SlideShare ist ein Scribd-Unternehmen logo
1 von 127
Downloaden Sie, um offline zu lesen
MICROWAVE ENGINEERING 
LECTURE NOTE 
1 
thenhan 12/16/2011
2 
PHẠẠM VI CỦỦA LĨĨNH VỰỰC SIÊU 
CAO TẦẦN 
z TẦN SỐ THÔNG THƯỜNG TỪ 1GHz 
TRỞ LÊN 
BẢNG PHÂN ĐỊNH TẦN SỐ 
thenhan 12/16/2011
3 
thenhan 12/16/2011
4 
thenhan 12/16/2011
5 
thenhan 12/16/2011
6 
ĐĐƯƯỜỜNG DÂY TRUYỀỀN SÓNG 
. ĐIỆN ÁP VÀ DÒNG ĐIỆN PHỤ THUỘC CẢ 
KHÔNG GIAN Ở VỊ TRÍ z VÀ THỜI GIAN TẠI 
THỜI ĐIỂM t, 
thenhan 12/16/2011
Module 2: Transmission Lines 
Topic 1: Theory 
7 
OGI EE564 
Howard Heck 
thenhan 12/16/2011
8 
Where Are We? 1. Introduction 
2. Transmission Line Basics 
1. Transmission Line Theory 
2. Basic I/O Circuits 
3. Reflections 
4. Parasitic Discontinuities 
5. Modeling, Simulation, & Spice 
6. Measurement: Basic Equipment 
7. Measurement: Time Domain Reflectometry 
3. Analysis Tools 
4. Metrics & Methodology 
5. Advanced Transmission Lines 
thenhan 12/16/2011
9 
CzoPnrotpeangattsion Velocity 
z Characteristic Impedance 
z Visualizing Transmission Line Behavior 
z General Circuit Model 
z Frequency Dependence 
z Lossless Transmission Lines 
z Homogeneous and Non-homogeneous Lines 
z Impedance Formulae for Transmission Line 
Structures 
z Summary 
z References 
thenhan 12/16/2011
y 
I+ d I dz 
dz 
V+ d V dz 
z 
x 
[2.1.1] 
[2.1.2] 
I 
V 
C V 
I 
∂ 
∂ 
= − 
Ldz 
Cdz 
dz 
dz 
V, I 
the Telegraphist’s Equations [2.1.3a] 
[2.1.3b] 
10 
Wave propagates in z Propagation direction 
Velocity 
z Physical example: 
9 Circuit: L = [nH/cm] 
C = [pF/cm] 
V 
dz ( Ldz ) 
I 
z 
∂ 
t 
∂ 
∂ 
9 Total voltage change across = − 
∂ 
Ldz (use Δ V L d I ): 
= − dt 
9 Total current change across 
ΔI = −C dV 
Cdz (use d t ): 
I 
∂ 
dz ( Cdz ) 
V 
z 
t 
∂ 
∂ 
∂ 
= − 
9 Simplify [2.1.1] & [2.1.2] to get 
t 
∂ 
L I 
∂ 
t 
z 
∂ 
V 
∂ 
z 
∂ 
∂ 
= − 
thenhan 12/16/2011
2 2 
C V 
I 
∂ 
∂ 
9 Differentiate [2.1.3a] by t: 2 [2.1.4] 
t 
z t 
∂ 
= − 
∂ ∂ 
∂ 2 
L I 
2 
V 
∂ 
9 Differentiate [2.1.3b] by z: [2.1.5] 
2 
t z 
z 
∂ ∂ 
= − 
∂ 
2 
2 2 
1 
V 
LC V 
V 
∂ 
∂ 
∂ 
9 Equate [2.1.4] & [2.1.5]: [2.1.6] 2 
[2.1.7] 
[2.1.8] 
11 
Propagation Velocity (2) 
∂ 
9 Equation [2.1.6] is a form of the wave equation. The solution to 
[2.1.6] contains forward and backward traveling wave 
components, which travel with a phase velocity. 
9 Phase velocity definition: v 
2 
z 
= 
≡ 1 
LC 
9 Equation in terms of current: 
t 
∂ 
I 
2 
2 
= 
2 2 
t 
∂ 
ν 
2 1 
LC I 
= 
2 2 
2 
I 
2 
t 
t 
z 
∂ 
∂ 
∂ 
∂ 
= 
∂ 
∂ 
ν 
An alternate treatment of propagation velocity is contained in the appendix. 
thenhan 12/16/2011
dz = segment length 
C = capacitance per segment 
L = inductance per segment 
12 
Z1 Z2 Z3 
Characteristic Impedance 
b c 
Ldz 
(Lossless) 
V1 V2 V3 Cdx 
to ∞ 
Ldz 
Cdz 
Ldz 
Cdz 
d e f 
dz dz 
a 
dz 
z The input impedance (Z1) is the impedance 
of the first inductor (Ldz) in series with the 
parallel combination of the impedance of 
the capacitor (Cdz) and Z2. 
[2.1.9] 
( ) 
Z j Cdz 
Z j Ldz Z j ω 
Cdz 
ω 
= ω 
+ 
1/ 
2 
1/ 
2 
1 + 
( 1/ ) ( 1/ ) (1/ ) 0 1 2 2 2 Z Z + jωlC − jωlL Z + jωlC − Z jωlC = 
thenhan 12/16/2011
13 
Characteristic Impedance 
(Lossless) 
z Assuming a uniform line, the input 
impedance should be the same when 
looking into node pairs a-d, b-e, c-f, and so 
fo( rth1./ So, Z) 2 = Z(1= 1Z/0. ) (1/ ) 0 0 0 0 0 Z Z + jωCdz − jωlLdz Z + jωCdz − Z jωCdz = [2.1.10] 
ω 
Z j LZ dz j Ldz 
j Cdz 
Z 
2 
0 
2 0 
0 0 
+ − − − 0 
= = − 0 
− j Cdz 
ω 
j LZ dz Ldz 
Cdz 
Z Z 
j Cdz 
ω 
ω 
ω ω 
ω 
ω 
0 
Z 2 
− jωLZ L 0 0 
dz − = 
0 [2.1.11] 
C 
9 Allow dz to become very small, causing the frequency 
dependent term to drop out: 
Z L [2.1.12] 
2 0 
0 − = 
C 
9 Solve for Z0: 
Z = L 0 
C 
[2.1.13] 
thenhan 12/16/2011
14 
Visualizing Transmission Line 
h 
Behavior 
f 
z Water flow 
– Potential = Wave 
height [m] 
– Flow = Flow rate 
[liter/sec] 
I 
+++++++ 
- - - - - - - 
I 
V 
9 Transmission Line 
¾ Potential = Voltage [V] 
¾ Flow = Current [A] = 
[C/sec] 
9 Just as the wave front of the water flows in the pipe, the 
voltage propagates in the transmission line. The same 
holds true for current. 
¾ Voltage and current propagate as waves in the transmission line. 
thenhan 12/16/2011
15 
Visualizing Transmission Line 
Behavior #2 
z Extending the analogy 
– The diameter of the pipe relates the flow rate 
and height of the water. This is analogous to 
electrical impedance. 
– Ohm’s law and the characteristic impedance 
define the relationship between current and 
potential in the transmission line. 
z Effects of impedance discontinuities 
– What happens when the water encounters a 
ledge or a barrier? 
– What happens to the current and voltage 
waves when the impedance of the 
transmission line changes? 
thenhan 12/16/2011
16 
General Transmission Line 
Model (No Coupling) 
z Transmission line parameters are 
distributed (e.g. capacitance per unit 
length). 
R L 
R L 
R L 
z A G C 
transmission line can G be C 
modeled G C 
using 
a network of resistances, inductances, and 
capacitances, where the distributed 
parameters are broken into small discrete 
elements. 
thenhan 12/16/2011
ω 
ω [2.1.14] 
Propagation Constant γ = (R + jωL)(G + jωC) =α + jβ [2.1.15] 
α = attenuation constant = rate of exponential attenuation 
β = phase constant = amount of phase shift per unit length 
ν = Phase Velocity p [2.1.16] 
In general, α and β are frequency dependent. 
17 
General Transmission Line 
Model #2 
Symb Units 
ol 
Parameters Parameter 
Conductor R Ω•cm-1 
Resistance 
Self Inductance L nH•cm-1 
Total Capacitance C pF•cm-1 
Ω-1•cm - 
1 Dielectric G 
Conductance 
Characteristic Impedance Z R j L 
+ 
+ 
0 G j C = 
ω 
β 
thenhan 12/16/2011
18 
Frequency Dependence 
From [2.1.14] and [2.1.15] note that: 
