SlideShare ist ein Scribd-Unternehmen logo
1 von 111
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A map of the Philippines  which shows the 20 major river  basins located in 12 water  resources regions.  Region 3 or Central Luzon includes the Agno River Basin  and the Pampanga River Basin.
Extreme Flood Events in Central Luzon (highest record: 1972 Flood)
Pantabangan Dam & Reservoir in Nueva Ecija–  the multi-purpose earth dam was finished in 1974.
Pantabangan Dam Spillway in June 1976.
Map Comparison of the 30-year Normal Rainfall for month of August and the Total Rainfall measured in August 2004. Peak monsoon months in Central Luzon, Philippines:  July, August, September – including rain intensification by typhoons.
Top left and right: Typhoon Aere (Marce, Phil. local name) moved along a track northeast of  the Philippines and Taiwan  during the period August 20-24, 2004. Bottom left:  Graph of the central pressure inside Typhoon Aere versus date in August 2004.
Satellite image of Typhoon Aere on August 25, 2004. Comparison of satellite images of  Central Luzon between July 31 and August 30, 2004, showing extent of flood inundation.
A map of the extent of inundation in Central Luzon on August 30, 2004  (MODIS inundation limit prepared by the Dartmouth Flood Observatory).
News photos of the Central Luzon flooding in August 2004.
 
Location map of the Flood Forecasting  and Warning System (FFWS) network for major river basin of Luzon, Philippines. Rainfall and  River Water Level Telemetry  Stations in the Flood Forecasting  and Warning System  (FFWS).
A drainage map (left) of the Agno River Basin  (drainage area = 5952 sq.km.), and adjacent  Sinocalan and Bued River Basins  (drainage area = 897 sq.km.) and an isohyetal map (right) of  total rainfall depth measured during the  peak storm period of August 24-30, 2004.
A drainage map (left) of the Pampanga  River Basin (drainage area = 9759 sq.km.)  and an isohyetal map (right) of total rainfall depth measured during the peak storm  period of August 24-30, 2004.  
Lower AGNO RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3  distribution plots fitted to the monthly rainfall records of the synoptic station, Dagupan City,  for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall = 1018 mm. Return period = around 10 years
PAMPANGA RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3  distribution plots fitted to the monthly rainfall records of the synoptic station, Cabanatuan City,  for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall  = 690 mm. Return period  = around 25 years
Upper AGNO RIVER BASIN: Storm hyetographs and f lood hydrographs derived from  reservoir operations data of  Ambuklao and  Binga Dams in the upper Agno River Basin during the period, August 1 -30, 2004.
 
