Sensors

Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore
Hareesha N Gowda, Dayananda Sagar College of Engg, BangaloreAsst. professor um Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore
4/5/2014 1Hareesha N G, Asst. Prof, DSCE, BLore-78
Sensor Characteristics
• To choose an appropriate sensor for a particular need, we have to consider
a number of different characteristics.
• These characteristics determine the performance, economy, ease of
application, and applicability of the sensor.
• In certain situations, different types of sensors may be available for the
same purpose.
• Therefore, the following may be considered before a sensor is chosen:
1. Cost: The cost of a sensor is an important consideration, especially when
many sensors are needed for one machine. However, the cost must be
balanced with other requirements of the design such as reliability
importance of the data they provide accuracy, life, and so on.
2. Size: Depending on the application of the sensor, the size may be of
primary importance. For example, the joint displacement sensors have to
be adapted into the design of the joints and move with the robot's body
elements. The available space around the joint may be limited. Therefore,
it is important to ensure that enough room exists for the joint sensors.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 2
3. Weight:
Since robots are dynamic machine, the weight of a sensor is very important.
A heavy sensor adds to the inertia of the arm and reduces its overall payload.
4. Type of output (digital or analog):
The output of a sensor may be digital or analog and depending on the
application, this output may be used directly or have to be converted.
For example, the output of a potentiometer is analog, whereas that of an
encoder is digital.
If an encoder is used in conjunction with a microprocessor, the output may be
directly routed to the input port of the processor, while the output of a
potentiometer has to be converted to digital signal with an analog-to-digital
converter (ADC).
The appropriateness of the type of output must be balanced with other
requirements.
5. Interfacing: Sensors must be interfaced with other devices such as
microprocessors and controllers. The interfacing between the sensor and the
device can become an important issue if they do not match or if other add-on
components and circuits become necessary (including resistors, transistor
switches, power source, and length of wires involved).
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 3
6. Resolution: Resolution is the minimum step size within the range of measurement
of the sensor
7. Sensitivity: Sensitivity is the ratio of a change in output in response to a change in
input. Highly sensitive sensors will show larger fluctuations in output as a result of
fluctuations in input, including noise.
8. Linearity. Linearity represents the relationship between input variations and
output variations. This means that in a sensor with linear output, the same change
in input at any level within the range will produce a similar change in output.
Almost all devices in nature are somewhat nonlinear, with varying degrees of
nonlinearity.
9. Range: Range is the difference between the smallest and the largest outputs the
sensor can produce, or the difference between the smallest and largest inputs
with which it can operate properly.
10. Response rime: Response time is the time that a sensor's output requires to reach
a certain percentage of the total change. It is usually expressed in percentage of
total change, such as 95%. It is also defined as the time required to observe the
change in output as a result of a change in input. For example, the response time
of a simple mercury thermometer is long, whereas a digital thermometers
response time, which measures temperature based on radiated heat, is short.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 4
11. Frequency response:
Suppose you attach a very high-quality radio tuner to a small, cheap speaker.
Although the speaker will reproduce the sound, its quality will be very low,
whereas a high-quality speaker system with a woofer and tweeter will reproduce
the same signal with much better quality.
This is because the frequency response of the two-speaker system is very different
from the single, cheap speaker.
12. Reliability:
Reliability is the ratio of how many times a system operates properly, divided by
how many times it is used.
For continuous, satisfactory operation it is necessary to choose reliable sensors
that last a long time while considering the cost and other requirements.
13. Accuracy:
Accuracy is defined as how close the output of the sensor is to the expected
value.
If for a given input, the output is expected to be a certain value, accuracy is
related to how close the sensor's output is to this value.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 5
15. Repeatability:
If the sensor's output is measured a number of times in response to the same
input, the output may be different each time.
Repeatability is a measure of how varied the different outputs are relative to each
other.
In general, repeatability is more important than accuracy, since in most cases,
inaccuracies are systematic and can be corrected or compensated because they
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 6
POSITION SENSORS
• Position sensors are used to measure displacements, both rotary and linear, as well
as movements.
• The following arc common position sensors used in robotics:
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 7
Potentiometers
• A potentiometer converts position information into a variable voltage through a
resistor.
• As the sweeper on the resistor moves due to a change in position, the proportion
of the resistance before or after the point of contact with the sweeper compared
with the total resistance varies
• Since in this capacity the potentiometer acts as a voltage divider, the output will be
proportional to the resistance as
• Potentiometers can be rotary or linear and thus can measure linear or rotary
motions.
• Potentiometers are generally used as internal feedback sensors in order to report
the position of joints and links. Potentiometers are used alone or together with
other sensors such as encoders.
R
R
VV ccout
1

4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 8
Encoders
• An encoder is a simple device that can output a digital signal for each small portion
of a movement.
• To do this, the encoder wheel or strip is divided into small sections. as shown in Fig.
• Each section is either opaque or clear. (It can also be either reflective or
nonreflective.)
