SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 12ǁ December 2013 ǁ PP.01-09

On The Homogeneous Cubic Equation with Six Unknowns
 x y ( x  y )   z w ( z  w )  (   ) X Y ( X  Y )

M.A.Gopalan1, S.Vidhyalakshmi2, K.Lakshmi3
1, 2

, Proffessor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India

3

Lecturer, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India

ABSTRACT: The homogeneous cubic equation with six unknowns represented by the equation
 x y ( x  y )   z w ( z  w )  (    ) X Y ( X  Y ) is analyzed for its patterns of non-zero distinct integral

solutions and different methods of integral solutions are illustrated. A few relations between the solutions and
the special numbers are presented

KEYWORDS: Homogeneous cubic equation, integral solutions
M.Sc 2010 mathematics subject classification: 11D25
NOTATIONS:
T m , n -Polygonal number of rank n with size m
m

Pn - Pyramidal number of rank n with size m

P R n - Pronic number of rank n
O H n - Octahedral number of rank n
S O n -Stella octangular number of rank n

S n -Star number of rank n
J n -Jacobsthal number of rank of n

j n - Jacobsthal-Lucas number of rank n

K Y n -kynea number of rank n
C Pn , 3 - Centered Triangular pyramidal number of rank n
C Pn , 6 - Centered hexagonal pyramidal number of rank n
F 4 , n , 3 -Four Dimensional Figurative number of rank n whose generating polygon is a triangle
F 4 , n , 5 - Four Dimensional Figurative number of rank n whose generating polygon is a pentagon.

I.

INTRODUCTION

The theory of diophantine equations offers a rich variety of fascinating problems [1-3]. Particularly, in
[4-9] the cubic equations with 4 unknowns and in [10-11] cubic equations with 5 unknowns are studied for their
integral solutions. This communication concerns with an another non-zero cubic equation with six unknowns
given by  x y ( x  y )   z w ( z  w )  (    ) X Y ( X  Y ) . Infinitely many non-zero integer triples
( x , y , z ) satisfying the above equation are obtained. Various interesting properties among the values of x, y and
z are presented.

II.

METHOD OF ANALYSIS

The diophantine equation representing the cubic equation with six unknowns under consideration is
 x y ( x  y )   z w ( z  w )  (   ) X Y ( X  Y )
(1)
Assuming x  u  p , y  u  p , z  u  q , z  u  q , x  u  v , x  u  v
(2)
in (1), it reduces to the equation,
2
2
2
(3)
 p   q  (   ) v

www.ijesi.org

1 | Page
On the homogeneous cubic equation…
Again using the linear transformation
p  S  T ,q  S T

(4)

in (3), it reduces to
S

2

2

 T

2

 v

(5)

The above equation (5) is solved through different approaches and thus, one obtains
different sets of solutions to (1)
1. CaseI:   is not a square.
1.1 Approach1:
The solution to (5) can be written as
S   a

2

2

 b ,T  2ab, v    a

2

b

2

(6)

In view of (6), (4) and (2) the integral solution of (1) is obtained as


2
2
y  u  (  a  b  2  a b ) 

2
2
z  u    a  b  2 a b 

2
2
w  u  (  a  b  2  a b ) 

2
2
X  u   a  b


2
2
Y  u   a  b

x  u   a

2

b

2

 2 ab

(7)

Properties:
1. 3 k [( x  z )  (   (   )  1)( T 6 , a  3 ( O H a )  2 C Pa , 6 )] is a nasty number
2. x ( a , a )  w ( a , a )  2 (    )( 2 T 3 , a  T 6 , a  2 T 4 , a )  0 (m o d 2 )
5

3. k    ( 6 F 4 , a , 5  2 Pa  2 T 4 , a )  4  T 3 , a  x ( a ( a  1) , 1)  1
4. 3 ( X ( a , a )  Y ( a , a ))  (1    )( S a  1 2 C Pa , 3  6 C Pa , 6  1)  0
5. 2 ( z ( a , a )  w ( a , a ))  (    2   1)[ T1 0 , a  9 ( O H ) a  6 C Pa , 6 ]  0
6. w ( 2

2n

,2

2n

)  x(2

2n

,2

2n

)  (    (    )  1) j 4
       1 .
n 1

7. x ( a , a )  X ( a , a )   (   1)( 2 T 3 , a  T 6 , a  T 4 , a )  0
1.2 Approach2:
2

Let v  a    b
Now, rewrite (5) as,
S

2

 T

2

2

 v

(8)
2

1

(9)

Also 1 can be written as
1

(   k

2

 i2k

  )(    k

2

 i2k

 )

(10)

2 2

(   k )

Substituting (10) and (8) in (9) and using the method of factorisation, define
(S  i   T ) 

(   k

2

 i2k

  )( a  i   b )
2

(   k )

2

(11)

Equating real and imaginary parts in (11) we get

www.ijesi.org

2 | Page
On the homogeneous cubic equation…


(   k )


1
2
2
2
T 
[(    k ) 2 a b  2 k ( a    b )] 
2

(   k )

S 

1

2

2

[(    k )( a

2

2

   b )  4  k a b ]

(12)

Considering (2), (4), (8) & (12) and performing some algebra, the corresponding solutions of (1) are given by


2

y  u  (   k ) ( f   g )

2

z  u  (   k ) ( f   g )

2
w  u  (   k ) ( f   g )


2 2
2
2
X  u  (   k ) ( A    B ) 
2 2
2
2 
Y  u  (   k ) ( A    B ) 

(13)

2
   B )  4  k A B 


2
2
2
g  (   k ) 2 A B  2 k ( A    B ) 


(14)

2

x  u  (   k ) ( f   g )

where
2

f  (   k ) ( A

2

Properties:
2

1 . 6 k [ x ( a ( a  1) , a ( a  1) )  {   k } { (    k

2

2

 2 k  ) (1    )  2 ( 2   k   k  k ) }
3

{ 2 4 F 4 , a , 3  2 4 Pa  4 T 3 , a } ]

is a nasty number
2

2

2

2 . x ( a , a )  y ( a , a )  z ( a , a )  w ( a , a )  2 (    k )[ 2 (    k )(1    )  4   k  2 (    )(  k  k )
+ 2 k (1    )][ 2 T 3 , a -2 C P a ,6 + S O a ]
2