z Z0 and γ depend on the frequency content 
of the signal. 
z Frequency dependence causes attenuation 
and edge rate degradation. 
Attenuation 
Output signal from lossy 
transmission line 
Output signal from 
lossless transmission line 
Edge rate degradation 
Signal at driven end of 
transmission line 
thenhan 12/16/2011
19 
FrzeRqaunede nGncarye sDomeeptiemnesd neegnlicgiebl e#, 2 
particularly at low frequencies 
– Simplifies to the lossless case: no attenuation 
& no dispersion 
z In modules 2 and 3, we will concentrate on 
lossless transmission lines. 
z Modules 5 and 6 will deal with lossy lines. 
thenhan 12/16/2011
H E 
20 
Lossless Transmission Lines 
Quasi-TEM Assumption 
z The electric and magnetic fields are 
perpendicular to the propagation velocity 
in the transverse planes. 
x 
y z 
thenhan 12/16/2011
21 
z Lossless transmission lines are characterized 
by the following two parameters: 
Lossless Line Parameters 
Z = L 0 
C 
v 
= 1 
LC 
Characteristic Impedance 
Propagation Velocity 
z Lossless line characteristics are frequency 
independent. 
z As noted before, Z0 defines the relationship 
between voltage and current for the traveling 
waves. The units are ohms [Ω]. 
z υ defines the propagation velocity of the 
waves. The units are cm/ns. 
thenhan 12/16/2011 
S ti th ti dl 
[2.1.17] 
[2.1.18]
22 
Lossless Line Equivalent Circuit 
L 
L 
L 
z The transmission line equivalent circuit 
shown C 
on the C 
left is C 
often represented by 
the coaxial cable symbol. 
Z0Z, 0ν, ,v l,e lnegntghth 
thenhan 12/16/2011
[2.1.19] 
23 
Homogeneous Media 
z A homogeneous dielectric medium is 
uniform in all directions. 
– All field v 
= 1 lines = are 1 = 0 = contained 30 
within the 
dielectric. 
LC 
c cm / 
ns 
εμ ε μ ε 
r r r 
0 ε ε ε r = Dielectric Permittivity 
εNote: only r 
r 
εz For a ε 0 = 8.854 x transmission 10− 14 F 
line in a Permittivity of free homogeneous 
space 
medium, μ the cm 
8 0 =1.257 x 10− H 
propagation velocity depends 
only on material cm 
properties: 
Magnetic Permeability 
0 μ ≅ μ Permeability of free space 
εr 
is the relative permittivity or dielectric constant. 
is required to 
calculate νν. 
thenhan 12/16/2011
24 
Non-Homogeneous Media 
z A non-homogenous medium contains 
multiple materials with different dielectric 
constants. 
z For a non-homogeneous medium, field 
lines cut v 
= 1 ≠ 1 
across LC 
the εμ 
boundaries between 
dielectric materials. 
z In this case the propagation velocity 
depends on the dielectric constants and the 
proportions of the materials. Equation 
[2.1.19] does not hold: 
9 In practice, an effective dielectric constant, εr,eff is 
often used, which represents an average dielectric 
constant. 
thenhan 12/16/2011
25 
Some Typical Transmission 
Line Structures 
And useful formulas for Z0 
thenhan 12/16/2011
26 
r 
R 
εr 
Trởở kháng cáp đđồồng trụục 
εr = 2 
εr = 2.5 
εr = 3 
2 3 4 5 6 7 8 9 10 
R/r 
140 
120 
100 
80 
60 
40 
20 
⎞ 
Z = 1 
ln ⎛ 
R 
0 ε 
2πε 
⎞ 
⎛ 
R 
⎞ 
μ 
L = ln ⎛ 
R 
thenhan 12/16/2011 
Z0 [ Ω] 
εr 
= 1 
εrr= 4 ε = 3.5 
, lZe0n, gυth, vle, n0gZth 
⎟⎠ 
⎜⎝ 
r 
2 
μ 
π 
[2.1.20] 
⎟⎠ 
⎜⎝ 
= 
r 
C 
ln 
[2.1.21] 
⎟⎠ 
⎜⎝ 
r 
2π 
[2.1.22]
⎞ 
h 
4 
60 ln 2 
( )⎟ ⎟ ⎟ 
⎠ 
w 
0.35 
0.25 
27 
Centered Stripline Impedance 
⎛ 
⎜ ⎜ ⎜ 
0 ε π 
r 0.67 0.8 
⎝ 
w + 
t 
= 
Z 
w 
t 
h1 
h2 
εr 
Source: Motorola 
application note 
AN1051. 
Valid for w 
h −t 
2 
< 
h < 
2 
t 
60 Z0 [Ω] 
55 
50 
45 
40 
35 
30 
25 
20 
15 
h2 
0.003 0.005 0.007 0.009 0.011 0.013 0.015 
thenhan 12/16/2011 
w [in] 
10 
0.070 
0.060 
0.050 
0.040 
0.030 
0.025 
0.020 
t = 0.0007” 
εr = 4.0
[2.1.24] 
[2.1.25] 
[2.1.26] 
[2.1.27] 
28 
Dual Stripline Impedance 
w 
h1 
t 
h2 
Z YZ 
⎞ 
⎛ 
Y h 
60 ln 8 1 
ε π 
⎞ 
⎛ 
Z h h 
60 ln 8 1 2 
ε π 
⎤ 
1 
h h t h t 
ln ⎡ 
1.9 2 
+ 
⎤ 
⎡ 
⎞ 
⎛ 
110 
100 
90 
80 
70 
60 
50 
40 
30 
20 
thenhan 12/16/2011 
εr 
w 
t 
h1 
Y + 
Z 
= 2 
0 
( )⎟ ⎟ ⎟ 
⎠ 
⎜ ⎜ ⎜ 
⎝ 
+ 
= 
w 
w t 
r 0.67 0.8 
( ) 
( )⎟ ⎟ ⎟ 
⎠ 
⎜ ⎜ ⎜ 
⎝ 
+ 
+ 
= 
w 
w t 
r 0.67 0.8 
( ) ( ) 
⎥⎦ 
⎢⎣ 
+ 
⎥⎦ 
⎢⎣ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ + 
− 
= 
w t 
h 
Z 
r 0.8 
4 
80 1 
1 2 1 
0 ε 
1 1. 0.5h ≤ w ≤ h 
Source: Motorola 
application note 
AN1051. 
OR 
0.003 0.005 0.007 0.009 0.011 0.013 0.015 
w [in] 
10 
Z0 [ Ω] 
0.020” 
0.018” 
0.015” 
0.012” 
0.010” 
0.008” 
0.005” 
2h1 + h2 + 2t = 0.062” 
t = 0.0007” 
εr = 4.0 
h1
29 
Surface Microstrip Impedance 
w 
t 
h 
⎞ 
Z = 1 
⎛ 
h 
0 ε 
⎞ 
Z h 
ln ⎛ 
5.98 
87 
160 
140 
120 
100 
80 
60 
40 
h 
thenhan 12/16/2011 
ε0 
εr 
[ ] Ω ⎟⎠ 
⎜⎝ 
d 
eff 
ln 4 
2 
μ 
π 
d = 0.536w+ 0.67t 
( ) 0 ε = 0.475ε + 0.67 ε eff r 
[ ] Ω ⎟⎠ 
⎜⎝ 
+ + 
= 
w t 
r 1.41 
0.8 
0 ε 
0.003 0.005 0.007 0.009 0.011 0.013 0.015 
w [in] 
20 
Z0 [Ω] 
0.025” 
0.020” 
0.015” 
0.012” 
0.009” 
0.006” 
0.004” 
t = 0.0007” 
εr 
= 4.0 
[2.1.28] 
[2.1.29] 
[2.1.30] 
[2.1.31]
[2.1.32] 
[2.1.33] 
[2.1.34] 
[2.1.35] 
30 
Embedded Microstrip 
t 
h1 
ε0 
εr 
w 
h2 
⎞ 
⎟⎠ 
Z K ln ⎛ 
5.98 
h 
⎜⎝ 
1 
w t 
0 ε 
where 60 ≤ K ≤ 65 
r 0.8 
+ + 
= 
0.805 2 
⎞ 
⎟⎠ 
Z h 
ln 5.98 
87 ⎛ 
1 
⎜⎝ 
0 ε 
[1 1.55h2 h1 ] 
r r eε ′ =ε − − 
=1.017 0.475 + 0.67 r ε 
w t 
r 0.8 
′ + + 
= 
1.41 
τ 
Or 
140 
120 
100 
80 
60 
40 
20 
0 
h1 
0.015” 
0.012” 
0.010” 
0.008” 
0.006” 
0.005” 
0.003” 
h2 - h1 = 0.002“ 
t= 0.0007” 
εr 
= 4.0 
0.003 0.005 0.007 0.009 0.011 0.013 0.015 
w [in] 
Z0 [Ω] 
thenhan 12/16/2011
31 
Summary 
z System level interconnects can often be 
treated as lossless transmission lines. 
z Transmission lines circuit elements are 
distributed. 
z Voltage and current propagate as waves in 
transmission lines. 
z Propagation velocity and characteristic 
impedance characterize the behavior of 
lossless transmission lines. 
z Coaxial cables, stripline and microstrip 
thenhan 12/16/2011
32 
References 