• A light source, such as an LED on one side provides a beam of light to the other side
of the encoder wheel or strip, where it is seen by another light-sensitive sensor,
such as a phototransistor.
• if the wheels angular position is such that the light can go through, the sensor on
the opposite side will be turned on and will have a high signal.
• If the angular position of the wheel is such that the light is stopped, the sensor will
be off and its output will be low.
• As the wheel rotates, it can continuously send signals. if the signals are counted,
the approximate total angular displacement of the wheel can be measured at any
time.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 9
• Optical encoders come in both linear and rotary versions, and except for their type
of motion, they are exactly the same and work under the same principles.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 10
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 11
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 12
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 13
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 14
Displacement Sensor (Magneto Reflective)
• In this sensor, a pulse is sent through a conductor, which bounces
back as it reaches a magnet.
• The time of travel to the magnet and back is converted to the
distance if the speed of travel is known.
• By attaching the moving part to either the magnet or the conductor,
the displacement can he measured.
• A simple schematic of the sensor is shown in Figure
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 15
VELOCITY SENSORS
• The following are the more common velocity sensors used in
robotics.
1) ENCODERS
• If an encoder is used for displacement measurement, there is no
need to use a velocity sensor.
• Since encoders send a known number of signals for any given angular
displacement, by counting the number of signals received in a given
length of time (dt),we can calculate velocity.
• A smaller length of time (dt) yields a more accurate calculated
velocity, once that is closer to the true instantaneous velocity.
• However, if the rate of rotation of the encoder is low, the velocity
measurement may become inaccurate.
• This velocity calculation is accomplished by programming the
controller to convert number of signals in a given length of time into
velocity information.4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 16
2) TACHOMETERS
• A tachometer is a generator that converts mechanical energy into
electrical energy.
• Its output is an analog voltage proportional to the input angular
speed.
• It may be used along with potentiometers to estimate velocities.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 17
Differentiation of Position Signal
• If the position signal is clean, it is actually possible, and even simple, to
differentiate the position signal and to convert it to velocity signal.
• To do this, it is necessary that the signal be as continuous as possible in order to
prevent creation of large impulses in velocity signal.
• However, differentiation of a signal is always noisy and should be done very
carefully.
• Figure shows a simple R-C circuit with an op-amp that can be used for
differentiation, where the velocity signal is
• Similarly, the velocity (or acceleration) signal can be integrated to yield position (or
velocity) signals:
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 18
ACCELERATION SENSORS
• Accelerometers are very common sensors for measuring
accelerations.
• However, in general, accelerometers are not used with industrial
robots, since no acceleration is generally measured in these robots.
• However, recently, acceleration measurements have been used for
high-precision control of linear actuators and for joint-feedback
control of robots.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 19
FORCE AND PRESSURE SENSORS
1) Piezoelectric
• Piezoelectric material compresses if exposed to a voltage and
produces a voltage if compressed.
• This is used in the phonograph to create a voltage from the variable
pressure caused by the grooves in the record.
• Similarly, a piece of piezoelectric can be used to measure pressures,
or forces, in robotics.
• The analog output voltage must be conditioned and amplified for
use.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 20
2) Force-Sensing Resistor
• The Force Sensing Resistor(FSR) is a polymer thick-film device that
exhibits a decreasing resistance with increasing force applied normal
to its surface.
• For a changing force of 10 to 10,000 gram, its resistance changes
from about 500 KΩ to about 1 KΩ.
• Figure shows a typical force-sensing resistor.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 21
TORQUE SENSORS
• Torque can be measured by a pair of strategically placed force
sensors.
• Suppose that two force sensors are placed on a shaft, opposite of
each other, on opposite sides.
• If a torque is applied to the shaft, it generates two opposing forces on
the shafts body, causing opposite direction strains.
• The two force sensors can measure the forces, which can be
converted to a torque.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 22
TORQUE SENSORS
• To measure torques about different axes, three pairs of mutually
perpendicular sensors must be used.
• However, since forces can also be measured with the same sensors, a
total of six force sensors can generally report forces and torques
about three axes, independent of each other, as depicted in Figure.
• Pure forces generate similar signals in a pair, while torques generate
pairs of signals with opposite signs.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 23
TOUCH AND TACTILE SENSORS
• Touch sensors are devices that send a signal when physical contact
has been made.
• The simplest form of a touch sensor is a micro switch which either
turns on or off as contact is made.
• The main switch can be set up for different sensitivities and ranges of
motion.
• For example, a strategically placed micro switch can send a signal to
the controller if a mobile robot reaches an obstacle during navigation.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 24
TOUCH AND TACTILE SENSORS
• More sophisticated touch sensors may send additional information.
For example, a force sensor used as a touch sensor may not only send
touch information, but also report how strong the touching force is.
• A tactile sensor is a collection of touch sensors that in addition to
determining contact can also provide additional information about
the object.
• This additional information may be about the shape, size, or type of
material.
• In most cases, a number of touch sensors are arranged in an array or
matrix form, as shown in Figure.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 25
TOUCH AND TACTILE SENSORS
• In this design, an array of six touch sensors is arranged on each side
of a tactile sensor.