2

. 3 . k [ w ( a , a )  {   k } { (    k
is a cubic integer

2

 2 k  )(1    )  2 ( 2   k  

2

2

8

   k )} { 2 Pa  S O a } ]

2 2

4. X ( a ( a  1), a ( a  1))  Y ( a ( a  1), a ( a  1))  2 (   k ) (1    )( 2 T

3, a

2

 2 C Pa , 6 )

1.3 Approach3:
1 can also be written as
1

(     i 2   )(    i 2   )
(   )

2

Following the same procedure as in approach2 we get the integral solution of (1) as
x  u  (    ) ( f1   g 1 )



y  u  (    ) ( f1   g 1 )


z  u  (    ) ( f1   g 1 )


w  u  (    ) ( f1   g 1 )

2
2
2 
X  u  (   ) ( A    B )

2
2
2
Y  u  (   ) ( A    B ) 


(15)

Where

www.ijesi.org

3 | Page
On the homogeneous cubic equation…
2
   B )  4  A B 


2
2
g 1  2 ( A    B )  2 A B (   ) 


f1  (    )( A

2

(16)

Properties:
2

1. 6 k { 4 x ( a , a )  (    ) [ (   3  ) (1    )  2 (     ) ] [ T1 0 , a  6 T 3 , a  3 T 4 , a ] } is a nasty number
2

2. 3 y ( a , a )  (    ) [ ( 3    ) (1    )  2 (     ) ] [ T 8 , a  6 T 4 , a  4 T 5 , a ]  0 ( m o d 3 )
2

3. 7 z ( a , a )  (    ) [ ( 3    ) (1    )  2 ( 3     ) ] [ 2 T 9 , a  1 0 T 3 , a  5 T 4 , a ]  0 ( m o d 7 )
2

2

5

4. k { w ( a , a )  (    ) [ ( 3    ) (1    )  2 ( 3     ) ] [ 2 Pa  C Pa , 6 ] } is a cubic integer
5

5. X ( a ( a  1) , 1)  Y ( a ( a  1) , 1)  2 ( 6 F 4 , a , 5  2 Pa )  2    0
2n

2n

6. X ( 2 , 2 )  (1    )(3 J 4 n  1)  0
1.4 Approach4:
Rewriting (5) as v 2  S 2    T 2
Factorisation of the equation (17) gives

(17)

( v  S )( v  S )  (  T )(  T )

(18)
Considering (18) and using the method of cross multiplication the non-zero integral solution of (1) are obtained
as
2

2

x  u  m   n   2 mn
2

2

y  u  (m   n   2  m n )
2

2

z  u  m   n   2 m n
2

2

2

2

w  u  ( m   n   2 m n )
X  u  m   n 
2

2

Y  u  m   n 

Properties:
1. x ( 2 a , a )  y ( 2 a , a )  ( 4   5  ) ( 6 F 4 , a , 5  T

2

4 ,a )  0 (m o d 3)

5

2. z ( a , 2 a )  w ( a , 2 a )  2  Pa   C Pa , 6  0
3. 3( X ( a , 2 a )  Y ( a , 2 a ))  (   4  )( S a  1)  0 (m o d 6 )
4. 3 ( X ( a , a )  x ( a , a )  z ( a , a ))  (5    )( 2 T 5 , a  2 T 3 , a  T 4 , a )  0 (m o d 3 )
1.5 Approach5:
(17) can be written as a set of double equations in five different ways as shown below:
Set1: v  S   T , v  S   T
Set2: v  S    , v  S  T

2

2

Set3: v  S   T , v  S  
Set4: v  S   , v  S   T

2

2

Set5: v  S  T , v  S   
Solving each of the above sets, the corresponding values of v , S a n d T are given by
Set1: v  (   ) T1 , S  (   ) T1 , T  2 T1
2

2

Set2: v  2  1  1   1   1  2 T1  2 T1  1, S  2  1  1   1   1  2 T1  2 T1 , T  2 T1  1

www.ijesi.org

4 | Page
On the homogeneous cubic equation…
Set3: v   1T

2

  1 , S   1T

2

 1

2

2

Set4: v  2  T1   1 , S   1  2  T1 , T  2 T1
2

2

Set5: v  2 T1   1  , S  2 T1   1  , T  2 T1
In view of (4) and (2), the corresponding solutions to (1) obtained from set1 are represented as shown below:
x  u  (   3  ) T1
y  u  (   3  ) T1
z  u  ( 3    ) T1
w  u  ( 3    ) T1
X  u  (    ) T1
Y  u  (    ) T1

Properties:
1. 3 k [ x ( a )  z ( a )  4 (    )( 2 T 3 , a  2 C Pa , 6  S O a )] is a nasty number
3

2. x ( a )  y ( a )  2 ( 5   3  ) [ 6 Pa  6 T 3 , a  3 ( O H a )  2 C Pa , 3 ]
For simplicity, we exhibit below the integer solutions obtained from sets2 to 5 respectively
Set2:
x  u  f (  1 ,  1 , T1 )
y  u  f (  1 ,  1 , T1 )
z  u  g (  1 ,  1 , T1 )
w  u  g (  1 ,  1 , T1 )
2

X  u  ( 2  1  1   1   1  2 T1  2 T1  1)
2

Y  u  ( 2  1  1   1   1  2 T1  2 T1  1)

Where
f ( 1 ,  1 , k )  2  1  1   1   1  2 k

2

 2 k  ( 2  1  1) ( 2 k  1)

g ( 1 ,  1 , k )  2  1  1   1   1  2 k

2

 2 k  ( 2  1  1) ( 2 k  1)

