SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 
www.ijera.com 41 | P a g e 
Power Quality Improvement at Distribution Level for Grid Connected Renewable Energy Sources S. Syed Ahmed *, N. Sreekanth **, K. Siva Kumar *** 
*(M.Tech, Department of Electrical Engg, GLBC College, Kadapa) 
**(Associate Professor, Department of Electrical Engg, GLBC college, Kadapa) 
***(Associate Professor, Department of Electrical Engg, GLBC college, Kadapa) ABSTRACT The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network. Active power filters (APF) are extensively used to compensate the load current harmonics and load unbalance at distribution level. This results in an additional hardware cost. However, in this project it has incorporated the features of APF in the conventional inverter interfacing renewable with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. The grid-interfacing inverter can effectively be utilized to perform the four important functions they are to transfer active power harvested from the renewable resources (wind, solar, etc.), load reactive power demand support, current harmonics compensation at PCC and current unbalance and neutral current compensation in case of 3-phase 4-wire system. Moreover, with adequate control of grid-interfacing inverter, all the four objectives can be accomplished either individually or simultaneously. The PQ constraints at the PCC can therefore be strictly maintained within the utility standards without additional hardware cost. With such a control, the combination of grid-interfacing inverter and the 3-phase 4-wire linear/non-linear unbalanced load at point of common coupling appears as balanced linear load to the grid. This new control concept is demonstrated with extensive MATLAB/Simulink simulation studies 
Index Terms—Active power filter (APF), distributed generation (DG), distribution system, grid interconnection, power quality (PQ), renewable energy. 
I. INTRODUCTION 
Electric utilities and end users of electric power are becoming increasingly concerned about meeting the growing energy demand. Seventy five percent of total global energy demand is supplied by the burning of fossil fuels. But increasing air pollution, global warming concerns, diminishing fossil fuels and their increasing cost have made it necessary to look towards renewable sources as a future energy solution. Since the past decade, there has been an enormous interest in many countries on renewable energy for power generation. The market liberalization and government’s incentives have further accelerated the renewable energy sector growth. Renewable energy source (RES) integrated at distribution level is termed as distributed generation (DG). The utility is concerned due to the high penetration level of intermittent RES in distribution systems as it may pose a threat to network in terms of stability, voltage regulation and power-quality (PQ) issues. Therefore, the DG systems are required to comply with strict technical and regulatory frameworks to ensure safe, reliable and efficient operation of overall network. With the advancement in power electronics and digital control technology, the DG systems can now be actively controlled to 
enhance the system operation with improved PQ at PCC. However, the extensive use of power electronics based equipment and non-linear loads at PCC generate harmonic currents, which may deteriorate the quality of power. Generally, current controlled voltage source inverters are used to interface the intermittent RES in distributed system. Recently, a few control strategies for grid connected inverters incorporating PQ solution have been proposed. In an inverter operates as active inductor at a certain frequency to absorb the harmonic current. But the exact calculation of network inductance in real-time is difficult and may deteriorate the control performance. A similar approach in which a shunt active filter acts as active conductance to damp out the harmonics in distribution network is proposed, a control strategy for renewable interfacing inverter based on – theory is proposed. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non- linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network. Active power filters (APF) are extensively used to compensate the load current harmonics and load unbalance at distribution level. This results in an additional hardware cost. However, 
RESEARCH ARTICLE OPEN ACCESS
S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 
www.ijera.com 42 | P a g e 
in this paper authors have incorporated the features of 
APF in the, conventional inverter interfacing 
renewable with the grid, without any additional 
hardware cost. Here, the main idea is the maximum 
utilization of inverter rating which is most of the time 
underutilized due to intermittent nature of RES. It is 
shown in this paper that the grid-interfacing inverter 
can effectively be utilized to perform following 
important functions: 1) transfer of active power 
harvested from the renewable resources (wind, solar, 
etc.); 2) load reactive power demand support; 3) 
current harmonics compensation at PCC; and 4) 
current unbalance and neutral current compensation 
in case of 3-phase 4-wire system. Moreover, with 
adequate control of grid-interfacing inverter, all the 
four objectives can be accomplished either 
individually or simultaneously. The PQ constraints at 
the PCC can therefore be strictly maintained within 
the utility standards without additional hardware cost. 
II. SYSTEM DESCRIPTION 
The proposed system consists of RES connected 
to the dc-link of a grid-interfacing inverter as shown 
in Fig. 1. The voltage source inverter is a key element 
of a DG system as it interfaces the renewable energy 
source to the grid and delivers the generated power. 
The RES may be a DC source or an AC source with 
rectifier coupled to dc-link. Usually, the fuel cell and 
photovoltaic energy sources generate power at 
variable low dc voltage, while the variable speed 
wind turbines generate power at variable ac voltage. 
Fig.1. Schematic of proposed renewable based 
distributed generation system 
Thus, the power generated from these renewable 
sources needs power conditioning (i.e., dc/dc or 
ac/dc) before connecting on dc-link. The dc-capacitor 
decouples the RES from grid and also allows 
independent control of converters on either side of 
dc-link. 
A. DC-Link Voltage and Power Control Operation 
Due to the intermittent nature of RES, the 
generated power is of variable nature. The dc-link 
plays an important role in transferring this variable 
power from renewable energy source to the grid. RES 
are represented as current sources connected to the 
dc-link of a grid-interfacing inverter. 
Fig. 2. DC-Link equivalent diagram 
Fig. 2 shows the systematic representation of 
power transfer from the renewable energy resources 
to the grid via the dc-link. 
B. Control of Grid Interfacing Inverter 
In the control diagram of grid-interfacing 
inverter for a 3-phase 4-wire system, the fourth leg of 
inverter is used to compensate the neutral current of 
load. The main aim of proposed approach is to 
regulate the power. While performing the power 
management operation, the inverter is actively 
controlled in such a way that it always draws/ 
supplies fundamental active power from/ to the grid. 
If the load connected to the PCC is non-linear or 
unbalanced or the combination of both, the given 
control approach also compensates the harmonics, 
unbalance, and neutral current. 
The duty ratio of inverter switches are varied in a 
power cycle such that the combination of load and 
inverter injected power appears as balanced resistive 
load to the grid. The regulation of dc-link voltage 
carries the information regarding the exchange of 