• Each touch sensor is made up of a plunger, an LED and a light sensor.
• As the tactile sensor closes and the plunger moves in or out, it blocks
the light from the LED projecting onto the light sensor.
• The output of the light sensor is then proportional to the
displacement of the plunger.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 26
TOUCH AND TACTILE SENSORS
• As the tactile sensor comes in contact with an object, depending on
the shape and size of the object, different touch sensors react
differently at a different sequence.
• This information is then used by the controller to determine the size
and the shape of the object.
• Figure shows three simple setups: one touching a cube, one touching
a cylinder, and one touching an arbitrary object.
• As can be seen, each object creates a different unique signature that
can be used to detect it.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 27
PROXIMITY SENSORS
• A proximity sensor is used to determine that an object is
close to another object before contact is made.
• This noncontact sensing can be useful in many situations,
from measuring the speed of a rotor, to navigating a robot.
• There are many different types of proximity sensors, such
as magnetic, eddy current and Hall-effect, optical,
ultrasonic, inductive, and capacitive.
• The following is a short discussion of some of these
sensors:
– Magnetic Proximity Sensors
– Optical Proximity Sensors
– Ultrasonic Proximity Sensors
– Inductive Proximity Sensors
– Capacitive Proximity Sensors
– Eddy Current Proximity Sensors
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 28
1) Magnetic Proximity Sensors
• These sensors are activated when they are close to a magnet.
• They can be used for measuring rotor speeds (and number of rotations), as well as
for turning on or off a circuit.
• Magnetic sensors may also be used to count number of rotations of wheels and
motors, and thus they can be used as position sensors as well.
• Imagine a mobile robot, where the total displacement of the robot is calculated by
counting the number of times a particular wheel rotates, multiplied by the
circumference of the wheel.
• A magnetic proximity sensor can be used to track wheel rotations by mounting a
magnet on the wheel (or its shaft) and having the sensor stationary on the chassis.
• Similarly, the sensor can be used for other applications, including for safety.
• For example, many devices have a magnetic proximity sensor that send a signal
when the door of the machine is open, and thus the controller stops the rotating or
moving parts.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 29
2) Optical Proximity Sensors
• Optical proximity sensors consist of a light source called an emitter (either internal
or external to the sensor) and a receiver, which senses the presence or the absence
of light.
• The receiver is usually a phototransistor, and the emitter is usually an LED.
• The combination of the two creates a light sensor and is used in many applications,
including optical encoders.
• As a proximity sensor, the sensor is set up such that the light, emitted by the
emitter, is not received by the receiver, unless an object is close-by.
• Figure is a schematic drawing of an optical proximity sensor.
• Unless a reflective object is with in the range of the switch, the light is not seen by
the receiver, and therefore, there will be no signal.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 30
3) Ultrasonic Proximity Sensors
• In these sensors, an ultrasonic emitter emits frequent bursts of high-
frequency sound waves (usually in the 200-kHz range).
• There are two modes of operations for ultrasonic sensors, namely,
opposed mode and echo (diffused) mode.
• In opposed mode, a receiver is placed in front of the emitter, whereas
in echo mode, the receiver is either next to, or integrated into, the
emitter and receives the reflected sound wave.
• If the receiver is within range or if the sound is reflected by a surface
close to the sensor, it will be sensed and a signal is produced.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 31
3) Ultrasonic Proximity Sensors
• Otherwise, the receiver will not sense the wave, and there is no
signal.
• All ultrasonic sensors have a blind zone near the surface of the
emitter in which the distance or the presence of an object cannot be
detected.
• Ultrasonic sensors cannot be used with surfaces such as rubber and
foam that do not reflect the sound waves in echo mode.
• Figure is a schematic drawing of this type of sensor.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 32
4) Inductive Proximity Sensors
• Inductive sensors are used to detect metal surfaces.
• The sensor is a coil with a ferrite core, an oscillator-detector, and a
switch.
• In the presence of a metal object in the close vicinity of the sensor,
the amplitude of the oscillation diminishes.
• The detector detects the change and turns the solid state switch off.
• When the part leaves the range of the sensor, it turns on again.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 33
5) Capacitive Proximity Sensors
• The capacitive sensor reacts to the presence of any object that has a
dielectric constant more than 1.2.
• In that case, the material acts as a capacitor, raising the total
capacitance of the sensor's probe.
• This will trigger an internal oscillator to turn on the output unit,
which will send out an output signal.
• Thus, the sensor can detect the presence of an object within a range.
• Capacitive sensors can detect nonmetal materials such as wood,
liquids, and chemicals.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 34
6) Eddy Current Proximity Sensors
• As we know that, when a conductor is placed within a changing
magnetic field, an electromotive force (emf) is induced in it, which
causes a current to flow in the material.
• This current is called eddy current.
• An eddy current sensor typically has two coils, where one coil
generates a changing magnetic flux as reference.
