SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
Psychiatry Research: Neuroimaging 147 (2006) 79 – 89
                                                                                                        www.elsevier.com/locate/psychresns




     An automated method for the extraction of regional data from
                           PET images
Pablo Rusjan a, , David Mamo a,b , Nathalie Ginovart a,b , Douglas Hussey a , Irina Vitcu a ,
       Fumihiko Yasuno c , Suhara Tetsuya c , Sylvain Houle a,b , Shitij Kapur a,b
                  a
                   PET Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
                                         b
                                           Department of Psychiatry, University of Toronto, Canada
                              c
                               Brain Imaging Project, National Institute of Radiological Science, Chiba, Japan
                      Received 19 September 2005; received in revised form 19 January 2006; accepted 20 January 2006




Abstract

    Manual drawing of regions of interest (ROIs) on brain positron emission tomography (PET) images is labour intensive and
subject to intra- and inter-individual variations. To standardize analysis and improve the reproducibility of PET measures, we have
developed image analysis software for automated quantification of PET data. The method is based on the individualization of a set
of standard ROIs using a magnetic resonance (MR) image co-registered with the PET image. To evaluate the performance of this
automated method, the software-based quantification has been compared with conventional manual quantification of PET images
obtained using three different PET radiotracers: [11C]-WAY 100635, [11C]-raclopride and [11C]-DASB. Our results show that
binding potential estimates obtained using the automated method correlate highly with those obtained by trained raters using
manual delineation of ROIs for frontal and temporal cortex, thalamus, and striatum (global intraclass correlation coefficient N 0.8).
For the three radioligands, the software yields time–activity data that are similar (within 8%) to those obtained by manual
quantification, eliminates investigator-dependent variability, considerably shortens the time required for analysis and thus provides
an alternative method for accurate quantification of PET data.
© 2006 Elsevier Ireland Ltd. All rights reserved.

Keywords: PET; Time–activity curves; Brain template; Region of interest; Automated method; Binding potential



1. Introduction                                                            region-based analysis is the averaging of radioactivity in
                                                                           an anatomic or functional structure, called a region of
   Brain images obtained with positron emission tomog-                     interest (ROI). Manual techniques for ROI delineation
raphy (PET) can be analyzed in two different ways: (a)                     require highly trained personnel and are subject to intra-
using voxel-based methods or (b) using region-based                        and inter-operator variations, which can ultimately limit
methods, the latter method being considered superior for                   the reproducibility of the results. Additionally, the time
data quantification (Hammers et al., 2002). The goal of                    and the labour required for manual delineation of ROIs
                                                                           have been increased with the advent of high resolution
                                                                           PET scanners that can produce hundreds of PET slices.
   Corresponding author. Tel.: +1 416 535 8501x4215; fax: +1 416
                                                                           To circumvent these limitations, computer-aided meth-
260 4164.                                                                  ods have been developed to facilitate and improve the
   E-mail address: pablo.rusjan@camhpet.ca (P. Rusjan).                    reproducibility of the delineation of volumes of interest
0925-4927/$ - see front matter © 2006 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.pscychresns.2006.01.011
80                             P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89


(VOIs), i.e. set of ROIs describing the single target in a           additional benefit of expanding on the number ROIs in
volume space.                                                        the template as well as allowing for a more anatomically
    Since tracer distribution in PET imaging does not                valid extension of boundaries pertaining to the respective
always conform to the simple gray matter/white matter                ROIs. Second, a proper differentiation of gray matter
demarcations, or the lobar divisions made on the basis of            from white matter or cerebrospinal fluid (CSF) is crucial
anatomical divisions (e.g. prefrontal vs. motor cortex)              for the accurate delineation of ROIs. This process, also
(Evans et al., 1991), direct extraction of ROIs from PET             called segmentation, uses a predetermined level of prob-
images does not necessarily reflect the ROI's precise                ability of gray matter (threshold). Since the previous
anatomical space. While computer vision techniques have              method was subject to error, particularly for small ROIs,
been used in some specific situations (Mykkanen et al.,              we present a solution that is based on a fitting function
2000; Ohyama et al., 2000; Glatting et al., 2004), indirect          empirically found. Third, one of the key features of an
determination of ROIs from transformation and registra-              automated ROI program is the establishment of bound-
tion of atlas-based magnetic resonance (MR) images is                aries between adjacent ROIs. In the present approach, we
the most accepted method to perform region-based                     created a natural definition of boundary by using mul-
analysis of PET images.                                              tiple iterations of the morphological dilatation that pre-
    Since the earliest work in 1983 (Bajcsy et al., 1983;            vents overlap between neighboring ROIs. Finally, we
Bohm et al., 1983), we have seen the development of a                explored the effect of varying the Full-Width at Half-
number of atlases (Bohm et al., 1991; Greitz et al., 1991;           Maximum (FWHM) of the Gaussian smoothing filter
Mazziotta et al., 1995), non-linear image-matching tech-             and the use of proton density (PD) weighted MR images
niques (Collins et al., 1995; Thirion, 1998) of one or               to improve the segmentation of the subcortical ROIs.
more atlases (Hammers et al., 2003) as well as multi-                    Our aim is to present a methodology incorporating
modal registration techniques (Woods et al., 1998a,b;                these corrections that is applicable to cortical as well as
Ashburner et al., 1997; Hammers et al., 2002; Studholme              subcortical structures such as the caudate and putamen.
et al., 1999). Several automatic methods have been                   Our method is validated for its internal consistency and
presented for the delineation of ROIs in MR images;                  reliability versus trained human raters using PET
however, most of them have not presented an accurate                 radioligands with different patterns of brain radioactivity
validation to obtain time-activity curves in PET analysis.           uptake: [11C]-WAY 100635, which is mainly taken up in
Two exceptions are the work presented by Yasuno et al.               cortical regions, [11C]-raclopride, which is mainly taken
(2002), which we will discuss in detail, and the work of             up in the striatum subcortical region, and [11C]-DASB
Svarer et al. (2005), which attempts to reduce the                   which is taken up in both cortical and subcortical regions.
individual variability by applying a warping algorithm to
several segmented brains to estimate probabilistic ROIs              2. Methods
for an individual brain. Yasuno et al. (2002) developed a
technique to fit a standard template of ROIs to an                      Fig. 1 shows a scheme of the method proposed. It
individual brain image assisted by a high-resolution                 consists of the following steps: (1) A standard brain
reference MR image. This method utilizes computer                    template with a set of predefined ROIs is transformed to
vision techniques based on the probabilities of gray                 match individual high-resolution MR images, (2) the
matter to refine the transformed ROIs. The major                     ROIs from the transformed template are refined based
limitations of this method, however, are its restricted              on the gray matter probability of voxels in the individual
applicability to sub-cortical regions (particularly the              MR images, and (3) the individual MR images are co-
striatum), the template of ROIs expressed in a non-                  registered to the PET images so that the individual
standard brain and its validation using the area under the           refined ROIs are transformed to the PET images space.
curve (AUC) of the time–activity data, which may be                  Steps 1 and 3 are executed using the SPM2 (Wellcome
affected by compensations of excesses and deficiencies               Department of Cognitive Neurology, London, UK)
of activities.                                                       algorithms of normalization and co-registration. Differ-
    In the present article, we address these limitations and         ent values of cut-off distance and regularizations
present the validation of a novel automated method for               (smoothness of the deformation fields) are used in the
the extraction of time–activity curves (TAC). First,                 non-linear transformation from the standard brain
instead of basing the ROI template on a non-standard                 template to the subject MR images when SPM defaults
space, our approach uses the Montreal Neurological                   do not satisfy visual inspection of the transformed
Institute/International Consortium for Brain Mapping                 image. Nearest neighbor interpolation is used to
(MNI/ICBM) 152 standard brain template, which has the                preserve the codification in the ROIs (described
P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89                                        81