z S. Hall, G. Hall, and J. McCall, High Speed 
Digital System Design, John Wiley & Sons, Inc. 
(Wiley Interscience), 2000, 1st edition. 
z H. Johnson and M. Graham, High-Speed Signal 
Propagation: Advanced Black Magic, Prentice 
Hall, 2003, 1st edition, ISBN 0-13-084408-X. 
z W. Dally and J. Poulton, Digital Systems 
Engineering, Cambridge University Press, 1998. 
z R.E. Matick, Transmission Lines for Digital and 
Communication Networks, IEEE Press, 1995. 
z R. Poon, Computer Circuits Electrical Design, 
Prentice Hall 1st edition 1995 
thenhan 12/16/2011
33 
BẢẢN CHẤẤT CỦỦA QUÁ TRÌNH 
TRUYỀỀN SÓNG 
z THỰC CHẤT LÀ ĐƯỜNG DÂY 
TRUYỀN SÓNG TRUYỀN NĂNG 
LƯỢNG DƯỚI DẠNG SÓNG CAO TẦN 
z QUÁ TRÌNH TRUYỀN NÀY CÓ VẬN 
TỐC NHẤT ĐỊNH 
z ĐIỆN ÁP VÀ DÒNG ĐIỆN THAY ĐỔI 
TƯƠNG ỨNG THEO 
thenhan 12/16/2011
34 
thenhan 12/16/2011
35 
thenhan 12/16/2011
36 
v(x,t) 
thenhan 12/16/2011
37 
PHƯƯƠƠNG TRÌNH TRUYỀỀN SÓNG 
TRÊN ĐĐƯƯỜỜNG DÂY 
HỆ PHƯƠNG TRÌNH 
MAXWELL 
r 
E B 
t 
∂ 
∂ 
= − 
r 
rot 
r 
H J D 
t 
∂ 
∂ 
r r 
= + 
rot 
ρ = D r 
div 
0 div = B r 
thenhan 12/16/2011
38 
MÔ HÌNH VẬẬT LÝ 
S Z 
i(x,t) i(x + Δz,t) 
S V L Z 
+ 
- 
v(x,t) v(x + Δz,t) 
x x + Δx l 
thenhan 12/16/2011
39 
MÔ HÌNH VẬẬT LÝ 
S Z 
i(x,t) i(x + Δz,t) 
S V L Z 
+ 
- 
v(x,t) v(x + Δz,t) 
x x + Δx l 
i(x + Δz,t) 
v(x + Δz,t) 
x x + Δx 
i(x,t) 
v(x,t) 
i(x,t) i(x + Δz,t) 
v(x,t) v(x + Δz,t) 
thenhan 12/16/2011
40 
L Z 
l 
thenhan 12/16/2011
41 
i(x,t) i(x + Δz,t) 
ΔR 
RΔx ΔL 
LΔx 
GΔx 
ΔG 
v(x,t) CΔx 
v(x + Δz,t) 
ΔC 
Δx 
x x + Δx 
Rất nhỏ 
ΔR = RΔx 
ΔL = LΔx 
ΔG = GΔx 
ΔC = CΔx 
thenhan 12/16/2011
42 
i(x,t) i(x + Δz,t) 
LΔx 
GΔx CΔx 
RΔx 
v(x,t) v(x + Δz,t) 
x x + Δx 
( ) ( ) ( ) v(x x t) 
v x,t RΔx i x,t LΔx i x,t + + Δ , 
x 
∂ 
∂ 
= • + • 
( ) ( ) ( ) i(x x t) 
∂ + 
Δ 
i x,t = G Δ x • v x + Δ x,t + C Δ x • 
v x x,t + + 
Δ , 
x 
∂ 
thenhan 12/16/2011
43 
ĐĐểể tính 
v(x,t) i(x,t) 
cầần xét mộột đđoạạn nhỏỏ 
Δx 
thenhan 12/16/2011
44 
thenhan 12/16/2011
45 
ĐĐiỆỆN ÁP VÀ DÒNG ĐĐiỆỆN 
thenhan 12/16/2011
46 
TÍNH VI SAI 
Δz →0 
thenhan 12/16/2011
47 
thenhan 12/16/2011
48 
thenhan 12/16/2011
49 
thenhan 12/16/2011
50 
MIỀỀN TẦẦN SỐỐ 
thenhan 12/16/2011
LC 2 [rad /m] 
51 
HẰẰNG SỐỐ SÓNG 
π 
λ 
β =ω = 
thenhan 12/16/2011
52 
thenhan 12/16/2011
53 
i(z,t) 
I (z) 
S V L Z 
z l 
v(z,t) 
V (z) 
MÔ HÌNH MẠẠCH ĐĐƯƯỜỜNG DÂY DÀI 
S Z 
+ 
- 
0 
thenhan 12/16/2011
54 
PHƯƯƠƠNG TRÌNH TRUYỀỀN SÓNG 
TRÊN ĐĐƯƯỜỜNG DÂY 
thenhan 12/16/2011
55 
TRỞỞ KHÁNG ĐĐẶẶC TÍNH CỦỦA 
ĐĐƯƯỜỜNG DÂY 0 Z 
thenhan 12/16/2011
56 
TẢẢI TRÊN ĐĐƯƯỜỜNG DÂY 
TRUYỀỀN SÓNG 
thenhan 12/16/2011
57 
+ 
V0 
S V L Z 
+ 
- 
HỆỆ SỐỐ PHẢẢN XẠẠ 
S Z 
z 
l 
− 
V0 
Z0 ,β 
d 
thenhan 12/16/2011 
PS 
( ) + − j β d 
− j β d 
Ii z = I 0 e Ir ( z ) = I 0 
e ( ) j d 
Vi z V e = + − β 0 
( ) j d 
Vr z V e = − β 0 
− 
VL 
+|L 
V
58 
HỆỆ SỐỐ PHẢẢN XẠẠ TẠẠI TẢẢI 
0 
0 
Z Z 
L 
− 
− 
Γ ≡ = + 
L + 
Z Z 
V 
V 
L 
L 
L 
thenhan 12/16/2011
Γ d = V d = Γ • −2 β 
j d 
59 
HỆỆ SỐỐ PHẢẢN XẠẠ TẠẠI MỘỘT ĐĐiỂỂM 
TRÊN ĐĐƯƯỜỜNG DÂY 
( ) ( ) 
r e 
V ( d 
) 
L 
i 
d = l − z 
thenhan 12/16/2011
60 
HỆỆ SỐỐ PHẢẢN XẠẠ CÔNG SUẤẤT 
+ 
- 
Z0 ,β 
thenhan 12/16/2011 
S Z 
S V L Z 
z 
l 
+ 
V0 
− 
V0 
d 
Pi (z) 
Pr (z) 
Pi (l) 
Pr (l) 
PL 
PS 
Pi (0) 
Pr (0)
61 
HỆỆ SỐỐ PHẢẢN XẠẠ CÔNG SUẤẤT 
P 
i 
2 ( )2 d 
Γ = r = Γ 
P 
thenhan 12/16/2011
62 
CÁC TRƯƯỜỜNG HỢỢP ĐĐẶẶC BIỆỆT 
TẢẢI NGẮẮN MẠẠCH 
Z R 
L 
0 
L 
− 
Γ = 
L + 
Z R 
0 
1 
0 
0 
R 
0 = − 
R 
0 
Vi (l) = −Vr (l) 
V(l) = Vi (l)+Vr (l) = 0 
− 
+ 
= 
ΓL 
thenhan 12/16/2011
63 
Z0 ,β 
thenhan 12/16/2011 
+ 
- 
TRỞỞ KHÁNG ĐĐƯƯỜỜNG DÂY 
S Z 
S V L Z 
d l 
Z(d ) 
ZIN
Z d Z Z jZ β 
d 
( )Ω 
64 
TRỞỞ KHÁNG TẠẠI ĐĐiỂỂM CÁCH TẢẢI 
MỘỘT KHOẢẢNG d 
( ) L 
+ 
0 
tan 
( ) 
Z + 
jZ d 
= 
L 
β 
tan 
0 
0 
thenhan 12/16/2011
65 
TRỞỞ KHÁNG ĐĐẦẦU ĐĐƯƯỜỜNG DÂY 
thenhan 12/16/2011
66 
thenhan 12/16/2011
67 
STANDING WAVE 
thenhan 12/16/2011
68 
thenhan 12/16/2011
69 
thenhan 12/16/2011
70 
thenhan 12/16/2011
71 
TỈỈ SỐỐ SÓNG ĐĐỨỨNG LỚỚN 
thenhan 12/16/2011
72 
thenhan 12/16/2011
73 
TỈỈ SỐỐ SÓNG ĐĐỨỨNG NHỎỎ 
thenhan 12/16/2011
74 
SÓNG ĐĐỨỨNG TRÊN ĐĐƯƯỜỜNG 
DÂY 
TỈỈ SỐỐ SÓNG ĐĐỨỨNG 
VSWR = V 
max 
V 
min 
thenhan 12/16/2011
75 
thenhan 12/16/2011
76 
thenhan 12/16/2011
77 
thenhan 12/16/2011
78 
thenhan 12/16/2011
79 
thenhan 12/16/2011
80 
thenhan 12/16/2011
81 
thenhan 12/16/2011
82 
thenhan 12/16/2011
83 
thenhan 12/16/2011
84 
thenhan 12/16/2011
85 
CÁC TRƯƯỜỜNG HỢỢP ĐĐẶẶT BIỆỆT 
z ĐƯỜNG DÂY NGẮN 
MẠCH TẢI 
( ) ( ) 
+ 
β 
Z d Z Z L 
jZ 0 
tan 
d 
Z jZ ( d ) 
= 
in β 
L 
tan 
0 + 
0 
Zin (d ) jZ ( d ) 0 tan β = 
= 0 ZL 
thenhan 12/16/2011
86 
CÁC TRƯƯỜỜNG HỢỢP ĐĐẶẶT BIỆỆT 
z ĐƯỜNG DÂY HỞ 
MẠCH TẢI 
( ) ( ) 
+ 
β 
Z d Z Z L 
jZ 0 
tan 
d 
Z jZ ( d ) 
= 
in β 
L 
tan 
0 + 
0 
Zin (d ) jZ ( d ) 0 cotan β = − 
= ∞ ZL 
thenhan 12/16/2011
87 
ĐĐƯƯỜỜNG TRUYỀỀN MỘỘT PHẦẦN 
TƯƯ BƯƯỚỚC SÓNG 
( ) ( ) 
+ 
β 
Z d Z Z L 
jZ 0 
tan 
d 
Z jZ ( d ) 
= 
in β 
L 
tan 
0 + 
0 
Z ( ) 
Z 
2 
λ 4 = 0 
L 
in Z 
β = 2 
π 
λ 
λ 
4 
d = 
thenhan 12/16/2011
88 
z DÂY NGẮN MẠCH: 
(λ 4) = ∞ ZIN 
= 0 ZL 
z DÂY HỞ MẠCH: 
(λ 4) = 0 ZIN 
= ∞ ZL 
thenhan 12/16/2011
89 
z DÂY NGẮN MẠCH: 
(λ 4) = ∞ ZIN 
= 0 ZL 
z DÂY HỞ MẠCH: 
(λ 4) = 0 ZIN 
= ∞ ZL 
thenhan 12/16/2011
90 
Frequency Dielectric Comments and history 
"Bayonet type-N connector", or "Bayonet Neill- 
Concelman" according to Johnson 
Components. Developed in the early 1950s 
at Bell Labs. Could also stand for "baby N 
connector". 
"Sub-miniature type B", a snap-on subminiature 
connector, available in 50 and 75 ohms. 
Limit 
Connector type 
BNC 4 GHz PTFE 
SMB 4 GHz PTFE 
OSMT 6 GHz PTFE A surface mount connector 
MCX was the original name of the Snap- 
On"micro-coax" connector species. Available 
in 50 and 75 ohms. 
Micro-miniature coax connector, popular in the 
wire industry because its small size and 