• In the close proximity of conducting materials, an eddy current is
induced in the material, which in turn, creates a magnetic flux
opposite of the first coils flux, effectively reducing the total flux.
• The change in the total flux is proportional to the proximity of the
conducting material and is measured by the second coil.
• Eddy current sensors are used to detect the presence of conductive
material, as well as nondestructive testing of voids and cracks,
thickness of materials, etc.
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 35
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 36
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 37
4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 38
1 von 38

Más contenido relacionado

Was ist angesagt?(20)

sensors and transducers Module 1 n 2sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2
Anchal bassi5.1K views
Working Principals of Various SensorsWorking Principals of Various Sensors
Working Principals of Various Sensors
Muhammad Irtiza7.1K views
SENSORS A DISCUSSIONSENSORS A DISCUSSION
SENSORS A DISCUSSION
Praveen Kumar1.6K views
Micro electro-mechanical-systems-based-sensorsMicro electro-mechanical-systems-based-sensors
Micro electro-mechanical-systems-based-sensors
Muhammad Ali Amjad2.8K views
sensors in roboticssensors in robotics
sensors in robotics
Omkar Lokhande30.2K views
Optical sensors and their applicationsOptical sensors and their applications
Optical sensors and their applications
Saumya Ranjan Behura10.9K views
Proximity Sensor Proximity Sensor
Proximity Sensor
Arif, Mohammed Nazrul Islam12.8K views
Position sensorsPosition sensors
Position sensors
usic1234.4K views
SensorsSensors
Sensors
Vivek Bapu43.5K views
Sensors and their applicationsSensors and their applications
Sensors and their applications
nitigga9233.4K views
Temperature SensorsTemperature Sensors
Temperature Sensors
Harshad Desai48.6K views
Accelerometer Accelerometer
Accelerometer
Ashesh Bansal20.1K views
Basics of Sensors & TransducersBasics of Sensors & Transducers
Basics of Sensors & Transducers
Burdwan University18.5K views
Piezoelectric sens0 rPiezoelectric sens0 r
Piezoelectric sens0 r
vishal gupta5.9K views
Velocity sensors in_roboticsVelocity sensors in_robotics
Velocity sensors in_robotics
Manish Dhiman23.5K views
Mechanical sensorMechanical sensor
Mechanical sensor
B.k. Das28K views
Sensors and transducersSensors and transducers
Sensors and transducers
Anish Das19.1K views
Robotic SensorRobotic Sensor
Robotic Sensor
Faisal Ahmed Bappi10.9K views

Destacado(20)

SmartBridgeSmartBridge
SmartBridge
Hua Wang1.9K views
FIBER OPTIC SENSORSFIBER OPTIC SENSORS
FIBER OPTIC SENSORS
Prateek Kalasannavar19.4K views
Fiber optic sensors  Fiber optic sensors
Fiber optic sensors
Madhumita Tamhane12.3K views
Fibre optics Fibre optics
Fibre optics
Mohammed Ebada2.7K views
Bringing back Lexus to Japan - ADSS AdvertisingBringing back Lexus to Japan - ADSS Advertising
Bringing back Lexus to Japan - ADSS Advertising
Maillard Stéphanie1.5K views
Brand management - "Lexus"Brand management - "Lexus"
Brand management - "Lexus"
jitendrasangle3.4K views
Effect of demographics on consumer behaviorEffect of demographics on consumer behavior
Effect of demographics on consumer behavior
Vinay Shriyan, Certified ScrumMaster® (CSM)31K views
ActuatorsActuators
Actuators
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore18.7K views
Ola cabsOla cabs
Ola cabs
ARSHIYA KHAN39.2K views
Jugnoo finalJugnoo final
Jugnoo final
Albert Kunjumon2.6K views
Ola cabsOla cabs
Ola cabs
gouravkalbalia69.8K views
Ola CabsOla Cabs
Ola Cabs
Pavan Gautam56.2K views
Marketing Strategy Of Toyota Marketing Strategy Of Toyota
Marketing Strategy Of Toyota
Mohammad Rayya69.4K views
TransducersTransducers
Transducers
AjinkyaKumbhar1.1K views
Introduction to roboticsIntroduction to robotics
Introduction to robotics
Pantech ProLabs India Pvt Ltd3.6K views
Parallel  sorting AlgorithmsParallel  sorting Algorithms
Parallel sorting Algorithms
GARIMA SHAKYA9.7K views
Sensors updateSensors update
Sensors update
isutp21.8K views
August 29, Overview over Systems studied in the courseAugust 29, Overview over Systems studied in the course
August 29, Overview over Systems studied in the course
University of Colorado at Boulder1.6K views
Transducer mainTransducer main
Transducer main
Shailendra Gautam4.1K views

Similar a Sensors(20)

Sensors and transducers 1.pptSensors and transducers 1.ppt
Sensors and transducers 1.ppt
MdJunaid20715 views
Vibration measuring instrumentsVibration measuring instruments
Vibration measuring instruments
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore116.4K views
01. Sensors and Actuators.ppt01. Sensors and Actuators.ppt
01. Sensors and Actuators.ppt
prashant360377124 views
Tugas Getaran Mekanis (Vibration Sensors)Tugas Getaran Mekanis (Vibration Sensors)
Tugas Getaran Mekanis (Vibration Sensors)
Rizki Dewantoro Raharjo175 views
Selecting The Right Accelerometer by EndevcoSelecting The Right Accelerometer by Endevco
Selecting The Right Accelerometer by Endevco
Technical Representatives, Inc.379 views
Sensors and Transducers (1).pdfSensors and Transducers (1).pdf
Sensors and Transducers (1).pdf
RAM PRAKASH PATEL14 views
Ipc nee 303 ppt even semIpc nee 303 ppt even sem
Ipc nee 303 ppt even sem
Satyendra Mohan1.7K views
Capacitive sensorsCapacitive sensors
Capacitive sensors
Yasir Hashmi3.9K views
Footstep power generationFootstep power generation
Footstep power generation
baga reddy3K views
Footstep power generationFootstep power generation
Footstep power generation
baga reddy1.1K views
Vibration  measurementVibration  measurement
Vibration measurement
ssusera970cc148 views
Spectrum analyzer tutorialSpectrum analyzer tutorial
Spectrum analyzer tutorial
ajayvish772.3K views
Sensors for Engineering ApplicationsSensors for Engineering Applications
Sensors for Engineering Applications
venkatasuman1983154 views
ComparatorsComparators
Comparators
GAURAVBHARDWAJ16022 views
SENSORS_UNIT-1.pdfSENSORS_UNIT-1.pdf
SENSORS_UNIT-1.pdf
venkatasuman198395 views
Introduction of MechatronicsIntroduction of Mechatronics