Fig. 1. Flow chart showing the 3 main steps involved in Yasuno's methodology: Step 1: The ROI template in a standard space is transformed to the
MR image space using a non-linear transformation. Step 2: The ROI Template is refined (see Fig. 2) using a probability of gray matter image extracted
from the individual MR image. Step 3: The MR image is co-registered to the PET image using the Normalized Mutual Information algorithm carrying
the ROI template.


below). The multimodal co-registration between the MR                         number and an additional file was added to the Mayo
and the PET images is done using the normalized mutual                        Clinic Analyze 7.5 Format (www.mayo.edu/bir/PDF/
information algorithm (Studholme et al., 1999) imple-                         ANALYZE75.pdf) including data on the codification as
mented under SPM2.                                                            well as other parameters used in the refinement process.
   The input images are the MR image of the subject                               The goal of the present work was to show reliability of
(T1 or PD), the dynamic PET image of the subject, a set                       the automated method when compared with manual
of ROIs (ROI Template) expressed in a standard brain                          delineation of ROIs. However, since manual ROI
space, and an MR image (MRI Template) in a standard                           delineation is done on a predetermined number of slices
brain space. The standard brain template chosen was the                       (Bremner et al., 1998), it may not necessarily include all
ICBM/MNI 152 PD brain template smoothed with a                                the anatomical structures under study. In this study we
kernel of 8 mm that is included in SPM99 as PD.img                            limited the number of slices in the template to ap-
(http://www.mrc-cbu.cam.ac.uk/Imaging/Common/                                 proximate volumes used by manual raters: cerebellar
templates.shtml). This brain volume has a bounding box                        ROIs were cropped between slices representing planes
of − 90:91, − 126:91, − 72:109 sampled at 2-mm inter-                         z = −48 and z = −34; putamen, caudate and insula be-
vals with the origin of the coordinate system in the                          tween z = −6 and z = 12 and frontal cortex, thalamus, and
anterior commissure and with the anterior/posterior                           temporal cortex between z = −6 and z = 16 in the Talairach
commissural line as a reference to define the plane                           coordinate system. (Talairach and Tournoux, 1988).
where z = 0 (Talairach and Tournoux, 1988).                                       Since currently available methods for non-linear
   The ROI template was created to fit the standard                           transformation are inherently imperfect, the transformed
brain image. The frontal cortex, temporal cortex, cere-                       ROIs are refined to reflect individual anatomical var-
bellum, insula, and thalamus were taken from the ana-                         iations. This refinement step consists of iteratively
tomical label atlas of Talairach transformed to the                           adding neighboring missing voxels of the ROIs and
standard ICBM/MNI 152 Brain, which is included in the                         subsequently removing excess voxels from the ROIs
WFU toolbox (Maldjian et al., 2003) for SPM. Since the                        based on the probability of each voxel to belong to the
anatomical label atlas of the Talairach daemon does not                       gray matter. In order to do that, a gray matter probability
distinguish between putamen and nucleus pallidus                              map is created with the segmentation algorithm of SPM2
(referred to as the lentiform nucleus), these two latter                      followed by the application of a Gaussian smoothing
subcortical regions were taken from a segmented MNI                           filter (FWHM = 5 mm for [11C]-WAY 100635 and [11C]-
normalized brain developed by Kabani et al. (1998). In                        DASB; FWHM = 1mm for [11C]-raclopride). For each
the template, each ROI was codified with a unique                             ROI, a histogram of the probability of each voxel to
82                                        P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89




Fig. 2. The refinement step: a) Due to the variability in the intersubject ROIs and characteristics of the methods of normalization, the template of the
ROI is not placed perfectly on the individual brain. b) For each ROI a histogram of values of probability of gray matter is built. The typical shape of
this histogram can be fitted by the function shown in Section 2. The maximum of the function is derived analytically. A threshold value of
probability is determined as a prefixed fraction of the value that produces the maximum in the histogram. c) Voxels with probability of gray matter in
each ROI below the threshold are removed from the ROIs. Secondary to this procedure, the ROI clearly follows the contour of gray matter. d) One
iteration of a morphological dilatation is executed. In case of overlap between 2 or more ROIs, overlapped voxels are excluded from all the ROIs.
The threshold value of probability is applied again to remove dilated voxels on tissue with low probability of gray matter. This dilatation can be
applied iteratively.


belong to the gray matter is built. This histogram is fitted                    threshold of probability and that were excluded in the
with the following function:                                                    preceding non-linear transformation. This process is a
                      2 0                12 3                                 variation of a morphological dilatation (Serra, 1982) with
                                                                                a kernel      or its natural extension to three dimensions,
                                                                                          0        1
                                                                                           1   1 1
                                                                                          @1   1 1A
                              ln    1−P                                                    1   1 1
                                   1−P0
                      4−1@
                        2           b
                                           A5                                   performed iteratively and constrained to the probability
f ðPÞ ¼ f0 þ aexp                                                    ð1Þ        of gray matter above the threshold (Fig. 2c and d). To
                                                                                prevent overlap of adjacent ROIs during the dilatation
where f(P)represents the number of voxels with                                  process, the following algorithm was applied: in the event
probability of gray matter P within the ROI, and P0, f0,                        of multiple ROIs in the structure element of a voxel, the
b and a are the variables to adjust.                                            affected voxel was excluded. The net result of this pro-
    The threshold value of probability of gray matter is                        cess when applied iteratively is a natural definition of the
determined as a fraction of the value maximizes the                             boundary of the ROIs. The number of ROIs in the tem-
fitting function (P0). The magnitude of this value is                           plate and the extent of gray matter covered by the ROIs
multiplied by 0.85 for the thalamus and 0.90 for all other                      determine the appropriate number of iterations. Results
ROIs. These values are the ones that optimize the results                       presented in this study were obtained using 2D dilatation
in the work of Yasuno et al. (2002). Voxels in the ROIs                         due to the highly asymmetrical voxel size of our MR
corresponding to voxels in the MR image with a                                  images (0.86 × 0.86 × 3mm). A single iteration in the
probability of gray matter lower than these thresholds                          refinement step was performed due to the large space
are removed (Fig. 2a and b).                                                    between ROIs in the template considered.
    The next step consists in the expansion of the ROIs                            The choice of the above parameters was a trade-
with the goal of including all voxels that satisfy the                          off between faithfulness to anatomical detail and
P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89                        83