cheap price. 
Sub-miniature type C, a threaded subminiature 
connector, not widely used. 
Sub-miniature type A developed in the 1960s, 
perhaps the most widely-used microwave 
connector system in the universe. 
"Threaded Neill-Concelman" connector, 
according to Johnson Components, it is 
actually a threaded BNC connector, to 
reduce vibration problems. Carl Concelman 
was an engineer at Amphenol. 
OSX, MCX, PCX 6 GHz PTFE 
MMCX PTFE 
SMC 10 GHz PTFE 
SMA 25 GHz PTFE 
TNC 15 GHz PTFE 
thenhan 12/16/2011
91 
Named for Paul Neill of Bell Labs in the 1940s, 
available in 50 and 75 ohms. Cheap and 
rugged, it is still widely in use. Originally was 
usable up to one GHz, but over the years this 
species has been extended to 18 GHz, including 
work by Julius Botka at Hewlett Packard. 
APC-7 stands for "Amphenol precision connector", 
7mm. Developed in the swinging 60s, ironically 
a truly sexless connector, which provides the 
lowest VSWR of any connector up to 18 GHz. 
OSP stands for "Omni-Spectra push-on", a blind-mate 
connector with zero detent. Often used in 
equipment racks. 
A precision (expensive) connector, it mates to 
cheaper SMA connectors. 
OSP stands for "Omni-Spectra subminiature push-on", 
a smaller version of OSP connector. 
11 GHz PTFE 
normal 
18 GHz 
precision 
APC-7, 7 mm 18 GHz PTFE 
OSP 22 GHz PTFE 
3.5 mm 26.5 GHz Air 
OSSP 28 GHz PTFE 
SSMA 38 GHz PTFE Smaller than an SMA. 
Precision connector, developed by Mario Maury in 
1974. 2.92 mm will thread to cheaper SMA and 
3.5 mm connectors. Often called "2.9 mm". 
The original mass-marketed 2.92 mm connector, 
made by Wiltron (now Anritsu). Named the "K" 
connector, meaning it covers all of the K 
frequency bands. 
2.92 mm 40 GHz Air 
K 40 GHz Air 
thenhan 12/16/2011 
N 
"Threaded Neill-Concelman" connector, according to 
Johnson Components, it is actually a threaded 
BNC connector, to reduce vibration problems. 
Carl Concelman was an engineer at Amphenol. 
TNC 15 GHz PTFE
92 
"Gilbert push-on", "Omni-spectra microminiature 
push-on" 
GPO, OSMP, SMP 40 GHz PTFE 
OS-50P 40 GHz Smaller version of OSP blind-mate connector. 
2.4 mm, and 1.85 mm will mate with each other 
without damage. Developed by Julius Botka and 
Paul Watson in 1986, along with the 1.85 mm 
connector. 
2.4 mm 50 GHz Air 
1.85 mm 60 GHz Air Mechanically compatible with 2.4 mm connectors. 
Anritsu's term for 1.85 mm connectors because 
they span the V frequency band. 
The Rolls Royce of connectors. This connector 
species works up to 110 GHz. It costs a fortune! 
Developed at Hewlett Packard (now Agilent) by 
Paul Watson in 1989. 
V 60 GHz Air 
1 mm 110 GHz Air 
thenhan 12/16/2011
93 
thenhan 12/16/2011
94 
thenhan 12/16/2011
95 
thenhan 12/16/2011
96 
thenhan 12/16/2011
97 
thenhan 12/16/2011
98 
RETURN LOSS 
RL = −20logΓ dB 
thenhan 12/16/2011
99 
TRANSMISSION COEFICIENT 
T =1+ Γ 
T Z Z 
0 1 2 
Z 
L 
Z Z 
L 
+ 
= 
0 0 
L 
− 
Z Z 
L 
+ 
= + 
thenhan 12/16/2011
100 
INSERTION LOSS 
IL = −20logT dB 
thenhan 12/16/2011
101 
SMITH CHART 
thenhan 12/16/2011
102 
MỐỐI QUAN HỆỆ GIỮỮA TRỞỞ 
KHÁNG VÀ HỆỆ SỐỐ PHẢẢN XẠẠ 
( ) ( ) 
Z x Z x 
(x) 
+ Γ 
− Γ 
= 
1 
0 
1 
thenhan 12/16/2011
103 
CÁC GIÁ TRỊỊ CHUẨẨN HÓA 
( ) ( ) 
z x = Z x 
0 R 
TRỞỞ KHÁNG CHUẦẦN HÓA 
z = r + jx 
thenhan 12/16/2011
104 
z ZL 
L = 
0 R 
1 
r R 
0 
0 = = 
R 
0 
( ) ( ) 
y x = Y x 
Y 
0 Y ( x ) = 1 
Z ( x 
) thenhan 12/16/2011
105 
HỆỆ SỐỐ PHẢẢN XẠẠ 
( ) ( ) 
x Z x R 
0 
− 
Γ = 
( ) ( ) 
( ) 0 
Z x + 
R 
1 
− 
x Z x R 
0 
+ 
( ) 1 
Z x R 
0 
Γ = 
thenhan 12/16/2011
106 
MỐỐI QUAN HỆỆ GIỮỮA HỆỆ SỐỐ 
PHẢẢN XẠẠ VÀ TRỞỞ KHÁNG 
CHUẨẨN HÓA 
1 
+ 
1 
− 
x z x 
Γ = 
z x 
thenhan 12/16/2011
107 
Γ(x) z(x) 
z(x) Γ(x) 
z CÓ 1 GIÁ TRỊ THÌ CHỈ CÓ DUY NHẤT 1 GIÁ TRỊ 
z CÓ 1 GIÁ TRỊ THÌ CHỈ CÓ DUY NHẤT 1 GIÁ TRỊ 
thenhan 12/16/2011
Γ(x) = 0.8∠600 
108 
BẢẢN CHẤẤT VÀ CÁCH BIỂỂU DIỂỂN 
HỆỆ SỐỐ PHẢẢN XẠẠ 
+1 
Mặt phẳng phức 
0.8 
−1 +1 
600 
Γ(x) 
Re(Γ(x)) 
Im(Γ) 
Im(Γ(x)) 
Re(Γ) 
0 
−1 
thenhan 12/16/2011
109 
HỆỆ SỐỐ PHẢẢN XẠẠ 
(x) (x) j (x) r i Γ = Γ + Γ 
r i Dạng đơn giản Γ = Γ + jΓ 
⎧ 
Γ r 
= Re 
( Γ 
) 
⎨ ⎩ Γ i 
= Im 
( Γ 
) thenhan 12/16/2011
110 
TRỞỞ KHÁNG ĐĐƯƯỜỜNG DÂY 
Z(x) = R(x)+ jX (x) 
Z = R + jX 
thenhan 12/16/2011
111 
TRỞỞ KHÁNG CHUẨẨN HÓA 
z(x) = r(x)+ jx 
z = r + jx 
r = R 
0 R 
x = X 
0 R 
Trở kháng đường 
dây chuẩn hóa 
Điện trở đường dây 
chuẩn hóa 
Điện kháng đường 
dây chuẩn hóa 
thenhan 12/16/2011
112 
r jx j 
+ Γ + Γ 
r i 
j 
− Γ − Γ 
r i 
+ = 
1 
1 
thenhan 12/16/2011
113 
− Γ − Γ 
2 2 
1 
r r i 
( )2 2 
1 
− Γ + Γ 
r i 
= 
2 
Γ 
x i 
( 2 1 
− Γ )+ Γ 
2 r i 
= 
thenhan 12/16/2011
114 
PHƯƯƠƠNG TRÌNH ĐĐƯƯỜỜNG TRÒN 
2 
⎞ 
+ Γ 2 
⎟⎠ 
= 2 
⎛ 
+ 
r i 
r r 
1 
1 
1 
⎞ 
⎟⎠ 
⎜⎝ 
⎛ 
⎜⎝ 
r 
+ 
Γ − 
⎞ 
⎟⎠ 
r 
⎛ 
+ 
⎜⎝ 
0 , 
1 r 
tâm 
bán kính 
1 
1+ r 
thenhan 12/16/2011
115 
Re(Γ) 
Im(Γ) 
i Γ 
+1 
Mặt phẳng phức 
r = 0 
r = 0.2 
r = 0.5 
−1 r =1 r = 2 
+1 
−1 
0 
r Γ 
thenhan 12/16/2011
116 
PHƯƯƠƠNG TRÌNH ĐĐƯƯỜỜNG TRÒN 
2 2 
( ) 
2 1 1 ⎛ 1 ⎞ 
⎟⎠ 
= ⎟⎠ 
⎜⎝ 
⎞ 
Γ − + ⎛Γ − 
⎜⎝ 
x x r i 
⎞ 
⎟⎠ 
1, 1 tâm 
⎛ 
x 
⎜⎝ 
bán kính 
1 
x 
thenhan 12/16/2011
117 
Re(Γ) 
Im(Γ) 
i Γ 
+1 
Mặt phẳng phức 
x = 0.5 x =1 
−1 +1 
x = −0.5 x = −1 
−1 
0 
r Γ 
thenhan 12/16/2011
118 
Re(Γ) 
Im(Γ) 
i Γ 
+1 
Mặt phẳng phức 
x = 0.5 x =1 
−1 +1 
x = −1 
−1 
0 
r Γ 
x = −0.5 
thenhan 12/16/2011
119 
Re(Γ) 
Im(Γ) 
i Γ 
+1 
Mặt phẳng phức 
r = 0 
r = 0.2 
r = 0.5 
−1 r =1 r = 2 
+1 
−1 
0 
r Γ 
thenhan 12/16/2011
120 
Re(Γ) 
Im(Γ) 
i Γ 
+1 
Mặt phẳng phức 
x = 0.5 
x =1 
r = 0.2 
r = 0.5 
−1 +1 
r =1 r = 2 
x = −1 
−1 
0 
r Γ 
x = −0.5 
thenhan 12/16/2011
121 
thenhan 12/16/2011
122 
thenhan 12/16/2011
123 
thenhan 12/16/2011
124 
thenhan 12/16/2011
125 
thenhan 12/16/2011
126 
thenhan 12/16/2011
127 
ỨỨng dụụng củủa đđồồ thịị SMITH 
thenhan 12/16/2011

