absorber (20)

Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
 
Principles of soil dynamics 3rd edition das solutions manual
Principles of soil dynamics 3rd edition das solutions manualPrinciples of soil dynamics 3rd edition das solutions manual
Principles of soil dynamics 3rd edition das solutions manual
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Ch35 ssm
Ch35 ssmCh35 ssm
Ch35 ssm
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptx
 
Principles of soil dynamics 3rd edition das solutions manual
Principles of soil dynamics 3rd edition das solutions manualPrinciples of soil dynamics 3rd edition das solutions manual
Principles of soil dynamics 3rd edition das solutions manual
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
Harmonically+excited+vibration
Harmonically+excited+vibrationHarmonically+excited+vibration
Harmonically+excited+vibration
 
Unit23
Unit23Unit23
Unit23
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdf
 
two degree of freddom system
two degree of freddom systemtwo degree of freddom system
two degree of freddom system
 
VIBRATIONS AND WAVES TUTORIAL#2
VIBRATIONS AND WAVES TUTORIAL#2VIBRATIONS AND WAVES TUTORIAL#2
VIBRATIONS AND WAVES TUTORIAL#2
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptx
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Calculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channelCalculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channel
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
 

Kürzlich hochgeladen

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Kürzlich hochgeladen (20)

VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 

Absorber

  • 1. Dynamic Vibration Absorber Dynamic Absorber F(t) x1(t) m1 k1 k2 m2 x2(t) Primary system Secondary system Figure: Absorber www.mechanical-engineering.name
  • 2. Dynamic Vibration Absorber Differential equations of motion From free body diagrams of the masses m1 and m2 m1¨x1 = −k1x1 − k2 (x1 − x2) + Feqsinωt m2¨x2 = k2 (x1 − x2) . (1) Rearranging the Eq.(1) m1¨x1 + (k1 + k2) x1 − k2x2 = Feqsinωt m2¨x2 + k2x2 − k2x1 = 0 . (2) www.mechanical-engineering.name
  • 3. Dynamic Vibration Absorber Formulas For steady state solution, assume solution x1 = X1 sin ωt and x2 = X2 sin ωt. Substituting for x1 and x2 and their second time derivatives in Eq.(2), we obtain k1 + k2 − mω2 X1 − k2X2 sin ωt = Feqsinωt −k2X1 + k2 − m2ω2 X2 sin ωt = 0 . (3) Collecting out common terms and also because sin ωt = 0 at all time, we get k1 + k2 − mω2 X1 − k2X2 = Feq −k2X1 + k2 − m2ω2 X2 = 0 . (4) www.mechanical-engineering.name
  • 4. Dynamic Vibration Absorber Cramer’s rule Solving for X1 and X2 using Cramer’s rule, we obtain X1 = Feq −k2 0 k2 − m2ω2 ∆ω , X2 = k1 + k2 − mω2 Feq −k2 0 ∆ω (5) The frequency equation is given by ∆ω = k1 + k2 − mω2 −k2 −k2 k2 − m2ω2 (6) which semplifies to ∆ω = 0 ⇒ m1m2ω4 − [(k1 + k2) m2 + k2m1] ω2 + k1k2 = 0 (7) www.mechanical-engineering.name
  • 5. Dynamic Vibration Absorber Frequency equation Dividing out Eq. (7) by k1k2 m1m2 k1k2 ω4 − k1 + k2 k1 m2 k2 + m1 k1 ω2 + 1 = 0 . (8) In Eq.(8) the natural frequency of the main system is ω11 = k1/m1; auxiliary system is ω22 = k2/m2. The Eq.(8) may be rewritten as ω ω11 2 ω ω22 2 − 1 + k2 k1 ω ω22 2 + ω ω11 2 + 1 = 0 . (9) www.mechanical-engineering.name
  • 6. Dynamic Vibration Absorber Dynamic Absorber When the main system and auxiliary system have same natural frequency ω11 = ω22, let ω ω11 = r ω ω22 = r . (10) Letting m2/m1 = µ, Eq.(10) reduces to r4 − (2 + µ) r2 + 1 = 0 . (11) www.mechanical-engineering.name
