SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Diffraction of red laser beam on the hole




                                                     
                                                             Diffraction 




                                                        Dr. Amit Kumar Chawla 
Diffraction by edges
Diffraction Pattern, Illuminated 
                 Penny
• This shows a diffraction pattern 
                            pattern
  created by the illumination of a 
  penny, positioned midway 
  between screen and light source.

• The bright spot at the center.
   – It is a constructive interference
Diffraction Pattern, Object Edge




• This shows a diffraction pattern associated with light 
                             pattern
  from a single source passing by the edge of an opaque
  object
• The diffraction pattern is vertical with the central 
                             vertical
  maximum at the bottom
Introduction to Diffraction Patterns

• Light of wavelength comparable to or 
  larger than the width of a slit    (λ >> a) 
                             slit
  spreads out in all forward directions 
  upon passing through the slit.

    This phenomena is called diffraction.

    This indicates that light spreads beyond 
  the narrow path defined by the slit into 
  regions that would be in shadow if light 
  traveled in straight lines
Diffraction
If an opaque obstacle is placed between a source of light 
and a screen (the size of obstacle must be comparable to 
wavelength  of  light)  then  light  bends  around  the  corner 
of  the  obstacle  into  the  geometrical  shadow.  This 
bending of light is called diffraction.


 The bending or spreading of waves when they encounter 
 an  obstacle  or  an  opening  in  their  path  is  called 
 diffraction.
Diffraction Pattern, Narrow Slit
• A single slit placed between a distant 
            slit
  light source and a screen produces a 
  diffraction pattern
   – It will have a broad, intense central band, 
     called the central maximum
   – The central band will be flanked by a series 
     of narrower, less intense secondary bands, 
     called side maxima or secondary maxima
                 maxima
   – The central band will also be flanked by a 
     series of dark bands, called minima
Diffraction vs. Interference
• Diffraction  is  the  bending  of  light  around  an  obstacle, 
  whereas the interference is the meeting of two waves.

• Interference  pattern  is  obtained  by  the  superposition  of   
  waves  coming  from  two  different  wavefronts  originating 
  from the same source while when the waves emerging from 
  different  parts  of  the  same  wavefont  superimpose  with  each 
  other then diffraction patter is obtained.

• The  widths  of  the  diffraction  fringes  are  not  equal,  but  the 
  widths of the interference fringes may or may not be equal.

• The  points  of  minimum  intensity  in  interference  appears 
  perfectly  dark  but  these  points  in  the  case  of  diffraction  are 
  not perfectly dark.   
Classes of Diffraction
      Diffraction requires a source of light, an obstacle or aperture 
     and the screen   

      Based on the distance between source, aperture and screen, 
     and  also  on  the  shape  of  wavefront,  diffraction  pattern  is 
     classified into two classes



    1. Fresnal Diffraction
    2. Fraunhofer Diffraction
Fresnel Diffraction

       If the source of light or the screen or both of them are 
   at  finite  distances  from  the  diffracting  aperture,  then 
   the  wavefronts  falling  on  the  aperture  will  not  be 
   plane.  The  diffraction  obtained  under  this  type  of 
   arrangement is called Fresnel Diffraction. This is also 
   called  near-field diffraction.  No  lenses  are  used  to 
   make the rays parallel or convergent
Fraunhofer Diffraction
            If both the source of light and the screen or both of 
    them  are  effectively  far  enough  from  the  aperture  so 
    that  the  wavefronts  reaching  the  aperture  and  the 
    screen  can  be  considered  plane.  Then  the  source  and 
    the screen are said to be at infinite distances from the 
    aperture. This kind of diffraction is called Fraunhofer 
    Diffraction. This is also called far-field diffraction.
Fraunhofer Diffraction is encountered in the case of 
gratings that contain number of slits.

When  the  screen  is  moved,  the  size  of  the  diffraction 
patteren  changes  uniformaly  while  the  shape  of  the 
pattern does not change.

Fresnel Diffraction is  obtained  when  light  suffers 
diffraction at a straight edge, a thin wire, a narrow slit 
etc.
Both the size and shape of the pattern depends on the 
distance  between  the  diffracting  aperture  and  the 
screen.
Fraunhofer Diffraction at single slit


                                                                       P
    A            θ

e                   θ                                                  O
        θ
          K          θ
    B



        Path difference = BK = AB sinθ = e sinθ
                                2π                           2π
        Phase difference =             x path difference  =  λ (e sin θ )
                                 λ
Let the width AB of the slit be divide into n equal parts. The
amplitude of vibration at P due to the waves from each part will be
same, say a. The phase difference between the waves from any
two consecutive parts is
                         1  2π         
                               e sin θ  = d
                         n λ           

Then the resultant amplitude at P is given by
                                     πe sin θ 
                              a sin           
                a sin(nd 2)             λ 
             R=             =
                 sin(d 2)           πe sin θ 
                               sin           
                                    nλ 

     Let us put
                     π         
                       e sin θ  = α
                     λ         
a sin α   a sin α
   Then        R=            =
                    sin(α n)    α n

                          na sin α
                     R=
                             α


When n → ∞ , a → 0 , but the product na        remains finite.