Weitere ähnliche Inhalte

Was ist angesagt?

ppt on dispersion
ppt on dispersionppt on dispersion
ppt on dispersionAvni Jain
 
Microwave devices and circuits (samuel liao)
Microwave devices and circuits (samuel liao)Microwave devices and circuits (samuel liao)
Microwave devices and circuits (samuel liao)Sudhanshu Tripathi
 
5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals 5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals MdFazleRabbi18
 
Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Ridwanul Hoque
 
Electrical installation handbook part-1
Electrical installation handbook part-1Electrical installation handbook part-1
Electrical installation handbook part-1Souvik Dutta
 
Sequential Circuits - Flip Flops (Part 2)
Sequential Circuits - Flip Flops (Part 2)Sequential Circuits - Flip Flops (Part 2)
Sequential Circuits - Flip Flops (Part 2)Abhilash Nair
 
Integrated parasitic elements at high frequencies
Integrated parasitic elements at high frequenciesIntegrated parasitic elements at high frequencies
Integrated parasitic elements at high frequenciesGOPICHAND NAGUBOINA
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on ScalingRaviraj Kaur
 
Microwave basics
Microwave basicsMicrowave basics
Microwave basicsIslam Saleh
 
Gerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdf
Gerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdfGerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdf
Gerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdfArunKumar674066
 
Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfetvennila12
 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matchingShankar Gangaju
 
Cavity resonators
Cavity resonatorsCavity resonators
Cavity resonatorsAJESWIN
 
Microstrip lines
Microstrip lines Microstrip lines
Microstrip lines maryam khan
 
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGNSHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGNNITHIN KALLE PALLY
 
219272664 s-parameters
219272664 s-parameters219272664 s-parameters
219272664 s-parametersManish Arora
 

Was ist angesagt? (20)

ppt on dispersion
ppt on dispersionppt on dispersion
ppt on dispersion
 
Microwave devices and circuits (samuel liao)
Microwave devices and circuits (samuel liao)Microwave devices and circuits (samuel liao)
Microwave devices and circuits (samuel liao)
 
5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals 5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals
 
Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)
 
Verilog HDL
Verilog HDL Verilog HDL
Verilog HDL
 
Electrical installation handbook part-1
Electrical installation handbook part-1Electrical installation handbook part-1
Electrical installation handbook part-1
 
Sequential Circuits - Flip Flops (Part 2)
Sequential Circuits - Flip Flops (Part 2)Sequential Circuits - Flip Flops (Part 2)
Sequential Circuits - Flip Flops (Part 2)
 
Integrated parasitic elements at high frequencies
Integrated parasitic elements at high frequenciesIntegrated parasitic elements at high frequencies
Integrated parasitic elements at high frequencies
 
Trintron tube Presentation
Trintron tube PresentationTrintron tube Presentation
Trintron tube Presentation
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on Scaling
 
Microwave basics
Microwave basicsMicrowave basics
Microwave basics
 
Gerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdf
Gerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdfGerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdf
Gerd Keiser - Optical Fiber Communications-McGraw-Hill Education (2010).pdf
 
Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfet
 
N well
N wellN well
N well
 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matching
 
Data Flow Modeling
Data Flow ModelingData Flow Modeling
Data Flow Modeling
 
Cavity resonators
Cavity resonatorsCavity resonators
Cavity resonators
 
Microstrip lines
Microstrip lines Microstrip lines
Microstrip lines
 
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGNSHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
SHORT CHANNEL EFFECTS IN MOSFETS- VLSI DESIGN
 
219272664 s-parameters
219272664 s-parameters219272664 s-parameters
219272664 s-parameters
 

Andere mochten auch

Microwave engineering basics
Microwave engineering basicsMicrowave engineering basics
Microwave engineering basicsAJAL A J
 
Semiconductor microwave devices
Semiconductor microwave devicesSemiconductor microwave devices
Semiconductor microwave devicesSubhajit Das
 
microwave-engineering
microwave-engineeringmicrowave-engineering
microwave-engineeringATTO RATHORE
 
Impatt diode
Impatt diodeImpatt diode
Impatt diodeladdu13
 

Andere mochten auch (7)

Trapatt diode
Trapatt diodeTrapatt diode
Trapatt diode
 
Trapatt diode
Trapatt diode Trapatt diode
Trapatt diode
 
Microwave engineering basics
Microwave engineering basicsMicrowave engineering basics
Microwave engineering basics
 
Gunn Diode
Gunn Diode Gunn Diode
Gunn Diode
 
Semiconductor microwave devices
Semiconductor microwave devicesSemiconductor microwave devices
Semiconductor microwave devices
 
microwave-engineering
microwave-engineeringmicrowave-engineering
microwave-engineering
 
Impatt diode
Impatt diodeImpatt diode
Impatt diode
 

Ähnlich wie Microwave engineering full

Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Mohsin Siddique
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By LipunNanigopal Jena
 
Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture NotesFellowBuddy.com
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutionskhemraj298
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...kiran93845
 

Ähnlich wie Microwave engineering full (20)

emtl
emtlemtl
emtl
 
Chap2 s11b
Chap2 s11bChap2 s11b
Chap2 s11b
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
Transmissionline
TransmissionlineTransmissionline
Transmissionline
 
7 slides
7 slides7 slides
7 slides
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
Anodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.pptAnodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.ppt
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)
 
Transmission line By Lipun
Transmission line By LipunTransmission line By Lipun
Transmission line By Lipun
 
Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture Notes
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
 
module5.pdf
module5.pdfmodule5.pdf
module5.pdf
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 

Kürzlich hochgeladen

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 

Kürzlich hochgeladen (20)

