SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
Computational Motor
Control Summer School
02: Optimal control for
deterministic systems
Hirokazu Tanaka
School of Information Science
Japan Institute of Science and Technology
Optimal control for deterministic (noiseless) systems.
In this lecture, we will learn:
• Invariant laws of body movements
• Calculus of variation
• Lagrange multiplier method
• Karush-Kuhn-Tucker condition
• Pontryagin’s minimum principle
• Boundary problem
• Minimum-Jerk model
• Minimum-torque-change model
• Kinematic vs dynamic planning in reaching movements
Straight paths and bell-shaped velocity in reaching.
Morasso (1981) Exp Brain Res
12
3 4 5
6
joint
angles
angular
velocity
angular
accel.
hand
speed
T1->T4 T3->T5 T2->T5 T1->T5
Power laws for curved movements.
Lacquaniti et al. (1983) Acta Psychologica
2
3
 
1
3
v 


: angular velocity
: h
: curvature
and speedv


or
curvature
angularvelocity
Fitts’ law for movement duration in rapid pointing movements.
Fitts (1954) J Exp Psychol
2
2
logf
D
t a b
W
 
“Main sequence” for saccadic movements
Bahill et al. (1975) Math Biosci
Optimality principle: how a unique trajectory is chosen.
http://en.wikipedia.org/wiki/Snell%27s_law
Snell’s law
Fermat’s principle of least time
1 1 1
2 2 2
sin 1/
sin 1/
v n
v n


 
 
 
 
Q Q
0 P P
1T ds
T s dt n s ds
v s c
        
   
Q
P
1
0T s n s ds
c
      
Optimality principle: how a unique trajectory is chosen.
Newton’s equation of motion
Hamilton’s principle of least action
 V
m

 

q
q
q
   
2
1
,
t
t
S dtL q q q
   21
,
2
L V q q q q
  0S q
http://en.wikipedia.org/wiki/Principle
_of_least_action
Mathematics: Calculus of variation.
   0
, ,
ft
xS x x L x dt 
     
   
0
0 0
0
0
, ,
, , ,
f
f f
f
f
t t
t
t t
t
t
L x dt L x dt
L
S x x S x x x x S x x
x
L
dt
x x
L d L L
dt
x dt
x x x
x
x
x
x x
x
  
 
 
 


 
  
    
    
        
   
 

 


0
d L L
dt x x
  
  
   0
0
ft t t
L L
x
x
x
x 
 
 
 
 
S: Action, L: Lagrangian
Euler-Lagrange equation
     x t x t x t  variation
Mathematics: Calculus of variation.
   0
, ,, ,, ,
ft
S x dtLx xx xxx x 
     0 0
0
2 3
2 3
2
0
2
, , , , ,, ,, ,
f f
f
f
t t
t
t L d L d L d L
x dt x dt x dt
L d L d L
x
x
S x x x x x xx dtL x dtL x
dt
dt x dt x
x x x x x x
x
x
x
   



   
     
 
  
 

     
       
 
      
     
   
 
  
     

 

00
f f
t t
L d L L
x x
x dt x x
 
    
  
   


 
2 3
2 4
0 0 f
L d L d L d L
t t
x dt x dt x dt x
        
          
        
2
2
000
0
f f f
t t t
L d L d L L d L L
x x x
x dt x dt x x dt x x
  
            
             
            
Lagrangian with higher derivatives
Euler-Poisson equation
Mathematics: Calculus of variation.
 
2 3
2 3
0 0 f
L d L d L d L
t t
x dt x dt x dt x
        
          
        
2
2
000
0
f f f
t t t
L d L d L L d L L
x x x
x dt x dt x x dt x x
  
            
             
            
 
2 3
2 3
0 0 f
L d L d L d L
t t
x dt x dt x dt x
        
          
        
0 0 0
0f f ft t t
x x x    
Euler-Poisson equation with general boundary conditions
Euler-Poisson equation with fixed boundary conditions
Smoothness criterion: Minimum-jerk model.
 