      Let na = A

The resultant intensity at P, being proportional to the square of
the amplitude, is
                                         2
                       2  sin α 
                 I=R =A 
                    2
                                 
                          α 
2
                       sin α 
               I=R =A 
                    2     2
                              
                       α 
Condition for Maxima

           A sin α A    α3 α5 α7         
        R=        = α −   +  −   + ......
              α    α    3! 5! 7!         


            A sin α     α2 α4 α6            
         R=         = A1 −   +  −   + ......
               α           3! 5! 7!         


         R = A for α = 0
        This is the intensity of central maximum

           π        
       α =  e sin θ  = 0 or          sin θ = 0
           λ        
Condition for Minima


                    sin α
                          =0
                      α

   sin α = 0 But,      α ≠0

    α = ± mπ Where m has an integral value 1, 2, 3 except zero


             π        
      So,     e sin θ  = ± mπ       ⇒ e sin θ = ± mλ
             λ        

   This equation gives the position of first, second, third ….
   By putting m = 1, 2, 3….
Secondary Maxima
                  dI
                     =0
                  dα

           d  2  sin α  2 
             A          =0
          dα   α  
                            

            2 sin α  α cos α − sin α
        A2                           =0
            α              α 2



             α cos α − sin α
                             =0
                   α 2




              α cos α − sin α = 0

             α = tan α = y ( say )
y =α    and         y = tan α

The maxima will occur when

      3π 5π 7π
   α=   , ,
       2 2 2

                 π               n = 1,2,3.....
 or α = (2n + 1)
                 2
 These are points of secondary maxima
2
                        sin α 
                I = I0        
                        α 
                          3π
            Put    α=
                           2

         4                  4                      4
    I1 = 2 I 0       I2 =      I
                              2 0
                                          I3 =        I
        9π                25π                    49π 2 0




The ratio of relative intensities of successive maxima are

          4   4     4
       1: 2 :     :     : .......
         9π 25π 49π
                2     2
3π    5π          (2 N − 3)π
α =±      ,±    , ..., ±
       2N    2N              2N
Single-Slit Diffraction,
                  Intensity
• The general features of the
  intensity distribution are shown
   – A broad central bright fringe is
     flanked by much weaker bright
     fringes alternating with dark
     fringes
   – Each bright fringe peak lies
     approximately halfway between the
     dark fringes
   – The central bright maximum is
     twice as wide as the secondary
     maxima
Diffraction due to grating


            A                                              P
                S1          θ
e+d             S2
                S3     K1
                                                           O
                Sn-1
                Sn

            B



      The amplitude from each slit in the direction θ is
                      A sin α               πe
                 R0 =           where α =      sin θ
                         α                  λ
The path difference between the wavelets from S1 and S2 in the
 direction θ is
                     S 2 K1 = (e + d ) sin θ

   Hence the phase difference between them
                 2π
                    (e + d ) sin θ = 2 β
                  λ
If N be the total number of slits in the grating, then by the method
of vector addition of amplitudes, the resultant amplitude in the
direction of θ will be

                     sin Nβ A sin α sin Nβ
            R = R0          =
                      sin β    α     sin β
Thus the resultant intensity at point P is
                                         2                  2
                              sin α         sin Nβ   
                      I=R =A 
                             2   2
                                            
                                              sin β    
                                                        
                              α                      
                         2
              sin α 
             2
The factor A         gives the intensity distribution due to single slit,
              α 
                  2
       sin Nβ   
while 
       sin β     gives the distribution of intensity in the diffraction
                 
                
pattern due to the interference in the waves due to N slits.
Principal Maxima
                                         2                  2
                           sin α            sin Nβ   
                   I=R =A 
                        2     2
                                            
                                              sin β    
                                                        
                           α                         

The intensity will be maximum when

          sin β = 0         ⇒ β = ± nπ             n = 0,1,2,3.....

This results in
                  sin Nβ 0
                         =   (Indeterminate)
                   sin β   0
Apply L’ Hospital rule
                                        d
                                           (sin Nβ )
                      sin Nβ           dβ
               Lim           = Lim
              β → ± nπ sin β  β → ± nπ   d
                                            (sin β )
                                        dβ

                       N cos Nβ
               Lim              ⇒ ±N
              β → ± nπ  cos β
                                      2
 This results in             sin α  2
                        I=A  2
                                     N
                             α 
  The condition for principal maxima is

            sin β = 0    or          β = ± nπ
π
                 (e + d ) sin θ = ± nπ
               λ

               (e + d ) sin θ = ± nλ

For n = 0, we get θ = 0 and this gives the direction of zero order
principal maxima. The value of n = 1, 2, 3, … gives the direction
of first, second, third …….. order principal maxima.
Minima
                                         2                  2
                        sin α               sin Nβ   
                I=R =A 
                      2      2
                                            
                                              sin β    
                                                        
                        α                            

The intensity will be minimum when

        sin Nβ = 0 but       sin β ≠ 0


Therefore      Nβ = ± mπ

  Nπ
     (e + d ) sin θ = ± mπ       ⇒ N (e + d ) sin θ = ± mλ
   λ
 Here m can have all integral values except 0, N, 2N, 3N……
Here m can have values 1, 2, 3, …….(N-1). Thus there are (N-1)
 equispaced minima between two consecutive principal maxima.