active power in between renewable source and grid. 
Thus the output of dc-link voltage regulator results in 
an active current. 
III. SIMULATION RESULTS 
In order to verify the proposed control approach 
to achieve multi-objectives for grid interfaced DG 
systems connected to a 3-phase 4-wire network, an 
extensive simulation study is carried out using 
MATLAB/Simulink. A 4-leg current controlled 
voltage source inverter is actively controlled to 
achieve balanced sinusoidal grid currents at unity 
power factor (UPF) despite of highly unbalanced 
nonlinear load at PCC under varying renewable 
generating conditions. A RES with variable output 
power is connected on the dc-link of grid-interfacing 
inverter. An unbalanced 3-phase 4-wire nonlinear 
load, whose unbalance, harmonics, and reactive 
power need to be compensated, is connected on PCC. 
The waveforms of grid voltage, grid currents 
unbalanced load current and inverter currents are 
shown in Fig. 4. The corresponding active-reactive 
powers of grid, load and inverter are shown in Fig. 5.
S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 
www.ijera.com 43 | P a g e 
Positive values of grid active-reactive powers and inverter active-reactive powers imply that these powers flow from grid side towards PCC and from inverter towards PCC, respectively. The active and reactive powers absorbed by the load are denoted by positive signs. Fig.3. Simulation circuit for Grid Interconnection Fig.4. Simulation results: (a) Grid voltages, (b) Grid Currents (c) Unbalanced load currents, (d) Inverter Currents. Initially, the grid-interfacing inverter is not connected to the network (i.e., the load power demand is totally supplied by the grid alone). Therefore, before time s, the grid current profile in Fig. 4(b) is identical to the load current profile of Fig. 4(c). At s, the grid-interfacing inverter is connected to the network. 
At this instant the inverter starts injecting the current in such a way that the profile of grid current starts changing from unbalanced non linear to balanced sinusoidal current as shown in Fig. 4(b). Fig.5.Simulation results: (a) PQ-Grid, (b) PQ-Load, (c) PQ-Inverter, (d) dc-link voltage. The corresponding change in the inverter and grid currents can be seen from Fig. 4. The active and reactive power flows between the inverter, load and grid during increase and decrease of energy generation from RES can be noticed from Fig. 5. The dc-link voltage across the grid- interfacing inverter (Fig. 5(d)) during different operating condition is maintained at constant level in order to facilitate the active and reactive power flow. Thus from the simulation results, it is evident that the grid- interfacing inverter can be effectively used to compensate the load reactive power, current unbalance and current harmonics in addition to active power injection from RES. This enables the grid to supply/ receive sinusoidal and balanced power at UPF. 
IV. CONCLUSION 
This paper has presented a novel control of an existing grid interfacing inverter to improve the quality of power at PCC for a 3-phase 4- wireDGsystem. It has been shown that the grid- interfacing inverter can be effectively utilized for power conditioning without affecting its normal operation of real power transfer. The grid-interfacing inverter with the proposed approach can be utilized to: i) Inject real power generated from RES to the grid, and/or, ii) Operate as a shunt Active Power Filter (APF). 
This approach thus eliminates the need for additional power conditioning equipment to improve the quality of power at PCC. Extensive MATLAB/Simulink simulation as well as the DSP based experimental results have validated the proposed approach and have shown that the grid- interfacing inverter can be utilized as a multi-function device. It is further demonstrated that the PQ
S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 
www.ijera.com 44 | P a g e 
enhancement can be achieved under three different scenarios. The current unbalance, current harmonics and load reactive power, due to unbalanced and non- linear load connected to the PCC, are compensated effectively such that the grid side currents are always maintained as balanced and sinusoidal at unity power factor. Moreover, the load neutral current is prevented from flowing into the grid side by compensating it locally from the fourth leg of inverter. When the power generated from RES is more than the total load power demand, the grid- interfacing inverter with the proposed control approach not only fulfills the total load active and reactive power demand (with harmonic compensation) but also delivers the excess generated sinusoidal active power to the grid at unity power factor. REFERENCES [1] J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, “A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1205–1213, Sep. 2004. [2] J. H. R. Enslin and P. J. M. Heskes, “Harmonic interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1586– 1593, Nov. 2004. [3] U. Borup, F. Blaabjerg, and P. N. Enjeti, “Sharing of nonlinear load in parallel- connected three-phase converters,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1817– 1823, Nov./Dec. 2001. [4] P. Jintakosonwit, H. Fujita, H. Akagi, and S. Ogasawara, “Implementation and performance of cooperative control of shunt active filters for harmonic damping throughout a power distribution system,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 556–564, Mar./Apr. 2003. [5] J. P. Pinto, R. Pregitzer, L. F. C. Monteiro, and J. L. Afonso, “3-phase 4-wire shunt active power filter with renewable energy interface,” presented at the Conf. IEEE Rnewable Energy & Power Quality, Seville, Spain, 2007. [6] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006. 
[7] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. Á. M. Prats, J. I. León, and N. M. Alfonso, “Powerelectronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Aug. 2006. [8] B. Renders, K. De Gusseme, W. R. Ryckaert, K. Stockman, L. Vandevelde, and M. H. J. Bollen, “Distributed generation for mitigating voltage dips in low-voltage distribution grids,” IEEE Trans. Power. Del., vol. 23, no. 3, pp. 1581–1588, Jul. 2008. [9] V. Khadkikar, A. Chandra, A. O. Barry, and T. D. Nguyen, “Application of UPQC to protect a sensitive load on a polluted distribution network,” in Proc. Annu. Conf. IEEE Power Eng. Soc. Gen. Meeting, 2006, pp. 867–872. [10] M. Singh and A. Chandra, “Power maximization and voltage sag/swell ride- through capability of PMSG based variable speed wind energy conversion system,” in Proc. IEEE 34th Annu. Conf. Indus. Electron. Soc., 2008, pp. 2206–2211. [11] P. Rodríguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron, vol. 22, no. 2, pp. 584–592, Mar. 2007. AUTHOR’S PROFILE S. Syed Ahmed was born in Kadapa, A.P, India. He received the B.Tech (Electrical and Electronics Engineering) degree from the Madina engineering college, Kadapa in 2012: and Pursuing M.Tech (Electrical Power Systems) from the Global Engg. college. N. SREEKANTH received B.Tech degree in 2004 and M.Tech degree in 2006 from JNTU Hyderabad. Has work experience of 8 years,
S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 
www.ijera.com 45 | P a g e 
presently working as Associate Professor in Global College of Engineering and Technology, Kadapa. Mr. K. Siva Kumar, pursuing Ph.D from JNTUA, Anantapur. He received Post graduate from JNTUH, Hyderabad and graduate (EEE) from NBKR Institute of Science and Technology, Vakadu, Nellore District, affiliated to Sri Venkateswara University, Tirupathi. Presently working as an Associate Professor & Head of Department, Electrical and Electronics Engineering, Global College of Engineering and Technology, Andhra Pradesh, Kadapa.