susceptibility to partial volume effects. A more conser-            measured in a series of sequential acquisitions of
vative ROI is generally less susceptible to partial volume          increasing duration (from 1 to 5 min) for a total duration
effects and movement during a dynamic scan. Con-                    of 90 min.
versely, a less conservative approach might incur
significant partial volume effects so that the resulting            2.3. PET system
AUC of the TACs and radioligand binding potential (BP)
are lower.                                                             Studies were performed on an eight-ring brain PET
                                                                    camera system Scanditronix GE 2048-15B. The images
2.1. The software                                                   were corrected for attenuation with a 68Ge transmission
                                                                    scan and were reconstructed using filtered back
   The method was automated using software developed                projection with a Hanning filter 5mm FWHM. Fifteen
de novo by one of the authors (PR). The software runs all           axial slice images, each 6.5 mm thick, were obtained.
the procedures described in the previous section. It also           The intrinsic in-plane resolution of the reconstructed
allows for the saving of a tracking file with the                   images was 4.5mm FWHM. The voxel dimensions were
parameters, algorithms employed, and results of each                2, 2, and 6.5mm in x, y, and z axes, with a resolution of
procedure. The software was developed in C++ and                    128 × 128 × 15.
based on an open source cross-platform graphic user
interface (wxWindows) and OpenGL. SPM2 is called in                 2.4. MR image scanning
batch mode using the API interface of MATLAB. The
software was successfully compiled with a GNU C++                      Each subject underwent MR imaging. Spin-echo
compiler under different versions of Window and Linux.              sequence T1- and proton density-weighted images were
The hardware requirements are a video card supporting               obtained on a General Electric Medical System Signa
OpenGL. A copy of the software is available on written              1.5-T scanner with x, y, and z voxel dimensions of 0.86,
request to the principal author.                                    0.86, and 3.00 mm, respectively, and a matrix of
                                                                    256 × 256 × 43.
2.2. Subjects and data acquisition
                                                                    2.5. Manual delineation of ROIs
    A total of 28 PET scans previously performed in our
PET facilities with three different radiotracers were re-               Each subject's MR image scan was co-registered to
used for the purpose of the present study. These scans              the PET scan by using Rview8/mpr realignment software
were performed in healthy control volunteers and were               (Studholme et al., 1999). Regions of interest (ROIs) for
part of independent research protocols. The three radio-            the caudate, putamen, thalamus, occipital cortex, frontal
tracers, [11C]-raclopride, [11C]-DASB and [11C]-WAY                 cortex and cerebellum were drawn by two independent
100635, were chosen based on the different brain distri-            raters on the co-registered MR images using commer-
bution of their binding: [11C]-raclopride binding to                cially available image analysis software (Alice, Hayden
dopamine D2 receptors was analyzed in putamen and                   Image Processing Group, Perceptive Systems Inc.,
caudate; [11C]-DASB binding to the serotonin transport-             Boulder, CO, USA). Both raters used the same criteria
er was analyzed in thalamus and [11C]-WAY 100635                    to delineate ROIs: the gray matter of the cerebellum was
binding to serotonin 5-HT1A receptors was analyzed in               drawn on two consecutive slices where the middle
cortical regions.                                                   cerebellar peduncle was clearly visible, the frontal and
    Nine PET scans were done after bolus injection of               temporal cortices were delineated on three axial MR
370 MBq of the D2-receptor radiotracer [11C]-raclopride.            slices in each hemisphere where the striatum was clearly
Radioactivity in the brain was measured in a series of              visible, and the putamen, caudate, and thalamus were
sequential acquisitions of increasing duration (from 1 to           drawn on two contiguous slices where each one was
5 min) for a total duration of 60 min. Ten PET scans were           clearly visible. Regional radioactivity was determined
done after bolus injection of 370 MBq of the serotonin              for each frame, corrected for decay, and plotted versus
transporter radiotracer [11C]-DASB. Radioactivity in the            time considering ROIs in each hemisphere independent-
brain was measured in a series of sequential acquisitions           ly. Calculation of regional binding potential (BP) values
of increasing duration (from 1 to 5 min) for a total du-            was done using the Simplified Reference Tissue Model
ration of 90min. Nine PET scans were done after bolus               (SRTM) (Lammertsma and Hume, 1996) and the kinetic
injection of 370MBq of the 5-HT1A receptor radiotracer              modeling software PMOD V2.4 (PMOD Technologies
[11C]-WAY 100635. Radioactivity in the brain was                    Ltd., Zurich, Switzerland).
84                                   P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89