                  Secondary Maxima
In order to differentiate between the two consecutive minima there
should be a maximum between them. Therefore there are (N-2)
maxima between (N-1) minima. These maxima are known as
secondary maxima.
                                  2                2
                       sin α         sin Nβ 
                  I=A 2
                                     
                                       sin β 
                       α                    

                            dI
                               =0
                            dβ
A2 sin 2 α     sin Nβ     N cos Nβ sin β − sin Nβ cos β 
             2
               sin β    
                                                          =0
   α2                                sin β
                                           2
                                                           


             N cos Nβ sin β − sin Nβ cos β = 0

                         tan Nβ = N tan β
1 + N 2 tan 2 β     tan Nβ = N tan β
N tan β
                            Nβ
                    1

                             N tan β
             sin Nβ =
                          1 + N 2 tan 2 β


      sin 2 Nβ N 2 tan 2 β /( 1 + N 2 tan 2 β ) 2
              =
       sin β
           2
                            sin 2 β
N2
   =
     cos 2 β (1 + N 2 tan 2 β )

               N2
    =
      cos 2 β + N 2 sin 2 β


                N2
   =
     1 − sin 2 β + N 2 sin 2 β

sin 2 Nβ             N2
         =
 sin β
     2
           1 + ( N 2 − 1) sin 2 β
2                2
                    sin α           sin Nβ 
               I=A  2
                                    
                                      sin β 
                    α                      


                sin 2 α         N2
            I=A  2

                  α 2 1 + ( N 2 − 1) sin 2 β

The intensity of secondary maxima is proportional to

                               N2
                     1 + ( N 2 − 1) sin 2 β
                                                           2
While the intensity of primary maxima is proportional to N
Intensity of secondary maxima =           1
Intensity of principal maxima   1 + ( N 2 − 1) sin 2 β

As N increases the intensity of secondary maxima decreases.

In case of diffraction grating N is very large.
Therefore the secondary maximas are not visible in the spectrum
and there is complete darkness between two successive principal
Maxima.
Rayleigh Criteria for Resolution
Resolving Power: The ability of an optical instrument to resolve
the images of two close point source is known as resolving power.


Limit of Resolution: The minimum separation between two objects
that can be resolved by an optical instrument is called the limit of
Resolution.


Rayleigh Criteria for Resolution: According to Rayleigh, two close
point objects are said to be just resolved if the principal maxima of
one coincides with the first minima of the other and vice-versa.
Rayleigh Criteria for Resolution

According to the single slit Fraunhofer diffraction

                              sin 2 α
                       I = I0
                                α2
First minima is formed at an angle α = π

The angle at the point of intersection will be π/2
The intensity of each curve at the dip will be
                            sin 2 ( π / 2)   4
             I1 = I 2 = I 0                = 2 Io
                              ( π / 2) 2
                                            π
The resultant intensity at the dip is then given by

                       I = I1 + I 2

                        8
                  I=      I = 0.81I o
                         2 o
                       π
Resolution, Example




• Pluto and its moon, Charon
• Left: Earth-based telescope is blurred
• Right: Hubble Space Telescope clearly resolves
  the two objects
Resolving Power of Plane Diffraction grating
                                          M
     A



                          λ + dλ           P2


                              λ            P1



                 dθ
             θ
                                           O



     B                                     N
Resolving Power of Plane Diffraction grating

   The resolving power of the grating is defined as the ratio of
   wavelength (λ) to the difference dλ of the wavelength

 The direction of nth principal maxima for wavelength λ is given by

                   (e + d ) sin θ = nλ
The direction of nth principal maxima for wavelength λ+dλ is given by

             (e + d ) sin(θ + dθ ) = n(λ + dλ )        (1)
The minima for wavelength λ is given by

                   N (e + d ) sin θ = mλ

   Here m can have all integral values except 0, N, 2N, 3N……
   because for these values of m the condition of maxima is satisfied.