Storm hyetographs and f lood hydrographs (hourly and daily) derived from  reservoir operations  data of  San Roque Dam in the upper Agno River Basin during the period, August 1 -30, 2004.
Lower AGNO RIVER BASIN: Storm hyetographs & stage hydrographs of  lower Agno River at Bañaga (DA = 5564 sq.km.) and  Sinocalan River at Sta. Barbara (DA = 180 sq.km.) during the period, August 1 – September 30, 2004.
Reservoir water balance for the Ambuklao, Binga, and San Roque Dams,  Upper Agno River Basin, during the peak storm period, August 24-30, 2004    Damsite at Upper Agno River Basin Drainage area, sq.km. Peak hourly inflow discharge, m 3 /s Peak hourly outflow discharge, m 3 /s Inflow volume,  MCM Outlflow volume, MCM Change in reservoir volume, MCM Ambuklao Dam 686 1273 1212 (spillway+turbine) 298.4 292.6 5.8 Binga Dam   936 1844 1891 (spillway+turbine) 468.7 469.2 - 0.50   San Roque Dam   1250   3029 SRPC: 2792, or PAGASA: 2811 (spillway) + 202 (turbine)   649.5 376.4 (spillway) + 81.8 (turbine) 191.3 (29% of inflow volume)
SAN ROQUE RESERVOIR   Sediment routing modeling nhc  northwest hydraulic consultants S Sediment inflow TE  = Trap Efficiency Vancouver,  November 20 th , 2006
Past sedimentation rates Ambuklao Binga  Effect of 1990 Luzon earthquake in the period 1990-97.  Effect of 1990 Luzon  Earthquake in 1990-97. 5.8 64 153 1997 1.4 8 217 1986 5.3 69 225 1980 3.0 33 294 1967 - - 327 1956 Sedimentation rate (10 6  m 3 /yr) Deposited volume (10 6  m 3 ) Storage Volume (10 6  m 3 ) Year 1.0 6.1 24.0 2003 2.4 26.0 30.1 1997 1.2 8.7 56.1 1986 1.4 17.1 64.8 1979 0.8 5.5 81.9 1967 - - 87.4 1960 Sedimentation rate (10 6  m 3 /yr) Deposited volume (10 6  m 3 ) Storage Volume (10 6  m 3 ) Year
PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of  Chico River at Zaragoza (DA = 1177 sq.km.) and  Pampanga River at Arayat (DA = 6487 sq.km.) during the period, August 1 – September 30, 2004.
PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of  Pampanga River at Candaba (DA = 7468 sq.km.) and  Pampanga River at Sulipan (DA = 7489 sq.km.) during the period, August 1 – September 30, 2004.
aa j Agno River at San Roque Dam:  August 2004 Peak inflow   discharge = 3029 m 3 /s, return period = around 20 years,  based on the Log Pearson Type 3 distribution fitted to pre-construction 1946-1980 annual flood records. Pampanga River at Arayat: August 2004 Peak  discharge = 2689 m 3 /s, return period = around 6 years,   based on the Extreme Value Type I  distribution fitted to 1953-1979  annual flood records. Chico River at Zaragoza: August 2004 Peak  discharge =  420 m 3 /s,  return period = around 9 years,   based on the Log Pearson  Type 3 distribution fitted to  1960-1999 annual flood records.   FLOOD FREQUENCY ANALYSIS
INUNDATED AREAS: Agno River Basin The MODIS inundation map shows that  extensive flooding occurred in the Poponto  Swamps area of the Tarlac sub-basin (in the towns of Moncada and Paniqui), near its  confluence with Agno River, but far from the immediate downstream vicinity of the  San Roque Dam.  The flooded area can be reckoned by the difference between the DAs of the Agno River  at the Urbiztondo and Bayambang stations, which is equal to 5134 - 4196 = 938 sq.km.  This number is remarkably close to the reported 960 sq.km (96,000 has.) of flooded rice  lands in Tarlac province. INUNDATED AREAS: Pampanga River Basin As shown by the MODIS inundation map,  the extensive flooding occurred in the  Candaba Swamps and the Pampanga River Delta (including the Pasac Delta  downstream of the Pinatubo sub-basins).  The areal extent of the Candaba Swamps is expected to be less than the difference  between the DAs at the Sulipan and Arayat stations, which is equal to 7849 – 6487  = 1362 sq.km.  The areal extent of the Pampanga and Pasac Delta areas is reckoned by the difference  between the total DA of the Pampanga River Basin, and the combined DAs of Pampanga  River at Sulipan station, and Angat River at Calumpit, which is equal to 9759 - 7849 - 1014  = 896 sq.km. (consistent with the inundation map).
Disaster Information Summary from the National Disaster Coordinating Council (NDCC): After- Effects of Southwest Monsoon Rains as of 8:00 AM, 01 September 2004 The southwest monsoon rains triggered massive flooding / flashfloods, landslides,  and drowning incidents in various parts of Regions I, III, IV, CAR and NCR,  the spillage of Ambuklao, Binga and San Roque Dams, the collapse of  Amburayan Dike  in Bangar, La Union and the breaching of Colibangbang Dike in Paniqui, Tarlac.  Affected Areas: 2,113 barangays affected in 156 municipalities and  23 cities of 17 provinces in 5 Regions. Affected Population: 383,205 families or 1,858,082 persons;  Casualties - 53 (43 dead, 9 injured and 1 still missing);  Thirty five (35) of the 43 death toll was due to drowning, 4 electrocution,  1 cardiac arrest, and 3 covered by mudslide; the 9 injured was due to landslide,  electrocution and covered by mudslides while the 1 missing was due to drowning.  Damaged Houses - 69 totally and 2,464 partially;  Properties Damaged - P1,315.039 M or P1.315 B  (Agriculture - P1,167.551 M and Infrastructure - P147.488 M). Based on the search, rescue and evacuation operations conducted by  the emergency responders: Cumulative total of families/persons displaced and evacuated  to 143 evacuation centers is 9,269 families or 50,101 persons;  Cumulative total of families /persons served - 114,022  families or 594,485 persons.  Extent of assistance provided by NDCC, DSWD, LGUs and NGOs  amounted to P17,202,693.15.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Post Script:  A more destructive storm-induced natural disaster happened in November 19-29, 2004 – the Eastern Luzon Landslides and Flooding  caused by the three Typhoons Muifa, Merbok (Violeta) and Winnie. Provinces worst affected: Aurora, Quezon and eastern Nueva Ecija. Daily rainfall at Infanta, Quezon in Eastern Luzon: Nov. 19 -  45.8 mm.  (Typhoon Muifa, Nov. 19-25, 2004) Nov. 20 -  192.8 mm.  (antecedent 1-day peak, approx. 5-year return period) Nov. 21 -  184.5  Nov. 22 -  43.1 Nov. 23 -  22.4  Nov. 24 -  33.9 Nov. 25 -  7.3 Nov. 26 -  66.6  mm.  (Typhoon Merbok (Violeta), Nov. 23-27, 2004) Nov. 27 -  1.7 Nov. 28 -  40.3  Nov. 29 - 493.5  mm. (main 1-day peak rainfall, approx. 45-year return period) (Typhoon Winnie, Nov. 29- Dec. 2, 2004) Below - News photos: Landslides and debris flows in Infanta and Real towns, Quezon. NDCC report (as of Dec. 2, 2004): 199 affected barangays In 38 municipalities, 52872 affected families Or 242,952 persons; 407 dead, 33 injured, 142 missing; Damages: Agriculture – P185.43 M Others –  P  2.86 M
MODIS  (Moderate Resolution  Imaging Spectroradiometer)  images: Northern & Central Luzon on December 04, 2004
Effects of Mt. Pinatubo sediment deposition
Multipurpose dams, and flood-control & anti-lahar dikes in Central Luzon.
Above: The church (1899 photo) as it was, until the 1991 Pinatubo eruption. Below:  The church in 1996, its first floor completely buried in 1995. A church in Bacolor,  Pampanga, Central Luzon,  finally buried up to the  second floor by the  Pinatubo lahar of 1995.
Liongson, L. Q. and G. Q. Tabios III (2000).  Computation with a 2-D Lahar-Flood Model in a Mt. Pinatubo Basin, Philippines . Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation, Taipei, Taiwan, August 16-18. 2-d  model grid  of lower Pasig-Potrero  River Basin,  Mt. Pinatubo area. dx, dy = 250 m. 50-Year 5-Day  Storm Liongson, L. Q., G. Q. Tabios III, and P. P. M. Castro (1997).  2-D Lahar-Flood Model  for Pasig-Potrero River in the Mt. Pinatubo Area.  First International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, American Society of Civil Engineers, San Francisco, California, USA, August 7-9.
Debris-flow rheoloy: Shear Stress Balance:     g (H - z) sin     =  a i    s  d  2  C l  2  sin     du/dz |du/dz|   Normal Stress Balance : (  s  -    f  ) g (H-z) C cos     =  a i    s  d  2  C l  2  cos     du/dz |du/dz| where H = depth of flow; z = vertical distance from the bed; du/dz = local velocity gradient; g = gravity acceleration; C  = suspended solid concentration by volume;    =   s  C +   f  (1-C)  =  mixture density;  s  =  solid-phase density;   f  =  fluid-phase  density (water + washload);    = friction slope angle; a i  = Bagnold’s coefficient; d = median particle diameter; C l  = linear concentration = 1 /[(C b  / C) 1/3  - 1   ]    = dynamic internal angle of friction;
Combined Hyperconcentrated Flow - Flood Flow Equations Shear Stress Balance:       g (H - z) sin     = (a i    s  d  2  C l  2  sin    +    K T   2  z 2  ) du/dz |du/dz| Normal Stress Balance : (  s  -    f  ) g (H-z) C cos     =  (a i    s  d  2  C l  2  cos     +    K N   2  z 2  ) du/dz |du/dz| K T  = von Karman coefficient for shear turbulent stress K N  = similar coefficient for normal turbulent stress Total Continuity Equation:    H/  t +   (HU)/  x +   (HV)/  y + E / C b  =  q  -  I Total Momentum Equations (x and y components):    (  HU)/  t +   (  HU 2 )/  x +   (  HUV)/  y +   gH (  H/  x +   Z b /  x + S fx ) +   b  E U/ C b  =   (H T xx )/  x  +   (H T xy )/  y  +   L  q U L  (  HV)/  t +   (  HVU)/  x +  (  HV 2 )/  y +   gH (  H/  y +   Z b /  y + S fy ) +   b  E V/ C b  =   (H T yx )/  x  +   (H T yy )/  y  +   L  q V L     Sediment Continuity Equation:    (HC)/  t +   (HUC)/  x +   (HVC)/  y +   Z b /  t  C b  = q C L 
where t  =  time; (x,y)  =  perpendicular horizontal coordinates; H  =  H(x,y,t)  =  depth of  flow; Z b  =  Z b (x,y,t)  =  bed elevation; (U,V)  =  (U(x,y,t), V(x,y,t))  =  mean velocity vector (depth-averaged); C  =  C(x,y,t)  =  suspended solid concentration by volume; C b  =  bed-deposited concentration by volume;    =   s  C +   f  (1-C)  =  mixture density; g = gravity acceleration;  s  =  solid-phase density;   f  =  fluid-phase  density (water + washload); E  =   Z b /  t  C b   = bed deposition (>0) or erosion (<0) rate;  (S fx  , S fy  )  =  (U,V) S f  /   (U 2 +V 2 )  =  vector of  friction slope components; S f  =  resultant bed friction slope =  f  (U 2 +V 2 ) /(8 g H); f  = integrated friction factor (defined under rheology); T xx  =   n      f / 8 H 2   U/  x   U/  x  =  lateral normal stress in x-direction; T yy   =   n      f / 8  H 2   V/  y   V/  y  =  lateral normal stress in y-direction; T xy   =  T yx   =   t     f / 8  H 2  (  V/  x  +   U/  y)   V/  x  +   U/  y   =  lateral shear stress in either x or y direction;  n  ,   t  =  lateral normal and shear stress coefficients, resp.    1.0; q = total lateral inflow (such as direct rainfall or tributary flow); q C L  =  lateral sediment inflow; I =bed infiltration rate = a maximum assumed value or else the available water depth per unit time step,  whichever is less at any given time;  b E (U,V)/ C b  =  momentum loss vector due to deposition (for E>0 only), including entrained water;  L  q (U L  ,V L )   =  lateral  momentum influx vector.
 