Table 1                                                                    Table 3
Comparison between BPs and TACs obtained with the automated                Comparison between BPs and TACs obtained with the automated
method and by the two manual raters in the [11C]-WAY 100635 PET            method and by the two manual raters in the [11C]-DASB PET studies
studies
                                                                                                          j = Computer j = Computer j = Rater 2
                               j = Computer j = Computer j = Rater 2
                                                                                                          k = Rater 1    k = Rater 2   k = Rater 1
                               k = Rater 1    k = Rater 2   k = Rater 1
                                                                           Thalamus
Frontal                                                                    %BP(j, k)a (mean ± S.D.)       8 (± 15)       2 (± 8)      − 7 (±12
%BP(j, k)a (mean ± S.D.)       5 (±4)         5 (±7)       1 (±5)          ICC BP by pairs                0.77           0.90         0.87
ICC BP by pairs                0.96           0.92         0.97            Overlap ratiob (mean ± S.D.)   0.51 (±0.06)   0.63 (±0.05)
Overlap ratiob( ± S.D.)        0.42 (±.08)    0.36 (±0.06)                 %TAC(j, k)b (mean ± S.D.)      − 8 (±3)       − 3 (±2)     − 5 (±2)
%TAC(j, k) b (mean ± S.D.)     7 (±1)         5 (±2)       2 (±2)
                                                                           Cerebellum
Temporal                                                                   Overlap ratiob (mean ± S.D.) 0.32 (±0.05) 0.67 (±0.10)
%BP(j, k)a (mean ± S.D.)       0 (±7)         0 (±7)       0 (±6)          %TAC(j, k)b (mean ± S.D.)    − 5 (±3)     − 3 (±3)     − 3 (±1)
ICC BP by pairs                0.95           0.93         0.95             a
                                                                               %BP(j, k) is the mean (n = 10) percentage difference of binding
Overlap ratiob (mean ± S.D.)   0.47 (±.09)    0.41 (±0.10)
                                                                           potential (BP) values obtained between methods and was calculated as:
%TAC(j, k)b (mean ± S.D.)      4 (±4)         2 (±3)       1 (±3)
                                                                           100% × (BPj − BPk) / BPk with j and k defined in the header of the
                                                                           columns.
Cerebellum                                                                   b
                                                                               Overlap radio, a measure of overlap between ROI, and %TAC(j, k),
Overlap ratiob (mean ± S.D.) 0.54 (±0.19) 0.59 (±0.20)
                                                                           the percentage difference of time–activity data, were calculated as
%TAC(j, k)b (mean ± S.D.)    3 (±2)       1 (±2)       2 (±4)
                                                                           defined in Section 2.6.
  a
    %BP(j, k) is the mean (n = 9) percentage difference of binding
potential (BP) values obtained between methods and was calculated as:      2.6. Validation process
100% × (BPj − BPk) / BPk with j and k defined in the header of the
columns.
  b
    Overlap radio, a measure of overlap between ROI, and %TAC(j, k),          We examined the reliability of the new automated
the percentage difference of time–activity data, were calculated as        method by comparing BP estimates derived using this
defined in Section 2.6.                                                    method to those derived using manually delineated ROIs
                                                                           as obtained by two independent raters.
                                                                              The reliability of BP values was determined by
Table 2                                                                    means of the intraclass correlation coefficients (ICC)
Comparison between BPs and TACs obtained with the automated                (Lahey et al., 1983; Shrout and Fleiss, 1979):
method and by the two manual raters in the [11C]-raclopride PET
studies                                                                                      BMS−WMS
                                                                           ICCð1; 1Þ ¼                    ;                                  ð2Þ
                               j = Computer j = Computer j = Rater 2                       BMS þ ðk−1ÞWMS
                               k = Rater 1    k = Rater 2   k = Rater 1
                                                                           where BMS is the mean square between targets, WMS is
Caudate                                                                    the within-subject mean square and k is the number of
%BP(j, k)a (mean ± S.D.)       4 (±3)         − 3 (±8)     7 (±8)          methods or raters: k = 2 has been used in the comparison
ICC BP by pairs                0.94           0.82         0.76
Overlap ratiob (mean ± S.D.)   0.48 (±0.15)   0.48 (±0.15)
                                                                           of BP by pairs in Tables 1, 2, and 3, and k = 3 has been
%TAC(j, k)b (mean ± S.D.)      −4 (±5)        − 4 (±5)     2(± 4)          used in the text in Section 3.2. This coefficient can vary
                                                                           between − 1 and + 1 where values close to + 1 indicate
Putamen                                                                    the highest degree of concordance between compared
%BP(j, k)a (mean ± S.D.)       1 (±6)         − 4 (±9)     6 (±4)          values. We calculated the ICC for BP as it is the main
ICC BP by pairs                0.86           0.74         0.81
Overlap ratiob (mean ± S.D.)   0.54 (±.09)    0.54 (±0.10)
                                                                           outcome measure used in PET studies.
%TAC(j, k)b (mean ± S.D.)      −4 (±5)        − 4 (±5)     1 (±2)              Since TACs with slightly different profiles may give
                                                                           rise to a similar BP, we also computed in each ROI the
Cerebellum                                                                 ICCs for mean activities as well as the mean percentage
Overlap ratiob (mean ± S.D.) 0.30 (±0.05) 0.53 (±0.13)                     difference across subjects between TACs as follows:
%TAC(j, k)b (mean ± S.D.)    −6 (±3)      − 2 (±2)     − 4 (± 2)
  a                                                                                           N
                                                                                              X
    %BP(j, k) is the mean (n = 9) percentage difference of binding
potential (BP) values obtained between methods and was calculated as:      %TACðj; kÞ ¼             ðAij −Aik Þ=Aik  100%                   ð3Þ
100% × (BPj − BPk) / BPk with j and k defined in the header of the                            i¼1
columns.
  b
    Overlap radio, a measure of overlap between ROI, and %TAC(j, k),
                                                                           where j and k can be either rater 1, rater 2 or the
the percentage difference of time–activity data, were calculated as        computer, N is the total number of data points in the
defined in Section 2.6.                                                    TAC, and Aji is the activity value in a given data point i
P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89                            85


                                                                                  To obtain a measure of the overlap between the ROI
                                                                              drawn by the computer and the ROI drawn by the
                                                                              human rater, the overlap ratio that was defined as:
                                                                              (ROI computer ∩ ROI rater ) / (ROI computer ∪ ROI rater ) was
                                                                              used. The numerator represents the intersection ROI
                                                                              between computer and human rater, and the dominator
                                                                              represents the union ROI drawn by both. An overlap
                                                                              ratio value of 1 means complete agreement, a value of 0
                                                                              means no overlap at all, and an overlap of 75% in two
                                                                              ROIs of the same size has a overlap ratio 0.6
                                                                              (Carmichael et al., 2005).

                                                                              3. Results

                                                                              3.1. Methodological issues

                                                                                  Yasuno et al. (2002) identified the maximum value of
                                                                              the histogram of probability inside of the ROI and then
                                                                              defined the threshold of probability as a fraction of this
                                                                              peak value. While this procedure may be adequate for
                                                                              large ROIs, the paucity of statistics within a small ROI
                                                                              may result in the occurrence of multiple peaks in the
                                                                              histogram as a result of either poor statistics (symbols in
                                                                              Fig. 3a) or a shift of the ROI into adjacent cerebrospinal
                                                                              fluid or white matter (symbols in Fig. 3b). We defined a
                                                                              fitting function that clearly characterized the gray matter
                                                                              (dashed lines in Fig. 3a and b). If the fitting is not
                                                                              successful, the procedure is aborted and a new attempt
                                                                              can be made to improve the parameters used in the non-
                                                                              linear transformation.
                                                                                  Yasuno et al. (2002) applied a 6-mm FWHM
                                                                              smoothing filter on the probability image of gray matter
                                                                              (Fig. 4a). This value was adequate for cortical regions
                                                                              but may be excessive for the striatum due to poor
                                                                              segmentation of the subcortical region, particularly in
Fig. 3. Two examples in which the fitting function gives robusticity to       the border of the insula–putamen. The solution
the method. In the superior section of the figure, the transformed left       proposed in this work is as follows: for a cortical ROI
thalamus and right caudate are shown on a 5-mm smooth gray matter             where gyri and sulci result in a discontinuity in
probability map. (a) The thalamus falling half inside of the gray matter
                                                                              probability of gray matter, a filter of 5 mm (FWHM) is
and half outside shows a histogram of probability of gray matter that
presents multiple peaks. The fitting function finds the overall shape of      applied, while a smaller filter of 1 mm (FWHM) is more
the histogram and gives a precise value for the maximum. (b) The              appropriate for more homogenous subcortical ROIs
caudate is almost outside of the gray matter so the maximum of the            such as the putamen or caudate. The results obtained
fitting function falls in the negatives values of probability. The solution   when applying a 1-mm filter (FWHM) for segmentation
proposed in this work to this last case in caudate or putamen uses 1-mm
                                                                              of the striatum are illustrated in Fig. 4b. The procedure
smoothing.
                                                                              allowed a successful separation of right insula–putamen
as measured by j. An overall positive value of %TAC                           on the right hemisphere but was, as observed in some
(j = computer, k = rater1) indicates that activities obtained                 cases, unable to resolve it in the left hemisphere.
using the computer (i.e. automated method) are                                    It is important to note that in this work we have used
systematically higher than those obtained manually by                         PD-weighted MR images that present a greater contrast
rater 1 in a given ROI. ROIs were drawn in both                               in the subcortical areas than T1-weighted MR images:
hemispheres, but data from the same ROI were pooled                           resulting in a better segmentation by SPM in these
to obtain the mean of %TAC(j, k).                                             regions.
86                                   P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89




Fig. 4. Sections (a) and (b) show the differences in the striatum–insula boundaries when the probability maps of gray matter are smoothed with a
Gaussian filter of FWHM = 6mm and FWHM = 1 mm, respectively. A large size of the filter completely removes the boundaries (a), and a smaller
filter (b) is not enough in some cases to see the border. The solution proposed in this work is to add an ROI representing the insula in which to find a
border between both ROIs. Section (c) shows the ROIs on the MR image after 4 iterations of the refinement step.