The first minimum adjacent to nth principal maxima in the direction
(θ+dθ) can be obtained by putting m as (nN+1)

             N (e + d ) sin(θ + dθ ) = (nN + 1)λ

                                      (nN + 1)λ       (2)
              (e + d ) sin(θ + dθ ) =
                                         N
Comparing equation (1) and (2)

                                     (nN + 1)λ
                    n ( λ + dλ ) =
                                        N

                                     λ
                     nλ + ndλ = nλ +
                                     N

                                      λ          λ
                            ndλ =           ⇒       = nN
                                      N          dλ


 Since resolving power is directly proportional to N , it means that
 larger will be the number of lines per cm of a grating greater will
 be the resolving power.
Angular width of Principal maxima

                                  M
A

                                  P2
                                  m = nN + 1
                                  m = nN
                                  P1
            dθ n                  m = nN − 1
           dθ n
      θn
                                  O



B                                 N
θ n be the direction of nth principal maxima.
   (θ n + dθ n ) and (θ n − dθ n ) be the directions of first outer and inner
sided minima adjacent to the nth maxima


 The total angular width will be 2dθn

The direction of nth order principal maxima can be given by

                 (e + d ) sin θ n = nλ

The direction of nth minima can be given by
                N (e + d ) sin θ n = mλ
The first order outer and inner sided minima adjacent to the nth
Maxima can be given by

    N (e + d ) sin(θ n ± dθ n ) = (nN ± 1)λ

 N (e + d )(sin θ n cos dθ n ± cos θ n sin dθ n ) = (nN ± 1)λ

When dθ n is small then cos dθ n = 1 and sin dθ n = dθ n . So

        N (e + d )(sin θ n ± cos θ n dθ n ) = (nN ± 1)λ

    N (e + d ) sin θ n ± N (e + d ) cos θ n dθ n = nNλ ± λ

          Nnλ ± N (e + d ) cos θ n dθ n = nNλ ± λ

                 N (e + d ) cos θ n dθ n = λ
λ
                  dθ n =
                           N (e + d ) cos θ n

                                   λ
                 2 dθ n = 2
                            N (e + d ) cos θ n


The angular width of the nth order principal maxima depends on
The total number of lines present on grating, grating element and
the wavelength.

Weitere ähnliche Inhalte

Was ist angesagt?

Diffraction
DiffractionDiffraction
DiffractionMidoOoz
 
Polarization and its Application
Polarization and its ApplicationPolarization and its Application
Polarization and its ApplicationTariq Al Fayad
 
coherence optical fibre unit iii
coherence optical fibre unit iiicoherence optical fibre unit iii
coherence optical fibre unit iiiDr. Vishal Jain
 
Diffraction
DiffractionDiffraction
Diffractionnlahoud
 
Youngs double slit experiment
Youngs double slit experimentYoungs double slit experiment
Youngs double slit experimentMTahirYounas
 
9.2 single diffraction
9.2 single diffraction9.2 single diffraction
9.2 single diffractionPaula Mills
 
Exclusive Single Slit Diffraction
Exclusive Single Slit DiffractionExclusive Single Slit Diffraction
Exclusive Single Slit DiffractionShruti Dewanagn
 
Thin film interference and newtons ring
Thin film interference and newtons ringThin film interference and newtons ring
Thin film interference and newtons ringMUHAMMED ABDURAHMAN
 
Light scattering
Light scatteringLight scattering
Light scatteringRahul Sahu
 
Polarization of Light
Polarization of LightPolarization of Light
Polarization of LightHaris Hassan
 
Heisenberg uncertainty principle
Heisenberg uncertainty principleHeisenberg uncertainty principle
Heisenberg uncertainty principlemauhammadaqib
 

Was ist angesagt? (20)

Diffraction
DiffractionDiffraction
Diffraction
 
Interference
InterferenceInterference
Interference
 
Polarization and its Application
Polarization and its ApplicationPolarization and its Application
Polarization and its Application
 
Interference
InterferenceInterference
Interference
 
coherence optical fibre unit iii
coherence optical fibre unit iiicoherence optical fibre unit iii
coherence optical fibre unit iii
 
Diffraction
DiffractionDiffraction
Diffraction
 
Youngs double slit experiment
Youngs double slit experimentYoungs double slit experiment
Youngs double slit experiment
 
9.2 single diffraction
9.2 single diffraction9.2 single diffraction
9.2 single diffraction
 
Ph 101-2
Ph 101-2Ph 101-2
Ph 101-2
 
Exclusive Single Slit Diffraction
Exclusive Single Slit DiffractionExclusive Single Slit Diffraction
Exclusive Single Slit Diffraction
 
Diffraction
DiffractionDiffraction
Diffraction
 
Wave optics
Wave opticsWave optics
Wave optics
 
Thin film interference and newtons ring
Thin film interference and newtons ringThin film interference and newtons ring
Thin film interference and newtons ring
 
coherence of light
coherence of lightcoherence of light
coherence of light
 
Light scattering
Light scatteringLight scattering
Light scattering
 
Diffraction
DiffractionDiffraction
Diffraction
 
Interference of light
Interference of lightInterference of light
Interference of light
 
Polarization of Light
Polarization of LightPolarization of Light
Polarization of Light
 
Heisenberg uncertainty principle
Heisenberg uncertainty principleHeisenberg uncertainty principle
Heisenberg uncertainty principle
 
Polarisation
PolarisationPolarisation
Polarisation
 

Andere mochten auch

1.4 Diffraction Of Waves
1.4 Diffraction Of Waves1.4 Diffraction Of Waves
1.4 Diffraction Of Wavescgharyati
 
Phycis Form 5: Chapter 1.4 Diffraction of Waves
Phycis Form 5: Chapter 1.4 Diffraction of WavesPhycis Form 5: Chapter 1.4 Diffraction of Waves
Phycis Form 5: Chapter 1.4 Diffraction of WavesQhaiyum Shah
 