Set3:
x  u   1T

2

  1  2  1T

y  u   1T

2

  1  2  1T

z  u   1T

2

  1  2  1T

w  u   1T

2

  1  2  1T

X  u   1T
Y  u   1T

2
2

 1
 1

Set4:

www.ijesi.org

5 | Page
On the homogeneous cubic equation…
2

x  u   1  2  T1  2  T1
2

y  u  (  1  2  T1  2  T )
2

z  u   1  2  T1  4  1T1
2

w  u  (  1  2  T1  4  1T1 )
2

X  u  2  T1   1
2

Y  u  2  T1   1

Set5:
2

x  u  2 T1   1   2  T1
2

y  u  ( 2 T1   1   2  T1 )
2

z  u  2 T1   1   4  1T1
2

w  u  ( 2 T1   1   4  1T1 )
2

X  u  2 T1   1 
2

Y  u  2 T1   1 

2. CaseII:
Choose  and  such that   is a perfect square, say, d
2

2

(5) is written as S  ( d T )  v
2.1 Approach6:
The solution of (19) can be written as
dT  a

2

2

 b , S  2ab, v  a

2

b

2

2

(19)

2

(20)
Considering (20), (4) & (2) and performing some algebra the integral solution of (1) is obtained as
2
 B )

2
2
2
y  u  2d AB   d ( A  B )

2
2
2
z  u  2d AB   d ( A  B ) 

2
2
2
w  u  2d AB   d ( A  B )

2
2
2
X  u  d (A  B )


2
2
2
Y  u  d (A  B )


x  u  2d

2

AB   d (A

2

(21)

Properties:
1. x ( 2 a , a )  y ( 2 a , a )  ( 4 d

2

 3  d ) (T 6 , a  3T 4 , a  2 T5 , a )  0

2. 2 ( z ( 2 a , a )  w ( 2 a , a ) )  ( 4 d

2

 3  d ) ( T1 0 , a  3 T 4 , a  2 T 5 , a )  0

2

3. X ( 2 a , a )  Y ( 2 a , a )  d ( 2 T1 2 , a  9 T 4 , a  2 T 2 0 , a )
4. 6 ( x ( a , a )  y ( a , a )  z ( a , a )  w ( a , a )  X ( a , a )  Y ( a , a )  4 k ) is a nasty number
2

2n

2n

2

5. k [ X ( 2 , 2 )  d ( j 4 n  1  1)] is a cubic integer
2.2 Approach7:
(19) can be written as
v

2

 (dT )

2

 S

2

(22)

www.ijesi.org

6 | Page
On the homogeneous cubic equation…
Writing (22) as a set of double equations as
v  d T  1, v  d T  S

2

and Solving, the corresponding values of v , S a n d T are given by
2

2

v  2 S1 d

2

 2 S 1 d  1, T   ( 2 S 1 d  2 S 1 ), S  2 S 1 d  1

In view of (4) and (2), the corresponding solutions to (1) are represented as
2

x  u  2 S1d  1   ( 2 S1 d  2 S1 )
2

y  u  2 S1d  1   ( 2 S1 d  2 S1 )
2

z  u  2 S1d  1   ( 2 S1 d  2 S1 )
2

w  u  2 S1d  1   ( 2 S1 d  2 S1 )
2

2

X  u  2 S1 d
2

2

Y  u  2 S1 d

 2 S1d  1
 2 S1d  1

Properties:
1. x ( a )  y ( a )  (    ) [ d ( 6 F 4 , a , 5  3 C Pa , 6  T
2

2
4,a

2

)  3T 4 , a  T8 , a ]

5

2. X ( a )  2 d ( 6 Pa  C Pa , 6 )  2 d ( 2 T 3 , a  T 4 , a )  k  1
2.3 Approach8:
(19) can be rewritten as
2

S

2

 (dT )

2

(23)
Writing (23) as a set of double equations in 3 different ways as shown below
v

2

2

2

2

Set1: v  S  T , v  S  d
Set2: v  S  d , v  S  T
2

Set3: v  S  d T , v  S  d
Solving each of the above sets, the corresponding values of v , S a n d T are given by
Set1: v  2 ( f

2

 e )  2 ( f  e )  1, S  2 ( e

Set2: v  2 ( f

2

 e ), S  2 ( f

2

Set3: v  ( T

2

2

 1) f , S  ( T

2

2

2

 f

2

)  2 ( e  f ), T  2 e  1

2

 e ), T  2 e

 1) f

In view of (4) and (2), the corresponding solutions to (1) are represented as shown below:
Set1:
x  u  2 (e

2

 f

2

)  2 ( e  f )   ( 2 e  1)

y  u  2 (e

2

 f

2

)  2 ( e  f )   ( 2 e  1)

z  u  2 (e

2

 f

2

)  2 ( e  f )   ( 2 e  1)

2

 f

2

)  2 ( e  f )   ( 2 e  1)

w  u  2 (e

X  u  2( f
Y  u  2( f

2
2

2

 e )  2( f  e)  1
2

 e )  2( f  e)  1

Set2:

www.ijesi.org

7 | Page
On the homogeneous cubic equation…
x  u  2 (e

2

 f

2

)  2 e

y  u  2(e

2

 f

2

)  2 e

z  u  2 (e

2

 f

2

)  2 e

2

 f

2

)  2 e

w  u  2 (e

X  u  2(e

2

2

Y  u  2 (e

 f
 f

2
2

)

)

Set3:
x  u  (T

2

 1) f   T

y  u  (T

2

 1) f   T

z  u  (T

2

 1) f   T

w  u  (T

2

 1) f   T

X  u  (T
Y  u  (T

2
2

 1) f
 1) f

Remarkable observation:
If ( x 0 , y 0 , z 0 , w 0 , X 0 , Y 0 ) be any given integral solution of (1), then the general solution pattern is
presented in the matrix form as follows:
Odd ordered solutions:











0

(   )

4n3

(   )

-2  (    )

4n3

0

-(    )

4n3

(   )

2  (   )