2 23
30
3
3MJ
0
, , , , , , ,
ftft d x d y
x x x x y y y y dt dt
dt dt
C L 
    
      
     

Flash & Hogan (1985) J Neurosci
 
2 3 3
2 3 6
6
3
0 2 2
L d L d L d L d d x
x
x dt x dt x dt x dt dt
        
            
        
6
6 6
6
0
d x d y
dt dt
 
Intuition: The observed movement trajectories are smooth, so
“smoothness” of trajectory may be selected in the brain.
: position, : velocity, : acceleration, : jerkx x x x
Smoothness criterion: Minimum-jerk model.
Flash & Hogan (1985) J Neurosci
6
6 6
6
0
d x d y
dt dt
 
 
 
00
f f
x x
x t x


   
   
0 0 0
0f f
x x
x t x t
 
 
Boundary conditions for a point-to-point movement:
Euler-Lagrange equation:
   
45
0 0
3
6 15 10f
f f f
t t t
x xt x x
t t t
       
              
       

Solution of minimum-jerk trajectory (5th order polynomial)
Smooth trajectory and bell-shaped velocity explained by the model.
Flash & Hogan (1985) J Neurosci
speed y accel x accel speed y accel x accel
Via-point movements also explained by the model.
Flash & Hogan (1985) J Neurosci
   3 4 5
0 1 2
2
3 4 5 10x t a a t a t a t a t a t t t     
       
   3 4 5
0 1 2 3 4
2
5 1 fx t a a t a t a t a t a t t tt     
     
     00 , 0 0 0x x x x  
  
     , 0f f ffx t x x t x t  
  
       
           
1 1 1 1 1 1
1 1 1 1 1 1
, , ,
, , .
x t x x t x x t x t
x t x t x t x t x t x t
   
     
  
  
  00x x
 1 1x t x
 f fx t x
 x t
 x t
Twelve unknown coefficients can be
determined by twelve boundary conditions.
 ia
Power law predicted by the minimum-jerk model.
Viviani & Flash (1995) J Exp Psychol
Smoothness criterion: path-constrained Minimum-jerk model.
Huh & Sejnowski (2015) PNAS
Cartesian coordinates Frenet-Serret coordinates
     ˆv v t  
   4 26
ˆ ˆ32 1v z z h z t z n
v v
h      
 
    
   
 
 
 
 
0 0
log , log
v
z h
v
  
 

 
Smoothness criterion: path-constrained Minimum-jerk model.
Huh & Sejnowski (2015) PNAS
   4 26
ˆ ˆ32 1v z z h z t z n
v v
h      
 
    
   
2
2
0
d
dzdz z
d
  
   
 
  
 
   
    

 
 
   
4 6 2 3 4
3
2 2 2
2 2
5 2 30 10 25 82 40
2 14 90 12
20 55 75 15
82 8 22 20 0 129
v z z h h h z z
z h h h h h
z h h z
z z h h zh z z h
      
     
   
        
       
   
  
  

 
Minimum-jerk Lagrangian in Frenet-Serret coordinates:
Derive Euler-Lagrange equation:
Or explicitly:
Derivation of two-thirds power law.
Huh & Sejnowski (2015) PNAS

 
 
   
4 6 2 3 4
3
2 2 2
2 2
5 2 30 10 25 82 40
2 14 90 12
20 55 75 15
82 8 22 20 0 129
v z z h h h z z
z h h h h h
z h h z
z z h h zh z z h
      
     
   
        
       
   
  
  

 
  0
a
e 
  
 
 
0
logh a
 
 

 
  0
b
v ev 
 
 
 
0
log
v
v b
v

  
Euler-Lagrange equation:
Spiral path:
or
Assume a solution in an exponential form:
or
 
    
 
4 6 2 3 4 3 2 2
0
4 6
4 6
0 5 25 82 40 90 12 55
(constant)
75a b
a b
v e a ab b b a a b a
e