Freightliner and Western Star Gliders
Freightliner and Western Star GlidersFreightliner and Western Star Gliders
Freightliner and Western Star GlidersKenneth Eggen
 
Introduction to laser diffraction
Introduction to laser diffractionIntroduction to laser diffraction
Introduction to laser diffractionHORIBA Particle
 
Advanced Laser Diffraction Theory
Advanced Laser Diffraction TheoryAdvanced Laser Diffraction Theory
Advanced Laser Diffraction TheoryHORIBA Particle
 
Diffraction of light
Diffraction of light Diffraction of light
Diffraction of light 2015dustywest
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedSlideShare
 

Andere mochten auch (13)

Diffraction
Diffraction Diffraction
Diffraction
 
1.4 Diffraction Of Waves
1.4 Diffraction Of Waves1.4 Diffraction Of Waves
1.4 Diffraction Of Waves
 
Phycis Form 5: Chapter 1.4 Diffraction of Waves
Phycis Form 5: Chapter 1.4 Diffraction of WavesPhycis Form 5: Chapter 1.4 Diffraction of Waves
Phycis Form 5: Chapter 1.4 Diffraction of Waves
 
Freightliner and Western Star Gliders
Freightliner and Western Star GlidersFreightliner and Western Star Gliders
Freightliner and Western Star Gliders
 
Laser diffrection
Laser diffrectionLaser diffrection
Laser diffrection
 
Introduction to laser diffraction
Introduction to laser diffractionIntroduction to laser diffraction
Introduction to laser diffraction
 
Advanced Laser Diffraction Theory
Advanced Laser Diffraction TheoryAdvanced Laser Diffraction Theory
Advanced Laser Diffraction Theory
 
Diffraction of light
Diffraction of light Diffraction of light
Diffraction of light
 
Zenerdiodes
ZenerdiodesZenerdiodes
Zenerdiodes
 
Zener diode
Zener diodeZener diode
Zener diode
 
Physics form 5 chapter 1
Physics form 5 chapter 1Physics form 5 chapter 1
Physics form 5 chapter 1
 
Zener diodes
Zener diodesZener diodes
Zener diodes
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-Presented
 

Ähnlich wie Diffraction,unit 2

Ähnlich wie Diffraction,unit 2 (20)

Diffraction
DiffractionDiffraction
Diffraction
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
 
Class 12th Physics wave optics ppt
Class 12th Physics wave optics pptClass 12th Physics wave optics ppt
Class 12th Physics wave optics ppt
 
Prism and its properties
Prism and its propertiesPrism and its properties
Prism and its properties
 
Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1
 
ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptx
 
6.wave_optics_1.ppt
6.wave_optics_1.ppt6.wave_optics_1.ppt
6.wave_optics_1.ppt
 
Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printed
 
1 ray optics_1
1 ray optics_11 ray optics_1
1 ray optics_1
 
Module 4 circular function
Module 4   circular functionModule 4   circular function
Module 4 circular function
 
English philippe manuel_master1_eftis
English philippe manuel_master1_eftisEnglish philippe manuel_master1_eftis
English philippe manuel_master1_eftis
 
Interference
InterferenceInterference
Interference
 
Physics Assignment Help
Physics Assignment Help Physics Assignment Help
Physics Assignment Help
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Fisicaimpulsivaingles
FisicaimpulsivainglesFisicaimpulsivaingles
Fisicaimpulsivaingles
 
Class XII-OPTICS.pdf
Class XII-OPTICS.pdfClass XII-OPTICS.pdf
Class XII-OPTICS.pdf
 
#1 interference
#1 interference#1 interference
#1 interference
 
Em03 t
Em03 tEm03 t
Em03 t
 
Manuscript 1334
Manuscript 1334Manuscript 1334
Manuscript 1334
 
Manuscript 1334-1
Manuscript 1334-1Manuscript 1334-1
Manuscript 1334-1
 

Mehr von Kumar

Graphics devices
Graphics devicesGraphics devices
Graphics devicesKumar
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithmsKumar
 
region-filling
region-fillingregion-filling
region-fillingKumar
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivationKumar
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons dericationKumar
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xsltKumar
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xmlKumar
 
Xml basics
Xml basicsXml basics
Xml basicsKumar
 
XML Schema
XML SchemaXML Schema
XML SchemaKumar
 
Publishing xml
Publishing xmlPublishing xml
Publishing xmlKumar
 
Applying xml
Applying xmlApplying xml
Applying xmlKumar
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XMLKumar
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee applicationKumar
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLKumar
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB FundmentalsKumar
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programmingKumar
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programmingKumar
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversKumar
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EEKumar
 

Mehr von Kumar (20)

Graphics devices
Graphics devicesGraphics devices
Graphics devices
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithms
 
region-filling
region-fillingregion-filling
region-filling
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivation
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons derication
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xslt
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xml
 