 
 
 
 
Based on a  SIR-C/X-SAR Space Shuttle  false-color Image of  the Pinatubo-affected  Pasac Delta,  or Guagua RB, adjacent to the Pampanga  River Basin (1994). Much of Pasac Delta has been  converted to fishponds through the centuries,  and at present, its narrow channels receive the fine lahar sediment brought down from the pyroclastic deposits of the 1991 eruption of the volcano .
aa
 
Coastal flooding due to groundwater extraction (Siringan et al, UP NIGS, 2000.)
The demolition of illegally built additional fishponds in the estuary of the Pinatubo-affected Pasac Delta, adjacent to the  Pampanga River Basin. Coastal flooding due to channel constrictions.
Opposition to major flood-control projects Major flood-control and river engineering projects have encountered opposition from local populations in the floodplain or riverbank areas  due to the conflicting land-use management policies and priorities.  These oppositions have caused the national government to either revise or realign, defer or abandon the project control plans. An example below:
The hydrologic cycle. (source: www.lexingtonwaterfacts.com)
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Competition and conflict among & between: Consumptive and non-consumptive users; In-stream and onsite users.
DENR Water Quality Criteria / Water Usage & Classification for Fresh Water  Class A -  Public water supply II (require complete treatment to meet national standards for drinking water)  Class B - Recreational water class I (for contact recreation as bathing and swimming)  Class C - Fishery water for the propagation and growth of fish (also non-contact recreation & industrial use class I)  Class D - For agriculture, irrigation, livestock watering and industrial water supply class II
Integrated Water Resources Management or IWRM , having been promoted in the last twelve years (1997-2009),  is an international movement which advocates  the multi-stakeholder and participatory manner of  managing the water resources among the  competing users.  The Global Water Partnership (GWP)  &quot;was founded in 1996 by the World Bank,  the United Nations Development Programme (UNDP),  and the Swedish International Development Agency (SIDA)  to foster integrated water resource management (IWRM),  and to ensure the coordinated development and  management of water, land, and related resources  by maximizing economic and social welfare  without compromising the sustainability of vital environmental systems.&quot;  (http://www.gwpforum.org).  Philippine Water Partnership (PWP) - established in 2002; the local network partner  of GWP and GWPSEA; recognized (by NEDA InfraCom) as the principal NGO  for the promotion of IWRM.
Towards a new paradigm -  from sub-sectoral to cross-sectoral water management IWRM is the  ‘integrating handle’  leading us from sub-sectoral to  cross-sectoral water management. CROSS-SECTORAL DIALOGUE THROUGH IWRM  IWRM People Food Industry  & others WATER  USE  SECTORS   Eco- system IWRM  is a process which promotes the coordinated development and management of water, land and related resources in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability  of vital ecosystems  (GWP/TAC).
How do the Dublin principles translate into action? The  ENABLING ENVIRONMENT  sets the rules,  the  INSTITUTIONAL ROLES  and functions define the players  who make use of the  MANAGEMENT INSTRUMENTS .   ECOSYSTEM SUSTAINABILITY   Enabling Environment   Policies   Legislation   Management  Institutional  Instruments  Roles Assessment Central-local Information Public-private Allocation tools River basin ECONOMIC EFFICIENCY SOCIAL EQUITY All this depends on the existence of popular awareness  and political will to act!
Left: Angat Reservoir monthly inflows,  releases for irrigation and water supply, and  water surface elevation, relative to the lower  rule curve; right: policy summary for the  years 1997-2003: in scatter plots and  regression curves [ Liongson (2003)] . WATER SUPPLY  versus  IRRIGATION : 1997-1998 El Ni ñ o period (NWRB data).
http://llda.gov.ph/SD_Mondriaan/WM_Main.htm The Water Mondriaan is a schematic map of the Laguna de Bay water system, showing the monitoring results in the lake and its tributaries compared with the DENR water quality criteria / water usage & classification for freshwater systems or when absent the LLDA expert opinion.  The parameters included, focus on factors of significant ecological, human health and resource use importance or on the processes that are crucial to them: oxygen and oxygen demand (%DO, BOD5 and COD), bacterial pollution (Total Coliforms, Fecal Coliforms, eutrophic level (phosphate, dissolved nitrogen, chlorophyll-a and phytoplankton abundance), and hazardous substances (oil & grease and on a quarterly basis lead, hexavalent chromium & cadmium).
Fish pens (top) & Fish cages (bottom) used for aquaculture in Laguna de Bay. Small fisherman engaged in open lake fishing. Impact of El Niño on  aquaculture and fisheries [ Liongson (2003)]
Rainfall (in drought conditions),  lake stage (severe drawdown),  & salinity (maximized conditions) during the El Niño  months of  1997-1998. Impact of El Niño on  aquaculture and fisheries This situation was most advantageous for the  brackish-water aquaculture  and fisheries , but disadvantageous  for potential water-supply and irrigation uses. [ Liongson (2003)]
Monthly measurements of salinity, transparency  and turbidity at Laguna de Bay West-Bay-I station during the years 1997-1999.  (a).  Time series plots and  (b).  Scatter plots and fitted regression lines  of salinity versus transparency and turbidity. Impact of El Niño on  aquaculture and fisheries [ Liongson (2003)]
 