Introduction of Mechatronics
Dr.P.Parandaman 325 views
DSR_Unit-5_Sensors.pptxDSR_Unit-5_Sensors.pptx
DSR_Unit-5_Sensors.pptx
PuneetMathur391 view
Comparators NEW.pptxComparators NEW.pptx
Comparators NEW.pptx
VinayPandit2430 views

Más de Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore(20)

Alumni Meet Invitation.pdfAlumni Meet Invitation.pdf
Alumni Meet Invitation.pdf
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore931 views
Brammadevarahalli GP PanchapayanaBrammadevarahalli GP Panchapayana
Brammadevarahalli GP Panchapayana
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore2.1K views
Introduction to control systemsIntroduction to control systems
Introduction to control systems
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore47.8K views
Be project report templateBe project report template
Be project report template
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore14.8K views
Computer aided machine drawing manualComputer aided machine drawing manual
Computer aided machine drawing manual
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore34.1K views
Unit 1- simple stress and strainUnit 1- simple stress and strain
Unit 1- simple stress and strain
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore68.5K views
Unit 8: Torsion of circular shafts and elastic stability of columnsUnit 8: Torsion of circular shafts and elastic stability of columns
Unit 8: Torsion of circular shafts and elastic stability of columns
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore27.7K views
Unit 6: Bending and shear Stresses in beamsUnit 6: Bending and shear Stresses in beams
Unit 6: Bending and shear Stresses in beams
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore106.8K views
Unit 5  shear force and bending moment in beamsUnit 5  shear force and bending moment in beams
Unit 5 shear force and bending moment in beams
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore72.2K views
Unit 3  Compound stressesUnit 3  Compound stresses
Unit 3 Compound stresses
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore36.1K views
Unit 2  stresses in composite sectionsUnit 2  stresses in composite sections
Unit 2 stresses in composite sections
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore33.6K views
Dynamics of Machines: Question bank unitwise from vtu old question papersDynamics of Machines: Question bank unitwise from vtu old question papers
Dynamics of Machines: Question bank unitwise from vtu old question papers
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore5.2K views
Mechanics of Materials: Question Bank from old VTU Question papersMechanics of Materials: Question Bank from old VTU Question papers
Mechanics of Materials: Question Bank from old VTU Question papers
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore15.2K views
Robots: state of-the-art and future trendsRobots: state of-the-art and future trends
Robots: state of-the-art and future trends
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore11.8K views
Screw thread measurements and Gear measurementScrew thread measurements and Gear measurement
Screw thread measurements and Gear measurement
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore127.2K views
Force, Pressure and Torque measurementsForce, Pressure and Torque measurements
Force, Pressure and Torque measurements
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore19.2K views
Mechanical measurements and Measurement systemsMechanical measurements and Measurement systems
Mechanical measurements and Measurement systems
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore26.1K views
CIM and automation laboratory manualCIM and automation laboratory manual
CIM and automation laboratory manual
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore8K views
Introduction to Non-Traditional MachiningIntroduction to Non-Traditional Machining
Introduction to Non-Traditional Machining
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore8.7K views
Chemical machiningChemical machining
Chemical machining
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore44.7K views

Sensors

  • 1. 4/5/2014 1Hareesha N G, Asst. Prof, DSCE, BLore-78
  • 2. Sensor Characteristics • To choose an appropriate sensor for a particular need, we have to consider a number of different characteristics. • These characteristics determine the performance, economy, ease of application, and applicability of the sensor. • In certain situations, different types of sensors may be available for the same purpose. • Therefore, the following may be considered before a sensor is chosen: 1. Cost: The cost of a sensor is an important consideration, especially when many sensors are needed for one machine. However, the cost must be balanced with other requirements of the design such as reliability importance of the data they provide accuracy, life, and so on. 2. Size: Depending on the application of the sensor, the size may be of primary importance. For example, the joint displacement sensors have to be adapted into the design of the joints and move with the robot's body elements. The available space around the joint may be limited. Therefore, it is important to ensure that enough room exists for the joint sensors. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 2
  • 3. 3. Weight: Since robots are dynamic machine, the weight of a sensor is very important. A heavy sensor adds to the inertia of the arm and reduces its overall payload. 4. Type of output (digital or analog): The output of a sensor may be digital or analog and depending on the application, this output may be used directly or have to be converted. For example, the output of a potentiometer is analog, whereas that of an encoder is digital. If an encoder is used in conjunction with a microprocessor, the output may be directly routed to the input port of the processor, while the output of a potentiometer has to be converted to digital signal with an analog-to-digital converter (ADC). The appropriateness of the type of output must be balanced with other requirements. 5. Interfacing: Sensors must be interfaced with other devices such as microprocessors and controllers. The interfacing between the sensor and the device can become an important issue if they do not match or if other add-on components and circuits become necessary (including resistors, transistor switches, power source, and length of wires involved). 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 3