Xml basics
Xml basicsXml basics
Xml basics
 
XML Schema
XML SchemaXML Schema
XML Schema
 
Publishing xml
Publishing xmlPublishing xml
Publishing xml
 
DTD
DTDDTD
DTD
 
Applying xml
Applying xmlApplying xml
Applying xml
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XML
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee application
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XML
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB Fundmentals
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programming
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programming
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC Drivers
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EE
 

Diffraction,unit 2

  • 1. Diffraction of red laser beam on the hole                                                Diffraction  Dr. Amit Kumar Chawla 
  • 3. Diffraction Pattern, Illuminated  Penny • This shows a diffraction pattern  pattern created by the illumination of a  penny, positioned midway  between screen and light source. • The bright spot at the center. – It is a constructive interference
  • 4. Diffraction Pattern, Object Edge • This shows a diffraction pattern associated with light  pattern from a single source passing by the edge of an opaque object • The diffraction pattern is vertical with the central  vertical maximum at the bottom
  • 5. Introduction to Diffraction Patterns • Light of wavelength comparable to or  larger than the width of a slit    (λ >> a)  slit spreads out in all forward directions  upon passing through the slit.     This phenomena is called diffraction.     This indicates that light spreads beyond  the narrow path defined by the slit into  regions that would be in shadow if light  traveled in straight lines
  • 6. Diffraction If an opaque obstacle is placed between a source of light  and a screen (the size of obstacle must be comparable to  wavelength  of  light)  then  light  bends  around  the  corner  of  the  obstacle  into  the  geometrical  shadow.  This  bending of light is called diffraction. The bending or spreading of waves when they encounter  an  obstacle  or  an  opening  in  their  path  is  called  diffraction.
  • 7. Diffraction Pattern, Narrow Slit • A single slit placed between a distant  slit light source and a screen produces a  diffraction pattern – It will have a broad, intense central band,  called the central maximum – The central band will be flanked by a series  of narrower, less intense secondary bands,  called side maxima or secondary maxima maxima – The central band will also be flanked by a  series of dark bands, called minima
  • 8. Diffraction vs. Interference • Diffraction  is  the  bending  of  light  around  an  obstacle,  whereas the interference is the meeting of two waves. • Interference  pattern  is  obtained  by  the  superposition  of    waves  coming  from  two  different  wavefronts  originating  from the same source while when the waves emerging from  different  parts  of  the  same  wavefont  superimpose  with  each  other then diffraction patter is obtained. • The  widths  of  the  diffraction  fringes  are  not  equal,  but  the  widths of the interference fringes may or may not be equal. • The  points  of  minimum  intensity  in  interference  appears  perfectly  dark  but  these  points  in  the  case  of  diffraction  are  not perfectly dark.   
  • 9. Classes of Diffraction       Diffraction requires a source of light, an obstacle or aperture  and the screen          Based on the distance between source, aperture and screen,  and  also  on  the  shape  of  wavefront,  diffraction  pattern  is  classified into two classes 1. Fresnal Diffraction 2. Fraunhofer Diffraction
  • 10. Fresnel Diffraction        If the source of light or the screen or both of them are  at  finite  distances  from  the  diffracting  aperture,  then  the  wavefronts  falling  on  the  aperture  will  not  be  plane.  The  diffraction  obtained  under  this  type  of  arrangement is called Fresnel Diffraction. This is also  called  near-field diffraction.  No  lenses  are  used  to  make the rays parallel or convergent
  • 11. Fraunhofer Diffraction             If both the source of light and the screen or both of  them  are  effectively  far  enough  from  the  aperture  so  that  the  wavefronts  reaching  the  aperture  and  the  screen  can  be  considered  plane.  Then  the  source  and  the screen are said to be at infinite distances from the  aperture. This kind of diffraction is called Fraunhofer  Diffraction. This is also called far-field diffraction.
