SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Downloaden Sie, um offline zu lesen
Optimal multi-configuration approximation of an
N-fermion wave function
Jiang-min Zhang
In collaboration with Marcus Kollar
December 12, 2013
Outline
A basic (but surprisingly overlooked) problem
How to approximate a given fermionic wave function with Slater
determinants
A simple iterative algorithm
converges monotonically and thus definitely
easily parallelized
Some analytic results
Mathematically interesting and challenging
Multi-configuration time-dependent Hartree Fock
Spinless fermions in 1D
A Basic Problem
The simplest type of wave function of a fermionic system is the Slater
wave function:
f(x1, x2, . . . , xN ) =
1
√
N!
φ1(x1) φ1(x2) · · · φ1(xN )
φ2(x1) φ2(x2) · · · φ2(xN )
· · · · · · · · · · · ·
φN (x1) φN (x2) · · · φN (xN )
.
But not every fermionic wave function is in the Slater form:
f(x1, x2) =
1
3
φ1(x1) φ1(x2)
φ2(x1) φ2(x2)
+
1
6
φ3(x1) φ3(x2)
φ4(x1) φ4(x2)
=
1
2
ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)
.
A natural question in the spirit of approximation:
What is the best Slater approximation of a given fermionic wave
function?
Significance of the Question
Mathematically a very interesting and very challenging problem
Like the celebrated “N-representability” problem
Geometric measure of entanglement in many-body systems of
identical particles
The most widely used entanglement measure is based on the
Schmidt decomposition
f(x1, x2, . . . , xN ) =
j
λjψj(x1)Ψj(x2, . . . , xN ).
The N indistinguishable particles are split into two parts artificially;
Indistinguishable particles treated as distinguishable!
A slater wave function is an entangled state!
How strong is the correlation between the electrons?
Distance from a free-particle system
Basis of multi-configuration time-dependent Hartree Fock
(MCTDHF).
K. Byczuk, et al., Phys. Rev. Lett. 108, 087004 (2012).
P. Thunstr¨om, et al., Phys. Rev. Lett. 109, 186401 (2012).
Mathematical Formulation (the single-configuration case)
N fermions are distributed in L ≥ N orbitals. Given a wave function f,
f(. . . , xp, . . . , xq, . . .) = −f(. . . , xq, . . . , xp, . . .), 1 ≤ xi ≤ L,
find N orthonormal single-particle orbitals φi (1 ≤ i ≤ N) to construct
a Slater determinant wave function
S(x1, . . . , xN ) =
1
√
N!
detAN×N , Aij = φi(xj),
so that the overlap between f and S
I ≡ | f|S |2
= N! dx1 · · · dxN f∗
(x1, · · · , xN )φ1(x1)φ2(x2) · · · φN(xN )
2
is maximized.
A crucial feature: Each orbital appears only once!
Mathematical Formulation (the multi-configuration case)
N orbitals might be insufficient! Take M > N orbitals.
Out of {φ1, φ2, . . . , φM }, CN
M Slater determinants can be constructed,
SJ ∝ φj1
∧ φj2
∧ . . . ∧ φjN
,
with J being an N-tuple
J ≡ (j1, j2, . . . , jN ), 1 ≤ j1 < j2 . . . < jN ≤ M.
Maximize the projection of f on the subspace spanned by the SJ ’s,
I =
J
|ηJ |2
,
with
ηJ ≡ f|SJ
=
√
N! dx1 · · · dxN f∗
(x1, · · · , xN )φj1
(x1)φj2
(x2) · · · φjN
(xN ).
An “educated” idea
Suppose one needs to maximize function
f(α, β, γ), α, β, γ ∈ R.
An idea based on calculus:
h1(α, β, γ) ≡
∂f
∂α
= 0,
h2(α, β, γ) ≡
∂f
∂β
= 0,
h3(α, β, γ) ≡
∂f
∂γ
= 0.
not object-oriented: only stationary, not maximal
complicated nonlinear equations to solve
even more complicated in case of constraints
K. J. H. Giesbertz, Chemical Physics Letters 591, 220 (2014).