  • 4. 6. Resolution: Resolution is the minimum step size within the range of measurement of the sensor 7. Sensitivity: Sensitivity is the ratio of a change in output in response to a change in input. Highly sensitive sensors will show larger fluctuations in output as a result of fluctuations in input, including noise. 8. Linearity. Linearity represents the relationship between input variations and output variations. This means that in a sensor with linear output, the same change in input at any level within the range will produce a similar change in output. Almost all devices in nature are somewhat nonlinear, with varying degrees of nonlinearity. 9. Range: Range is the difference between the smallest and the largest outputs the sensor can produce, or the difference between the smallest and largest inputs with which it can operate properly. 10. Response rime: Response time is the time that a sensor's output requires to reach a certain percentage of the total change. It is usually expressed in percentage of total change, such as 95%. It is also defined as the time required to observe the change in output as a result of a change in input. For example, the response time of a simple mercury thermometer is long, whereas a digital thermometers response time, which measures temperature based on radiated heat, is short. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 4
  • 5. 11. Frequency response: Suppose you attach a very high-quality radio tuner to a small, cheap speaker. Although the speaker will reproduce the sound, its quality will be very low, whereas a high-quality speaker system with a woofer and tweeter will reproduce the same signal with much better quality. This is because the frequency response of the two-speaker system is very different from the single, cheap speaker. 12. Reliability: Reliability is the ratio of how many times a system operates properly, divided by how many times it is used. For continuous, satisfactory operation it is necessary to choose reliable sensors that last a long time while considering the cost and other requirements. 13. Accuracy: Accuracy is defined as how close the output of the sensor is to the expected value. If for a given input, the output is expected to be a certain value, accuracy is related to how close the sensor's output is to this value. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 5
  • 6. 15. Repeatability: If the sensor's output is measured a number of times in response to the same input, the output may be different each time. Repeatability is a measure of how varied the different outputs are relative to each other. In general, repeatability is more important than accuracy, since in most cases, inaccuracies are systematic and can be corrected or compensated because they 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 6
  • 7. POSITION SENSORS • Position sensors are used to measure displacements, both rotary and linear, as well as movements. • The following arc common position sensors used in robotics: 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 7
  • 8. Potentiometers • A potentiometer converts position information into a variable voltage through a resistor. • As the sweeper on the resistor moves due to a change in position, the proportion of the resistance before or after the point of contact with the sweeper compared with the total resistance varies • Since in this capacity the potentiometer acts as a voltage divider, the output will be proportional to the resistance as • Potentiometers can be rotary or linear and thus can measure linear or rotary motions. • Potentiometers are generally used as internal feedback sensors in order to report the position of joints and links. Potentiometers are used alone or together with other sensors such as encoders. R R VV ccout 1  4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 8
  • 9. Encoders • An encoder is a simple device that can output a digital signal for each small portion of a movement. • To do this, the encoder wheel or strip is divided into small sections. as shown in Fig. • Each section is either opaque or clear. (It can also be either reflective or nonreflective.) • A light source, such as an LED on one side provides a beam of light to the other side of the encoder wheel or strip, where it is seen by another light-sensitive sensor, such as a phototransistor. • if the wheels angular position is such that the light can go through, the sensor on the opposite side will be turned on and will have a high signal. • If the angular position of the wheel is such that the light is stopped, the sensor will be off and its output will be low. • As the wheel rotates, it can continuously send signals. if the signals are counted, the approximate total angular displacement of the wheel can be measured at any time. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 9
  • 10. • Optical encoders come in both linear and rotary versions, and except for their type of motion, they are exactly the same and work under the same principles. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 10
  • 11. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 11
  • 12. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 12
  • 13. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 13
  • 14. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 14
  • 15. Displacement Sensor (Magneto Reflective) • In this sensor, a pulse is sent through a conductor, which bounces back as it reaches a magnet. • The time of travel to the magnet and back is converted to the distance if the speed of travel is known. • By attaching the moving part to either the magnet or the conductor, the displacement can he measured. • A simple schematic of the sensor is shown in Figure 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 15