    Morphological dilatation of an ROI may result in the                       rized in Table 1. We found very high correlations be-
overlap of two or more adjacent ROIs. Thus, in our                             tween BP values obtained from manual delineation of
method, the growth of an ROI is limited to one voxel in                        the ROIs and those obtained using the automated meth-
every point of the surface of the ROI during each                              od in both frontal (ICC = 0.95) and temporal (ICC =
iteration. Voxels that overlap are not allowed to dilate                       0.94) cortices. The differences between BP values were
further. Iterative application of this procedure not only                      minimal, being only 5% for the frontal cortex. No
avoids overlap but also stops unwanted growth of the                           difference was observed for BP values in temporal
ROIs. Taking advantage of this property, we have                               cortex.
included the insula to create a natural boundary for the                          Comparison of the TAC data obtained by the manual
putamen. A border automatically appears in images                              raters and those obtained by the automated method also
where the map of probability of the gray matter does not                       demonstrated a very high correlation in both brain
present a border insula–putamen. This can be seen for                          structures, with an ICC N 0.99. Moreover, the overall
the border between the left insula and the left putamen in                     difference between TAC data obtained with the auto-
Fig. 4b and c.                                                                 mated method and those obtained by the manual raters
                                                                               was positive, thereby indicating that radioactivity con-
3.2. Validation results                                                        centrations obtained using the automated method were
                                                                               systematically higher than those obtained by the manual
   The first step of the validation procedure was to
perform a rigorous visual inspection to check concor-
dance between the automated ROIs and the anatomical
images as well as the manually drawn ROIs. A global
comparison of 92 BPs obtained by two independent
raters and with our automated method for five ROIs
and three radiotracers in 28 subjects showed a very good
correlation (r = 0.96 for each rater; Fig. 5). The linear
regression for each rater with respect to the computer
shows a straight line near to the identity line (slopes 0.94
and 1.02 and intercepts 0.1 and − 0.2, respectively). A
detailed comparison of these results is presented in the
next three subsections.

3.2.1. Frontal and temporal cortex: studies using
[11C]-WAY 100635                                                               Fig. 5. Comparison of 92 BPs obtained by two independent raters and
   The results for nine subjects using [11C]-WAY                               with our computer software for 5 ROIs and 3 radiotracers in 28
100635 in the temporal and frontal ROIs are summa-                             subjects.
P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89                           87


raters (Table 1). The overlap ratio between ROIs for                 4. Discussion
frontal and temporal cortex was around 0.4 (see Table 1).
A complete visual comparison of the ROIs (not                            Our principal goal was to develop an automated
presented here) shows that the automated method was                  method to delineate brain ROIs, generate TACs, and
able to carefully delineate the cortices according to their          derive BP measures of PET radioligands binding. The
typical sulci, resulting in a more accurate definition of            reliability of the method was tested by comparing TACs
the ROIs than the manually obtained ROI.                             and BP measures obtained with this method with those
                                                                     obtained by a conventional manual procedure accom-
3.2.2. Striatum: studies using [11C]-raclopride                      plished by two experienced raters. Our results showed
    The results for nine subjects using [11C]-raclopride in          that the automated method yielded fully reproducible
the caudate and putamen are summarized in Table 2. We                TAC and BP data that were highly consistent with those
found good agreement between automated and manu-                     obtained by manual drawing of ROIs. For all TAC
ally derived BPs in the caudate (ICC = 0.837) and the                obtained, the ICCs were greater than 0.95, and for each
putamen (ICC = 0.800), with the BP value falling be-                 ROI the ICC for BP was in the range of 0.8–0.95 —
tween both raters.                                                   suggesting that our method is consistent with the results
    The ICC for all TACs was 0.96. The mean percentage               obtained by well-trained raters. More importantly, any
differences between radioactivity levels measured by the             trained rater introduces intra-rater variance in the
computer and the manual raters, %TAC(j = computer,                   decision regarding ROI boundaries made in every new
k = manual), were in general negative. The overlap ratio             attempt. In that respect, the “intra-rater” reproducibility
for the caudate was 0.48 and for the putamen was 0.54.               of our automatic method is always 100% due to its
Differences in BPs are probably explained by different               automated nature. It means the difference between two or
criteria used by the manual rater to draw the reference              more consecutive automated BP determinations is
ROI (cerebellum). The computer drew similarly to rater               always 0% while, according to studies performed in
2, including the whole cortex of the cerebellum. Rater 1             our laboratory, the manual intra-rater reproducibility is,
drew the cerebellum excluding the vermis. This may                   for example, 3% in striatum using [11C]-raclopride (data
explain the somewhat smaller overlap ratio in the cere-              not shown). Regarding the inter-rater differences, our
bellum between the computer and rater 1.                             method could not be distinguished from the manual
                                                                     raters. For the temporal cortex, caudate and putamen, the
3.2.3. Thalamus: studies using [11C]-DASB                            automated method generally gave an intermediate BP
    BP values obtained in thalamus using [11C]-DASB                  value between those obtained by the two raters. For the
are summarized in Table 3. There was a good agreement                frontal cortex and thalamus, it gave values generally
between BP estimates obtained using the manual and the               higher than those obtained by the manual raters. Thus,
automated methods (ICC = 0.819). The BPs generated                   from all perspectives of inter-rater variance, this method
by the two manual raters were different (mean = 7%) and              performs quite well, with the added advantage of no
highly variable (S.D. = 12%). The computer yielded                   intra-rater variance.
higher BPs with respect to both raters, with values closer               The criteria to solve the overlap of two or more
to those generated by rater 2 (2%).                                  adjacent ROIs during the dilatation in the refinement
    Evaluation of the TACs obtained by the automated                 step are an important contribution to the original
and manual methods also showed excellent agreement                   method. As a result, BPs obtained in putamen were
(ICC for TAC N 0.98). Radioactivity concentrations                   reliable and highly consistent with those estimated by
obtained by the manual raters were higher than those                 manual rating. This was achieved through the inclusion
obtained by the computer. With respect to rater 2, the               of the insula as an ROI, which limited the excessive
differences in cerebellum and thalamus were similar (%               dilatation of the ROI in the putamen. The number of
TAC(j = computer, k = rater2) = 3%). For rater 1, differ-            iterations of the dilatation depends on the quantity of
ences for thalamus (%TAC(j = computer, k = rater1) =                 ROIs included in the template as well as the volume of
− 8%) were more important than for cerebellum (%TAC                  gray matter covered by the ROIs. For a limited number
(j = computer, k = rater1) = − 5%), which explains the               of small ROIs (representing a limited fraction of the gray
larger differences in BPs. The computer drew a thalamus              matter volume), excessive iterations will likely lead to
and a cerebellum closer to rater 2 (overlap ratio N 0 .6). A         ROIs beyond their true anatomical boundaries. Con-
different criterion in drawing the cerebellum, as in the             versely, multiple iterations for large ROIs covering most
previous section, may explain the low overlap ratio                  or all of the gray matter will lead to a stable solution. The
(0.32) with rater 1 and the difference in BPs.                       use of a standard template of ROIs has conferred higher
88                                   P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89