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 

Microwave engineering full

  • 1. MICROWAVE ENGINEERING LECTURE NOTE 1 thenhan 12/16/2011
  • 2. 2 PHẠẠM VI CỦỦA LĨĨNH VỰỰC SIÊU CAO TẦẦN z TẦN SỐ THÔNG THƯỜNG TỪ 1GHz TRỞ LÊN BẢNG PHÂN ĐỊNH TẦN SỐ thenhan 12/16/2011
  • 6. 6 ĐĐƯƯỜỜNG DÂY TRUYỀỀN SÓNG . ĐIỆN ÁP VÀ DÒNG ĐIỆN PHỤ THUỘC CẢ KHÔNG GIAN Ở VỊ TRÍ z VÀ THỜI GIAN TẠI THỜI ĐIỂM t, thenhan 12/16/2011
  • 7. Module 2: Transmission Lines Topic 1: Theory 7 OGI EE564 Howard Heck thenhan 12/16/2011
  • 8. 8 Where Are We? 1. Introduction 2. Transmission Line Basics 1. Transmission Line Theory 2. Basic I/O Circuits 3. Reflections 4. Parasitic Discontinuities 5. Modeling, Simulation, & Spice 6. Measurement: Basic Equipment 7. Measurement: Time Domain Reflectometry 3. Analysis Tools 4. Metrics & Methodology 5. Advanced Transmission Lines thenhan 12/16/2011
  • 9. 9 CzoPnrotpeangattsion Velocity z Characteristic Impedance z Visualizing Transmission Line Behavior z General Circuit Model z Frequency Dependence z Lossless Transmission Lines z Homogeneous and Non-homogeneous Lines z Impedance Formulae for Transmission Line Structures z Summary z References thenhan 12/16/2011
  • 10. y I+ d I dz dz V+ d V dz z x [2.1.1] [2.1.2] I V C V I ∂ ∂ = − Ldz Cdz dz dz V, I the Telegraphist’s Equations [2.1.3a] [2.1.3b] 10 Wave propagates in z Propagation direction Velocity z Physical example: 9 Circuit: L = [nH/cm] C = [pF/cm] V dz ( Ldz ) I z ∂ t ∂ ∂ 9 Total voltage change across = − ∂ Ldz (use Δ V L d I ): = − dt 9 Total current change across ΔI = −C dV Cdz (use d t ): I ∂ dz ( Cdz ) V z t ∂ ∂ ∂ = − 9 Simplify [2.1.1] & [2.1.2] to get t ∂ L I ∂ t z ∂ V ∂ z ∂ ∂ = − thenhan 12/16/2011
  • 11. 2 2 C V I ∂ ∂ 9 Differentiate [2.1.3a] by t: 2 [2.1.4] t z t ∂ = − ∂ ∂ ∂ 2 L I 2 V ∂ 9 Differentiate [2.1.3b] by z: [2.1.5] 2 t z z ∂ ∂ = − ∂ 2 2 2 1 V LC V V ∂ ∂ ∂ 9 Equate [2.1.4] & [2.1.5]: [2.1.6] 2 [2.1.7] [2.1.8] 11 Propagation Velocity (2) ∂ 9 Equation [2.1.6] is a form of the wave equation. The solution to [2.1.6] contains forward and backward traveling wave components, which travel with a phase velocity. 9 Phase velocity definition: v 2 z = ≡ 1 LC 9 Equation in terms of current: t ∂ I 2 2 = 2 2 t ∂ ν 2 1 LC I = 2 2 2 I 2 t t z ∂ ∂ ∂ ∂ = ∂ ∂ ν An alternate treatment of propagation velocity is contained in the appendix. thenhan 12/16/2011
  • 12. dz = segment length C = capacitance per segment L = inductance per segment 12 Z1 Z2 Z3 Characteristic Impedance b c Ldz (Lossless) V1 V2 V3 Cdx to ∞ Ldz Cdz Ldz Cdz d e f dz dz a dz z The input impedance (Z1) is the impedance of the first inductor (Ldz) in series with the parallel combination of the impedance of the capacitor (Cdz) and Z2. [2.1.9] ( ) Z j Cdz Z j Ldz Z j ω Cdz ω = ω + 1/ 2 1/ 2 1 + ( 1/ ) ( 1/ ) (1/ ) 0 1 2 2 2 Z Z + jωlC − jωlL Z + jωlC − Z jωlC = thenhan 12/16/2011
  • 13. 13 Characteristic Impedance (Lossless) z Assuming a uniform line, the input impedance should be the same when looking into node pairs a-d, b-e, c-f, and so fo( rth1./ So, Z) 2 = Z(1= 1Z/0. ) (1/ ) 0 0 0 0 0 Z Z + jωCdz − jωlLdz Z + jωCdz − Z jωCdz = [2.1.10] ω Z j LZ dz j Ldz j Cdz Z 2 0 2 0 0 0 + − − − 0 = = − 0 − j Cdz ω j LZ dz Ldz Cdz Z Z j Cdz ω ω ω ω ω ω 0 Z 2 − jωLZ L 0 0 dz − = 0 [2.1.11] C 9 Allow dz to become very small, causing the frequency dependent term to drop out: Z L [2.1.12] 2 0 0 − = C 9 Solve for Z0: Z = L 0 C [2.1.13] thenhan 12/16/2011
  • 14. 14 Visualizing Transmission Line h Behavior f z Water flow – Potential = Wave height [m] – Flow = Flow rate [liter/sec] I +++++++ - - - - - - - I V 9 Transmission Line ¾ Potential = Voltage [V] ¾ Flow = Current [A] = [C/sec] 9 Just as the wave front of the water flows in the pipe, the voltage propagates in the transmission line. The same holds true for current. ¾ Voltage and current propagate as waves in the transmission line. thenhan 12/16/2011
  • 15. 15 Visualizing Transmission Line Behavior #2 z Extending the analogy – The diameter of the pipe relates the flow rate and height of the water. This is analogous to electrical impedance. – Ohm’s law and the characteristic impedance define the relationship between current and potential in the transmission line. z Effects of impedance discontinuities – What happens when the water encounters a ledge or a barrier? – What happens to the current and voltage waves when the impedance of the transmission line changes? thenhan 12/16/2011
  • 16. 16 General Transmission Line Model (No Coupling) z Transmission line parameters are distributed (e.g. capacitance per unit length). R L R L R L z A G C transmission line can G be C modeled G C using a network of resistances, inductances, and capacitances, where the distributed parameters are broken into small discrete elements. thenhan 12/16/2011
  • 17. ω ω [2.1.14] Propagation Constant γ = (R + jωL)(G + jωC) =α + jβ [2.1.15] α = attenuation constant = rate of exponential attenuation β = phase constant = amount of phase shift per unit length ν = Phase Velocity p [2.1.16] In general, α and β are frequency dependent. 17 General Transmission Line Model #2 Symb Units ol Parameters Parameter Conductor R Ω•cm-1 Resistance Self Inductance L nH•cm-1 Total Capacitance C pF•cm-1 Ω-1•cm - 1 Dielectric G Conductance Characteristic Impedance Z R j L + + 0 G j C = ω β thenhan 12/16/2011
  • 18. 18 Frequency Dependence From [2.1.14] and [2.1.15] note that: z Z0 and γ depend on the frequency content of the signal. z Frequency dependence causes attenuation and edge rate degradation. Attenuation Output signal from lossy transmission line Output signal from lossless transmission line Edge rate degradation Signal at driven end of transmission line thenhan 12/16/2011
  • 19. 19 FrzeRqaunede nGncarye sDomeeptiemnesd neegnlicgiebl e#, 2 particularly at low frequencies – Simplifies to the lossless case: no attenuation & no dispersion z In modules 2 and 3, we will concentrate on lossless transmission lines. z Modules 5 and 6 will deal with lossy lines. thenhan 12/16/2011
  • 20. H E 20 Lossless Transmission Lines Quasi-TEM Assumption z The electric and magnetic fields are perpendicular to the propagation velocity in the transverse planes. x y z thenhan 12/16/2011
  • 21. 21 z Lossless transmission lines are characterized by the following two parameters: Lossless Line Parameters Z = L 0 C v = 1 LC Characteristic Impedance Propagation Velocity z Lossless line characteristics are frequency independent. z As noted before, Z0 defines the relationship between voltage and current for the traveling waves. The units are ohms [Ω]. z υ defines the propagation velocity of the waves. The units are cm/ns. thenhan 12/16/2011 S ti th ti dl [2.1.17] [2.1.18]
  • 22. 22 Lossless Line Equivalent Circuit L L L z The transmission line equivalent circuit shown C on the C left is C often represented by the coaxial cable symbol. Z0Z, 0ν, ,v l,e lnegntghth thenhan 12/16/2011