 
 
 
 
 
The Study of the Effects of  Payatas Dumpsite  to the La Mesa Reservoir (NHRC, UP Diliman, 2001) The principal objective of the study is to identify the effects of the Payatas open dumpsite  on the Novaliches (La Mesa) Reservoir with emphasis on the potential risk of leachate  contamination. The secondary objectives are: to characterize the hydrogeology and  hydraulics of the aquifer below the Payatas dumpsite, to identify the toxic and hazardous  contaminants which have leached to the subsurface beneath the Payatas dumpsite area,  to establish the potential risk of contamination to the La Mesa Reservoir, and to recommend  possible remedial or mitigating measures to reduce the risk of contamination of  the La Mesa Reservoir.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Sabo Dam at Ormoc, Leyte.
 
 
 
 
 
 
 
 
 
 
 
 
Hydraulics –   engineering mechanics of water flows. Systems of flow equations -   Navier-Stokes Equations,  (general incompressible Newtonian fuid); St. Venant’s Equations and  Kinematic Wave Equation. (open channel flows).
A simple physically-based model -  admits effects of urbanization &  climate change on flash floods.
Thank You.

Weitere ähnliche Inhalte

Was ist angesagt?

Overview on the future activities of the IPCC from 2016 to 2022 and productio...
Overview on the future activities of the IPCC from 2016 to 2022 and productio...Overview on the future activities of the IPCC from 2016 to 2022 and productio...
Overview on the future activities of the IPCC from 2016 to 2022 and productio...
ipcc-media
 
Seismic Analysis for Safety of Dams
Seismic Analysis for Safety of DamsSeismic Analysis for Safety of Dams
Seismic Analysis for Safety of Dams
IOSR Journals
 
Ecological impacts of dams
Ecological impacts of damsEcological impacts of dams
Ecological impacts of dams
MrJewett
 
Flood Mapping using GIS
Flood Mapping using GISFlood Mapping using GIS
Flood Mapping using GIS
Prabhas Gupta
 

Was ist angesagt? (20)

Overview on the future activities of the IPCC from 2016 to 2022 and productio...
Overview on the future activities of the IPCC from 2016 to 2022 and productio...Overview on the future activities of the IPCC from 2016 to 2022 and productio...
Overview on the future activities of the IPCC from 2016 to 2022 and productio...
 
Flood management in Pakistan ppt
Flood management in Pakistan pptFlood management in Pakistan ppt
Flood management in Pakistan ppt
 
Flood risk mapping using GIS and remote sensing
Flood risk mapping using GIS and remote sensingFlood risk mapping using GIS and remote sensing
Flood risk mapping using GIS and remote sensing
 
Runoff & Flood Frequency Analysis
Runoff & Flood Frequency AnalysisRunoff & Flood Frequency Analysis
Runoff & Flood Frequency Analysis
 
Integrated water resource management
Integrated water resource managementIntegrated water resource management
Integrated water resource management
 
Landslide prediction
Landslide predictionLandslide prediction
Landslide prediction
 
Seismic Analysis for Safety of Dams
Seismic Analysis for Safety of DamsSeismic Analysis for Safety of Dams
Seismic Analysis for Safety of Dams
 
Flood vulnerability and risk mapping
Flood vulnerability and risk mappingFlood vulnerability and risk mapping
Flood vulnerability and risk mapping
 
Surface runoff
Surface runoffSurface runoff
Surface runoff
 
Ecological impacts of dams
Ecological impacts of damsEcological impacts of dams
Ecological impacts of dams
 
SURFACE WATER QUALITY ASSESSMENT USING GIS
SURFACE WATER QUALITY ASSESSMENT USING GISSURFACE WATER QUALITY ASSESSMENT USING GIS
SURFACE WATER QUALITY ASSESSMENT USING GIS
 
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki BasinClimate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
Climate Change Impact Assessment on Hydrological Regime of Kali Gandaki Basin
 
R.A. 9275 Philippine Clean Water Act of 2004
R.A. 9275 Philippine Clean Water Act of 2004R.A. 9275 Philippine Clean Water Act of 2004
R.A. 9275 Philippine Clean Water Act of 2004
 
PPT on Drainage system problems and sloutions
PPT on Drainage system problems and sloutions PPT on Drainage system problems and sloutions
PPT on Drainage system problems and sloutions
 
Impacts of Urbanization - Part 1
Impacts of Urbanization - Part 1Impacts of Urbanization - Part 1
Impacts of Urbanization - Part 1
 
Global water resources and use
Global water resources and useGlobal water resources and use
Global water resources and use
 
Land pollution in the Philippines
Land pollution in the PhilippinesLand pollution in the Philippines
Land pollution in the Philippines
 
Flood Mapping using GIS
Flood Mapping using GISFlood Mapping using GIS
Flood Mapping using GIS
 
Salinity Prevention
Salinity PreventionSalinity Prevention
Salinity Prevention
 
Marine soil deposits _west coast
Marine soil deposits _west coastMarine soil deposits _west coast
Marine soil deposits _west coast
 

Ähnlich wie UPLB SEARCA 2009 Sept07

Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02
leony1948
 
Liongson Chair2000
Liongson Chair2000Liongson Chair2000
Liongson Chair2000
leony1948
 
Calapan2 O M Floods
Calapan2  O M FloodsCalapan2  O M Floods
Calapan2 O M Floods
leony1948
 
Wwf3 Liongson
Wwf3 LiongsonWwf3 Liongson
Wwf3 Liongson
leony1948
 
EvanMorganSample
EvanMorganSampleEvanMorganSample
EvanMorganSample
Evan Morgan
 

Ähnlich wie UPLB SEARCA 2009 Sept07 (20)

Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02
 
Liongson Chair2000
Liongson Chair2000Liongson Chair2000
Liongson Chair2000
 
Lily
LilyLily
Lily
 
A new methodology for monitoring peatland degradation: Case study of the Okav...
A new methodology for monitoring peatland degradation: Case study of the Okav...A new methodology for monitoring peatland degradation: Case study of the Okav...
A new methodology for monitoring peatland degradation: Case study of the Okav...
 