A “less-educated” idea (walking upstairs)
A middle-school student’s idea:
fix β and γ to get a function
fβ,γ(α) ≡ f(α, β, γ).
Maximize it with respect to α. ⇒ f ↑.
fix α and γ, maximize f with respect to β. ⇒ f ↑.
fix α and β, maximize f with respect to γ. ⇒ f ↑.
Repeat the procedure above. The value of f ↑ all the way.
Two important factors to take into account:
fβ,γ(α) should be easy to maximize
pitfalls of local maxima (solution: multiple runs with random initial
values)
Illustration in the two-fermion case (N = 2)
For a given wave function f(x1, x2) = −f(x2, x1), try to find two
orthonormal single-particle orbitals {φ1, φ2}, so that the Slater
determinant S(x1, x2) = 1√
2
(φ1(x1)φ2(x2) − φ2(x1)φ1(x2))
approximates f best. Equivalently, maximize the absolute value of
I ≡ dx1dx2f∗
(x1, x2)S(x1, x2)
=
√
2 dx1dx2φ1(x1)f∗
(x1, x2)φ2(x2)
= dx1φ1(x1)g∗
1(x1) g1(x1) ≡
√
2 dx2f(x1, x2)φ∗
2(x2)
= dx2φ2(x2)g∗
2(x2) g2(x2) ≡
√
2 dx1f(x1, x2)φ∗
1(x1)
The procedure: Carry out the two steps alternatively
fix φ2 (and calculate g1) and update φ1 as φ1 ∝ g1
fix φ1 (and calculate g1) and update φ2 as φ2 ∝ g2
Luckly, φ1 ⊥ φ2 is satisfied automatically!
Trial I: a ring state
Consider such a state with N = 3 fermions in L = 6 orbitals:
f =
1
√
3
(|123 + |345 + |561 ), |ijk ≡ a†
i a†
ja†
k|vac
For the single-configuration approximation (N = M = 3), analytically
Imax = 4/9 = 0.44444 . . .
a transitory plateau at I = 1/3
Trial II: another ring state
Consider such a state with N = 4 fermions in L = 9 orbitals:
f =
1
√
2
|1234 +
1
√
3
|4567 +
1
√
6
|7891 ,
For the single-configuration approximation (N = M = 4), analytically
Imax = 1/2 = 0.5
local maxima at I = 1/3 and I = 1/6.
Some Analytic Results I
N-fermions in L-orbitals, approximated using M orbitals:
If L = N + 1, the wave function must be a Slater determinant
If M = L − 1, just drop the least occupied natural orbital
If N = 2, for fermions, the wave function has the canonical form
f(x1, x2) =
α
Cα
2
(ψ2α−1(x1)ψ2α(x2) − ψ2α(x1)ψ2α−1(x2)),
with α Cα = 1, and {ψi} being the natural orbitals.
Take the M most occupied natural orbitals
Let λi be the occupation of the ith natural orbital, λi ≥ λi+1,
Imax =
1
N
M
i=1
λi, N = 2,
Imax ≤
1
N
M
i=1
λi, N ≥ 3.
Some Analytic Results II (single-configuration)
f = a|12 . . . N + b|N + 1, N + 2, . . . , 2N , N ≥ 2,
Imax = max(|a|2
, |b|2
).
f = a|12 . . . N + b|N, N + 2, . . . , 2N , N ≥ 3,
Imax = max(|a|2
, |b|2
).
A always occupied orbital can be factorized away
Two together-going orbitals allow breaking down the wave function
into two parts
f = 1
2 (|123 + |145 + |256 + |346 ), Imax = 1
2 .
f = 1√
6
(|123 + |234 + |345 + |456 + |561 + |612 ), Imax = 3
4 .
f = a|123 + b|345 + c|561 , Imax ≥ 4
9 . The equality is achieved
when and only when |a|2
= |b|2
= |c|2
= 1
3 .
A conjecture: min Imax = 4/9 for (N, M, L) = (3, 3, 6).
1D Spinless Fermions (e.g., spin-polarized electrons)
N spinless fermions on an L-site 1D lattice, with
nearly-neighbor-interaction, and open boundary condition,
ˆH =
L−1
i=1
−(ˆc†
i ˆci+1 + ˆc†
i+1ˆci) + U ˆniˆni+1.
Ground state
structure of the ground state
Time-evolving state after a quantum quench: Initially the fermions are
confined to the Li sites on the left end and then suddenly released into
the whole lattice.
check the algorithm of Multi-configuration time-dependent Hartree
Fock (MCTDHF)
Ground state (repulsive interaction U > 0)
