Quantum Information Science is a fast-growing discipline advancing many areas of science such as cryptography, chemistry, finance, space science, and biology. In particular AdS/Biology, an interpretation of the AdS/CFT correspondence in biological systems, is showing promise in new biophysical mathematical models of topology (Chern-Simons (solvable QFT), knotting, and compaction). For example, one model of neurodegenerative disease takes a topological view of protein buildup (AB plaques and tau tangles in Alzheimer’s disease, alpha-synuclein in Parkinson’s disease, TDP-43 in ALS). AdS/Neuroscience methods are implicated in integrating multiscalar systems with different bulk-boundary space-time regimes (e.g. oncology tumors, fMRI + EEG imaging), entanglement (correlation) renormalization across scales (MERA, random tensor networks, melonic diagrams), entropy (possible system states), entanglement entropy (interrelated fluctuations and correlations across system tiers), and non-ergodicity (implied efficiency mechanisms since biology does not cycle through all possible configurations per temperature (thermotaxis), chemotaxis, and energy cues); Maxwell’s demon of biology (partition functions), conservation across system scales (biophysical gauge symmetry (system-wide conserved quantity)), and the presence of codes (DNA, codons, neural codes). A multiscalar AdS/CFT correspondence is mobilized in 4-tier ecosystem models (light-plankton-krill-whale and ion-synapse-neuron-network (AdS/Brain)).