Weitere ähnliche Inhalte

Was ist angesagt?

A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
IJERD Editor
 
Application of Unified Power Flow Controller in Nigeria Power System for Impr...
Application of Unified Power Flow Controller in Nigeria Power System for Impr...Application of Unified Power Flow Controller in Nigeria Power System for Impr...
Application of Unified Power Flow Controller in Nigeria Power System for Impr...
ijtsrd
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD Editor
 
Ijmer 46061528
Ijmer 46061528Ijmer 46061528
Ijmer 46061528
IJMER
 
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
MABUSUBANI SHAIK
 

Was ist angesagt? (19)

Power Quality Improvement of Grid Interconnection of renewable Energy Based D...
Power Quality Improvement of Grid Interconnection of renewable Energy Based D...Power Quality Improvement of Grid Interconnection of renewable Energy Based D...
Power Quality Improvement of Grid Interconnection of renewable Energy Based D...
 
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Il2616361640
Il2616361640Il2616361640
Il2616361640
 
Application of Unified Power Flow Controller in Nigeria Power System for Impr...
Application of Unified Power Flow Controller in Nigeria Power System for Impr...Application of Unified Power Flow Controller in Nigeria Power System for Impr...
Application of Unified Power Flow Controller in Nigeria Power System for Impr...
 
Ijetr021134
Ijetr021134Ijetr021134
Ijetr021134
 
Improving Efficiency of Active Power Filter for Renewable Power Generation Sy...
Improving Efficiency of Active Power Filter for Renewable Power Generation Sy...Improving Efficiency of Active Power Filter for Renewable Power Generation Sy...
Improving Efficiency of Active Power Filter for Renewable Power Generation Sy...
 