4n3

0

-2 (   )

0

1
x2 n 1 


1
y 2 n 1


z 2 n 1   1
 
w 2 n 1  
1

X 2 n 1


1
 
Y2 n 1  
1

2 (   )

4n3

(   )(   )
-(    ) (    )

4n3

4n3
4n3

1

0

0

-1

0

0














u0 

v0

p0 

q0 


Even ordered solutions:
 x2 n

y2n

 z
2n

 w2n

X 2n

 Y
 2n

1



1



1
 


1



1




1

0

(   )

4n

0

-(    )

4n

0

0

(   )

4n

0

0

-(    )

4n

1

0

0

-1

0

0

0
0














u0 

v0

p0 

q0 


The values of x , y , z , w , X and Y in all the above approaches satisfy the following properties:
1. 3 ( x  y )( z  w  X  Y ) is a nasty number.

www.ijesi.org

8 | Page
On the homogeneous cubic equation…
2. x  y  z  w  2 ( X  Y )
2

2

3. 2[ x  y  X
2

2

2

2

Y

2

2

 (z  w) ]  (x  y)

2

4. x  y  z  w  X

2

Y

2

2

 (X Y )

2

 0

 0 (m o d 4 )

5. ( x  y )( z  w )( X  Y ) is a cubical integer
2

2

6. x y  z w  ( k  y )  ( k  w )  0

III.

CONCLUSION

Instead of (4), the substitution
p  S  T ,q  S T

in (3), reduces it to the same equation (5).Then different solutions can be obtained, using the same patterns

REFERENCES
[1]
[2]

L.E. Dickson, History of Theory of numbers, vol.2, Chelsea Publishing company, New York, 1952.
L.J. Mordell, Diophantine Equations, Academic press, London, 1969.

[3]

Carmichael.R.D, The Theory of numbers and Diophantine Analysis, New York, Dover,1959

[4]

M.A.Gopalan and S.Premalatha , Integral solutions of ( x  y )( xy  w

[5]

applied sciences,Vol.28E(No.2),197-202, 2009
M.A.Gopalan and V.pandiChelvi, Remarkable solutions on the cubic equation with four unknowns

x
[6]

 y

3

 z

3

 28 ( x  y  z ) w

2

)  2(k

2

 1) z

3

Bulletin of pure and

, Antarctica J.of maths, Vol.4, No.4, 393-401, 2010.

M.A.Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknowns

x
[7]

3

2

3

 y

3

 z

3

 3 xyz  2 ( x  y ) w

3

, Impact.J.Sci.Tech, Vol.4, No.3, 53-60, 2010.

M.A.Gopalan and S.Premalatha , On the cubic Diophantine equation with four unknowns

( x  y )( xy  w

2

2

)  2(n

3

 2 n ) z , International Journal of mathematical sciences,

Vol.9,No.1-2, Jan-June, 171-175, 2010.
[8]

M.A.Gopalan and J.KaligaRani, Integral solutions of

x

3

 y

3

 ( x  y ) xy  z

3

 w

3

 ( z  w ) zw ,

Bulletin of pure and applied sciences, Vol.29E (No.1), 169-173, 2010.

( x  y )( xy  w

2

3

)  2 ( k  1 ) z , The Global Journal of

[9]

M.A.Gopalan and S.Premalatha Integral solutions of

[10]

applied Mathematics and Mathematical sciences, Vol.3, No.1-2, 51-55, 2010
M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani , On the cubic equation with five unknowns

x
[11]

3

 y

3

 z

3

 w

3

2

 t ( x  y ) , Indian Journal of Science, Vol.1, No.1, 17-20, Nov 2012.

M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani , Integral solutions of the cubic equation with five unknowns

x

3

 y

3

 u

3

 v

3

3

 3 t , IJAMA, Vol.4 (2), 147-151, Dec 2012

.

www.ijesi.org

9 | Page

Weitere ähnliche Inhalte

Was ist angesagt?

Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
Mr_KevinShah
 

Was ist angesagt? (20)

Chap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam aceChap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam ace
 
Chapter 2 sequencess and series
Chapter 2 sequencess and seriesChapter 2 sequencess and series
Chapter 2 sequencess and series
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
1. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 20141. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 2014
 
On The Number of Representations of a Positive Integer By Certain Binary Quad...
On The Number of Representations of a Positive Integer By Certain Binary Quad...On The Number of Representations of a Positive Integer By Certain Binary Quad...
On The Number of Representations of a Positive Integer By Certain Binary Quad...
 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
 
final19
final19final19
final19
 
1. functions
1. functions1. functions
1. functions
 
A class of a stable order four and six linear multistep methods for stiff ini...
A class of a stable order four and six linear multistep methods for stiff ini...A class of a stable order four and six linear multistep methods for stiff ini...
A class of a stable order four and six linear multistep methods for stiff ini...
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2020 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
 
I034051056
I034051056I034051056
I034051056
 
Xi trigonometric functions and identities (t) part 1
Xi trigonometric functions and identities  (t)   part 1 Xi trigonometric functions and identities  (t)   part 1
Xi trigonometric functions and identities (t) part 1
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
 
.Chapter7&8.
.Chapter7&8..Chapter7&8.
.Chapter7&8.
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Randić Index of Some Class of Trees with an Algorithm
Randić Index of Some Class of Trees with an AlgorithmRandić Index of Some Class of Trees with an Algorithm
Randić Index of Some Class of Trees with an Algorithm
 
Product analysis formulas: The catalan numbers and its relation with the prod...
Product analysis formulas: The catalan numbers and its relation with the prod...Product analysis formulas: The catalan numbers and its relation with the prod...
Product analysis formulas: The catalan numbers and its relation with the prod...
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018
 
Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]
 

Andere mochten auch

TRANSCRIPT OF HEALTH PERISCOPE
TRANSCRIPT OF HEALTH PERISCOPETRANSCRIPT OF HEALTH PERISCOPE
TRANSCRIPT OF HEALTH PERISCOPE
Ekene Odigwe
 