accuracy for ROI definition through the adoption of                        Bohm, C., Greitz, T., Kingsley, D., Berggren, B.M., Olsson, L., 1983.
accepted standard methodology.                                                Adjustable computerized stereotaxic brain atlas for transmission
                                                                              and emission tomography. AJNR American Journal of Neurora-
    Finally, it should be noted that while the procedure                      diology 4, 731–733.
described here does not necessarily require any direct                     Bohm, C., Greitz, T., Seitz, R., Eriksson, L., 1991. Specification and
intervention from the user, we suggest that some user                         selection of regions of interest (ROIs) in a computerized brain
supervision is required after the non-linear transforma-                      atlas. Journal of Cerebral Blood Flow and Metabolism 11,
                                                                              A64–A68.
tion is performed by SPM to ensure a correct global
                                                                           Bremner, J.D., Bronen, R.A., De Erasquin, G., Vermetten, E., Staib,
initial position of the ROIs. The time demanded for a                         L.H., Ng, C.K., Soufer, R., Charney, D.S., Innis, R.B., 1998.
single study is around 10 min in a PC Pentium 4,                              Development and reliability of a method for using magnetic
2.6 GHz, 1 GB RAM.                                                            resonance imaging for the definition of regions of interest for
                                                                              positron emission tomography. Clinical Positron Imaging 1,
5. Conclusion                                                                 145–159.
                                                                           Carmichael, O.T., Aizenstein, H.A., Davis, S.W., Becker, J.T.,
                                                                              Thompson, P.M., Meltzer, C.C., Liu, Y., 2005. Atlas-based
    We described a new method for automatic ROI                               hippocampus segmentation in Alzheimer's disease and mild
delineation and generation of TACs for brain PET                              cognitive impairment. Neuroimage 27, 979–990.
images, addressing the limitations of previous work by                     Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A., 1995. Automatic
Yasuno et al. (2002). The fitting function of the gray                        3-d model-based neuroanatomical segmentation. Human Brain
                                                                              Mapping 3, 190–208.
matter probability, the criteria to find borders during the                Evans, A.C., Marrett, S., Torrescorzo, J., Ku, S., Collins, L., 1991.
dilatation, the new template expressed in a standard                          MRI–PET correlation in three dimensions using a volume-of-
space, and the change in the smoothing of the template                        interest (VOI) atlas. Journal of Cerebral Blood Flow and
confer excellent stability, increasing the probability of                     Metabolism 11, A69–A78.
recognizing small ROIs and aborting the process when                       Glatting, G., Mottaghy, F.M., Karitzky, J., Baune, A., Sommer, F.T.,
                                                                              Landwehrmeyer, G.B., Reske, S.N., 2004. Improving binding
the non-linear transformation leads to insurmountable                         potential analysis in [11C]raclopride PET studies using cluster
initial conditions. The validation of our method based                        analysis. Medical Physics 31, 902–906.
on the reliability of BP values introduces a rigorous test                 Greitz, T., Bohm, C., Holte, S., Eriksson, L., 1991. A
for the procedure.                                                            computerized brain atlas: construction, anatomical content,
    The method only tries to correct inaccuracy on the                        and some applications. Journal of Computer Assisted Tomog-
                                                                              raphy 15, 26–38.
non-linear transformation. When new image-to-image                         Hammers, A., Koepp, M.J., Free, S.L., Brett, M., Richardson, M.P.,
matching algorithms (Thirion, 1998), geodesics actives                        Labbe, C., Cunningham, V.J., Brooks, D.J., Duncan, J., 2002.
contour, and other state of the art algorithms of com-                        Implementation and application of a brain template for multiple
puter vision are fully automated, validated and freely                        volumes of interest. Human Brain Mapping 15, 165–174.
                                                                           Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux,
available for non-rigid registration of MR images, the
                                                                              L., Mitchell, T.N., Brooks, D.J., Duncan, J.S., 2003. Three-
necessity of such a correction will likely decrease. Until                    dimensional maximum probability atlas of the human brain, with
that time, this method provides a tool for the                                particular reference to the temporal lobe. Human Brain Mapping
individualization of the standard atlas using widely                          19, 224–247.
accepted software like SPM.                                                Kabani, N.J., MacDonald, D., Holmes, C.J., Evans, A.C., 1998. 3D
                                                                              anatomical atlas of the human brain. Neuroimage 7, S717.
                                                                           Lahey, M.A., Downey, R.G., Saal, F.E., 1983. Intraclass correlations:
Acknowledgments                                                               there's more there than meets the eye. Psychological Bulletin 93,
                                                                              586–595.
   We thank Alvina Ng and Anahita Boovariwala for                          Lammertsma, A.A., Hume, S.P., 1996. Simplified reference tissue
drawing the ROIs, Noor Kabani for the templates of                            model for PET receptor studies. Neuroimage 4, 153–158.
anatomical regions of interest, Jeff Meyer for providing                   Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H., 2003. An
                                                                              automated method for neuroanatomic and cytoarchitectonic atlas-
PET data and Laura Acion for statistical help.                                based interrogation of fMRI data sets. Neuroimage 19, 1233–1239.
                                                                           Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J., 1995. A
References                                                                    probabilistic atlas of the human brain: theory and rationale for its
                                                                              development. The International Consortium for Brain Mapping
Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K., 1997.       (ICBM). Neuroimage 2, 89–101.
   Incorporating prior knowledge into image registration. Neuro-           Mykkanen, J.M., Juhola, M., Ruotsalainen, U., 2000. Extracting VOIs
   image 6, 344–352.                                                          from brain PET images. International Journal of Medical
Bajcsy, R., Lieberson, R., Reivich, M., 1983. A computerized system           Informatics 58–59, 51–57.
   for the elastic matching of deformed radiographic images to             Ohyama, M., Senda, M., Mishina, M., Kitamura, S., Tanizaki, N.,
   idealized atlas images. Journal of Computer Assisted Tomography            Ishii, K., Katayama, Y., 2000. Semi-automatic ROI placement
   7, 618–625.                                                                system for analysis of brain PET images based on elastic model:
P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89                                    89