  • 16. VELOCITY SENSORS • The following are the more common velocity sensors used in robotics. 1) ENCODERS • If an encoder is used for displacement measurement, there is no need to use a velocity sensor. • Since encoders send a known number of signals for any given angular displacement, by counting the number of signals received in a given length of time (dt),we can calculate velocity. • A smaller length of time (dt) yields a more accurate calculated velocity, once that is closer to the true instantaneous velocity. • However, if the rate of rotation of the encoder is low, the velocity measurement may become inaccurate. • This velocity calculation is accomplished by programming the controller to convert number of signals in a given length of time into velocity information.4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 16
  • 17. 2) TACHOMETERS • A tachometer is a generator that converts mechanical energy into electrical energy. • Its output is an analog voltage proportional to the input angular speed. • It may be used along with potentiometers to estimate velocities. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 17
  • 18. Differentiation of Position Signal • If the position signal is clean, it is actually possible, and even simple, to differentiate the position signal and to convert it to velocity signal. • To do this, it is necessary that the signal be as continuous as possible in order to prevent creation of large impulses in velocity signal. • However, differentiation of a signal is always noisy and should be done very carefully. • Figure shows a simple R-C circuit with an op-amp that can be used for differentiation, where the velocity signal is • Similarly, the velocity (or acceleration) signal can be integrated to yield position (or velocity) signals: 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 18
  • 19. ACCELERATION SENSORS • Accelerometers are very common sensors for measuring accelerations. • However, in general, accelerometers are not used with industrial robots, since no acceleration is generally measured in these robots. • However, recently, acceleration measurements have been used for high-precision control of linear actuators and for joint-feedback control of robots. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 19
  • 20. FORCE AND PRESSURE SENSORS 1) Piezoelectric • Piezoelectric material compresses if exposed to a voltage and produces a voltage if compressed. • This is used in the phonograph to create a voltage from the variable pressure caused by the grooves in the record. • Similarly, a piece of piezoelectric can be used to measure pressures, or forces, in robotics. • The analog output voltage must be conditioned and amplified for use. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 20
  • 21. 2) Force-Sensing Resistor • The Force Sensing Resistor(FSR) is a polymer thick-film device that exhibits a decreasing resistance with increasing force applied normal to its surface. • For a changing force of 10 to 10,000 gram, its resistance changes from about 500 KΩ to about 1 KΩ. • Figure shows a typical force-sensing resistor. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 21
  • 22. TORQUE SENSORS • Torque can be measured by a pair of strategically placed force sensors. • Suppose that two force sensors are placed on a shaft, opposite of each other, on opposite sides. • If a torque is applied to the shaft, it generates two opposing forces on the shafts body, causing opposite direction strains. • The two force sensors can measure the forces, which can be converted to a torque. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 22
  • 23. TORQUE SENSORS • To measure torques about different axes, three pairs of mutually perpendicular sensors must be used. • However, since forces can also be measured with the same sensors, a total of six force sensors can generally report forces and torques about three axes, independent of each other, as depicted in Figure. • Pure forces generate similar signals in a pair, while torques generate pairs of signals with opposite signs. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 23
  • 24. TOUCH AND TACTILE SENSORS • Touch sensors are devices that send a signal when physical contact has been made. • The simplest form of a touch sensor is a micro switch which either turns on or off as contact is made. • The main switch can be set up for different sensitivities and ranges of motion. • For example, a strategically placed micro switch can send a signal to the controller if a mobile robot reaches an obstacle during navigation. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 24
  • 25. TOUCH AND TACTILE SENSORS • More sophisticated touch sensors may send additional information. For example, a force sensor used as a touch sensor may not only send touch information, but also report how strong the touching force is. • A tactile sensor is a collection of touch sensors that in addition to determining contact can also provide additional information about the object. • This additional information may be about the shape, size, or type of material. • In most cases, a number of touch sensors are arranged in an array or matrix form, as shown in Figure. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 25
  • 26. TOUCH AND TACTILE SENSORS • In this design, an array of six touch sensors is arranged on each side of a tactile sensor. • Each touch sensor is made up of a plunger, an LED and a light sensor. • As the tactile sensor closes and the plunger moves in or out, it blocks the light from the LED projecting onto the light sensor. • The output of the light sensor is then proportional to the displacement of the plunger. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 26
  • 27. TOUCH AND TACTILE SENSORS • As the tactile sensor comes in contact with an object, depending on the shape and size of the object, different touch sensors react differently at a different sequence. • This information is then used by the controller to determine the size and the shape of the object. • Figure shows three simple setups: one touching a cube, one touching a cylinder, and one touching an arbitrary object. • As can be seen, each object creates a different unique signature that can be used to detect it. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 27