Calapan2 O M Floods
Calapan2  O M FloodsCalapan2  O M Floods
Calapan2 O M Floods
 
Ecology of the east african lakes for unfccc adaptation
Ecology of the east african lakes for unfccc adaptationEcology of the east african lakes for unfccc adaptation
Ecology of the east african lakes for unfccc adaptation
 
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
 
2010 liongson-flood mitigation in metro manila-phil engg journal article
2010 liongson-flood mitigation in metro manila-phil engg journal article2010 liongson-flood mitigation in metro manila-phil engg journal article
2010 liongson-flood mitigation in metro manila-phil engg journal article
 
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
 
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
 
Gl2511741181
Gl2511741181Gl2511741181
Gl2511741181
 
Gl2511741181
Gl2511741181Gl2511741181
Gl2511741181
 
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershedRetrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
 
PhD Synopsis
PhD SynopsisPhD Synopsis
PhD Synopsis
 
A rank reduced analysis of runoff components and their response patterns to ...
A rank  reduced analysis of runoff components and their response patterns to ...A rank  reduced analysis of runoff components and their response patterns to ...
A rank reduced analysis of runoff components and their response patterns to ...
 
Wwf3 Liongson
Wwf3 LiongsonWwf3 Liongson
Wwf3 Liongson
 
AE hydroperiods of Napo floodplains JC.pdf
AE hydroperiods of Napo floodplains JC.pdfAE hydroperiods of Napo floodplains JC.pdf
AE hydroperiods of Napo floodplains JC.pdf
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...
 
EvanMorganSample
EvanMorganSampleEvanMorganSample
EvanMorganSample
 

Mehr von leony1948

2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture
leony1948
 
Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003
leony1948
 
Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003
leony1948
 
Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003
leony1948
 
Liongson Vargasm 2006
Liongson Vargasm 2006Liongson Vargasm 2006
Liongson Vargasm 2006
leony1948
 
Tranvia Train 2006
Tranvia Train 2006Tranvia Train 2006
Tranvia Train 2006
leony1948
 
Train Vs Car
Train Vs CarTrain Vs Car
Train Vs Car
leony1948
 
Tale Of Genji
Tale Of GenjiTale Of Genji
Tale Of Genji
leony1948
 
Paase Koh Lecture Liongson
Paase Koh Lecture LiongsonPaase Koh Lecture Liongson
Paase Koh Lecture Liongson
leony1948
 
Chair 2009 Liongson
Chair 2009 LiongsonChair 2009 Liongson
Chair 2009 Liongson
leony1948
 
Dals Up 09 Cruz
Dals Up 09 CruzDals Up 09 Cruz
Dals Up 09 Cruz
leony1948
 

Mehr von leony1948 (13)

2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture
 
Pampanga Rb
Pampanga RbPampanga Rb
Pampanga Rb
 
Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003
 
Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003
 
Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003
 
Liongson Vargasm 2006
Liongson Vargasm 2006Liongson Vargasm 2006
Liongson Vargasm 2006
 
Tranvia Train 2006
Tranvia Train 2006Tranvia Train 2006
Tranvia Train 2006
 
Train Vs Car
Train Vs CarTrain Vs Car
Train Vs Car
 
Phil Ads
Phil AdsPhil Ads
Phil Ads
 
Tale Of Genji
Tale Of GenjiTale Of Genji
Tale Of Genji
 
Paase Koh Lecture Liongson
Paase Koh Lecture LiongsonPaase Koh Lecture Liongson
Paase Koh Lecture Liongson
 
Chair 2009 Liongson
Chair 2009 LiongsonChair 2009 Liongson
Chair 2009 Liongson
 
Dals Up 09 Cruz
Dals Up 09 CruzDals Up 09 Cruz
Dals Up 09 Cruz
 

Kürzlich hochgeladen

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Kürzlich hochgeladen (20)

Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 

UPLB SEARCA 2009 Sept07

  • 1.
  • 2.
  • 3. A map of the Philippines which shows the 20 major river basins located in 12 water resources regions. Region 3 or Central Luzon includes the Agno River Basin and the Pampanga River Basin.
  • 4. Extreme Flood Events in Central Luzon (highest record: 1972 Flood)
  • 5. Pantabangan Dam & Reservoir in Nueva Ecija– the multi-purpose earth dam was finished in 1974.
  • 6. Pantabangan Dam Spillway in June 1976.
  • 7. Map Comparison of the 30-year Normal Rainfall for month of August and the Total Rainfall measured in August 2004. Peak monsoon months in Central Luzon, Philippines: July, August, September – including rain intensification by typhoons.
  • 8. Top left and right: Typhoon Aere (Marce, Phil. local name) moved along a track northeast of the Philippines and Taiwan during the period August 20-24, 2004. Bottom left: Graph of the central pressure inside Typhoon Aere versus date in August 2004.
  • 9. Satellite image of Typhoon Aere on August 25, 2004. Comparison of satellite images of Central Luzon between July 31 and August 30, 2004, showing extent of flood inundation.
  • 10. A map of the extent of inundation in Central Luzon on August 30, 2004 (MODIS inundation limit prepared by the Dartmouth Flood Observatory).
  • 11. News photos of the Central Luzon flooding in August 2004.
  • 12.  
  • 13. Location map of the Flood Forecasting and Warning System (FFWS) network for major river basin of Luzon, Philippines. Rainfall and River Water Level Telemetry Stations in the Flood Forecasting and Warning System (FFWS).
  • 14. A drainage map (left) of the Agno River Basin (drainage area = 5952 sq.km.), and adjacent Sinocalan and Bued River Basins (drainage area = 897 sq.km.) and an isohyetal map (right) of total rainfall depth measured during the peak storm period of August 24-30, 2004.
  • 15. A drainage map (left) of the Pampanga River Basin (drainage area = 9759 sq.km.) and an isohyetal map (right) of total rainfall depth measured during the peak storm period of August 24-30, 2004.  
  • 16. Lower AGNO RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3 distribution plots fitted to the monthly rainfall records of the synoptic station, Dagupan City, for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall = 1018 mm. Return period = around 10 years
  • 17. PAMPANGA RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3 distribution plots fitted to the monthly rainfall records of the synoptic station, Cabanatuan City, for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall = 690 mm. Return period = around 25 years
  • 18. Upper AGNO RIVER BASIN: Storm hyetographs and f lood hydrographs derived from reservoir operations data of Ambuklao and Binga Dams in the upper Agno River Basin during the period, August 1 -30, 2004.
  • 19.  
  • 20. Storm hyetographs and f lood hydrographs (hourly and daily) derived from reservoir operations data of San Roque Dam in the upper Agno River Basin during the period, August 1 -30, 2004.
  • 21. Lower AGNO RIVER BASIN: Storm hyetographs & stage hydrographs of lower Agno River at Bañaga (DA = 5564 sq.km.) and Sinocalan River at Sta. Barbara (DA = 180 sq.km.) during the period, August 1 – September 30, 2004.
  • 22. Reservoir water balance for the Ambuklao, Binga, and San Roque Dams, Upper Agno River Basin, during the peak storm period, August 24-30, 2004   Damsite at Upper Agno River Basin Drainage area, sq.km. Peak hourly inflow discharge, m 3 /s Peak hourly outflow discharge, m 3 /s Inflow volume, MCM Outlflow volume, MCM Change in reservoir volume, MCM Ambuklao Dam 686 1273 1212 (spillway+turbine) 298.4 292.6 5.8 Binga Dam   936 1844 1891 (spillway+turbine) 468.7 469.2 - 0.50   San Roque Dam   1250   3029 SRPC: 2792, or PAGASA: 2811 (spillway) + 202 (turbine)   649.5 376.4 (spillway) + 81.8 (turbine) 191.3 (29% of inflow volume)
  • 23. SAN ROQUE RESERVOIR Sediment routing modeling nhc northwest hydraulic consultants S Sediment inflow TE = Trap Efficiency Vancouver, November 20 th , 2006
  • 24. Past sedimentation rates Ambuklao Binga  Effect of 1990 Luzon earthquake in the period 1990-97.  Effect of 1990 Luzon Earthquake in 1990-97. 5.8 64 153 1997 1.4 8 217 1986 5.3 69 225 1980 3.0 33 294 1967 - - 327 1956 Sedimentation rate (10 6 m 3 /yr) Deposited volume (10 6 m 3 ) Storage Volume (10 6 m 3 ) Year 1.0 6.1 24.0 2003 2.4 26.0 30.1 1997 1.2 8.7 56.1 1986 1.4 17.1 64.8 1979 0.8 5.5 81.9 1967 - - 87.4 1960 Sedimentation rate (10 6 m 3 /yr) Deposited volume (10 6 m 3 ) Storage Volume (10 6 m 3 ) Year
  • 25. PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of Chico River at Zaragoza (DA = 1177 sq.km.) and Pampanga River at Arayat (DA = 6487 sq.km.) during the period, August 1 – September 30, 2004.
  • 26. PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of Pampanga River at Candaba (DA = 7468 sq.km.) and Pampanga River at Sulipan (DA = 7489 sq.km.) during the period, August 1 – September 30, 2004.
  • 27. aa j Agno River at San Roque Dam: August 2004 Peak inflow discharge = 3029 m 3 /s, return period = around 20 years, based on the Log Pearson Type 3 distribution fitted to pre-construction 1946-1980 annual flood records. Pampanga River at Arayat: August 2004 Peak discharge = 2689 m 3 /s, return period = around 6 years, based on the Extreme Value Type I distribution fitted to 1953-1979 annual flood records. Chico River at Zaragoza: August 2004 Peak discharge = 420 m 3 /s, return period = around 9 years, based on the Log Pearson Type 3 distribution fitted to 1960-1999 annual flood records. FLOOD FREQUENCY ANALYSIS
  • 28. INUNDATED AREAS: Agno River Basin The MODIS inundation map shows that extensive flooding occurred in the Poponto Swamps area of the Tarlac sub-basin (in the towns of Moncada and Paniqui), near its confluence with Agno River, but far from the immediate downstream vicinity of the San Roque Dam. The flooded area can be reckoned by the difference between the DAs of the Agno River at the Urbiztondo and Bayambang stations, which is equal to 5134 - 4196 = 938 sq.km. This number is remarkably close to the reported 960 sq.km (96,000 has.) of flooded rice lands in Tarlac province. INUNDATED AREAS: Pampanga River Basin As shown by the MODIS inundation map, the extensive flooding occurred in the Candaba Swamps and the Pampanga River Delta (including the Pasac Delta downstream of the Pinatubo sub-basins). The areal extent of the Candaba Swamps is expected to be less than the difference between the DAs at the Sulipan and Arayat stations, which is equal to 7849 – 6487 = 1362 sq.km. The areal extent of the Pampanga and Pasac Delta areas is reckoned by the difference between the total DA of the Pampanga River Basin, and the combined DAs of Pampanga River at Sulipan station, and Angat River at Calumpit, which is equal to 9759 - 7849 - 1014 = 896 sq.km. (consistent with the inundation map).