Predictive Direct Power Control (PDPC) of Grid-connected Dual-active Bridge M...
Predictive Direct Power Control (PDPC) of Grid-connected Dual-active Bridge M...Predictive Direct Power Control (PDPC) of Grid-connected Dual-active Bridge M...
Predictive Direct Power Control (PDPC) of Grid-connected Dual-active Bridge M...
 
Voltage Support Control Strategies for Static Synchronous Compensators Under ...
Voltage Support Control Strategies for Static Synchronous Compensators Under ...Voltage Support Control Strategies for Static Synchronous Compensators Under ...
Voltage Support Control Strategies for Static Synchronous Compensators Under ...
 
Power Angle Control Scheme for Integration of UPQC In Grid Connected PV System
Power Angle Control Scheme for Integration of UPQC In Grid Connected PV SystemPower Angle Control Scheme for Integration of UPQC In Grid Connected PV System
Power Angle Control Scheme for Integration of UPQC In Grid Connected PV System
 
A fault-tolerant photovoltaic integrated shunt active power filter with a 27-...
A fault-tolerant photovoltaic integrated shunt active power filter with a 27-...A fault-tolerant photovoltaic integrated shunt active power filter with a 27-...
A fault-tolerant photovoltaic integrated shunt active power filter with a 27-...
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Ijmer 46061528
Ijmer 46061528Ijmer 46061528
Ijmer 46061528
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...
Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...
Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...
 
G1101045767
G1101045767G1101045767
G1101045767
 

Andere mochten auch

Road Traffic Noise Level Assessment at an Institutional Area
Road Traffic Noise Level Assessment at an Institutional AreaRoad Traffic Noise Level Assessment at an Institutional Area
Road Traffic Noise Level Assessment at an Institutional Area
IJERA Editor
 
25049612 really-old-pictures
25049612 really-old-pictures25049612 really-old-pictures
25049612 really-old-pictures
GIA VER
 
Tesauro
TesauroTesauro
Tesauro
well n
 
Ativ2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_ppt
Ativ2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_pptAtiv2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_ppt
Ativ2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_ppt
priscilarcanjo
 
32610276 michael-parkes
32610276 michael-parkes32610276 michael-parkes
32610276 michael-parkes
GIA VER
 
Cingino dam, ιταλία
Cingino dam, ιταλίαCingino dam, ιταλία
Cingino dam, ιταλία
GIA VER
 
Doc 6 metodologia tejeredes
Doc 6 metodologia tejeredesDoc 6 metodologia tejeredes
Doc 6 metodologia tejeredes
tejeRedes
 

Andere mochten auch (20)

Image Detection and Count Using Open Computer Vision (Opencv)
Image Detection and Count Using Open Computer Vision (Opencv)Image Detection and Count Using Open Computer Vision (Opencv)
Image Detection and Count Using Open Computer Vision (Opencv)
 
Road Traffic Noise Level Assessment at an Institutional Area
Road Traffic Noise Level Assessment at an Institutional AreaRoad Traffic Noise Level Assessment at an Institutional Area
Road Traffic Noise Level Assessment at an Institutional Area
 
25049612 really-old-pictures
25049612 really-old-pictures25049612 really-old-pictures
25049612 really-old-pictures
 
Tesauro
TesauroTesauro
Tesauro
 
Convenio colectivo de instalaciones deportivas de titularidad pública de Gipu...
Convenio colectivo de instalaciones deportivas de titularidad pública de Gipu...Convenio colectivo de instalaciones deportivas de titularidad pública de Gipu...
Convenio colectivo de instalaciones deportivas de titularidad pública de Gipu...
 
Las tics
Las ticsLas tics
Las tics
 
Efficient video compression using EZWT
Efficient video compression using EZWTEfficient video compression using EZWT
Efficient video compression using EZWT
 
As intervenções antropogênicas no uso e ocupação da terra sinageo
As intervenções antropogênicas no uso e ocupação da terra sinageoAs intervenções antropogênicas no uso e ocupação da terra sinageo
As intervenções antropogênicas no uso e ocupação da terra sinageo
 
Mmc1 2 The Lancet - Supplementary appendix 10/15/2014
Mmc1 2 The Lancet - Supplementary appendix 10/15/2014Mmc1 2 The Lancet - Supplementary appendix 10/15/2014
Mmc1 2 The Lancet - Supplementary appendix 10/15/2014
 
Finite Element Analysis Of Epoxy-Graphite Powder, Epoxy-Ms Powder, Epoxy- Ms ...
Finite Element Analysis Of Epoxy-Graphite Powder, Epoxy-Ms Powder, Epoxy- Ms ...Finite Element Analysis Of Epoxy-Graphite Powder, Epoxy-Ms Powder, Epoxy- Ms ...
Finite Element Analysis Of Epoxy-Graphite Powder, Epoxy-Ms Powder, Epoxy- Ms ...
 