  • 28. PROXIMITY SENSORS • A proximity sensor is used to determine that an object is close to another object before contact is made. • This noncontact sensing can be useful in many situations, from measuring the speed of a rotor, to navigating a robot. • There are many different types of proximity sensors, such as magnetic, eddy current and Hall-effect, optical, ultrasonic, inductive, and capacitive. • The following is a short discussion of some of these sensors: – Magnetic Proximity Sensors – Optical Proximity Sensors – Ultrasonic Proximity Sensors – Inductive Proximity Sensors – Capacitive Proximity Sensors – Eddy Current Proximity Sensors 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 28
  • 29. 1) Magnetic Proximity Sensors • These sensors are activated when they are close to a magnet. • They can be used for measuring rotor speeds (and number of rotations), as well as for turning on or off a circuit. • Magnetic sensors may also be used to count number of rotations of wheels and motors, and thus they can be used as position sensors as well. • Imagine a mobile robot, where the total displacement of the robot is calculated by counting the number of times a particular wheel rotates, multiplied by the circumference of the wheel. • A magnetic proximity sensor can be used to track wheel rotations by mounting a magnet on the wheel (or its shaft) and having the sensor stationary on the chassis. • Similarly, the sensor can be used for other applications, including for safety. • For example, many devices have a magnetic proximity sensor that send a signal when the door of the machine is open, and thus the controller stops the rotating or moving parts. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 29
  • 30. 2) Optical Proximity Sensors • Optical proximity sensors consist of a light source called an emitter (either internal or external to the sensor) and a receiver, which senses the presence or the absence of light. • The receiver is usually a phototransistor, and the emitter is usually an LED. • The combination of the two creates a light sensor and is used in many applications, including optical encoders. • As a proximity sensor, the sensor is set up such that the light, emitted by the emitter, is not received by the receiver, unless an object is close-by. • Figure is a schematic drawing of an optical proximity sensor. • Unless a reflective object is with in the range of the switch, the light is not seen by the receiver, and therefore, there will be no signal. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 30
  • 31. 3) Ultrasonic Proximity Sensors • In these sensors, an ultrasonic emitter emits frequent bursts of high- frequency sound waves (usually in the 200-kHz range). • There are two modes of operations for ultrasonic sensors, namely, opposed mode and echo (diffused) mode. • In opposed mode, a receiver is placed in front of the emitter, whereas in echo mode, the receiver is either next to, or integrated into, the emitter and receives the reflected sound wave. • If the receiver is within range or if the sound is reflected by a surface close to the sensor, it will be sensed and a signal is produced. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 31
  • 32. 3) Ultrasonic Proximity Sensors • Otherwise, the receiver will not sense the wave, and there is no signal. • All ultrasonic sensors have a blind zone near the surface of the emitter in which the distance or the presence of an object cannot be detected. • Ultrasonic sensors cannot be used with surfaces such as rubber and foam that do not reflect the sound waves in echo mode. • Figure is a schematic drawing of this type of sensor. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 32
  • 33. 4) Inductive Proximity Sensors • Inductive sensors are used to detect metal surfaces. • The sensor is a coil with a ferrite core, an oscillator-detector, and a switch. • In the presence of a metal object in the close vicinity of the sensor, the amplitude of the oscillation diminishes. • The detector detects the change and turns the solid state switch off. • When the part leaves the range of the sensor, it turns on again. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 33
  • 34. 5) Capacitive Proximity Sensors • The capacitive sensor reacts to the presence of any object that has a dielectric constant more than 1.2. • In that case, the material acts as a capacitor, raising the total capacitance of the sensor's probe. • This will trigger an internal oscillator to turn on the output unit, which will send out an output signal. • Thus, the sensor can detect the presence of an object within a range. • Capacitive sensors can detect nonmetal materials such as wood, liquids, and chemicals. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 34
  • 35. 6) Eddy Current Proximity Sensors • As we know that, when a conductor is placed within a changing magnetic field, an electromotive force (emf) is induced in it, which causes a current to flow in the material. • This current is called eddy current. • An eddy current sensor typically has two coils, where one coil generates a changing magnetic flux as reference. • In the close proximity of conducting materials, an eddy current is induced in the material, which in turn, creates a magnetic flux opposite of the first coils flux, effectively reducing the total flux. • The change in the total flux is proportional to the proximity of the conducting material and is measured by the second coil. • Eddy current sensors are used to detect the presence of conductive material, as well as nondestructive testing of voids and cracks, thickness of materials, etc. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 35
  • 36. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 36
  • 37. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 37
  • 38. 4/5/2014 Hareesha N G, Asst. Prof, DSCE, BLore-78 38