  

       
 
Substituting the exponential forms into the Euler-Lagrange equations:
2
3
b a 
Model predicts the power law in spiral movements.
Huh & Sejnowski (2015) PNAS
  0
a
e 
  
 
2
3
0ev v




therefore, 2/3
v 

That’s what was found in experiment!
Scaling law with figure-dependent exponents: model prediction and
experimental confirmation.
Huh & Sejnowski (2015) PNAS
   sinh  
Optimization with equality constraints: Lagrange multiplier method.
Minimize a function f(x) under a constraint g(x)=0.
0
J f g

  
  
  
x x x
 0
J
g



  x
Image source: Wikipedia
     ,J f g  x x x
λ: Lagrange multiplier
Necessary condition:
Karush-Kuhn-Tucker (KKT) condition for constrained optimization.
Minimize a function f(x) under an inequality condition .
     ,J f g  x x x
 
 
0
0
0
0
J f g
g
g



  

  
 



x
x
x x
x
Image source: Wikipedia
  0g x
λ: Lagrange multiplier
KKT condition:
Optimization under dynamic constraint: Pontryagin’s minimum principle.
 ,x f x u
     0
,
ft
fJ g dt   u x x u
       
   
   
0 0
0
0
T
T T
T
, , , ( , )
, ,
, ( , )
f f
f
f
t t
t
t
f
f
f
J g dt dt
g dt
dt
    
      
     
 


x u p x x u p x f x u
x x u p f x u p
x xu p
x
x p
Minimize:
under constraint of EOMs:
     T
, , , ,g x u p x p ufu xHamiltonian
Optimization under dynamic constraint: Pontryagin’s minimum principle.
     
   
       0
0
T T
TT T
, , , , , ,
, , , ,
f
f
f
f
t
t
f f
T
t
t
x
J J J
dt
dt
   

    
   

    
    
        
 
       
           
    

   
 
      


x u p
x u p x u p p x
x p u
x x p
x u p x u p x u p
x x x
x u p p x
u
p x
p p x
 
T
,
0
g


  
  

 


   

p
f
x x x
x f x u
p
u
p
 
f
f
t t
t




x
p
EOMs
Terminal condition
Smoothness criterion: Minimum-torque change model.
 
T
1 2 1 2 1 2     x
 
 
 
2
2
2
2 2 2 2
1
1
1 2 1 11
2 1
1
1
2
2
,
,
, ,
,
, ,
f
f
u
u


   
    


                                 
x f x u
  0 0
T T1 1
2 2
f ft t
J dt dt  τu u uτ
   T T1
, , ,
2
 x u p u u p f x u
State vector
EOMs
Torque-change cost
Uno, Kawato & Suzuki (1989) Biol Cybern
Smoothness criterion: Minimum-torque change model.
Uno, Kawato & Suzuki (1989) Biol Cybern
 
T
T
,
0
 
 
    
 
 



 
 




 
 