Ativ2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_ppt
Ativ2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_pptAtiv2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_ppt
Ativ2 8 alinemoraes-priscilaarcanjo_anapaulaoliveira_brunamarta_ppt
 
Indicador de Vendas e Inadimplência
Indicador de Vendas e InadimplênciaIndicador de Vendas e Inadimplência
Indicador de Vendas e Inadimplência
 
32610276 michael-parkes
32610276 michael-parkes32610276 michael-parkes
32610276 michael-parkes
 
Analysis Of The Structure Of A Material Used In The Manufacture Of Thermal Ch...
Analysis Of The Structure Of A Material Used In The Manufacture Of Thermal Ch...Analysis Of The Structure Of A Material Used In The Manufacture Of Thermal Ch...
Analysis Of The Structure Of A Material Used In The Manufacture Of Thermal Ch...
 
Z - Source Multi Level Inverter Based PV Generation System
Z - Source Multi Level Inverter Based PV Generation SystemZ - Source Multi Level Inverter Based PV Generation System
Z - Source Multi Level Inverter Based PV Generation System
 
La cetrería ii
La cetrería iiLa cetrería ii
La cetrería ii
 
Cingino dam, ιταλία
Cingino dam, ιταλίαCingino dam, ιταλία
Cingino dam, ιταλία
 
Doc 6 metodologia tejeredes
Doc 6 metodologia tejeredesDoc 6 metodologia tejeredes
Doc 6 metodologia tejeredes
 
Arm Robot Surveillance Using Dual Tone Multiple Frequency Technology
Arm Robot Surveillance Using Dual Tone Multiple Frequency TechnologyArm Robot Surveillance Using Dual Tone Multiple Frequency Technology
Arm Robot Surveillance Using Dual Tone Multiple Frequency Technology
 
Reactive Power Compensation and Control via Shunt Reactors and Under Ground P...
Reactive Power Compensation and Control via Shunt Reactors and Under Ground P...Reactive Power Compensation and Control via Shunt Reactors and Under Ground P...
Reactive Power Compensation and Control via Shunt Reactors and Under Ground P...
 

Ähnlich wie Power Quality Improvement at Distribution Level for Grid Connected Renewable Energy Sources

DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...
DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...
DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...
ijiert bestjournal
 
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
IJCI JOURNAL
 
Iaetsd power-quality improvement of grid interconnected
Iaetsd power-quality improvement of grid interconnectedIaetsd power-quality improvement of grid interconnected
Iaetsd power-quality improvement of grid interconnected
Iaetsd Iaetsd
 

Ähnlich wie Power Quality Improvement at Distribution Level for Grid Connected Renewable Energy Sources (20)

Dw33741745
Dw33741745Dw33741745
Dw33741745
 
A Novel Technique for Enhancing Active and Reactive Power Quality for Renewab...
A Novel Technique for Enhancing Active and Reactive Power Quality for Renewab...A Novel Technique for Enhancing Active and Reactive Power Quality for Renewab...
A Novel Technique for Enhancing Active and Reactive Power Quality for Renewab...
 
Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...
Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...
Grid Interconnection of Renewable Energy Sources at the Distribution Level Wi...
 
Power-Quality Improvement Features In Grid Interconnection of Wind Energy Sou...
Power-Quality Improvement Features In Grid Interconnection of Wind Energy Sou...Power-Quality Improvement Features In Grid Interconnection of Wind Energy Sou...
Power-Quality Improvement Features In Grid Interconnection of Wind Energy Sou...
 
Grid Connected PV System with Power Quality Improvement Using Intelligent Con...
Grid Connected PV System with Power Quality Improvement Using Intelligent Con...Grid Connected PV System with Power Quality Improvement Using Intelligent Con...
Grid Connected PV System with Power Quality Improvement Using Intelligent Con...
 
DC-DC converter based power management for go green applications
DC-DC converter based power management for go green applicationsDC-DC converter based power management for go green applications
DC-DC converter based power management for go green applications
 
Improvement of Power Quality using Fuzzy Logic Controller in Grid Connected P...
Improvement of Power Quality using Fuzzy Logic Controller in Grid Connected P...Improvement of Power Quality using Fuzzy Logic Controller in Grid Connected P...
Improvement of Power Quality using Fuzzy Logic Controller in Grid Connected P...
 
I1101047680
I1101047680I1101047680
I1101047680
 
Adaptive Fuzzy PID Based Control Strategy For 3Phase 4Wire Shunt Active Filte...
Adaptive Fuzzy PID Based Control Strategy For 3Phase 4Wire Shunt Active Filte...Adaptive Fuzzy PID Based Control Strategy For 3Phase 4Wire Shunt Active Filte...
Adaptive Fuzzy PID Based Control Strategy For 3Phase 4Wire Shunt Active Filte...
 
IRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQC
IRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQCIRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQC
IRJET- Mitigation of Current and Voltage Harmonics using MAF based UPQC
 
Power quality disturbance mitigation in grid connected photovoltaic distribu...
Power quality disturbance mitigation in grid connected  photovoltaic distribu...Power quality disturbance mitigation in grid connected  photovoltaic distribu...
Power quality disturbance mitigation in grid connected photovoltaic distribu...
 
DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...
DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...
DESIGN AND SIMULATION ANALYSIS OF SEVEN LEVEL CASCADED GRID CONNECTED INVERTE...
 
Voltage Regulation with Hybrid RES based Distributed Generation in the for Ac...
Voltage Regulation with Hybrid RES based Distributed Generation in the for Ac...Voltage Regulation with Hybrid RES based Distributed Generation in the for Ac...
Voltage Regulation with Hybrid RES based Distributed Generation in the for Ac...
 
Hybrid Power Supply using Improved H6 based MITCB DC – DC Converter for House...
Hybrid Power Supply using Improved H6 based MITCB DC – DC Converter for House...Hybrid Power Supply using Improved H6 based MITCB DC – DC Converter for House...
Hybrid Power Supply using Improved H6 based MITCB DC – DC Converter for House...
 
Design and Simulation of a Three Phase Power Converter Connected To a Distrib...
Design and Simulation of a Three Phase Power Converter Connected To a Distrib...Design and Simulation of a Three Phase Power Converter Connected To a Distrib...
Design and Simulation of a Three Phase Power Converter Connected To a Distrib...
 
Improving Distribution Feeders for Photovoltaic Generation by Loop Power Cont...
Improving Distribution Feeders for Photovoltaic Generation by Loop Power Cont...Improving Distribution Feeders for Photovoltaic Generation by Loop Power Cont...
Improving Distribution Feeders for Photovoltaic Generation by Loop Power Cont...
 
G046033742
G046033742G046033742
G046033742
 
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
 
Iaetsd power-quality improvement of grid interconnected
Iaetsd power-quality improvement of grid interconnectedIaetsd power-quality improvement of grid interconnected
Iaetsd power-quality improvement of grid interconnected
 
IRJET- Power Quality Improvement in Solar by using Fuzzy Logic Controller
IRJET-  	  Power Quality Improvement in Solar by using Fuzzy Logic ControllerIRJET-  	  Power Quality Improvement in Solar by using Fuzzy Logic Controller
IRJET- Power Quality Improvement in Solar by using Fuzzy Logic Controller
 

Kürzlich hochgeladen

Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Kürzlich hochgeladen (20)

CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 

Power Quality Improvement at Distribution Level for Grid Connected Renewable Energy Sources