  • 12. Fraunhofer Diffraction is encountered in the case of  gratings that contain number of slits. When  the  screen  is  moved,  the  size  of  the  diffraction  patteren  changes  uniformaly  while  the  shape  of  the  pattern does not change. Fresnel Diffraction is  obtained  when  light  suffers  diffraction at a straight edge, a thin wire, a narrow slit  etc. Both the size and shape of the pattern depends on the  distance  between  the  diffracting  aperture  and  the  screen.
  • 13. Fraunhofer Diffraction at single slit P A θ e θ O θ K θ B Path difference = BK = AB sinθ = e sinθ 2π 2π Phase difference =             x path difference  =  λ (e sin θ ) λ
  • 14. Let the width AB of the slit be divide into n equal parts. The amplitude of vibration at P due to the waves from each part will be same, say a. The phase difference between the waves from any two consecutive parts is 1  2π   e sin θ  = d n λ  Then the resultant amplitude at P is given by  πe sin θ  a sin   a sin(nd 2)  λ  R= = sin(d 2)  πe sin θ  sin    nλ  Let us put π   e sin θ  = α λ 
  • 15. a sin α a sin α Then R= = sin(α n) α n na sin α R= α When n → ∞ , a → 0 , but the product na remains finite. Let na = A The resultant intensity at P, being proportional to the square of the amplitude, is 2 2  sin α  I=R =A  2   α 
  • 16. 2  sin α  I=R =A  2 2   α  Condition for Maxima A sin α A  α3 α5 α7  R= = α − + − + ...... α α 3! 5! 7!  A sin α  α2 α4 α6  R= = A1 − + − + ...... α  3! 5! 7!  R = A for α = 0 This is the intensity of central maximum π  α =  e sin θ  = 0 or sin θ = 0 λ 
  • 17. Condition for Minima sin α =0 α sin α = 0 But, α ≠0 α = ± mπ Where m has an integral value 1, 2, 3 except zero π  So,  e sin θ  = ± mπ ⇒ e sin θ = ± mλ λ  This equation gives the position of first, second, third …. By putting m = 1, 2, 3….
  • 18. Secondary Maxima dI =0 dα d  2  sin α  2  A   =0 dα   α      2 sin α  α cos α − sin α A2   =0  α  α 2 α cos α − sin α =0 α 2 α cos α − sin α = 0 α = tan α = y ( say )
  • 19. y =α and y = tan α The maxima will occur when 3π 5π 7π α= , , 2 2 2 π n = 1,2,3..... or α = (2n + 1) 2 These are points of secondary maxima
  • 20. 2  sin α  I = I0    α  3π Put α= 2 4 4 4 I1 = 2 I 0 I2 = I 2 0 I3 = I 9π 25π 49π 2 0 The ratio of relative intensities of successive maxima are 4 4 4 1: 2 : : : ....... 9π 25π 49π 2 2
  • 21. 5π (2 N − 3)π α =± ,± , ..., ± 2N 2N 2N
  • 22. Single-Slit Diffraction, Intensity • The general features of the intensity distribution are shown – A broad central bright fringe is flanked by much weaker bright fringes alternating with dark fringes – Each bright fringe peak lies approximately halfway between the dark fringes – The central bright maximum is twice as wide as the secondary maxima
  • 23. Diffraction due to grating A P S1 θ e+d S2 S3 K1 O Sn-1 Sn B The amplitude from each slit in the direction θ is A sin α πe R0 = where α = sin θ α λ
  • 24. The path difference between the wavelets from S1 and S2 in the direction θ is S 2 K1 = (e + d ) sin θ Hence the phase difference between them 2π (e + d ) sin θ = 2 β λ If N be the total number of slits in the grating, then by the method of vector addition of amplitudes, the resultant amplitude in the direction of θ will be sin Nβ A sin α sin Nβ R = R0 = sin β α sin β
  • 25. Thus the resultant intensity at point P is 2 2  sin α   sin Nβ  I=R =A  2 2    sin β    α    2  sin α  2 The factor A   gives the intensity distribution due to single slit,  α  2  sin Nβ  while   sin β  gives the distribution of intensity in the diffraction    pattern due to the interference in the waves due to N slits.
  • 26. Principal Maxima 2 2  sin α   sin Nβ  I=R =A  2 2    sin β    α    The intensity will be maximum when sin β = 0 ⇒ β = ± nπ n = 0,1,2,3..... This results in sin Nβ 0 = (Indeterminate) sin β 0
  • 27. Apply L’ Hospital rule d (sin Nβ ) sin Nβ dβ Lim = Lim β → ± nπ sin β β → ± nπ d (sin β ) dβ N cos Nβ Lim ⇒ ±N β → ± nπ cos β 2 This results in  sin α  2 I=A  2  N  α  The condition for principal maxima is sin β = 0 or β = ± nπ
  • 28. π (e + d ) sin θ = ± nπ λ (e + d ) sin θ = ± nλ For n = 0, we get θ = 0 and this gives the direction of zero order principal maxima. The value of n = 1, 2, 3, … gives the direction of first, second, third …….. order principal maxima.
  • 29. Minima 2 2  sin α   sin Nβ  I=R =A  2 2    sin β    α    The intensity will be minimum when sin Nβ = 0 but sin β ≠ 0 Therefore Nβ = ± mπ Nπ (e + d ) sin θ = ± mπ ⇒ N (e + d ) sin θ = ± mλ λ Here m can have all integral values except 0, N, 2N, 3N……