  • 7. Dynamic Vibration Absorber Dynamic Absorber The new resonance frequencies of tuned system depend on the mass ratio µ. Let us assume that the resonance occurs at r ≡ r1 = ω ω11 r ≡ r2 = ω ω22 . (12) where the two roots are given by r2 1 , r2 2 = 2 + µ 2 ± 1 2 (2 + µ)2 − 4 . (13) or r2 1 , r2 2 = 1 + µ 2 ± 1 + µ 2 2 − 1 . (14) When ω11 = ω22, the natural frequencies are given by ω ω11 2 = 1 + µ 2 ± 1 + µ 2 2 − 1 . (15) www.mechanical-engineering.name
  • 8. Dynamic Vibration Absorber Tuned condition Solving the determinants in Eq.(5) we have    X1 = Feq k2 − m2ω2 ∆ω = Feq k2 − m2ω2 k1 + k2 − m1ω2 k2 − m2ω2 − k2 2 X2 = Feqk2 ∆ω = Feqk2 k1 + k2 − m1ω2 k2 − m2ω2 − k2 2 . (16) www.mechanical-engineering.name
  • 9. Dynamic Vibration Absorber Tuned condition Under tuned condition, substituting k2 = m2ω2, the Eq.(16) gives    X1 = Feq · 0 k1 + k2 − m1ω2 · 0 − k2 2 = 0 X2 = Feqk2 k1 + k2 − m1ω2 · 0 − k2 2 = − Feq k2 . (17) X2 = − Feq k2 ⇒ −X2k2 = Feq . (18) Fspring = Fexternal www.mechanical-engineering.name
  • 10. Dynamic Vibration Absorber Application A machine runs at 5500 rpm. Its forcing frequency is very near to its natural frequency. If the nearest frequency of the machine is to be at least 20 per cent from the forced frequency, design a suitable vibration absorber for the sistem. Assume the mass of the machine as m1 = 30 kg. www.mechanical-engineering.name
  • 11. Dynamic Vibration Absorber Application The natural frequency of the system at 478 rpm is ωn = 2π 478 60 ≈ 50 rad/s . (19) For 20 per cent variation, we obtain r1 = ω ωn = 0.8 r2 = ω ωn = 1.2 . (20) From Eq. (11) we have 0.84 − (2 + µ) 0.82 + 1 = 0 ⇒ µ = 0.202 . (21) Mass of auxiliary system is m2 = µ ⇒ m1 = 0.202 × 30 = 6.06 kg . (22) Stiffness values k1 =ω2 n × m1 = 502 × 30 = 75000 N/m ⇒ k2 = ω2 n × m2 = 502 × 6.06 = 15150 N/m . (23) www.mechanical-engineering.name
  • 12. Dynamic Vibration Absorber Matlab: Main tspan = 0 : 0.05 : 10; y0 = [0; 0; 0; 0]; [t, y] = ode23( Dabsorber , tspan, y0); subplot(211); plot(t, y(:, 1)); xlabel( t(Solid line : x1(t)Dotted line : xd1(t)) ) holdon; plot(t, y(:, 2), −− ); subplot(212); plot(t, y(:, 3)); xlabel( t(Solid line : x2(t)Dotted line : xd2(t)) ); hold on; plot(t, y(:, 4), −− ); www.mechanical-engineering.name
  • 13. Dynamic Vibration Absorber Matlab: Function function f = Dabsorber(t, y) m1 = 30; m2 = 0.202 ∗ m1; omegan = 50; k1 = omegan ∗ omegan ∗ m1; k2 = omegan ∗ omegan ∗ m2; omega = 15 ∗ 2 ∗ pi; Feq = 10; F = Feq ∗ sin(omega ∗ t); f = zeros(4, 1); f(1) = y(2); f(2) = F/m1 − ((k1 + k2)/m1) ∗ y(1) + (k2/m1) ∗ y(3); f(3) = y(4); f(4) = (k2/m2) ∗ y(1) − (k2/m2) ∗ y(3); www.mechanical-engineering.name
  • 14. Dynamic Vibration Absorber Matlab: FRF clear all clc m1 = 30; m2 = 0.202 ∗ m1; omegan = 50; k1 = omegan ∗ omegan ∗ m1; k2 = omegan ∗ omegan ∗ m2; Feq = 10; k = 31; X1 = zeros(k, 1); X2 = zeros(k, 1); omega = zeros(k, 1); www.mechanical-engineering.name
  • 15. Dynamic Vibration Absorber Matlab: FRF for m = 1 : k omega(m) = m; Deltaomega = m1 ∗ m2 ∗ omega(m)4 − ((k1 + k2) ∗ m2 + k2 ∗ m1) ∗ omega(m)2 + k1 ∗ k2; X1(m) = Feq ∗ (k2 − m2 ∗ omega(m)2)/Deltaomega; X2(m) = Feq ∗ k2/Deltaomega; end plot(omega, X1, omega, X2); legend( X1, X2); grid; xlabel( Frequency ); ylabel( Amplityde ); title( Frequency Response Functions ); www.mechanical-engineering.name
  • 16. Dynamic Vibration Absorber Time history 0 2 4 6 8 10 −10 −5 0 5 10 t(Solidline: x1(t) Dottedline: xd1(t)) 0 2 4 6 8 10 −100 −50 0 50 100 t(Solidline: x2(t) Dottedline: xd2(t)) Figure: Time history www.mechanical-engineering.name
  • 17. Dynamic Vibration Absorber Time history 0 2 4 6 8 10 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 primary system secondary system Figure: Time history www.mechanical-engineering.name
  • 18. Dynamic Vibration Absorber FRF 0 50 100 150 200 −5 0 5 10 x 10 −3 Frequency [rad/s] Amplityde Frequency Response Functions X1 X2 Figure: Frequency Response Function www.mechanical-engineering.name