5 10 15 20 25
0.8
0.85
0.9
0.95
1
L
Imax
(a) N = M = 5U=1
U=3
U=5
10 15 20 25
0.8
0.85
0.9
0.95
1
L
Imax
(b) N = M = 6U=1
U=2
U=4
Important features:
L = N and L = N + 1, Imax = 1 irrespective of U.
L → +∞, Imax → 1.
In the large-U limit, a local maximum develops at L = 2N − 1.
charge-density-wave: The N fermions reside every other lattice
site.
Ground state (attractive interaction U < 0)
30 60 90 120 150
0.6
0.7
0.8
0.9
1
L
Imax
(a) N = M = 2
U=−1.95
U=−2
U=−2.05
20 40 60 80 100
0.4
0.5
0.6
0.7
0.8
0.9
1
L
Imax
(b) N = M = 3
U=−1.95
U=−2
U=−2.05
Bifurcation at Uc = −2:
|U| < |Uc|, no bound fermionic
pair formation
|U| > |Uc|, bound fermionic
pair formation
Profile of |f(x1, x2)| at U = −3
Multi-configuration time-dependent Hartree Fock
Time evolution of a many-body system is difficult!
The conventional approach:
Time-independent basis, chosen a priori
|ψ(t) =
J
CJ (t)eJ ,
with eJ being a many-body basis vector constructed out of
time-independent single-particle orbitals.
Hilbert space exponentially large!
Now a very smart idea:
Adaptively chosen basis,
|ψ(t)
J
CJ (t)eJ (t),
with eJ (t) constructed out of time-dependent single-particle
orbitals.
significantly diminished Hilbert space!
Multi-configuration time-dependent Hartree Fock
For N spinless fermions on an L-site lattice,
M L time-dependent single-particle orbitals are taken,
{φ1(t), φ2(t), . . . , φM (t)},
out of which ˜D = M!
N!(M−N)! Slater determinants SJ (t) can be
constructed. The variational wave function is
|ψ(t) =
J
CJ (t)SJ (t).
Evolution of the coefficients CJ (t) and the orbitals φi(t) is
determined by the Dirac-Frenkel variational principle
δ dt i ψ|
∂
∂t
ψ − ψ|H|ψ = 0.
A natural question: can the wave function really be well
approximated by using only M L orbitals?
Evolution of Imax
Initially N = 3 fermions are confined to the Li left-most sites (|ψ(t) first
evolved by ED, and then approximated using the algorithm)
Two different cases (U = 1):
0
0.2
0.4
0.6
0.8
1
Imax
(a) N = 3, Li = 3, L = 25
0 5 10 15 20 25 30
0
1
2
t
Eint/U
(c)
0.7
0.8
0.9
1
Imax
(b) N = 3, Li = 5, L = 25
0 50 100 150
0
0.5
t
Eint/U
(d)
From bottom to top, M increases from 3 to 8.
Line M = 3 coincides with line M = 4.
Reduction of Hilbert space: C3
25 = 2300 to C3
8 = 56.
Evolution of density distribution—comparison of ED and
MCTDHF
Initially N = 3 fermions are confined to the Li left-most sites (U = 1)
0
0.2
0.4
ˆni
(a1) t = 5
0
0.1
0.2
(a2) t = 10
0 10 20
0
0.1
0.2
0.3
0.4
i
ˆni
(a3) t = 15
0 10 20
0
0.1
0.2
0.3
i
(a4) t = 20
0
0.1
0.2
0.3
0.4
ˆni
(b1) t = 5
0
0.1
0.2
(b2) t = 10
0 10 20
0
0.2
0.4
0.6
iˆni
(b3) t = 15
0 10 20
0
0.1
0.2
0.3
i
(b4) t = 20
Blue line with circles: ED results
Red line with squares: MCTDHF with M = 3 orbitals
Green line with aestrisks: MCTDHF with M = 8 orbitals
Conclusions and outlooks
A problem relevant in the MCTDHF context
Numerically, a simple iterative algorithm is proposed
a quantitative approach to geometric measure of entanglement
but the idea is inapplicable to bosons!
Analytically, several scattered nontrivial results have been obtained
A lot of open questions and conjectures
MCTDHF gauged (checked).
An immediate problem: For the Laughlin wave function (zi = xi + iyi)
f(z1, z2, . . . , zN ) =
1≤zi<zj ≤N
(zi − zj)3
N
i=1
exp(−|zi|2
),
how does Imax scale with N (assuming M = N)?
J. M. Zhang and Marcus Kollar, arXiv:1309.1848 (2013).