    application to diagnosis of Alzheimer's disease. Keio Journal of         Approach to Medical Cerebral Imaging. Georg Thieme Verlag,
    Medicine 49 (Suppl 1), A105–A106.                                        Stuttgart.
Serra, J.P., 1982. Image Analysis and Mathematical Morphology.            Thirion, J.P., 1998. Image matching as a diffusion process: an analogy
    Academic Press, London; New York.                                        with Maxwell's demons. Medical Image Analysis 2, 243–260.
Shrout, P.E., Fleiss, J.L., 1979. Intraclass correlations: uses in        Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta,
    assessing rater reliability. Psychological Bulletin 86, 420–428.         J.C., 1998a. Automated image registration: I. General methods
Studholme, C., Hill, D.L.G., Hawkes, D.J., 1999. An overlap invariant        and intrasubject, intramodality validation. Journal of Computer
    entropy measure of 3D medical image alignment. Pattern                   Assisted Tomography 22, 139–152.
    Recognition 32, 71–86.                                                Woods, R.P., Grafton, S.T., Watson, J.D., Sicotte, N.L., Mazziotta,
Svarer, C., Madsen, K., Hasselbalch, S.G., Pinborg, L.H., Haugbol, S.,       J.C., 1998b. Automated image registration: II. Intersubject valida-
    Frokjaer, V.G., Holm, S., Paulson, O.B., Knudsen, G.M., 2005.            tion of linear and nonlinear models. Journal of Computer Assisted
    MR-based automatic delineation of volumes of interest in human           Tomography 22, 153–165.
    brain PET images using probability maps. Neuroimage 24,               Yasuno, F., Hasnine, A.H., Suhara, T., Ichimiya, T., Sudo, Y., Inoue,
    969–979.                                                                 M., Takano, A., Ou, T., Ando, T., Toyama, H., 2002. Template-
Talairach, J., Tournoux, P., 1988. Co-Planar Stereotaxic Atlas of the        based method for multiple volumes of interest of human brain PET
    Human Brain: Three-Dimensional Proportional System: An                   images. Neuroimage 16, 577–586.

Weitere ähnliche Inhalte

Was ist angesagt?

Lec13: Clustering Based Medical Image Segmentation Methods
Lec13: Clustering Based Medical Image Segmentation MethodsLec13: Clustering Based Medical Image Segmentation Methods
Lec13: Clustering Based Medical Image Segmentation MethodsUlaş Bağcı
 
Lec8: Medical Image Segmentation (II) (Region Growing/Merging)
Lec8: Medical Image Segmentation (II) (Region Growing/Merging)Lec8: Medical Image Segmentation (II) (Region Growing/Merging)
Lec8: Medical Image Segmentation (II) (Region Growing/Merging)Ulaş Bağcı
 
AN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINA
AN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINAAN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINA
AN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINAijait
 
D232430
D232430D232430
D232430irjes
 
Wavelet Transform Based Reduction of Speckle in Ultrasound Images
Wavelet Transform Based Reduction of Speckle in Ultrasound ImagesWavelet Transform Based Reduction of Speckle in Ultrasound Images
Wavelet Transform Based Reduction of Speckle in Ultrasound ImagesDR.P.S.JAGADEESH KUMAR
 
DevFest19 - Early Diagnosis of Chronic Diseases by Smartphone AI
DevFest19 -  Early Diagnosis of Chronic Diseases by Smartphone AIDevFest19 -  Early Diagnosis of Chronic Diseases by Smartphone AI
DevFest19 - Early Diagnosis of Chronic Diseases by Smartphone AIGaurav Kheterpal
 
Image restoration model with wavelet based fusion
Image restoration model with wavelet based fusionImage restoration model with wavelet based fusion
Image restoration model with wavelet based fusionAlexander Decker
 
Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...
Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...
Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...Dr.NAGARAJAN. S
 
Ijarcet vol-2-issue-7-2369-2373
Ijarcet vol-2-issue-7-2369-2373Ijarcet vol-2-issue-7-2369-2373
Ijarcet vol-2-issue-7-2369-2373Editor IJARCET
 
Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...eSAT Journals
 
IRJET - A Review on Gradient Histograms for Texture Enhancement and Objec...
IRJET -  	  A Review on Gradient Histograms for Texture Enhancement and Objec...IRJET -  	  A Review on Gradient Histograms for Texture Enhancement and Objec...
IRJET - A Review on Gradient Histograms for Texture Enhancement and Objec...IRJET Journal
 
Automated Detection of Optic Disc in Retinal FundusImages Using PCA
Automated Detection of Optic Disc in Retinal FundusImages Using PCAAutomated Detection of Optic Disc in Retinal FundusImages Using PCA
Automated Detection of Optic Disc in Retinal FundusImages Using PCAiosrjce
 
A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...
A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...
A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...ijma
 
Brain tumor detection and segmentation using watershed segmentation and morph...
Brain tumor detection and segmentation using watershed segmentation and morph...Brain tumor detection and segmentation using watershed segmentation and morph...
Brain tumor detection and segmentation using watershed segmentation and morph...eSAT Journals
 
New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...
New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...
New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...CSCJournals
 
Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...
Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...
Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...Debdoot Sheet
 
Detection of Diverse Tumefactions in Medial Images by Various Cumulation Methods
Detection of Diverse Tumefactions in Medial Images by Various Cumulation MethodsDetection of Diverse Tumefactions in Medial Images by Various Cumulation Methods
Detection of Diverse Tumefactions in Medial Images by Various Cumulation MethodsIRJET Journal
 
Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...
Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...
Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...Debdoot Sheet
 

Was ist angesagt? (20)

Lec13: Clustering Based Medical Image Segmentation Methods
Lec13: Clustering Based Medical Image Segmentation MethodsLec13: Clustering Based Medical Image Segmentation Methods
Lec13: Clustering Based Medical Image Segmentation Methods
 
Lec8: Medical Image Segmentation (II) (Region Growing/Merging)
Lec8: Medical Image Segmentation (II) (Region Growing/Merging)Lec8: Medical Image Segmentation (II) (Region Growing/Merging)
Lec8: Medical Image Segmentation (II) (Region Growing/Merging)
 
AN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINA
AN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINAAN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINA
AN AUTOMATIC SCREENING METHOD TO DETECT OPTIC DISC IN THE RETINA
 
D232430
D232430D232430
D232430
 
Wavelet Transform Based Reduction of Speckle in Ultrasound Images
Wavelet Transform Based Reduction of Speckle in Ultrasound ImagesWavelet Transform Based Reduction of Speckle in Ultrasound Images
Wavelet Transform Based Reduction of Speckle in Ultrasound Images
 
DevFest19 - Early Diagnosis of Chronic Diseases by Smartphone AI
DevFest19 -  Early Diagnosis of Chronic Diseases by Smartphone AIDevFest19 -  Early Diagnosis of Chronic Diseases by Smartphone AI
DevFest19 - Early Diagnosis of Chronic Diseases by Smartphone AI
 
Image restoration model with wavelet based fusion
Image restoration model with wavelet based fusionImage restoration model with wavelet based fusion
Image restoration model with wavelet based fusion
 
Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...
Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...
Hybrid Pixel-Based Method for Multimodal Medical Image Fusion Based on Integr...
 
Ijarcet vol-2-issue-7-2369-2373
Ijarcet vol-2-issue-7-2369-2373Ijarcet vol-2-issue-7-2369-2373
Ijarcet vol-2-issue-7-2369-2373
 
Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...
 
IRJET - A Review on Gradient Histograms for Texture Enhancement and Objec...
IRJET -  	  A Review on Gradient Histograms for Texture Enhancement and Objec...IRJET -  	  A Review on Gradient Histograms for Texture Enhancement and Objec...
IRJET - A Review on Gradient Histograms for Texture Enhancement and Objec...
 