Prof Sec Feb 2016
Prof Sec Feb 2016Prof Sec Feb 2016
Prof Sec Feb 2016
Mike Hurst
 

Andere mochten auch (17)

Bernard de-mandeville-1
Bernard de-mandeville-1Bernard de-mandeville-1
Bernard de-mandeville-1
 
Sms global services
Sms global servicesSms global services
Sms global services
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Edufisica22
Edufisica22Edufisica22
Edufisica22
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Fopl index discussion paper
Fopl index discussion paperFopl index discussion paper
Fopl index discussion paper
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Ionic
IonicIonic
Ionic
 
C021201020023
C021201020023C021201020023
C021201020023
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
F021201038039
F021201038039F021201038039
F021201038039
 
Moldes de injeção
Moldes de injeçãoMoldes de injeção
Moldes de injeção
 
TRANSCRIPT OF HEALTH PERISCOPE
TRANSCRIPT OF HEALTH PERISCOPETRANSCRIPT OF HEALTH PERISCOPE
TRANSCRIPT OF HEALTH PERISCOPE
 
L mis12 c13
L mis12 c13L mis12 c13
L mis12 c13
 
G021201040048
G021201040048G021201040048
G021201040048
 
Gerencia de proyectos
Gerencia de proyectosGerencia de proyectos
Gerencia de proyectos
 
Prof Sec Feb 2016
Prof Sec Feb 2016Prof Sec Feb 2016
Prof Sec Feb 2016
 

Ähnlich wie A0212010109

Bit sat 2008 questions with solutions
Bit sat 2008 questions with solutionsBit sat 2008 questions with solutions
Bit sat 2008 questions with solutions
askiitians
 
Bit sat 2008 questions with solutions
Bit sat 2008 questions with solutionsBit sat 2008 questions with solutions
Bit sat 2008 questions with solutions
askiitians
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
Alexander Decker
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
Yu Zhang
 

Ähnlich wie A0212010109 (20)

Sub1567
Sub1567Sub1567
Sub1567
 
E041046051
E041046051E041046051
E041046051
 
Maths ms
Maths msMaths ms
Maths ms
 
D0366025029
D0366025029D0366025029
D0366025029
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Bit sat 2008 questions with solutions
Bit sat 2008 questions with solutionsBit sat 2008 questions with solutions
Bit sat 2008 questions with solutions
 
Bit sat 2008 questions with solutions
Bit sat 2008 questions with solutionsBit sat 2008 questions with solutions
Bit sat 2008 questions with solutions
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Ck4201578592
Ck4201578592Ck4201578592
Ck4201578592
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 

Kürzlich hochgeladen

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Kürzlich hochgeladen (20)

EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 

A0212010109

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 12ǁ December 2013 ǁ PP.01-09 On The Homogeneous Cubic Equation with Six Unknowns  x y ( x  y )   z w ( z  w )  (   ) X Y ( X  Y ) M.A.Gopalan1, S.Vidhyalakshmi2, K.Lakshmi3 1, 2 , Proffessor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India 3 Lecturer, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India ABSTRACT: The homogeneous cubic equation with six unknowns represented by the equation  x y ( x  y )   z w ( z  w )  (    ) X Y ( X  Y ) is analyzed for its patterns of non-zero distinct integral solutions and different methods of integral solutions are illustrated. A few relations between the solutions and the special numbers are presented KEYWORDS: Homogeneous cubic equation, integral solutions M.Sc 2010 mathematics subject classification: 11D25 NOTATIONS: T m , n -Polygonal number of rank n with size m m Pn - Pyramidal number of rank n with size m P R n - Pronic number of rank n O H n - Octahedral number of rank n S O n -Stella octangular number of rank n S n -Star number of rank n J n -Jacobsthal number of rank of n j n - Jacobsthal-Lucas number of rank n K Y n -kynea number of rank n C Pn , 3 - Centered Triangular pyramidal number of rank n C Pn , 6 - Centered hexagonal pyramidal number of rank n F 4 , n , 3 -Four Dimensional Figurative number of rank n whose generating polygon is a triangle F 4 , n , 5 - Four Dimensional Figurative number of rank n whose generating polygon is a pentagon. I. INTRODUCTION The theory of diophantine equations offers a rich variety of fascinating problems [1-3]. Particularly, in [4-9] the cubic equations with 4 unknowns and in [10-11] cubic equations with 5 unknowns are studied for their integral solutions. This communication concerns with an another non-zero cubic equation with six unknowns given by  x y ( x  y )   z w ( z  w )  (    ) X Y ( X  Y ) . Infinitely many non-zero integer triples ( x , y , z ) satisfying the above equation are obtained. Various interesting properties among the values of x, y and z are presented. II. METHOD OF ANALYSIS The diophantine equation representing the cubic equation with six unknowns under consideration is  x y ( x  y )   z w ( z  w )  (   ) X Y ( X  Y ) (1) Assuming x  u  p , y  u  p , z  u  q , z  u  q , x  u  v , x  u  v (2) in (1), it reduces to the equation, 2 2 2 (3)  p   q  (   ) v www.ijesi.org 1 | Page
  • 2. On the homogeneous cubic equation… Again using the linear transformation p  S  T ,q  S T (4) in (3), it reduces to S 2 2  T 2  v (5) The above equation (5) is solved through different approaches and thus, one obtains different sets of solutions to (1) 1. CaseI:   is not a square. 1.1 Approach1: The solution to (5) can be written as S   a 2 2  b ,T  2ab, v    a 2 b 2 (6) In view of (6), (4) and (2) the integral solution of (1) is obtained as   2 2 y  u  (  a  b  2  a b )   2 2 z  u    a  b  2 a b   2 2 w  u  (  a  b  2  a b )   2 2 X  u   a  b   2 2 Y  u   a  b  x  u   a 2 b 2  2 ab (7) Properties: 1. 3 k [( x  z )  (   (   )  1)( T 6 , a  3 ( O H a )  2 C Pa , 6 )] is a nasty number 2. x ( a , a )  w ( a , a )  2 (    )( 2 T 3 , a  T 6 , a  2 T 4 , a )  0 (m o d 2 ) 5 3. k    ( 6 F 4 , a , 5  2 Pa  2 T 4 , a )  4  T 3 , a  x ( a ( a  1) , 1)  1 4. 3 ( X ( a , a )  Y ( a , a ))  (1    )( S a  1 2 C Pa , 3  6 C Pa , 6  1)  0 5. 2 ( z ( a , a )  w ( a , a ))  (    2   1)[ T1 0 , a  9 ( O H ) a  6 C Pa , 6 ]  0 6. w ( 2 2n ,2 2n )  x(2 2n ,2 2n )  (    (    )  1) j 4        1 . n 1 7. x ( a , a )  X ( a , a )   (   1)( 2 T 3 , a  T 6 , a  T 4 , a )  0 1.2 Approach2: 2 Let v  a    b Now, rewrite (5) as, S 2  T 2 2  v (8) 2 1 (9) Also 1 can be written as 1 (   k 2  i2k   )(    k 2  i2k  ) (10) 2 2 (   k ) Substituting (10) and (8) in (9) and using the method of factorisation, define (S  i   T )  (   k 2  i2k   )( a  i   b ) 2 (   k ) 2 (11) Equating real and imaginary parts in (11) we get www.ijesi.org 2 | Page
  • 3. On the homogeneous cubic equation…   (   k )   1 2 2 2 T  [(    k ) 2 a b  2 k ( a    b )]  2  (   k )  S  1 2 2 [(    k )( a 2 2    b )  4  k a b ] (12) Considering (2), (4), (8) & (12) and performing some algebra, the corresponding solutions of (1) are given by   2  y  u  (   k ) ( f   g )  2  z  u  (   k ) ( f   g )  2 w  u  (   k ) ( f   g )   2 2 2 2 X  u  (   k ) ( A    B )  2 2 2 2  Y  u  (   k ) ( A    B )  (13) 2    B )  4  k A B    2 2 2 g  (   k ) 2 A B  2 k ( A    B )   (14) 2 x  u  (   k ) ( f   g ) where 2 f  (   k ) ( A 2 Properties: 2 1 . 6 k [ x ( a ( a  1) , a ( a  1) )  {   k } { (    k 2 2  2 k  ) (1    )  2 ( 2   k   k  k ) } 3 { 2 4 F 4 , a , 3  2 4 Pa  4 T 3 , a } ] is a nasty number 2 2 2 2 . x ( a , a )  y ( a , a )  z ( a , a )  w ( a , a )  2 (    k )[ 2 (    k )(1    )  4   k  2 (    )(  k  k ) + 2 k (1    )][ 2 T 3 , a -2 C P a ,6 + S O a ] 2 2 . 3 . k [ w ( a , a )  {   k } { (    k is a cubic integer 2  2 k  )(1    )  2 ( 2   k   2 2 8    k )} { 2 Pa  S O a } ] 2 2 4. X ( a ( a  1), a ( a  1))  Y ( a ( a  1), a ( a  1))  2 (   k ) (1    )( 2 T 3, a 2  2 C Pa , 6 ) 1.3 Approach3: 1 can also be written as 1 (     i 2   )(    i 2   ) (   ) 2 Following the same procedure as in approach2 we get the integral solution of (1) as x  u  (    ) ( f1   g 1 )   y  u  (    ) ( f1   g 1 )   z  u  (    ) ( f1   g 1 )   w  u  (    ) ( f1   g 1 )  2 2 2  X  u  (   ) ( A    B )  2 2 2 Y  u  (   ) ( A    B )   (15) Where www.ijesi.org 3 | Page