Weitere ähnliche Inhalte

Was ist angesagt?

Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
Jigisha Dabhi
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIES
genius98
 
Roots equations
Roots equationsRoots equations
Roots equations
oscar
 

Was ist angesagt? (20)

Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIES
 
Rousseau
RousseauRousseau
Rousseau
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2
 
M1l4
M1l4M1l4
M1l4
 
QMC: Operator Splitting Workshop, Progressive Decoupling of Linkages in Optim...
QMC: Operator Splitting Workshop, Progressive Decoupling of Linkages in Optim...QMC: Operator Splitting Workshop, Progressive Decoupling of Linkages in Optim...
QMC: Operator Splitting Workshop, Progressive Decoupling of Linkages in Optim...
 
Newton Forward Difference Interpolation Method
Newton Forward Difference Interpolation MethodNewton Forward Difference Interpolation Method
Newton Forward Difference Interpolation Method
 
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Roots equations
Roots equationsRoots equations
Roots equations
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
inverse z-transform ppt
inverse z-transform pptinverse z-transform ppt
inverse z-transform ppt
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Coverage of Credible I...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Coverage of Credible I...MUMS: Bayesian, Fiducial, and Frequentist Conference - Coverage of Credible I...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Coverage of Credible I...
 
NODDEA2012_VANKOVA
NODDEA2012_VANKOVANODDEA2012_VANKOVA
NODDEA2012_VANKOVA
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 

Andere mochten auch

Andere mochten auch (14)

Shiva_CV
Shiva_CVShiva_CV
Shiva_CV
 
Presentación colaborativa clase 3 subgrupo 2
Presentación colaborativa clase 3   subgrupo 2Presentación colaborativa clase 3   subgrupo 2
Presentación colaborativa clase 3 subgrupo 2
 
Revista Botica número 43
Revista Botica número 43Revista Botica número 43
Revista Botica número 43
 
Revista Botica número 47
Revista Botica número 47Revista Botica número 47
Revista Botica número 47
 
Api security
Api security Api security
Api security
 
Surgery for pulmonary tuberculosis
Surgery for  pulmonary tuberculosisSurgery for  pulmonary tuberculosis
Surgery for pulmonary tuberculosis
 
Uso del internet en la educación
Uso del internet en la educaciónUso del internet en la educación
Uso del internet en la educación
 
Nonsmooth and level-resolved dynamics of a driven tight binding model
Nonsmooth and level-resolved dynamics of a driven tight binding modelNonsmooth and level-resolved dynamics of a driven tight binding model
Nonsmooth and level-resolved dynamics of a driven tight binding model
 
Tuberculosis... a brife description about it
Tuberculosis... a brife description about itTuberculosis... a brife description about it
Tuberculosis... a brife description about it
 
Revista Botica número 49
Revista Botica número 49Revista Botica número 49
Revista Botica número 49
 
V katakam
V katakamV katakam
V katakam
 
Case study
Case studyCase study
Case study
 
セクターを越えたつながり~ DFJIの取り組み~
セクターを越えたつながり~ DFJIの取り組み~セクターを越えたつながり~ DFJIの取り組み~
セクターを越えたつながり~ DFJIの取り組み~
 
Resume_Vishal
Resume_VishalResume_Vishal
Resume_Vishal
 

Ähnlich wie Optimal multi-configuration approximation of an N-fermion wave function

NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
zukun
 

Ähnlich wie Optimal multi-configuration approximation of an N-fermion wave function (20)

Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Section4 stochastic
Section4 stochasticSection4 stochastic
Section4 stochastic
 
Berans qm overview
Berans qm overviewBerans qm overview
Berans qm overview
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
Legendre associé
Legendre associéLegendre associé
Legendre associé
 
Differential Calculus
Differential CalculusDifferential Calculus
Differential Calculus
 
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
 
Cse41
Cse41Cse41
Cse41
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Jere Koskela slides
Jere Koskela slidesJere Koskela slides
Jere Koskela slides
 
Mathematics and AI
Mathematics and AIMathematics and AI
Mathematics and AI
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de números
 
Many electrons atoms_2012.12.04 (PDF with links
Many electrons atoms_2012.12.04 (PDF with linksMany electrons atoms_2012.12.04 (PDF with links
Many electrons atoms_2012.12.04 (PDF with links
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Sol87
Sol87Sol87
Sol87
 