  • 23. [2.1.19] 23 Homogeneous Media z A homogeneous dielectric medium is uniform in all directions. – All field v = 1 lines = are 1 = 0 = contained 30 within the dielectric. LC c cm / ns εμ ε μ ε r r r 0 ε ε ε r = Dielectric Permittivity εNote: only r r εz For a ε 0 = 8.854 x transmission 10− 14 F line in a Permittivity of free homogeneous space medium, μ the cm 8 0 =1.257 x 10− H propagation velocity depends only on material cm properties: Magnetic Permeability 0 μ ≅ μ Permeability of free space εr is the relative permittivity or dielectric constant. is required to calculate νν. thenhan 12/16/2011
  • 24. 24 Non-Homogeneous Media z A non-homogenous medium contains multiple materials with different dielectric constants. z For a non-homogeneous medium, field lines cut v = 1 ≠ 1 across LC the εμ boundaries between dielectric materials. z In this case the propagation velocity depends on the dielectric constants and the proportions of the materials. Equation [2.1.19] does not hold: 9 In practice, an effective dielectric constant, εr,eff is often used, which represents an average dielectric constant. thenhan 12/16/2011
  • 25. 25 Some Typical Transmission Line Structures And useful formulas for Z0 thenhan 12/16/2011
  • 26. 26 r R εr Trởở kháng cáp đđồồng trụục εr = 2 εr = 2.5 εr = 3 2 3 4 5 6 7 8 9 10 R/r 140 120 100 80 60 40 20 ⎞ Z = 1 ln ⎛ R 0 ε 2πε ⎞ ⎛ R ⎞ μ L = ln ⎛ R thenhan 12/16/2011 Z0 [ Ω] εr = 1 εrr= 4 ε = 3.5 , lZe0n, gυth, vle, n0gZth ⎟⎠ ⎜⎝ r 2 μ π [2.1.20] ⎟⎠ ⎜⎝ = r C ln [2.1.21] ⎟⎠ ⎜⎝ r 2π [2.1.22]
  • 27. ⎞ h 4 60 ln 2 ( )⎟ ⎟ ⎟ ⎠ w 0.35 0.25 27 Centered Stripline Impedance ⎛ ⎜ ⎜ ⎜ 0 ε π r 0.67 0.8 ⎝ w + t = Z w t h1 h2 εr Source: Motorola application note AN1051. Valid for w h −t 2 < h < 2 t 60 Z0 [Ω] 55 50 45 40 35 30 25 20 15 h2 0.003 0.005 0.007 0.009 0.011 0.013 0.015 thenhan 12/16/2011 w [in] 10 0.070 0.060 0.050 0.040 0.030 0.025 0.020 t = 0.0007” εr = 4.0
  • 28. [2.1.24] [2.1.25] [2.1.26] [2.1.27] 28 Dual Stripline Impedance w h1 t h2 Z YZ ⎞ ⎛ Y h 60 ln 8 1 ε π ⎞ ⎛ Z h h 60 ln 8 1 2 ε π ⎤ 1 h h t h t ln ⎡ 1.9 2 + ⎤ ⎡ ⎞ ⎛ 110 100 90 80 70 60 50 40 30 20 thenhan 12/16/2011 εr w t h1 Y + Z = 2 0 ( )⎟ ⎟ ⎟ ⎠ ⎜ ⎜ ⎜ ⎝ + = w w t r 0.67 0.8 ( ) ( )⎟ ⎟ ⎟ ⎠ ⎜ ⎜ ⎜ ⎝ + + = w w t r 0.67 0.8 ( ) ( ) ⎥⎦ ⎢⎣ + ⎥⎦ ⎢⎣ ⎟ ⎟⎠ ⎜ ⎜⎝ + + − = w t h Z r 0.8 4 80 1 1 2 1 0 ε 1 1. 0.5h ≤ w ≤ h Source: Motorola application note AN1051. OR 0.003 0.005 0.007 0.009 0.011 0.013 0.015 w [in] 10 Z0 [ Ω] 0.020” 0.018” 0.015” 0.012” 0.010” 0.008” 0.005” 2h1 + h2 + 2t = 0.062” t = 0.0007” εr = 4.0 h1
  • 29. 29 Surface Microstrip Impedance w t h ⎞ Z = 1 ⎛ h 0 ε ⎞ Z h ln ⎛ 5.98 87 160 140 120 100 80 60 40 h thenhan 12/16/2011 ε0 εr [ ] Ω ⎟⎠ ⎜⎝ d eff ln 4 2 μ π d = 0.536w+ 0.67t ( ) 0 ε = 0.475ε + 0.67 ε eff r [ ] Ω ⎟⎠ ⎜⎝ + + = w t r 1.41 0.8 0 ε 0.003 0.005 0.007 0.009 0.011 0.013 0.015 w [in] 20 Z0 [Ω] 0.025” 0.020” 0.015” 0.012” 0.009” 0.006” 0.004” t = 0.0007” εr = 4.0 [2.1.28] [2.1.29] [2.1.30] [2.1.31]
  • 30. [2.1.32] [2.1.33] [2.1.34] [2.1.35] 30 Embedded Microstrip t h1 ε0 εr w h2 ⎞ ⎟⎠ Z K ln ⎛ 5.98 h ⎜⎝ 1 w t 0 ε where 60 ≤ K ≤ 65 r 0.8 + + = 0.805 2 ⎞ ⎟⎠ Z h ln 5.98 87 ⎛ 1 ⎜⎝ 0 ε [1 1.55h2 h1 ] r r eε ′ =ε − − =1.017 0.475 + 0.67 r ε w t r 0.8 ′ + + = 1.41 τ Or 140 120 100 80 60 40 20 0 h1 0.015” 0.012” 0.010” 0.008” 0.006” 0.005” 0.003” h2 - h1 = 0.002“ t= 0.0007” εr = 4.0 0.003 0.005 0.007 0.009 0.011 0.013 0.015 w [in] Z0 [Ω] thenhan 12/16/2011
  • 31. 31 Summary z System level interconnects can often be treated as lossless transmission lines. z Transmission lines circuit elements are distributed. z Voltage and current propagate as waves in transmission lines. z Propagation velocity and characteristic impedance characterize the behavior of lossless transmission lines. z Coaxial cables, stripline and microstrip thenhan 12/16/2011
  • 32. 32 References z S. Hall, G. Hall, and J. McCall, High Speed Digital System Design, John Wiley & Sons, Inc. (Wiley Interscience), 2000, 1st edition. z H. Johnson and M. Graham, High-Speed Signal Propagation: Advanced Black Magic, Prentice Hall, 2003, 1st edition, ISBN 0-13-084408-X. z W. Dally and J. Poulton, Digital Systems Engineering, Cambridge University Press, 1998. z R.E. Matick, Transmission Lines for Digital and Communication Networks, IEEE Press, 1995. z R. Poon, Computer Circuits Electrical Design, Prentice Hall 1st edition 1995 thenhan 12/16/2011
  • 33. 33 BẢẢN CHẤẤT CỦỦA QUÁ TRÌNH TRUYỀỀN SÓNG z THỰC CHẤT LÀ ĐƯỜNG DÂY TRUYỀN SÓNG TRUYỀN NĂNG LƯỢNG DƯỚI DẠNG SÓNG CAO TẦN z QUÁ TRÌNH TRUYỀN NÀY CÓ VẬN TỐC NHẤT ĐỊNH z ĐIỆN ÁP VÀ DÒNG ĐIỆN THAY ĐỔI TƯƠNG ỨNG THEO thenhan 12/16/2011
  • 36. 36 v(x,t) thenhan 12/16/2011
  • 37. 37 PHƯƯƠƠNG TRÌNH TRUYỀỀN SÓNG TRÊN ĐĐƯƯỜỜNG DÂY HỆ PHƯƠNG TRÌNH MAXWELL r E B t ∂ ∂ = − r rot r H J D t ∂ ∂ r r = + rot ρ = D r div 0 div = B r thenhan 12/16/2011
  • 38. 38 MÔ HÌNH VẬẬT LÝ S Z i(x,t) i(x + Δz,t) S V L Z + - v(x,t) v(x + Δz,t) x x + Δx l thenhan 12/16/2011
  • 39. 39 MÔ HÌNH VẬẬT LÝ S Z i(x,t) i(x + Δz,t) S V L Z + - v(x,t) v(x + Δz,t) x x + Δx l i(x + Δz,t) v(x + Δz,t) x x + Δx i(x,t) v(x,t) i(x,t) i(x + Δz,t) v(x,t) v(x + Δz,t) thenhan 12/16/2011
  • 40. 40 L Z l thenhan 12/16/2011
  • 41. 41 i(x,t) i(x + Δz,t) ΔR RΔx ΔL LΔx GΔx ΔG v(x,t) CΔx v(x + Δz,t) ΔC Δx x x + Δx Rất nhỏ ΔR = RΔx ΔL = LΔx ΔG = GΔx ΔC = CΔx thenhan 12/16/2011
  • 42. 42 i(x,t) i(x + Δz,t) LΔx GΔx CΔx RΔx v(x,t) v(x + Δz,t) x x + Δx ( ) ( ) ( ) v(x x t) v x,t RΔx i x,t LΔx i x,t + + Δ , x ∂ ∂ = • + • ( ) ( ) ( ) i(x x t) ∂ + Δ i x,t = G Δ x • v x + Δ x,t + C Δ x • v x x,t + + Δ , x ∂ thenhan 12/16/2011
  • 43. 43 ĐĐểể tính v(x,t) i(x,t) cầần xét mộột đđoạạn nhỏỏ Δx thenhan 12/16/2011
  • 45. 45 ĐĐiỆỆN ÁP VÀ DÒNG ĐĐiỆỆN thenhan 12/16/2011
  • 46. 46 TÍNH VI SAI Δz →0 thenhan 12/16/2011
  • 50. 50 MIỀỀN TẦẦN SỐỐ thenhan 12/16/2011
  • 51. LC 2 [rad /m] 51 HẰẰNG SỐỐ SÓNG π λ β =ω = thenhan 12/16/2011
  • 53. 53 i(z,t) I (z) S V L Z z l v(z,t) V (z) MÔ HÌNH MẠẠCH ĐĐƯƯỜỜNG DÂY DÀI S Z + - 0 thenhan 12/16/2011
  • 54. 54 PHƯƯƠƠNG TRÌNH TRUYỀỀN SÓNG TRÊN ĐĐƯƯỜỜNG DÂY thenhan 12/16/2011
  • 55. 55 TRỞỞ KHÁNG ĐĐẶẶC TÍNH CỦỦA ĐĐƯƯỜỜNG DÂY 0 Z thenhan 12/16/2011
  • 56. 56 TẢẢI TRÊN ĐĐƯƯỜỜNG DÂY TRUYỀỀN SÓNG thenhan 12/16/2011
  • 57. 57 + V0 S V L Z + - HỆỆ SỐỐ PHẢẢN XẠẠ S Z z l − V0 Z0 ,β d thenhan 12/16/2011 PS ( ) + − j β d − j β d Ii z = I 0 e Ir ( z ) = I 0 e ( ) j d Vi z V e = + − β 0 ( ) j d Vr z V e = − β 0 − VL +|L V
  • 58. 58 HỆỆ SỐỐ PHẢẢN XẠẠ TẠẠI TẢẢI 0 0 Z Z L − − Γ ≡ = + L + Z Z V V L L L thenhan 12/16/2011
  • 59. Γ d = V d = Γ • −2 β j d 59 HỆỆ SỐỐ PHẢẢN XẠẠ TẠẠI MỘỘT ĐĐiỂỂM TRÊN ĐĐƯƯỜỜNG DÂY ( ) ( ) r e V ( d ) L i d = l − z thenhan 12/16/2011
  • 60. 60 HỆỆ SỐỐ PHẢẢN XẠẠ CÔNG SUẤẤT + - Z0 ,β thenhan 12/16/2011 S Z S V L Z z l + V0 − V0 d Pi (z) Pr (z) Pi (l) Pr (l) PL PS Pi (0) Pr (0)
  • 61. 61 HỆỆ SỐỐ PHẢẢN XẠẠ CÔNG SUẤẤT P i 2 ( )2 d Γ = r = Γ P thenhan 12/16/2011
  • 62. 62 CÁC TRƯƯỜỜNG HỢỢP ĐĐẶẶC BIỆỆT TẢẢI NGẮẮN MẠẠCH Z R L 0 L − Γ = L + Z R 0 1 0 0 R 0 = − R 0 Vi (l) = −Vr (l) V(l) = Vi (l)+Vr (l) = 0 − + = ΓL thenhan 12/16/2011
  • 63. 63 Z0 ,β thenhan 12/16/2011 + - TRỞỞ KHÁNG ĐĐƯƯỜỜNG DÂY S Z S V L Z d l Z(d ) ZIN
  • 64. Z d Z Z jZ β d ( )Ω 64 TRỞỞ KHÁNG TẠẠI ĐĐiỂỂM CÁCH TẢẢI MỘỘT KHOẢẢNG d ( ) L + 0 tan ( ) Z + jZ d = L β tan 0 0 thenhan 12/16/2011