  • 1. S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 www.ijera.com 41 | P a g e Power Quality Improvement at Distribution Level for Grid Connected Renewable Energy Sources S. Syed Ahmed *, N. Sreekanth **, K. Siva Kumar *** *(M.Tech, Department of Electrical Engg, GLBC College, Kadapa) **(Associate Professor, Department of Electrical Engg, GLBC college, Kadapa) ***(Associate Professor, Department of Electrical Engg, GLBC college, Kadapa) ABSTRACT The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network. Active power filters (APF) are extensively used to compensate the load current harmonics and load unbalance at distribution level. This results in an additional hardware cost. However, in this project it has incorporated the features of APF in the conventional inverter interfacing renewable with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. The grid-interfacing inverter can effectively be utilized to perform the four important functions they are to transfer active power harvested from the renewable resources (wind, solar, etc.), load reactive power demand support, current harmonics compensation at PCC and current unbalance and neutral current compensation in case of 3-phase 4-wire system. Moreover, with adequate control of grid-interfacing inverter, all the four objectives can be accomplished either individually or simultaneously. The PQ constraints at the PCC can therefore be strictly maintained within the utility standards without additional hardware cost. With such a control, the combination of grid-interfacing inverter and the 3-phase 4-wire linear/non-linear unbalanced load at point of common coupling appears as balanced linear load to the grid. This new control concept is demonstrated with extensive MATLAB/Simulink simulation studies Index Terms—Active power filter (APF), distributed generation (DG), distribution system, grid interconnection, power quality (PQ), renewable energy. I. INTRODUCTION Electric utilities and end users of electric power are becoming increasingly concerned about meeting the growing energy demand. Seventy five percent of total global energy demand is supplied by the burning of fossil fuels. But increasing air pollution, global warming concerns, diminishing fossil fuels and their increasing cost have made it necessary to look towards renewable sources as a future energy solution. Since the past decade, there has been an enormous interest in many countries on renewable energy for power generation. The market liberalization and government’s incentives have further accelerated the renewable energy sector growth. Renewable energy source (RES) integrated at distribution level is termed as distributed generation (DG). The utility is concerned due to the high penetration level of intermittent RES in distribution systems as it may pose a threat to network in terms of stability, voltage regulation and power-quality (PQ) issues. Therefore, the DG systems are required to comply with strict technical and regulatory frameworks to ensure safe, reliable and efficient operation of overall network. With the advancement in power electronics and digital control technology, the DG systems can now be actively controlled to enhance the system operation with improved PQ at PCC. However, the extensive use of power electronics based equipment and non-linear loads at PCC generate harmonic currents, which may deteriorate the quality of power. Generally, current controlled voltage source inverters are used to interface the intermittent RES in distributed system. Recently, a few control strategies for grid connected inverters incorporating PQ solution have been proposed. In an inverter operates as active inductor at a certain frequency to absorb the harmonic current. But the exact calculation of network inductance in real-time is difficult and may deteriorate the control performance. A similar approach in which a shunt active filter acts as active conductance to damp out the harmonics in distribution network is proposed, a control strategy for renewable interfacing inverter based on – theory is proposed. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non- linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network. Active power filters (APF) are extensively used to compensate the load current harmonics and load unbalance at distribution level. This results in an additional hardware cost. However, RESEARCH ARTICLE OPEN ACCESS
  • 2. S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 www.ijera.com 42 | P a g e in this paper authors have incorporated the features of APF in the, conventional inverter interfacing renewable with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. It is shown in this paper that the grid-interfacing inverter can effectively be utilized to perform following important functions: 1) transfer of active power harvested from the renewable resources (wind, solar, etc.); 2) load reactive power demand support; 3) current harmonics compensation at PCC; and 4) current unbalance and neutral current compensation in case of 3-phase 4-wire system. Moreover, with adequate control of grid-interfacing inverter, all the four objectives can be accomplished either individually or simultaneously. The PQ constraints at the PCC can therefore be strictly maintained within the utility standards without additional hardware cost. II. SYSTEM DESCRIPTION The proposed system consists of RES connected to the dc-link of a grid-interfacing inverter as shown in Fig. 1. The voltage source inverter is a key element of a DG system as it interfaces the renewable energy source to the grid and delivers the generated power. The RES may be a DC source or an AC source with rectifier coupled to dc-link. Usually, the fuel cell and photovoltaic energy sources generate power at variable low dc voltage, while the variable speed wind turbines generate power at variable ac voltage. Fig.1. Schematic of proposed renewable based distributed generation system Thus, the power generated from these renewable sources needs power conditioning (i.e., dc/dc or ac/dc) before connecting on dc-link. The dc-capacitor decouples the RES from grid and also allows independent control of converters on either side of dc-link. A. DC-Link Voltage and Power Control Operation Due to the intermittent nature of RES, the generated power is of variable nature. The dc-link plays an important role in transferring this variable power from renewable energy source to the grid. RES are represented as current sources connected to the dc-link of a grid-interfacing inverter. Fig. 2. DC-Link equivalent diagram Fig. 2 shows the systematic representation of power transfer from the renewable energy resources to the grid via the dc-link. B. Control of Grid Interfacing Inverter In the control diagram of grid-interfacing inverter for a 3-phase 4-wire system, the fourth leg of inverter is used to compensate the neutral current of load. The main aim of proposed approach is to regulate the power. While performing the power management operation, the inverter is actively controlled in such a way that it always draws/ supplies fundamental active power from/ to the grid. If the load connected to the PCC is non-linear or unbalanced or the combination of both, the given control approach also compensates the harmonics, unbalance, and neutral current. The duty ratio of inverter switches are varied in a power cycle such that the combination of load and inverter injected power appears as balanced resistive load to the grid. The regulation of dc-link voltage carries the information regarding the exchange of active power in between renewable source and grid. Thus the output of dc-link voltage regulator results in an active current. III. SIMULATION RESULTS In order to verify the proposed control approach to achieve multi-objectives for grid interfaced DG systems connected to a 3-phase 4-wire network, an extensive simulation study is carried out using MATLAB/Simulink. A 4-leg current controlled voltage source inverter is actively controlled to achieve balanced sinusoidal grid currents at unity power factor (UPF) despite of highly unbalanced nonlinear load at PCC under varying renewable generating conditions. A RES with variable output power is connected on the dc-link of grid-interfacing inverter. An unbalanced 3-phase 4-wire nonlinear load, whose unbalance, harmonics, and reactive power need to be compensated, is connected on PCC. The waveforms of grid voltage, grid currents unbalanced load current and inverter currents are shown in Fig. 4. The corresponding active-reactive powers of grid, load and inverter are shown in Fig. 5.