  • 4. On the homogeneous cubic equation… 2    B )  4  A B    2 2 g 1  2 ( A    B )  2 A B (   )   f1  (    )( A 2 (16) Properties: 2 1. 6 k { 4 x ( a , a )  (    ) [ (   3  ) (1    )  2 (     ) ] [ T1 0 , a  6 T 3 , a  3 T 4 , a ] } is a nasty number 2 2. 3 y ( a , a )  (    ) [ ( 3    ) (1    )  2 (     ) ] [ T 8 , a  6 T 4 , a  4 T 5 , a ]  0 ( m o d 3 ) 2 3. 7 z ( a , a )  (    ) [ ( 3    ) (1    )  2 ( 3     ) ] [ 2 T 9 , a  1 0 T 3 , a  5 T 4 , a ]  0 ( m o d 7 ) 2 2 5 4. k { w ( a , a )  (    ) [ ( 3    ) (1    )  2 ( 3     ) ] [ 2 Pa  C Pa , 6 ] } is a cubic integer 5 5. X ( a ( a  1) , 1)  Y ( a ( a  1) , 1)  2 ( 6 F 4 , a , 5  2 Pa )  2    0 2n 2n 6. X ( 2 , 2 )  (1    )(3 J 4 n  1)  0 1.4 Approach4: Rewriting (5) as v 2  S 2    T 2 Factorisation of the equation (17) gives (17) ( v  S )( v  S )  (  T )(  T ) (18) Considering (18) and using the method of cross multiplication the non-zero integral solution of (1) are obtained as 2 2 x  u  m   n   2 mn 2 2 y  u  (m   n   2  m n ) 2 2 z  u  m   n   2 m n 2 2 2 2 w  u  ( m   n   2 m n ) X  u  m   n  2 2 Y  u  m   n  Properties: 1. x ( 2 a , a )  y ( 2 a , a )  ( 4   5  ) ( 6 F 4 , a , 5  T 2 4 ,a )  0 (m o d 3) 5 2. z ( a , 2 a )  w ( a , 2 a )  2  Pa   C Pa , 6  0 3. 3( X ( a , 2 a )  Y ( a , 2 a ))  (   4  )( S a  1)  0 (m o d 6 ) 4. 3 ( X ( a , a )  x ( a , a )  z ( a , a ))  (5    )( 2 T 5 , a  2 T 3 , a  T 4 , a )  0 (m o d 3 ) 1.5 Approach5: (17) can be written as a set of double equations in five different ways as shown below: Set1: v  S   T , v  S   T Set2: v  S    , v  S  T 2 2 Set3: v  S   T , v  S   Set4: v  S   , v  S   T 2 2 Set5: v  S  T , v  S    Solving each of the above sets, the corresponding values of v , S a n d T are given by Set1: v  (   ) T1 , S  (   ) T1 , T  2 T1 2 2 Set2: v  2  1  1   1   1  2 T1  2 T1  1, S  2  1  1   1   1  2 T1  2 T1 , T  2 T1  1 www.ijesi.org 4 | Page
  • 5. On the homogeneous cubic equation… Set3: v   1T 2   1 , S   1T 2  1 2 2 Set4: v  2  T1   1 , S   1  2  T1 , T  2 T1 2 2 Set5: v  2 T1   1  , S  2 T1   1  , T  2 T1 In view of (4) and (2), the corresponding solutions to (1) obtained from set1 are represented as shown below: x  u  (   3  ) T1 y  u  (   3  ) T1 z  u  ( 3    ) T1 w  u  ( 3    ) T1 X  u  (    ) T1 Y  u  (    ) T1 Properties: 1. 3 k [ x ( a )  z ( a )  4 (    )( 2 T 3 , a  2 C Pa , 6  S O a )] is a nasty number 3 2. x ( a )  y ( a )  2 ( 5   3  ) [ 6 Pa  6 T 3 , a  3 ( O H a )  2 C Pa , 3 ] For simplicity, we exhibit below the integer solutions obtained from sets2 to 5 respectively Set2: x  u  f (  1 ,  1 , T1 ) y  u  f (  1 ,  1 , T1 ) z  u  g (  1 ,  1 , T1 ) w  u  g (  1 ,  1 , T1 ) 2 X  u  ( 2  1  1   1   1  2 T1  2 T1  1) 2 Y  u  ( 2  1  1   1   1  2 T1  2 T1  1) Where f ( 1 ,  1 , k )  2  1  1   1   1  2 k 2  2 k  ( 2  1  1) ( 2 k  1) g ( 1 ,  1 , k )  2  1  1   1   1  2 k 2  2 k  ( 2  1  1) ( 2 k  1) Set3: x  u   1T 2   1  2  1T y  u   1T 2   1  2  1T z  u   1T 2   1  2  1T w  u   1T 2   1  2  1T X  u   1T Y  u   1T 2 2  1  1 Set4: www.ijesi.org 5 | Page
  • 6. On the homogeneous cubic equation… 2 x  u   1  2  T1  2  T1 2 y  u  (  1  2  T1  2  T ) 2 z  u   1  2  T1  4  1T1 2 w  u  (  1  2  T1  4  1T1 ) 2 X  u  2  T1   1 2 Y  u  2  T1   1 Set5: 2 x  u  2 T1   1   2  T1 2 y  u  ( 2 T1   1   2  T1 ) 2 z  u  2 T1   1   4  1T1 2 w  u  ( 2 T1   1   4  1T1 ) 2 X  u  2 T1   1  2 Y  u  2 T1   1  2. CaseII: Choose  and  such that   is a perfect square, say, d 2 2 (5) is written as S  ( d T )  v 2.1 Approach6: The solution of (19) can be written as dT  a 2 2  b , S  2ab, v  a 2 b 2 2 (19) 2 (20) Considering (20), (4) & (2) and performing some algebra the integral solution of (1) is obtained as 2  B )  2 2 2 y  u  2d AB   d ( A  B )  2 2 2 z  u  2d AB   d ( A  B )   2 2 2 w  u  2d AB   d ( A  B )  2 2 2 X  u  d (A  B )   2 2 2 Y  u  d (A  B )  x  u  2d 2 AB   d (A 2 (21) Properties: 1. x ( 2 a , a )  y ( 2 a , a )  ( 4 d 2  3  d ) (T 6 , a  3T 4 , a  2 T5 , a )  0 2. 2 ( z ( 2 a , a )  w ( 2 a , a ) )  ( 4 d 2  3  d ) ( T1 0 , a  3 T 4 , a  2 T 5 , a )  0 2 3. X ( 2 a , a )  Y ( 2 a , a )  d ( 2 T1 2 , a  9 T 4 , a  2 T 2 0 , a ) 4. 6 ( x ( a , a )  y ( a , a )  z ( a , a )  w ( a , a )  X ( a , a )  Y ( a , a )  4 k ) is a nasty number 2 2n 2n 2 5. k [ X ( 2 , 2 )  d ( j 4 n  1  1)] is a cubic integer 2.2 Approach7: (19) can be written as v 2  (dT ) 2  S 2 (22) www.ijesi.org 6 | Page