Kürzlich hochgeladen

Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Cherry
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cherry
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 

Kürzlich hochgeladen (20)

Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 

Optimal multi-configuration approximation of an N-fermion wave function

  • 1. Optimal multi-configuration approximation of an N-fermion wave function Jiang-min Zhang In collaboration with Marcus Kollar December 12, 2013
  • 2. Outline A basic (but surprisingly overlooked) problem How to approximate a given fermionic wave function with Slater determinants A simple iterative algorithm converges monotonically and thus definitely easily parallelized Some analytic results Mathematically interesting and challenging Multi-configuration time-dependent Hartree Fock Spinless fermions in 1D
  • 3. A Basic Problem The simplest type of wave function of a fermionic system is the Slater wave function: f(x1, x2, . . . , xN ) = 1 √ N! φ1(x1) φ1(x2) · · · φ1(xN ) φ2(x1) φ2(x2) · · · φ2(xN ) · · · · · · · · · · · · φN (x1) φN (x2) · · · φN (xN ) . But not every fermionic wave function is in the Slater form: f(x1, x2) = 1 3 φ1(x1) φ1(x2) φ2(x1) φ2(x2) + 1 6 φ3(x1) φ3(x2) φ4(x1) φ4(x2) = 1 2 ψ1(x1) ψ1(x2) ψ2(x1) ψ2(x2) . A natural question in the spirit of approximation: What is the best Slater approximation of a given fermionic wave function?
  • 4. Significance of the Question Mathematically a very interesting and very challenging problem Like the celebrated “N-representability” problem Geometric measure of entanglement in many-body systems of identical particles The most widely used entanglement measure is based on the Schmidt decomposition f(x1, x2, . . . , xN ) = j λjψj(x1)Ψj(x2, . . . , xN ). The N indistinguishable particles are split into two parts artificially; Indistinguishable particles treated as distinguishable! A slater wave function is an entangled state! How strong is the correlation between the electrons? Distance from a free-particle system Basis of multi-configuration time-dependent Hartree Fock (MCTDHF). K. Byczuk, et al., Phys. Rev. Lett. 108, 087004 (2012). P. Thunstr¨om, et al., Phys. Rev. Lett. 109, 186401 (2012).
  • 5. Mathematical Formulation (the single-configuration case) N fermions are distributed in L ≥ N orbitals. Given a wave function f, f(. . . , xp, . . . , xq, . . .) = −f(. . . , xq, . . . , xp, . . .), 1 ≤ xi ≤ L, find N orthonormal single-particle orbitals φi (1 ≤ i ≤ N) to construct a Slater determinant wave function S(x1, . . . , xN ) = 1 √ N! detAN×N , Aij = φi(xj), so that the overlap between f and S I ≡ | f|S |2 = N! dx1 · · · dxN f∗ (x1, · · · , xN )φ1(x1)φ2(x2) · · · φN(xN ) 2 is maximized. A crucial feature: Each orbital appears only once!
  • 6. Mathematical Formulation (the multi-configuration case) N orbitals might be insufficient! Take M > N orbitals. Out of {φ1, φ2, . . . , φM }, CN M Slater determinants can be constructed, SJ ∝ φj1 ∧ φj2 ∧ . . . ∧ φjN , with J being an N-tuple J ≡ (j1, j2, . . . , jN ), 1 ≤ j1 < j2 . . . < jN ≤ M. Maximize the projection of f on the subspace spanned by the SJ ’s, I = J |ηJ |2 , with ηJ ≡ f|SJ = √ N! dx1 · · · dxN f∗ (x1, · · · , xN )φj1 (x1)φj2 (x2) · · · φjN (xN ).
  • 7. An “educated” idea Suppose one needs to maximize function f(α, β, γ), α, β, γ ∈ R. An idea based on calculus: h1(α, β, γ) ≡ ∂f ∂α = 0, h2(α, β, γ) ≡ ∂f ∂β = 0, h3(α, β, γ) ≡ ∂f ∂γ = 0. not object-oriented: only stationary, not maximal complicated nonlinear equations to solve even more complicated in case of constraints K. J. H. Giesbertz, Chemical Physics Letters 591, 220 (2014).