  • 3. S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 www.ijera.com 43 | P a g e Positive values of grid active-reactive powers and inverter active-reactive powers imply that these powers flow from grid side towards PCC and from inverter towards PCC, respectively. The active and reactive powers absorbed by the load are denoted by positive signs. Fig.3. Simulation circuit for Grid Interconnection Fig.4. Simulation results: (a) Grid voltages, (b) Grid Currents (c) Unbalanced load currents, (d) Inverter Currents. Initially, the grid-interfacing inverter is not connected to the network (i.e., the load power demand is totally supplied by the grid alone). Therefore, before time s, the grid current profile in Fig. 4(b) is identical to the load current profile of Fig. 4(c). At s, the grid-interfacing inverter is connected to the network. At this instant the inverter starts injecting the current in such a way that the profile of grid current starts changing from unbalanced non linear to balanced sinusoidal current as shown in Fig. 4(b). Fig.5.Simulation results: (a) PQ-Grid, (b) PQ-Load, (c) PQ-Inverter, (d) dc-link voltage. The corresponding change in the inverter and grid currents can be seen from Fig. 4. The active and reactive power flows between the inverter, load and grid during increase and decrease of energy generation from RES can be noticed from Fig. 5. The dc-link voltage across the grid- interfacing inverter (Fig. 5(d)) during different operating condition is maintained at constant level in order to facilitate the active and reactive power flow. Thus from the simulation results, it is evident that the grid- interfacing inverter can be effectively used to compensate the load reactive power, current unbalance and current harmonics in addition to active power injection from RES. This enables the grid to supply/ receive sinusoidal and balanced power at UPF. IV. CONCLUSION This paper has presented a novel control of an existing grid interfacing inverter to improve the quality of power at PCC for a 3-phase 4- wireDGsystem. It has been shown that the grid- interfacing inverter can be effectively utilized for power conditioning without affecting its normal operation of real power transfer. The grid-interfacing inverter with the proposed approach can be utilized to: i) Inject real power generated from RES to the grid, and/or, ii) Operate as a shunt Active Power Filter (APF). This approach thus eliminates the need for additional power conditioning equipment to improve the quality of power at PCC. Extensive MATLAB/Simulink simulation as well as the DSP based experimental results have validated the proposed approach and have shown that the grid- interfacing inverter can be utilized as a multi-function device. It is further demonstrated that the PQ
  • 4. S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 www.ijera.com 44 | P a g e enhancement can be achieved under three different scenarios. The current unbalance, current harmonics and load reactive power, due to unbalanced and non- linear load connected to the PCC, are compensated effectively such that the grid side currents are always maintained as balanced and sinusoidal at unity power factor. Moreover, the load neutral current is prevented from flowing into the grid side by compensating it locally from the fourth leg of inverter. When the power generated from RES is more than the total load power demand, the grid- interfacing inverter with the proposed control approach not only fulfills the total load active and reactive power demand (with harmonic compensation) but also delivers the excess generated sinusoidal active power to the grid at unity power factor. REFERENCES [1] J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, “A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1205–1213, Sep. 2004. [2] J. H. R. Enslin and P. J. M. Heskes, “Harmonic interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1586– 1593, Nov. 2004. [3] U. Borup, F. Blaabjerg, and P. N. Enjeti, “Sharing of nonlinear load in parallel- connected three-phase converters,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1817– 1823, Nov./Dec. 2001. [4] P. Jintakosonwit, H. Fujita, H. Akagi, and S. Ogasawara, “Implementation and performance of cooperative control of shunt active filters for harmonic damping throughout a power distribution system,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 556–564, Mar./Apr. 2003. [5] J. P. Pinto, R. Pregitzer, L. F. C. Monteiro, and J. L. Afonso, “3-phase 4-wire shunt active power filter with renewable energy interface,” presented at the Conf. IEEE Rnewable Energy & Power Quality, Seville, Spain, 2007. [6] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006. [7] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. Á. M. Prats, J. I. León, and N. M. Alfonso, “Powerelectronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Aug. 2006. [8] B. Renders, K. De Gusseme, W. R. Ryckaert, K. Stockman, L. Vandevelde, and M. H. J. Bollen, “Distributed generation for mitigating voltage dips in low-voltage distribution grids,” IEEE Trans. Power. Del., vol. 23, no. 3, pp. 1581–1588, Jul. 2008. [9] V. Khadkikar, A. Chandra, A. O. Barry, and T. D. Nguyen, “Application of UPQC to protect a sensitive load on a polluted distribution network,” in Proc. Annu. Conf. IEEE Power Eng. Soc. Gen. Meeting, 2006, pp. 867–872. [10] M. Singh and A. Chandra, “Power maximization and voltage sag/swell ride- through capability of PMSG based variable speed wind energy conversion system,” in Proc. IEEE 34th Annu. Conf. Indus. Electron. Soc., 2008, pp. 2206–2211. [11] P. Rodríguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron, vol. 22, no. 2, pp. 584–592, Mar. 2007. AUTHOR’S PROFILE S. Syed Ahmed was born in Kadapa, A.P, India. He received the B.Tech (Electrical and Electronics Engineering) degree from the Madina engineering college, Kadapa in 2012: and Pursuing M.Tech (Electrical Power Systems) from the Global Engg. college. N. SREEKANTH received B.Tech degree in 2004 and M.Tech degree in 2006 from JNTU Hyderabad. Has work experience of 8 years,
  • 5. S.Syed Ahmed Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 5), September 2014, pp.41-45 www.ijera.com 45 | P a g e presently working as Associate Professor in Global College of Engineering and Technology, Kadapa. Mr. K. Siva Kumar, pursuing Ph.D from JNTUA, Anantapur. He received Post graduate from JNTUH, Hyderabad and graduate (EEE) from NBKR Institute of Science and Technology, Vakadu, Nellore District, affiliated to Sri Venkateswara University, Tirupathi. Presently working as an Associate Professor & Head of Department, Electrical and Electronics Engineering, Global College of Engineering and Technology, Andhra Pradesh, Kadapa.