  • 29. Disaster Information Summary from the National Disaster Coordinating Council (NDCC): After- Effects of Southwest Monsoon Rains as of 8:00 AM, 01 September 2004 The southwest monsoon rains triggered massive flooding / flashfloods, landslides, and drowning incidents in various parts of Regions I, III, IV, CAR and NCR, the spillage of Ambuklao, Binga and San Roque Dams, the collapse of Amburayan Dike in Bangar, La Union and the breaching of Colibangbang Dike in Paniqui, Tarlac. Affected Areas: 2,113 barangays affected in 156 municipalities and 23 cities of 17 provinces in 5 Regions. Affected Population: 383,205 families or 1,858,082 persons; Casualties - 53 (43 dead, 9 injured and 1 still missing); Thirty five (35) of the 43 death toll was due to drowning, 4 electrocution, 1 cardiac arrest, and 3 covered by mudslide; the 9 injured was due to landslide, electrocution and covered by mudslides while the 1 missing was due to drowning. Damaged Houses - 69 totally and 2,464 partially; Properties Damaged - P1,315.039 M or P1.315 B (Agriculture - P1,167.551 M and Infrastructure - P147.488 M). Based on the search, rescue and evacuation operations conducted by the emergency responders: Cumulative total of families/persons displaced and evacuated to 143 evacuation centers is 9,269 families or 50,101 persons; Cumulative total of families /persons served - 114,022 families or 594,485 persons. Extent of assistance provided by NDCC, DSWD, LGUs and NGOs amounted to P17,202,693.15.
  • 30.
  • 31. Post Script: A more destructive storm-induced natural disaster happened in November 19-29, 2004 – the Eastern Luzon Landslides and Flooding caused by the three Typhoons Muifa, Merbok (Violeta) and Winnie. Provinces worst affected: Aurora, Quezon and eastern Nueva Ecija. Daily rainfall at Infanta, Quezon in Eastern Luzon: Nov. 19 - 45.8 mm. (Typhoon Muifa, Nov. 19-25, 2004) Nov. 20 - 192.8 mm. (antecedent 1-day peak, approx. 5-year return period) Nov. 21 - 184.5 Nov. 22 - 43.1 Nov. 23 - 22.4 Nov. 24 - 33.9 Nov. 25 - 7.3 Nov. 26 - 66.6 mm. (Typhoon Merbok (Violeta), Nov. 23-27, 2004) Nov. 27 - 1.7 Nov. 28 - 40.3 Nov. 29 - 493.5 mm. (main 1-day peak rainfall, approx. 45-year return period) (Typhoon Winnie, Nov. 29- Dec. 2, 2004) Below - News photos: Landslides and debris flows in Infanta and Real towns, Quezon. NDCC report (as of Dec. 2, 2004): 199 affected barangays In 38 municipalities, 52872 affected families Or 242,952 persons; 407 dead, 33 injured, 142 missing; Damages: Agriculture – P185.43 M Others – P 2.86 M
  • 32. MODIS (Moderate Resolution Imaging Spectroradiometer) images: Northern & Central Luzon on December 04, 2004
  • 33. Effects of Mt. Pinatubo sediment deposition
  • 34. Multipurpose dams, and flood-control & anti-lahar dikes in Central Luzon.
  • 35. Above: The church (1899 photo) as it was, until the 1991 Pinatubo eruption. Below: The church in 1996, its first floor completely buried in 1995. A church in Bacolor, Pampanga, Central Luzon, finally buried up to the second floor by the Pinatubo lahar of 1995.
  • 36. Liongson, L. Q. and G. Q. Tabios III (2000). Computation with a 2-D Lahar-Flood Model in a Mt. Pinatubo Basin, Philippines . Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation, Taipei, Taiwan, August 16-18. 2-d model grid of lower Pasig-Potrero River Basin, Mt. Pinatubo area. dx, dy = 250 m. 50-Year 5-Day Storm Liongson, L. Q., G. Q. Tabios III, and P. P. M. Castro (1997). 2-D Lahar-Flood Model for Pasig-Potrero River in the Mt. Pinatubo Area. First International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, American Society of Civil Engineers, San Francisco, California, USA, August 7-9.
  • 37. Debris-flow rheoloy: Shear Stress Balance:  g (H - z) sin  = a i  s d 2 C l 2 sin  du/dz |du/dz|   Normal Stress Balance : (  s -  f ) g (H-z) C cos  = a i  s d 2 C l 2 cos  du/dz |du/dz| where H = depth of flow; z = vertical distance from the bed; du/dz = local velocity gradient; g = gravity acceleration; C = suspended solid concentration by volume;  =  s C +  f (1-C) = mixture density;  s = solid-phase density;  f = fluid-phase density (water + washload);  = friction slope angle; a i = Bagnold’s coefficient; d = median particle diameter; C l = linear concentration = 1 /[(C b / C) 1/3 - 1 ]  = dynamic internal angle of friction;
  • 38. Combined Hyperconcentrated Flow - Flood Flow Equations Shear Stress Balance:    g (H - z) sin  = (a i  s d 2 C l 2 sin  +  K T 2 z 2 ) du/dz |du/dz| Normal Stress Balance : (  s -  f ) g (H-z) C cos  = (a i  s d 2 C l 2 cos  +  K N 2 z 2 ) du/dz |du/dz| K T = von Karman coefficient for shear turbulent stress K N = similar coefficient for normal turbulent stress Total Continuity Equation:    H/  t +  (HU)/  x +  (HV)/  y + E / C b = q - I Total Momentum Equations (x and y components):    (  HU)/  t +  (  HU 2 )/  x +  (  HUV)/  y +  gH (  H/  x +  Z b /  x + S fx ) +  b E U/ C b =  (H T xx )/  x +  (H T xy )/  y +  L q U L  (  HV)/  t +  (  HVU)/  x +  (  HV 2 )/  y +  gH (  H/  y +  Z b /  y + S fy ) +  b E V/ C b =  (H T yx )/  x +  (H T yy )/  y +  L q V L     Sediment Continuity Equation:    (HC)/  t +  (HUC)/  x +  (HVC)/  y +  Z b /  t C b = q C L 
  • 39. where t = time; (x,y) = perpendicular horizontal coordinates; H = H(x,y,t) = depth of flow; Z b = Z b (x,y,t) = bed elevation; (U,V) = (U(x,y,t), V(x,y,t)) = mean velocity vector (depth-averaged); C = C(x,y,t) = suspended solid concentration by volume; C b = bed-deposited concentration by volume;  =  s C +  f (1-C) = mixture density; g = gravity acceleration;  s = solid-phase density;  f = fluid-phase density (water + washload); E =  Z b /  t C b = bed deposition (>0) or erosion (<0) rate; (S fx , S fy ) = (U,V) S f /  (U 2 +V 2 ) = vector of friction slope components; S f = resultant bed friction slope = f (U 2 +V 2 ) /(8 g H); f = integrated friction factor (defined under rheology); T xx =  n  f / 8 H 2  U/  x  U/  x  = lateral normal stress in x-direction; T yy =  n  f / 8 H 2  V/  y  V/  y  = lateral normal stress in y-direction; T xy = T yx =  t  f / 8 H 2 (  V/  x +  U/  y)  V/  x +  U/  y  = lateral shear stress in either x or y direction;  n ,  t = lateral normal and shear stress coefficients, resp.  1.0; q = total lateral inflow (such as direct rainfall or tributary flow); q C L = lateral sediment inflow; I =bed infiltration rate = a maximum assumed value or else the available water depth per unit time step, whichever is less at any given time;  b E (U,V)/ C b = momentum loss vector due to deposition (for E>0 only), including entrained water;  L q (U L ,V L ) = lateral momentum influx vector.
  • 40.  
  • 41.  
  • 42.  
  • 43.  
  • 44.  
  • 45. Based on a SIR-C/X-SAR Space Shuttle false-color Image of the Pinatubo-affected Pasac Delta, or Guagua RB, adjacent to the Pampanga River Basin (1994). Much of Pasac Delta has been converted to fishponds through the centuries, and at present, its narrow channels receive the fine lahar sediment brought down from the pyroclastic deposits of the 1991 eruption of the volcano .