 
x f x
p
f
x x
f
u
u u
u
p p
p
  00 x x
  00 p p
Initial condition for x:
Initial condition for p:
p0 must be chosen so that   .fft x x
Smoothness criterion: Minimum-torque change model.
Uno, Kawato & Suzuki (1989) Biol Cybern
Experiment Model
Smoothness criterion: Minimum-torque change model.
Uno, Kawato & Suzuki (1989) Biol Cybern
Experiment Model
Smoothness criterion: Minimum-torque change model.
Uno, Kawato & Suzuki (1989) Biol Cybern
Experiment Model
Is movement planning in extrinsic or intrinsic space?
Wolpert et al. (1993) Exp Brain Res
Experiment
Visual perturbation experiment:
MJ prediction: adapted path under visual perturbation
MTJ prediction: non-adapted path under visual perturbation.
Summary
• Human movements exhibit a variety of invariant features
(straight paths, power law, Fitts’ law, main sequence, …).
• Those invariant features are explained in terms of
optimality principles.
• There are mathematical methods for solving
optimization problems (calculus of variation, Lagrange
multiplier methods, Pontryagin’s minimum principle,
etc.).
• Smoothness in trajectory or joint torques is one of the
most successful criterion for reaching movements.
References
• Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223-227.
• Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing
movements. Acta Psychologica, 54(1), 115-130.
• Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47(6), 381.
• Bahill, A. T., Clark, M. R., & Stark, L. (1975). The main sequence, a tool for studying human eye movements.
Mathematical Biosciences, 24(3), 191-204.
• Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical
model. The journal of Neuroscience, 5(7), 1688-1703.
• Viviani, P., & Flash, T. (1995). Minimum-jerk, two-thirds power law, and isochrony: converging approaches to
movement planning. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 32.
• Huh, D., & Sejnowski, T. J. (2015). Spectrum of power laws for curved hand movements. Proceedings of the
National Academy of Sciences, 112(29), E3950-E3958.
• Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm
movement. Biological Cybernetics, 61(2), 89-101.
• Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). Are arm trajectories planned in kinematic or dynamic
coordinates? An adaptation study. Experimental Brain Research, 103(3), 460-470.
• Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: evidence of
motion planning in visually perceived space. Journal of neurophysiology, 74(5), 2174-2178.
Exercise
• Point-to-point minimum-jerk solution: For given initial
and final positions, draw a minimum-jerk trajectory (path
and velocity).
• Via-point minimum-jerk solution: Find a via-point
trajectory by determining the twelve coefficients with
given boundary conditions.
• Write a MATLAB code to solve the two-boundary
problem of the minimum-torque change model.

Weitere ähnliche Inhalte

Was ist angesagt?

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Fabian Pedregosa
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processesSolo Hermelin
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Fabian Pedregosa
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Fabian Pedregosa
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceKomal Goyal
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of VariationSubhajit Pramanick
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesUniversity of Glasgow
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Komal Goyal
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systemsSpringer
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russakJosé Pallo
 
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMecij
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theoriesSolo Hermelin
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 

Was ist angesagt? (20)

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed space
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain properties
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systems
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russak
 
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 

Ähnlich wie Computational Motor Control: Optimal Control for Deterministic Systems (JAIST summer course)

Freezing of energy of a soliton in an external potential
Freezing of energy of a soliton in an external potentialFreezing of energy of a soliton in an external potential
Freezing of energy of a soliton in an external potentialAlberto Maspero
 
Tachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextTachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextMilan Milošević
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo JeremyHeng10
 
Hamilton application
Hamilton applicationHamilton application
Hamilton applicationSamad Akbar
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
2012 mdsp pr06  hmm
2012 mdsp pr06  hmm2012 mdsp pr06  hmm
2012 mdsp pr06  hmmnozomuhamada
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filternozomuhamada
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space AnalysisHussain K
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
Mathematics and AI
Mathematics and AIMathematics and AI
Mathematics and AIMarc Lelarge
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Marc Lelarge
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_methodMahdi Damghani
 

Ähnlich wie Computational Motor Control: Optimal Control for Deterministic Systems (JAIST summer course) (20)

Freezing of energy of a soliton in an external potential
Freezing of energy of a soliton in an external potentialFreezing of energy of a soliton in an external potential
Freezing of energy of a soliton in an external potential
 
Tachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextTachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII context
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
 
Hamilton application
Hamilton applicationHamilton application
Hamilton application
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
2012 mdsp pr06  hmm
2012 mdsp pr06  hmm2012 mdsp pr06  hmm
2012 mdsp pr06  hmm
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
Mathematics and AI
Mathematics and AIMathematics and AI
Mathematics and AI
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
 

Mehr von hirokazutanaka

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1hirokazutanaka
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2hirokazutanaka
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1hirokazutanaka
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2hirokazutanaka
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1hirokazutanaka
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2hirokazutanaka
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1hirokazutanaka
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2hirokazutanaka
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1hirokazutanaka
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) hirokazutanaka
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)hirokazutanaka
 