  • 30. Here m can have values 1, 2, 3, …….(N-1). Thus there are (N-1) equispaced minima between two consecutive principal maxima. Secondary Maxima In order to differentiate between the two consecutive minima there should be a maximum between them. Therefore there are (N-2) maxima between (N-1) minima. These maxima are known as secondary maxima. 2 2  sin α   sin Nβ  I=A 2    sin β   α    dI =0 dβ
  • 31. A2 sin 2 α  sin Nβ   N cos Nβ sin β − sin Nβ cos β  2  sin β   =0 α2   sin β 2  N cos Nβ sin β − sin Nβ cos β = 0 tan Nβ = N tan β
  • 32. 1 + N 2 tan 2 β tan Nβ = N tan β N tan β Nβ 1 N tan β sin Nβ = 1 + N 2 tan 2 β sin 2 Nβ N 2 tan 2 β /( 1 + N 2 tan 2 β ) 2 = sin β 2 sin 2 β
  • 33. N2 = cos 2 β (1 + N 2 tan 2 β ) N2 = cos 2 β + N 2 sin 2 β N2 = 1 − sin 2 β + N 2 sin 2 β sin 2 Nβ N2 = sin β 2 1 + ( N 2 − 1) sin 2 β
  • 34. 2 2  sin α   sin Nβ  I=A  2    sin β   α    sin 2 α N2 I=A 2 α 2 1 + ( N 2 − 1) sin 2 β The intensity of secondary maxima is proportional to N2 1 + ( N 2 − 1) sin 2 β 2 While the intensity of primary maxima is proportional to N
  • 35.
  • 36. Intensity of secondary maxima = 1 Intensity of principal maxima 1 + ( N 2 − 1) sin 2 β As N increases the intensity of secondary maxima decreases. In case of diffraction grating N is very large. Therefore the secondary maximas are not visible in the spectrum and there is complete darkness between two successive principal Maxima.
  • 37. Rayleigh Criteria for Resolution Resolving Power: The ability of an optical instrument to resolve the images of two close point source is known as resolving power. Limit of Resolution: The minimum separation between two objects that can be resolved by an optical instrument is called the limit of Resolution. Rayleigh Criteria for Resolution: According to Rayleigh, two close point objects are said to be just resolved if the principal maxima of one coincides with the first minima of the other and vice-versa.
  • 38.
  • 39. Rayleigh Criteria for Resolution According to the single slit Fraunhofer diffraction sin 2 α I = I0 α2 First minima is formed at an angle α = π The angle at the point of intersection will be π/2 The intensity of each curve at the dip will be sin 2 ( π / 2) 4 I1 = I 2 = I 0 = 2 Io ( π / 2) 2 π
  • 40. The resultant intensity at the dip is then given by I = I1 + I 2 8 I= I = 0.81I o 2 o π
  • 41. Resolution, Example • Pluto and its moon, Charon • Left: Earth-based telescope is blurred • Right: Hubble Space Telescope clearly resolves the two objects
  • 42. Resolving Power of Plane Diffraction grating M A λ + dλ P2 λ P1 dθ θ O B N
  • 43. Resolving Power of Plane Diffraction grating The resolving power of the grating is defined as the ratio of wavelength (λ) to the difference dλ of the wavelength The direction of nth principal maxima for wavelength λ is given by (e + d ) sin θ = nλ The direction of nth principal maxima for wavelength λ+dλ is given by (e + d ) sin(θ + dθ ) = n(λ + dλ ) (1)
  • 44. The minima for wavelength λ is given by N (e + d ) sin θ = mλ Here m can have all integral values except 0, N, 2N, 3N…… because for these values of m the condition of maxima is satisfied. The first minimum adjacent to nth principal maxima in the direction (θ+dθ) can be obtained by putting m as (nN+1) N (e + d ) sin(θ + dθ ) = (nN + 1)λ (nN + 1)λ (2) (e + d ) sin(θ + dθ ) = N
  • 45. Comparing equation (1) and (2) (nN + 1)λ n ( λ + dλ ) = N λ nλ + ndλ = nλ + N λ λ ndλ = ⇒ = nN N dλ Since resolving power is directly proportional to N , it means that larger will be the number of lines per cm of a grating greater will be the resolving power.
  • 46. Angular width of Principal maxima M A P2 m = nN + 1 m = nN P1 dθ n m = nN − 1 dθ n θn O B N
  • 47. θ n be the direction of nth principal maxima. (θ n + dθ n ) and (θ n − dθ n ) be the directions of first outer and inner sided minima adjacent to the nth maxima The total angular width will be 2dθn The direction of nth order principal maxima can be given by (e + d ) sin θ n = nλ The direction of nth minima can be given by N (e + d ) sin θ n = mλ
  • 48. The first order outer and inner sided minima adjacent to the nth Maxima can be given by N (e + d ) sin(θ n ± dθ n ) = (nN ± 1)λ N (e + d )(sin θ n cos dθ n ± cos θ n sin dθ n ) = (nN ± 1)λ When dθ n is small then cos dθ n = 1 and sin dθ n = dθ n . So N (e + d )(sin θ n ± cos θ n dθ n ) = (nN ± 1)λ N (e + d ) sin θ n ± N (e + d ) cos θ n dθ n = nNλ ± λ Nnλ ± N (e + d ) cos θ n dθ n = nNλ ± λ N (e + d ) cos θ n dθ n = λ
  • 49. λ dθ n = N (e + d ) cos θ n λ 2 dθ n = 2 N (e + d ) cos θ n The angular width of the nth order principal maxima depends on The total number of lines present on grating, grating element and the wavelength.