  • 8. A “less-educated” idea (walking upstairs) A middle-school student’s idea: fix β and γ to get a function fβ,γ(α) ≡ f(α, β, γ). Maximize it with respect to α. ⇒ f ↑. fix α and γ, maximize f with respect to β. ⇒ f ↑. fix α and β, maximize f with respect to γ. ⇒ f ↑. Repeat the procedure above. The value of f ↑ all the way. Two important factors to take into account: fβ,γ(α) should be easy to maximize pitfalls of local maxima (solution: multiple runs with random initial values)
  • 9. Illustration in the two-fermion case (N = 2) For a given wave function f(x1, x2) = −f(x2, x1), try to find two orthonormal single-particle orbitals {φ1, φ2}, so that the Slater determinant S(x1, x2) = 1√ 2 (φ1(x1)φ2(x2) − φ2(x1)φ1(x2)) approximates f best. Equivalently, maximize the absolute value of I ≡ dx1dx2f∗ (x1, x2)S(x1, x2) = √ 2 dx1dx2φ1(x1)f∗ (x1, x2)φ2(x2) = dx1φ1(x1)g∗ 1(x1) g1(x1) ≡ √ 2 dx2f(x1, x2)φ∗ 2(x2) = dx2φ2(x2)g∗ 2(x2) g2(x2) ≡ √ 2 dx1f(x1, x2)φ∗ 1(x1) The procedure: Carry out the two steps alternatively fix φ2 (and calculate g1) and update φ1 as φ1 ∝ g1 fix φ1 (and calculate g1) and update φ2 as φ2 ∝ g2 Luckly, φ1 ⊥ φ2 is satisfied automatically!
  • 10. Trial I: a ring state Consider such a state with N = 3 fermions in L = 6 orbitals: f = 1 √ 3 (|123 + |345 + |561 ), |ijk ≡ a† i a† ja† k|vac For the single-configuration approximation (N = M = 3), analytically Imax = 4/9 = 0.44444 . . . a transitory plateau at I = 1/3
  • 11. Trial II: another ring state Consider such a state with N = 4 fermions in L = 9 orbitals: f = 1 √ 2 |1234 + 1 √ 3 |4567 + 1 √ 6 |7891 , For the single-configuration approximation (N = M = 4), analytically Imax = 1/2 = 0.5 local maxima at I = 1/3 and I = 1/6.
  • 12. Some Analytic Results I N-fermions in L-orbitals, approximated using M orbitals: If L = N + 1, the wave function must be a Slater determinant If M = L − 1, just drop the least occupied natural orbital If N = 2, for fermions, the wave function has the canonical form f(x1, x2) = α Cα 2 (ψ2α−1(x1)ψ2α(x2) − ψ2α(x1)ψ2α−1(x2)), with α Cα = 1, and {ψi} being the natural orbitals. Take the M most occupied natural orbitals Let λi be the occupation of the ith natural orbital, λi ≥ λi+1, Imax = 1 N M i=1 λi, N = 2, Imax ≤ 1 N M i=1 λi, N ≥ 3.
  • 13. Some Analytic Results II (single-configuration) f = a|12 . . . N + b|N + 1, N + 2, . . . , 2N , N ≥ 2, Imax = max(|a|2 , |b|2 ). f = a|12 . . . N + b|N, N + 2, . . . , 2N , N ≥ 3, Imax = max(|a|2 , |b|2 ). A always occupied orbital can be factorized away Two together-going orbitals allow breaking down the wave function into two parts f = 1 2 (|123 + |145 + |256 + |346 ), Imax = 1 2 . f = 1√ 6 (|123 + |234 + |345 + |456 + |561 + |612 ), Imax = 3 4 . f = a|123 + b|345 + c|561 , Imax ≥ 4 9 . The equality is achieved when and only when |a|2 = |b|2 = |c|2 = 1 3 . A conjecture: min Imax = 4/9 for (N, M, L) = (3, 3, 6).
  • 14. 1D Spinless Fermions (e.g., spin-polarized electrons) N spinless fermions on an L-site 1D lattice, with nearly-neighbor-interaction, and open boundary condition, ˆH = L−1 i=1 −(ˆc† i ˆci+1 + ˆc† i+1ˆci) + U ˆniˆni+1. Ground state structure of the ground state Time-evolving state after a quantum quench: Initially the fermions are confined to the Li sites on the left end and then suddenly released into the whole lattice. check the algorithm of Multi-configuration time-dependent Hartree Fock (MCTDHF)