  • 46. aa
  • 47.  
  • 48. Coastal flooding due to groundwater extraction (Siringan et al, UP NIGS, 2000.)
  • 49. The demolition of illegally built additional fishponds in the estuary of the Pinatubo-affected Pasac Delta, adjacent to the Pampanga River Basin. Coastal flooding due to channel constrictions.
  • 50. Opposition to major flood-control projects Major flood-control and river engineering projects have encountered opposition from local populations in the floodplain or riverbank areas due to the conflicting land-use management policies and priorities. These oppositions have caused the national government to either revise or realign, defer or abandon the project control plans. An example below:
  • 51. The hydrologic cycle. (source: www.lexingtonwaterfacts.com)
  • 52.
  • 53. DENR Water Quality Criteria / Water Usage & Classification for Fresh Water Class A - Public water supply II (require complete treatment to meet national standards for drinking water) Class B - Recreational water class I (for contact recreation as bathing and swimming) Class C - Fishery water for the propagation and growth of fish (also non-contact recreation & industrial use class I) Class D - For agriculture, irrigation, livestock watering and industrial water supply class II
  • 54. Integrated Water Resources Management or IWRM , having been promoted in the last twelve years (1997-2009), is an international movement which advocates the multi-stakeholder and participatory manner of managing the water resources among the competing users. The Global Water Partnership (GWP) &quot;was founded in 1996 by the World Bank, the United Nations Development Programme (UNDP), and the Swedish International Development Agency (SIDA) to foster integrated water resource management (IWRM), and to ensure the coordinated development and management of water, land, and related resources by maximizing economic and social welfare without compromising the sustainability of vital environmental systems.&quot; (http://www.gwpforum.org). Philippine Water Partnership (PWP) - established in 2002; the local network partner of GWP and GWPSEA; recognized (by NEDA InfraCom) as the principal NGO for the promotion of IWRM.
  • 55. Towards a new paradigm - from sub-sectoral to cross-sectoral water management IWRM is the ‘integrating handle’ leading us from sub-sectoral to cross-sectoral water management. CROSS-SECTORAL DIALOGUE THROUGH IWRM IWRM People Food Industry & others WATER USE SECTORS Eco- system IWRM is a process which promotes the coordinated development and management of water, land and related resources in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems (GWP/TAC).
  • 56. How do the Dublin principles translate into action? The ENABLING ENVIRONMENT sets the rules, the INSTITUTIONAL ROLES and functions define the players who make use of the MANAGEMENT INSTRUMENTS . ECOSYSTEM SUSTAINABILITY Enabling Environment Policies Legislation Management Institutional Instruments Roles Assessment Central-local Information Public-private Allocation tools River basin ECONOMIC EFFICIENCY SOCIAL EQUITY All this depends on the existence of popular awareness and political will to act!
  • 57. Left: Angat Reservoir monthly inflows, releases for irrigation and water supply, and water surface elevation, relative to the lower rule curve; right: policy summary for the years 1997-2003: in scatter plots and regression curves [ Liongson (2003)] . WATER SUPPLY versus IRRIGATION : 1997-1998 El Ni ñ o period (NWRB data).
  • 58. http://llda.gov.ph/SD_Mondriaan/WM_Main.htm The Water Mondriaan is a schematic map of the Laguna de Bay water system, showing the monitoring results in the lake and its tributaries compared with the DENR water quality criteria / water usage & classification for freshwater systems or when absent the LLDA expert opinion. The parameters included, focus on factors of significant ecological, human health and resource use importance or on the processes that are crucial to them: oxygen and oxygen demand (%DO, BOD5 and COD), bacterial pollution (Total Coliforms, Fecal Coliforms, eutrophic level (phosphate, dissolved nitrogen, chlorophyll-a and phytoplankton abundance), and hazardous substances (oil & grease and on a quarterly basis lead, hexavalent chromium & cadmium).
  • 59. Fish pens (top) & Fish cages (bottom) used for aquaculture in Laguna de Bay. Small fisherman engaged in open lake fishing. Impact of El Niño on aquaculture and fisheries [ Liongson (2003)]
  • 60. Rainfall (in drought conditions), lake stage (severe drawdown), & salinity (maximized conditions) during the El Niño months of 1997-1998. Impact of El Niño on aquaculture and fisheries This situation was most advantageous for the brackish-water aquaculture and fisheries , but disadvantageous for potential water-supply and irrigation uses. [ Liongson (2003)]
  • 61. Monthly measurements of salinity, transparency and turbidity at Laguna de Bay West-Bay-I station during the years 1997-1999. (a). Time series plots and (b). Scatter plots and fitted regression lines of salinity versus transparency and turbidity. Impact of El Niño on aquaculture and fisheries [ Liongson (2003)]
  • 62.  
  • 63.  
  • 64.  
  • 65.  
  • 66.  
  • 67.  
  • 68. The Study of the Effects of Payatas Dumpsite to the La Mesa Reservoir (NHRC, UP Diliman, 2001) The principal objective of the study is to identify the effects of the Payatas open dumpsite on the Novaliches (La Mesa) Reservoir with emphasis on the potential risk of leachate contamination. The secondary objectives are: to characterize the hydrogeology and hydraulics of the aquifer below the Payatas dumpsite, to identify the toxic and hazardous contaminants which have leached to the subsurface beneath the Payatas dumpsite area, to establish the potential risk of contamination to the La Mesa Reservoir, and to recommend possible remedial or mitigating measures to reduce the risk of contamination of the La Mesa Reservoir.
  • 69.  
  • 70.  
  • 71.  
  • 72.  
  • 73.  
  • 74.  
  • 75.  
  • 76.  
  • 77.  
  • 78.  
  • 79.  
  • 80.  
  • 81.  
  • 82.  
  • 83.  
  • 84.  
  • 85.  
  • 86.  
  • 87.  
  • 88.  
  • 89.  
  • 90.  
  • 91.  
  • 92.  
  • 93.  
  • 94.
  • 95.  
  • 96. Sabo Dam at Ormoc, Leyte.
  • 97.  
  • 98.  
  • 99.  
  • 100.  
  • 101.  
  • 102.  
  • 103.  
  • 104.  
  • 105.  
  • 106.  
  • 107.  
  • 108.  
  • 109. Hydraulics – engineering mechanics of water flows. Systems of flow equations - Navier-Stokes Equations, (general incompressible Newtonian fuid); St. Venant’s Equations and Kinematic Wave Equation. (open channel flows).
  • 110. A simple physically-based model - admits effects of urbanization & climate change on flash floods.