Mehr von hirokazutanaka (11)

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)
 

Kürzlich hochgeladen

Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 

Kürzlich hochgeladen (20)

Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 

Computational Motor Control: Optimal Control for Deterministic Systems (JAIST summer course)

  • 1. Computational Motor Control Summer School 02: Optimal control for deterministic systems Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology
  • 2. Optimal control for deterministic (noiseless) systems. In this lecture, we will learn: • Invariant laws of body movements • Calculus of variation • Lagrange multiplier method • Karush-Kuhn-Tucker condition • Pontryagin’s minimum principle • Boundary problem • Minimum-Jerk model • Minimum-torque-change model • Kinematic vs dynamic planning in reaching movements
  • 3. Straight paths and bell-shaped velocity in reaching. Morasso (1981) Exp Brain Res 12 3 4 5 6 joint angles angular velocity angular accel. hand speed T1->T4 T3->T5 T2->T5 T1->T5
  • 4. Power laws for curved movements. Lacquaniti et al. (1983) Acta Psychologica 2 3   1 3 v    : angular velocity : h : curvature and speedv   or curvature angularvelocity
  • 5. Fitts’ law for movement duration in rapid pointing movements. Fitts (1954) J Exp Psychol 2 2 logf D t a b W  
  • 6. “Main sequence” for saccadic movements Bahill et al. (1975) Math Biosci
  • 7. Optimality principle: how a unique trajectory is chosen. http://en.wikipedia.org/wiki/Snell%27s_law Snell’s law Fermat’s principle of least time 1 1 1 2 2 2 sin 1/ sin 1/ v n v n           Q Q 0 P P 1T ds T s dt n s ds v s c              Q P 1 0T s n s ds c       
  • 8. Optimality principle: how a unique trajectory is chosen. Newton’s equation of motion Hamilton’s principle of least action  V m     q q q     2 1 , t t S dtL q q q    21 , 2 L V q q q q   0S q http://en.wikipedia.org/wiki/Principle _of_least_action
  • 9. Mathematics: Calculus of variation.    0 , , ft xS x x L x dt            0 0 0 0 0 , , , , , f f f f f t t t t t t t L x dt L x dt L S x x S x x x x S x x x L dt x x L d L L dt x dt x x x x x x x x x                                               0 d L L dt x x          0 0 ft t t L L x x x x          S: Action, L: Lagrangian Euler-Lagrange equation      x t x t x t  variation
  • 10. Mathematics: Calculus of variation.    0 , ,, ,, , ft S x dtLx xx xxx x       0 0 0 2 3 2 3 2 0 2 , , , , ,, ,, , f f f f t t t t L d L d L d L x dt x dt x dt L d L d L x x S x x x x x xx dtL x dtL x dt dt x dt x x x x x x x x x x                                                                          00 f f t t L d L L x x x dt x x                   2 3 2 4 0 0 f L d L d L d L t t x dt x dt x dt x                              2 2 000 0 f f f t t t L d L d L L d L L x x x x dt x dt x x dt x x                                            Lagrangian with higher derivatives Euler-Poisson equation
  • 11. Mathematics: Calculus of variation.   2 3 2 3 0 0 f L d L d L d L t t x dt x dt x dt x                              2 2 000 0 f f f t t t L d L d L L d L L x x x x dt x dt x x dt x x                                              2 3 2 3 0 0 f L d L d L d L t t x dt x dt x dt x                              0 0 0 0f f ft t t x x x     Euler-Poisson equation with general boundary conditions Euler-Poisson equation with fixed boundary conditions
  • 12. Smoothness criterion: Minimum-jerk model.   2 23 30 3 3MJ 0 , , , , , , , ftft d x d y x x x x y y y y dt dt dt dt C L                     Flash & Hogan (1985) J Neurosci   2 3 3 2 3 6 6 3 0 2 2 L d L d L d L d d x x x dt x dt x dt x dt dt                                6 6 6 6 0 d x d y dt dt   Intuition: The observed movement trajectories are smooth, so “smoothness” of trajectory may be selected in the brain. : position, : velocity, : acceleration, : jerkx x x x