  • 15. Ground state (repulsive interaction U > 0) 5 10 15 20 25 0.8 0.85 0.9 0.95 1 L Imax (a) N = M = 5U=1 U=3 U=5 10 15 20 25 0.8 0.85 0.9 0.95 1 L Imax (b) N = M = 6U=1 U=2 U=4 Important features: L = N and L = N + 1, Imax = 1 irrespective of U. L → +∞, Imax → 1. In the large-U limit, a local maximum develops at L = 2N − 1. charge-density-wave: The N fermions reside every other lattice site.
  • 16. Ground state (attractive interaction U < 0) 30 60 90 120 150 0.6 0.7 0.8 0.9 1 L Imax (a) N = M = 2 U=−1.95 U=−2 U=−2.05 20 40 60 80 100 0.4 0.5 0.6 0.7 0.8 0.9 1 L Imax (b) N = M = 3 U=−1.95 U=−2 U=−2.05 Bifurcation at Uc = −2: |U| < |Uc|, no bound fermionic pair formation |U| > |Uc|, bound fermionic pair formation Profile of |f(x1, x2)| at U = −3
  • 17. Multi-configuration time-dependent Hartree Fock Time evolution of a many-body system is difficult! The conventional approach: Time-independent basis, chosen a priori |ψ(t) = J CJ (t)eJ , with eJ being a many-body basis vector constructed out of time-independent single-particle orbitals. Hilbert space exponentially large! Now a very smart idea: Adaptively chosen basis, |ψ(t) J CJ (t)eJ (t), with eJ (t) constructed out of time-dependent single-particle orbitals. significantly diminished Hilbert space!
  • 18. Multi-configuration time-dependent Hartree Fock For N spinless fermions on an L-site lattice, M L time-dependent single-particle orbitals are taken, {φ1(t), φ2(t), . . . , φM (t)}, out of which ˜D = M! N!(M−N)! Slater determinants SJ (t) can be constructed. The variational wave function is |ψ(t) = J CJ (t)SJ (t). Evolution of the coefficients CJ (t) and the orbitals φi(t) is determined by the Dirac-Frenkel variational principle δ dt i ψ| ∂ ∂t ψ − ψ|H|ψ = 0. A natural question: can the wave function really be well approximated by using only M L orbitals?
  • 19. Evolution of Imax Initially N = 3 fermions are confined to the Li left-most sites (|ψ(t) first evolved by ED, and then approximated using the algorithm) Two different cases (U = 1): 0 0.2 0.4 0.6 0.8 1 Imax (a) N = 3, Li = 3, L = 25 0 5 10 15 20 25 30 0 1 2 t Eint/U (c) 0.7 0.8 0.9 1 Imax (b) N = 3, Li = 5, L = 25 0 50 100 150 0 0.5 t Eint/U (d) From bottom to top, M increases from 3 to 8. Line M = 3 coincides with line M = 4. Reduction of Hilbert space: C3 25 = 2300 to C3 8 = 56.
  • 20. Evolution of density distribution—comparison of ED and MCTDHF Initially N = 3 fermions are confined to the Li left-most sites (U = 1) 0 0.2 0.4 ˆni (a1) t = 5 0 0.1 0.2 (a2) t = 10 0 10 20 0 0.1 0.2 0.3 0.4 i ˆni (a3) t = 15 0 10 20 0 0.1 0.2 0.3 i (a4) t = 20 0 0.1 0.2 0.3 0.4 ˆni (b1) t = 5 0 0.1 0.2 (b2) t = 10 0 10 20 0 0.2 0.4 0.6 iˆni (b3) t = 15 0 10 20 0 0.1 0.2 0.3 i (b4) t = 20 Blue line with circles: ED results Red line with squares: MCTDHF with M = 3 orbitals Green line with aestrisks: MCTDHF with M = 8 orbitals
  • 21. Conclusions and outlooks A problem relevant in the MCTDHF context Numerically, a simple iterative algorithm is proposed a quantitative approach to geometric measure of entanglement but the idea is inapplicable to bosons! Analytically, several scattered nontrivial results have been obtained A lot of open questions and conjectures MCTDHF gauged (checked). An immediate problem: For the Laughlin wave function (zi = xi + iyi) f(z1, z2, . . . , zN ) = 1≤zi<zj ≤N (zi − zj)3 N i=1 exp(−|zi|2 ), how does Imax scale with N (assuming M = N)? J. M. Zhang and Marcus Kollar, arXiv:1309.1848 (2013).