  • 65. 65 TRỞỞ KHÁNG ĐĐẦẦU ĐĐƯƯỜỜNG DÂY thenhan 12/16/2011
  • 67. 67 STANDING WAVE thenhan 12/16/2011
  • 71. 71 TỈỈ SỐỐ SÓNG ĐĐỨỨNG LỚỚN thenhan 12/16/2011
  • 73. 73 TỈỈ SỐỐ SÓNG ĐĐỨỨNG NHỎỎ thenhan 12/16/2011
  • 74. 74 SÓNG ĐĐỨỨNG TRÊN ĐĐƯƯỜỜNG DÂY TỈỈ SỐỐ SÓNG ĐĐỨỨNG VSWR = V max V min thenhan 12/16/2011
  • 85. 85 CÁC TRƯƯỜỜNG HỢỢP ĐĐẶẶT BIỆỆT z ĐƯỜNG DÂY NGẮN MẠCH TẢI ( ) ( ) + β Z d Z Z L jZ 0 tan d Z jZ ( d ) = in β L tan 0 + 0 Zin (d ) jZ ( d ) 0 tan β = = 0 ZL thenhan 12/16/2011
  • 86. 86 CÁC TRƯƯỜỜNG HỢỢP ĐĐẶẶT BIỆỆT z ĐƯỜNG DÂY HỞ MẠCH TẢI ( ) ( ) + β Z d Z Z L jZ 0 tan d Z jZ ( d ) = in β L tan 0 + 0 Zin (d ) jZ ( d ) 0 cotan β = − = ∞ ZL thenhan 12/16/2011
  • 87. 87 ĐĐƯƯỜỜNG TRUYỀỀN MỘỘT PHẦẦN TƯƯ BƯƯỚỚC SÓNG ( ) ( ) + β Z d Z Z L jZ 0 tan d Z jZ ( d ) = in β L tan 0 + 0 Z ( ) Z 2 λ 4 = 0 L in Z β = 2 π λ λ 4 d = thenhan 12/16/2011
  • 88. 88 z DÂY NGẮN MẠCH: (λ 4) = ∞ ZIN = 0 ZL z DÂY HỞ MẠCH: (λ 4) = 0 ZIN = ∞ ZL thenhan 12/16/2011
  • 89. 89 z DÂY NGẮN MẠCH: (λ 4) = ∞ ZIN = 0 ZL z DÂY HỞ MẠCH: (λ 4) = 0 ZIN = ∞ ZL thenhan 12/16/2011
  • 90. 90 Frequency Dielectric Comments and history "Bayonet type-N connector", or "Bayonet Neill- Concelman" according to Johnson Components. Developed in the early 1950s at Bell Labs. Could also stand for "baby N connector". "Sub-miniature type B", a snap-on subminiature connector, available in 50 and 75 ohms. Limit Connector type BNC 4 GHz PTFE SMB 4 GHz PTFE OSMT 6 GHz PTFE A surface mount connector MCX was the original name of the Snap- On"micro-coax" connector species. Available in 50 and 75 ohms. Micro-miniature coax connector, popular in the wire industry because its small size and cheap price. Sub-miniature type C, a threaded subminiature connector, not widely used. Sub-miniature type A developed in the 1960s, perhaps the most widely-used microwave connector system in the universe. "Threaded Neill-Concelman" connector, according to Johnson Components, it is actually a threaded BNC connector, to reduce vibration problems. Carl Concelman was an engineer at Amphenol. OSX, MCX, PCX 6 GHz PTFE MMCX PTFE SMC 10 GHz PTFE SMA 25 GHz PTFE TNC 15 GHz PTFE thenhan 12/16/2011
  • 91. 91 Named for Paul Neill of Bell Labs in the 1940s, available in 50 and 75 ohms. Cheap and rugged, it is still widely in use. Originally was usable up to one GHz, but over the years this species has been extended to 18 GHz, including work by Julius Botka at Hewlett Packard. APC-7 stands for "Amphenol precision connector", 7mm. Developed in the swinging 60s, ironically a truly sexless connector, which provides the lowest VSWR of any connector up to 18 GHz. OSP stands for "Omni-Spectra push-on", a blind-mate connector with zero detent. Often used in equipment racks. A precision (expensive) connector, it mates to cheaper SMA connectors. OSP stands for "Omni-Spectra subminiature push-on", a smaller version of OSP connector. 11 GHz PTFE normal 18 GHz precision APC-7, 7 mm 18 GHz PTFE OSP 22 GHz PTFE 3.5 mm 26.5 GHz Air OSSP 28 GHz PTFE SSMA 38 GHz PTFE Smaller than an SMA. Precision connector, developed by Mario Maury in 1974. 2.92 mm will thread to cheaper SMA and 3.5 mm connectors. Often called "2.9 mm". The original mass-marketed 2.92 mm connector, made by Wiltron (now Anritsu). Named the "K" connector, meaning it covers all of the K frequency bands. 2.92 mm 40 GHz Air K 40 GHz Air thenhan 12/16/2011 N "Threaded Neill-Concelman" connector, according to Johnson Components, it is actually a threaded BNC connector, to reduce vibration problems. Carl Concelman was an engineer at Amphenol. TNC 15 GHz PTFE
  • 92. 92 "Gilbert push-on", "Omni-spectra microminiature push-on" GPO, OSMP, SMP 40 GHz PTFE OS-50P 40 GHz Smaller version of OSP blind-mate connector. 2.4 mm, and 1.85 mm will mate with each other without damage. Developed by Julius Botka and Paul Watson in 1986, along with the 1.85 mm connector. 2.4 mm 50 GHz Air 1.85 mm 60 GHz Air Mechanically compatible with 2.4 mm connectors. Anritsu's term for 1.85 mm connectors because they span the V frequency band. The Rolls Royce of connectors. This connector species works up to 110 GHz. It costs a fortune! Developed at Hewlett Packard (now Agilent) by Paul Watson in 1989. V 60 GHz Air 1 mm 110 GHz Air thenhan 12/16/2011
  • 98. 98 RETURN LOSS RL = −20logΓ dB thenhan 12/16/2011
  • 99. 99 TRANSMISSION COEFICIENT T =1+ Γ T Z Z 0 1 2 Z L Z Z L + = 0 0 L − Z Z L + = + thenhan 12/16/2011
  • 100. 100 INSERTION LOSS IL = −20logT dB thenhan 12/16/2011
  • 101. 101 SMITH CHART thenhan 12/16/2011
  • 102. 102 MỐỐI QUAN HỆỆ GIỮỮA TRỞỞ KHÁNG VÀ HỆỆ SỐỐ PHẢẢN XẠẠ ( ) ( ) Z x Z x (x) + Γ − Γ = 1 0 1 thenhan 12/16/2011
  • 103. 103 CÁC GIÁ TRỊỊ CHUẨẨN HÓA ( ) ( ) z x = Z x 0 R TRỞỞ KHÁNG CHUẦẦN HÓA z = r + jx thenhan 12/16/2011
  • 104. 104 z ZL L = 0 R 1 r R 0 0 = = R 0 ( ) ( ) y x = Y x Y 0 Y ( x ) = 1 Z ( x ) thenhan 12/16/2011
  • 105. 105 HỆỆ SỐỐ PHẢẢN XẠẠ ( ) ( ) x Z x R 0 − Γ = ( ) ( ) ( ) 0 Z x + R 1 − x Z x R 0 + ( ) 1 Z x R 0 Γ = thenhan 12/16/2011
  • 106. 106 MỐỐI QUAN HỆỆ GIỮỮA HỆỆ SỐỐ PHẢẢN XẠẠ VÀ TRỞỞ KHÁNG CHUẨẨN HÓA 1 + 1 − x z x Γ = z x thenhan 12/16/2011
  • 107. 107 Γ(x) z(x) z(x) Γ(x) z CÓ 1 GIÁ TRỊ THÌ CHỈ CÓ DUY NHẤT 1 GIÁ TRỊ z CÓ 1 GIÁ TRỊ THÌ CHỈ CÓ DUY NHẤT 1 GIÁ TRỊ thenhan 12/16/2011
  • 108. Γ(x) = 0.8∠600 108 BẢẢN CHẤẤT VÀ CÁCH BIỂỂU DIỂỂN HỆỆ SỐỐ PHẢẢN XẠẠ +1 Mặt phẳng phức 0.8 −1 +1 600 Γ(x) Re(Γ(x)) Im(Γ) Im(Γ(x)) Re(Γ) 0 −1 thenhan 12/16/2011
  • 109. 109 HỆỆ SỐỐ PHẢẢN XẠẠ (x) (x) j (x) r i Γ = Γ + Γ r i Dạng đơn giản Γ = Γ + jΓ ⎧ Γ r = Re ( Γ ) ⎨ ⎩ Γ i = Im ( Γ ) thenhan 12/16/2011
  • 110. 110 TRỞỞ KHÁNG ĐĐƯƯỜỜNG DÂY Z(x) = R(x)+ jX (x) Z = R + jX thenhan 12/16/2011
  • 111. 111 TRỞỞ KHÁNG CHUẨẨN HÓA z(x) = r(x)+ jx z = r + jx r = R 0 R x = X 0 R Trở kháng đường dây chuẩn hóa Điện trở đường dây chuẩn hóa Điện kháng đường dây chuẩn hóa thenhan 12/16/2011
  • 112. 112 r jx j + Γ + Γ r i j − Γ − Γ r i + = 1 1 thenhan 12/16/2011
  • 113. 113 − Γ − Γ 2 2 1 r r i ( )2 2 1 − Γ + Γ r i = 2 Γ x i ( 2 1 − Γ )+ Γ 2 r i = thenhan 12/16/2011
  • 114. 114 PHƯƯƠƠNG TRÌNH ĐĐƯƯỜỜNG TRÒN 2 ⎞ + Γ 2 ⎟⎠ = 2 ⎛ + r i r r 1 1 1 ⎞ ⎟⎠ ⎜⎝ ⎛ ⎜⎝ r + Γ − ⎞ ⎟⎠ r ⎛ + ⎜⎝ 0 , 1 r tâm bán kính 1 1+ r thenhan 12/16/2011
  • 115. 115 Re(Γ) Im(Γ) i Γ +1 Mặt phẳng phức r = 0 r = 0.2 r = 0.5 −1 r =1 r = 2 +1 −1 0 r Γ thenhan 12/16/2011
  • 116. 116 PHƯƯƠƠNG TRÌNH ĐĐƯƯỜỜNG TRÒN 2 2 ( ) 2 1 1 ⎛ 1 ⎞ ⎟⎠ = ⎟⎠ ⎜⎝ ⎞ Γ − + ⎛Γ − ⎜⎝ x x r i ⎞ ⎟⎠ 1, 1 tâm ⎛ x ⎜⎝ bán kính 1 x thenhan 12/16/2011
  • 117. 117 Re(Γ) Im(Γ) i Γ +1 Mặt phẳng phức x = 0.5 x =1 −1 +1 x = −0.5 x = −1 −1 0 r Γ thenhan 12/16/2011
  • 118. 118 Re(Γ) Im(Γ) i Γ +1 Mặt phẳng phức x = 0.5 x =1 −1 +1 x = −1 −1 0 r Γ x = −0.5 thenhan 12/16/2011
  • 119. 119 Re(Γ) Im(Γ) i Γ +1 Mặt phẳng phức r = 0 r = 0.2 r = 0.5 −1 r =1 r = 2 +1 −1 0 r Γ thenhan 12/16/2011
  • 120. 120 Re(Γ) Im(Γ) i Γ +1 Mặt phẳng phức x = 0.5 x =1 r = 0.2 r = 0.5 −1 +1 r =1 r = 2 x = −1 −1 0 r Γ x = −0.5 thenhan 12/16/2011
  • 127. 127 ỨỨng dụụng củủa đđồồ thịị SMITH thenhan 12/16/2011