  • 13. Smoothness criterion: Minimum-jerk model. Flash & Hogan (1985) J Neurosci 6 6 6 6 0 d x d y dt dt       00 f f x x x t x           0 0 0 0f f x x x t x t     Boundary conditions for a point-to-point movement: Euler-Lagrange equation:     45 0 0 3 6 15 10f f f f t t t x xt x x t t t                                 Solution of minimum-jerk trajectory (5th order polynomial)
  • 14. Smooth trajectory and bell-shaped velocity explained by the model. Flash & Hogan (1985) J Neurosci speed y accel x accel speed y accel x accel
  • 15. Via-point movements also explained by the model. Flash & Hogan (1985) J Neurosci    3 4 5 0 1 2 2 3 4 5 10x t a a t a t a t a t a t t t                 3 4 5 0 1 2 3 4 2 5 1 fx t a a t a t a t a t a t t tt                 00 , 0 0 0x x x x           , 0f f ffx t x x t x t                          1 1 1 1 1 1 1 1 1 1 1 1 , , , , , . x t x x t x x t x t x t x t x t x t x t x t                   00x x  1 1x t x  f fx t x  x t  x t Twelve unknown coefficients can be determined by twelve boundary conditions.  ia
  • 16. Power law predicted by the minimum-jerk model. Viviani & Flash (1995) J Exp Psychol
  • 17. Smoothness criterion: path-constrained Minimum-jerk model. Huh & Sejnowski (2015) PNAS Cartesian coordinates Frenet-Serret coordinates      ˆv v t      4 26 ˆ ˆ32 1v z z h z t z n v v h                          0 0 log , log v z h v        
  • 18. Smoothness criterion: path-constrained Minimum-jerk model. Huh & Sejnowski (2015) PNAS    4 26 ˆ ˆ32 1v z z h z t z n v v h                  2 2 0 d dzdz z d                                 4 6 2 3 4 3 2 2 2 2 2 5 2 30 10 25 82 40 2 14 90 12 20 55 75 15 82 8 22 20 0 129 v z z h h h z z z h h h h h z h h z z z h h zh z z h                                                Minimum-jerk Lagrangian in Frenet-Serret coordinates: Derive Euler-Lagrange equation: Or explicitly:
  • 19. Derivation of two-thirds power law. Huh & Sejnowski (2015) PNAS          4 6 2 3 4 3 2 2 2 2 2 5 2 30 10 25 82 40 2 14 90 12 20 55 75 15 82 8 22 20 0 129 v z z h h h z z z h h h h h z h h z z z h h zh z z h                                                  0 a e         0 logh a          0 b v ev        0 log v v b v     Euler-Lagrange equation: Spiral path: or Assume a solution in an exponential form: or          4 6 2 3 4 3 2 2 0 4 6 4 6 0 5 25 82 40 90 12 55 (constant) 75a b a b v e a ab b b a a b a e                 Substituting the exponential forms into the Euler-Lagrange equations: 2 3 b a 
  • 20. Model predicts the power law in spiral movements. Huh & Sejnowski (2015) PNAS   0 a e       2 3 0ev v     therefore, 2/3 v   That’s what was found in experiment!
  • 21. Scaling law with figure-dependent exponents: model prediction and experimental confirmation. Huh & Sejnowski (2015) PNAS    sinh  
  • 22. Optimization with equality constraints: Lagrange multiplier method. Minimize a function f(x) under a constraint g(x)=0. 0 J f g           x x x  0 J g      x Image source: Wikipedia      ,J f g  x x x λ: Lagrange multiplier Necessary condition:
  • 23. Karush-Kuhn-Tucker (KKT) condition for constrained optimization. Minimize a function f(x) under an inequality condition .      ,J f g  x x x     0 0 0 0 J f g g g                x x x x x Image source: Wikipedia   0g x λ: Lagrange multiplier KKT condition:
  • 24. Optimization under dynamic constraint: Pontryagin’s minimum principle.  ,x f x u      0 , ft fJ g dt   u x x u                 0 0 0 0 T T T T , , , ( , ) , , , ( , ) f f f f t t t t f f f J g dt dt g dt dt                       x u p x x u p x f x u x x u p f x u p x xu p x x p Minimize: under constraint of EOMs:      T , , , ,g x u p x p ufu xHamiltonian
  • 25. Optimization under dynamic constraint: Pontryagin’s minimum principle.                  0 0 T T TT T , , , , , , , , , , f f f f t t f f T t t x J J J dt dt                                                                              x u p x u p x u p p x x p u x x p x u p x u p x u p x x x x u p p x u p x p p x   T , 0 g                   p f x x x x f x u p u p   f f t t t     x p EOMs Terminal condition
  • 26. Smoothness criterion: Minimum-torque change model.   T 1 2 1 2 1 2     x       2 2 2 2 2 2 2 1 1 1 2 1 11 2 1 1 1 2 2 , , , , , , , f f u u                                                x f x u   0 0 T T1 1 2 2 f ft t J dt dt  τu u uτ    T T1 , , , 2  x u p u u p f x u State vector EOMs Torque-change cost Uno, Kawato & Suzuki (1989) Biol Cybern
  • 27. Smoothness criterion: Minimum-torque change model. Uno, Kawato & Suzuki (1989) Biol Cybern   T T , 0                               x f x p f x x f u u u u p p p   00 x x   00 p p Initial condition for x: Initial condition for p: p0 must be chosen so that   .fft x x
  • 28. Smoothness criterion: Minimum-torque change model. Uno, Kawato & Suzuki (1989) Biol Cybern Experiment Model
  • 29. Smoothness criterion: Minimum-torque change model. Uno, Kawato & Suzuki (1989) Biol Cybern Experiment Model
  • 30. Smoothness criterion: Minimum-torque change model. Uno, Kawato & Suzuki (1989) Biol Cybern Experiment Model
  • 31. Is movement planning in extrinsic or intrinsic space? Wolpert et al. (1993) Exp Brain Res Experiment Visual perturbation experiment: MJ prediction: adapted path under visual perturbation MTJ prediction: non-adapted path under visual perturbation.
  • 32. Summary • Human movements exhibit a variety of invariant features (straight paths, power law, Fitts’ law, main sequence, …). • Those invariant features are explained in terms of optimality principles. • There are mathematical methods for solving optimization problems (calculus of variation, Lagrange multiplier methods, Pontryagin’s minimum principle, etc.). • Smoothness in trajectory or joint torques is one of the most successful criterion for reaching movements.
  • 33. References • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223-227. • Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1), 115-130. • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381. • Bahill, A. T., Clark, M. R., & Stark, L. (1975). The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 24(3), 191-204. • Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. The journal of Neuroscience, 5(7), 1688-1703. • Viviani, P., & Flash, T. (1995). Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 32. • Huh, D., & Sejnowski, T. J. (2015). Spectrum of power laws for curved hand movements. Proceedings of the National Academy of Sciences, 112(29), E3950-E3958. • Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics, 61(2), 89-101. • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Experimental Brain Research, 103(3), 460-470. • Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. Journal of neurophysiology, 74(5), 2174-2178.
  • 34. Exercise • Point-to-point minimum-jerk solution: For given initial and final positions, draw a minimum-jerk trajectory (path and velocity). • Via-point minimum-jerk solution: Find a via-point trajectory by determining the twelve coefficients with given boundary conditions. • Write a MATLAB code to solve the two-boundary problem of the minimum-torque change model.