  • 7. On the homogeneous cubic equation… Writing (22) as a set of double equations as v  d T  1, v  d T  S 2 and Solving, the corresponding values of v , S a n d T are given by 2 2 v  2 S1 d 2  2 S 1 d  1, T   ( 2 S 1 d  2 S 1 ), S  2 S 1 d  1 In view of (4) and (2), the corresponding solutions to (1) are represented as 2 x  u  2 S1d  1   ( 2 S1 d  2 S1 ) 2 y  u  2 S1d  1   ( 2 S1 d  2 S1 ) 2 z  u  2 S1d  1   ( 2 S1 d  2 S1 ) 2 w  u  2 S1d  1   ( 2 S1 d  2 S1 ) 2 2 X  u  2 S1 d 2 2 Y  u  2 S1 d  2 S1d  1  2 S1d  1 Properties: 1. x ( a )  y ( a )  (    ) [ d ( 6 F 4 , a , 5  3 C Pa , 6  T 2 2 4,a 2 )  3T 4 , a  T8 , a ] 5 2. X ( a )  2 d ( 6 Pa  C Pa , 6 )  2 d ( 2 T 3 , a  T 4 , a )  k  1 2.3 Approach8: (19) can be rewritten as 2 S 2  (dT ) 2 (23) Writing (23) as a set of double equations in 3 different ways as shown below v 2 2 2 2 Set1: v  S  T , v  S  d Set2: v  S  d , v  S  T 2 Set3: v  S  d T , v  S  d Solving each of the above sets, the corresponding values of v , S a n d T are given by Set1: v  2 ( f 2  e )  2 ( f  e )  1, S  2 ( e Set2: v  2 ( f 2  e ), S  2 ( f 2 Set3: v  ( T 2 2  1) f , S  ( T 2 2 2  f 2 )  2 ( e  f ), T  2 e  1 2  e ), T  2 e  1) f In view of (4) and (2), the corresponding solutions to (1) are represented as shown below: Set1: x  u  2 (e 2  f 2 )  2 ( e  f )   ( 2 e  1) y  u  2 (e 2  f 2 )  2 ( e  f )   ( 2 e  1) z  u  2 (e 2  f 2 )  2 ( e  f )   ( 2 e  1) 2  f 2 )  2 ( e  f )   ( 2 e  1) w  u  2 (e X  u  2( f Y  u  2( f 2 2 2  e )  2( f  e)  1 2  e )  2( f  e)  1 Set2: www.ijesi.org 7 | Page
  • 8. On the homogeneous cubic equation… x  u  2 (e 2  f 2 )  2 e y  u  2(e 2  f 2 )  2 e z  u  2 (e 2  f 2 )  2 e 2  f 2 )  2 e w  u  2 (e X  u  2(e 2 2 Y  u  2 (e  f  f 2 2 ) ) Set3: x  u  (T 2  1) f   T y  u  (T 2  1) f   T z  u  (T 2  1) f   T w  u  (T 2  1) f   T X  u  (T Y  u  (T 2 2  1) f  1) f Remarkable observation: If ( x 0 , y 0 , z 0 , w 0 , X 0 , Y 0 ) be any given integral solution of (1), then the general solution pattern is presented in the matrix form as follows: Odd ordered solutions:           0 (   ) 4n3 (   ) -2  (    ) 4n3 0 -(    ) 4n3 (   ) 2  (   ) 4n3 0 -2 (   ) 0 1 x2 n 1    1 y 2 n 1   z 2 n 1   1   w 2 n 1   1  X 2 n 1   1   Y2 n 1   1 2 (   ) 4n3 (   )(   ) -(    ) (    ) 4n3 4n3 4n3 1 0 0 -1 0 0             u0   v0  p0   q0   Even ordered solutions:  x2 n  y2n   z 2n   w2n  X 2n   Y  2n 1    1    1     1    1     1 0 (   ) 4n 0 -(    ) 4n 0 0 (   ) 4n 0 0 -(    ) 4n 1 0 0 -1 0 0 0 0             u0   v0  p0   q0   The values of x , y , z , w , X and Y in all the above approaches satisfy the following properties: 1. 3 ( x  y )( z  w  X  Y ) is a nasty number. www.ijesi.org 8 | Page
  • 9. On the homogeneous cubic equation… 2. x  y  z  w  2 ( X  Y ) 2 2 3. 2[ x  y  X 2 2 2 2 Y 2 2  (z  w) ]  (x  y) 2 4. x  y  z  w  X 2 Y 2 2  (X Y ) 2  0  0 (m o d 4 ) 5. ( x  y )( z  w )( X  Y ) is a cubical integer 2 2 6. x y  z w  ( k  y )  ( k  w )  0 III. CONCLUSION Instead of (4), the substitution p  S  T ,q  S T in (3), reduces it to the same equation (5).Then different solutions can be obtained, using the same patterns REFERENCES [1] [2] L.E. Dickson, History of Theory of numbers, vol.2, Chelsea Publishing company, New York, 1952. L.J. Mordell, Diophantine Equations, Academic press, London, 1969. [3] Carmichael.R.D, The Theory of numbers and Diophantine Analysis, New York, Dover,1959 [4] M.A.Gopalan and S.Premalatha , Integral solutions of ( x  y )( xy  w [5] applied sciences,Vol.28E(No.2),197-202, 2009 M.A.Gopalan and V.pandiChelvi, Remarkable solutions on the cubic equation with four unknowns x [6]  y 3  z 3  28 ( x  y  z ) w 2 )  2(k 2  1) z 3 Bulletin of pure and , Antarctica J.of maths, Vol.4, No.4, 393-401, 2010. M.A.Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknowns x [7] 3 2 3  y 3  z 3  3 xyz  2 ( x  y ) w 3 , Impact.J.Sci.Tech, Vol.4, No.3, 53-60, 2010. M.A.Gopalan and S.Premalatha , On the cubic Diophantine equation with four unknowns ( x  y )( xy  w 2 2 )  2(n 3  2 n ) z , International Journal of mathematical sciences, Vol.9,No.1-2, Jan-June, 171-175, 2010. [8] M.A.Gopalan and J.KaligaRani, Integral solutions of x 3  y 3  ( x  y ) xy  z 3  w 3  ( z  w ) zw , Bulletin of pure and applied sciences, Vol.29E (No.1), 169-173, 2010. ( x  y )( xy  w 2 3 )  2 ( k  1 ) z , The Global Journal of [9] M.A.Gopalan and S.Premalatha Integral solutions of [10] applied Mathematics and Mathematical sciences, Vol.3, No.1-2, 51-55, 2010 M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani , On the cubic equation with five unknowns x [11] 3  y 3  z 3  w 3 2  t ( x  y ) , Indian Journal of Science, Vol.1, No.1, 17-20, Nov 2012. M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani , Integral solutions of the cubic equation with five unknowns x 3  y 3  u 3  v 3 3  3 t , IJAMA, Vol.4 (2), 147-151, Dec 2012 . www.ijesi.org 9 | Page