Automated Detection of Optic Disc in Retinal FundusImages Using PCA
Automated Detection of Optic Disc in Retinal FundusImages Using PCAAutomated Detection of Optic Disc in Retinal FundusImages Using PCA
Automated Detection of Optic Disc in Retinal FundusImages Using PCA
 
A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...
A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...
A SIMPLE IMAGE PROCESSING APPROACH TO ABNORMAL SLICES DETECTION FROM MRI TUMO...
 
Brain tumor detection and segmentation using watershed segmentation and morph...
Brain tumor detection and segmentation using watershed segmentation and morph...Brain tumor detection and segmentation using watershed segmentation and morph...
Brain tumor detection and segmentation using watershed segmentation and morph...
 
Advanced Retinal Imaging
Advanced Retinal ImagingAdvanced Retinal Imaging
Advanced Retinal Imaging
 
New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...
New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...
New Noise Reduction Technique for Medical Ultrasound Imaging using Gabor Filt...
 
Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...
Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...
Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomograph...
 
D45012128
D45012128D45012128
D45012128
 
Detection of Diverse Tumefactions in Medial Images by Various Cumulation Methods
Detection of Diverse Tumefactions in Medial Images by Various Cumulation MethodsDetection of Diverse Tumefactions in Medial Images by Various Cumulation Methods
Detection of Diverse Tumefactions in Medial Images by Various Cumulation Methods
 
Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...
Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...
Deep Learning of Tissue Specific Speckle Representations in Optical Coherence...
 

Andere mochten auch

Andere mochten auch (6)

diapositivascristian
diapositivascristiandiapositivascristian
diapositivascristian
 
pseudocodigo
pseudocodigopseudocodigo
pseudocodigo
 
Petits Anges
Petits AngesPetits Anges
Petits Anges
 
Is245 Rev 3 Mar 2008
Is245 Rev 3 Mar 2008Is245 Rev 3 Mar 2008
Is245 Rev 3 Mar 2008
 
Petits Anges
Petits AngesPetits Anges
Petits Anges
 
Suiza
SuizaSuiza
Suiza
 

Ähnlich wie automated perimeters

Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...
Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...
Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...IJECEIAES
 
Mutli vendor mrsi_2020
Mutli vendor mrsi_2020Mutli vendor mrsi_2020
Mutli vendor mrsi_2020Uzay Emir
 
A Review on Label Image Constrained Multiatlas Selection
A Review on Label Image Constrained Multiatlas SelectionA Review on Label Image Constrained Multiatlas Selection
A Review on Label Image Constrained Multiatlas SelectionIRJET Journal
 
High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent
High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent  High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent
High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent ijsc
 
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENTHIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENTijsc
 
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...ijcseit
 
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...ijcseit
 
Negin_Behzadian_BioE_REU
Negin_Behzadian_BioE_REUNegin_Behzadian_BioE_REU
Negin_Behzadian_BioE_REUNegin Behzadian
 
An Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means Clustering
An Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means ClusteringAn Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means Clustering
An Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means ClusteringIRJET Journal
 
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...CSCJournals
 
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...IRJET Journal
 
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...Kevin Keraudren
 
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TR...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE  RETRIEVAL FOR CURVELET, CONTOURLET  TR...PERFORMANCE ANALYSIS OF TEXTURE IMAGE  RETRIEVAL FOR CURVELET, CONTOURLET  TR...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TR...ijfcstjournal
 
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...ijfcstjournal
 
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...ijfcstjournal
 
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...ijcseit
 
IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...
IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...
IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...IRJET Journal
 
AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES
AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGESAN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES
AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGEScscpconf
 
Essay On Image Processing
Essay On Image ProcessingEssay On Image Processing
Essay On Image ProcessingSusan Kennedy
 

Ähnlich wie automated perimeters (20)

Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...
Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...
Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visual...
 
Mutli vendor mrsi_2020
Mutli vendor mrsi_2020Mutli vendor mrsi_2020
Mutli vendor mrsi_2020
 
A Review on Label Image Constrained Multiatlas Selection
A Review on Label Image Constrained Multiatlas SelectionA Review on Label Image Constrained Multiatlas Selection
A Review on Label Image Constrained Multiatlas Selection
 
High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent
High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent  High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent
High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent
 
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENTHIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
 
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
 
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
AN EFFICIENT WAVELET BASED FEATURE REDUCTION AND CLASSIFICATION TECHNIQUE FOR...
 
Negin_Behzadian_BioE_REU
Negin_Behzadian_BioE_REUNegin_Behzadian_BioE_REU
Negin_Behzadian_BioE_REU
 
An Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means Clustering
An Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means ClusteringAn Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means Clustering
An Ameliorate Technique for Brain Lumps Detection Using Fuzzy C-Means Clustering
 
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
 
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
 
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
 
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TR...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE  RETRIEVAL FOR CURVELET, CONTOURLET  TR...PERFORMANCE ANALYSIS OF TEXTURE IMAGE  RETRIEVAL FOR CURVELET, CONTOURLET  TR...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TR...
 
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
 
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
PERFORMANCE ANALYSIS OF TEXTURE IMAGE RETRIEVAL FOR CURVELET, CONTOURLET TRAN...
 
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
 
IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...
IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...
IRJET - Fusion of CT and MRI for the Detection of Brain Tumor by SWT and Prob...
 
AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES
AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGESAN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES
AN ANN BASED BRAIN ABNORMALITY DETECTION USING MR IMAGES
 
Essay On Image Processing
Essay On Image ProcessingEssay On Image Processing
Essay On Image Processing
 
Whole brain optical imaging
Whole brain optical imagingWhole brain optical imaging
Whole brain optical imaging
 

Kürzlich hochgeladen

Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 

Kürzlich hochgeladen (20)

Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

automated perimeters

  • 1. Psychiatry Research: Neuroimaging 147 (2006) 79 – 89 www.elsevier.com/locate/psychresns An automated method for the extraction of regional data from PET images Pablo Rusjan a, , David Mamo a,b , Nathalie Ginovart a,b , Douglas Hussey a , Irina Vitcu a , Fumihiko Yasuno c , Suhara Tetsuya c , Sylvain Houle a,b , Shitij Kapur a,b a PET Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada b Department of Psychiatry, University of Toronto, Canada c Brain Imaging Project, National Institute of Radiological Science, Chiba, Japan Received 19 September 2005; received in revised form 19 January 2006; accepted 20 January 2006 Abstract Manual drawing of regions of interest (ROIs) on brain positron emission tomography (PET) images is labour intensive and subject to intra- and inter-individual variations. To standardize analysis and improve the reproducibility of PET measures, we have developed image analysis software for automated quantification of PET data. The method is based on the individualization of a set of standard ROIs using a magnetic resonance (MR) image co-registered with the PET image. To evaluate the performance of this automated method, the software-based quantification has been compared with conventional manual quantification of PET images obtained using three different PET radiotracers: [11C]-WAY 100635, [11C]-raclopride and [11C]-DASB. Our results show that binding potential estimates obtained using the automated method correlate highly with those obtained by trained raters using manual delineation of ROIs for frontal and temporal cortex, thalamus, and striatum (global intraclass correlation coefficient N 0.8). For the three radioligands, the software yields time–activity data that are similar (within 8%) to those obtained by manual quantification, eliminates investigator-dependent variability, considerably shortens the time required for analysis and thus provides an alternative method for accurate quantification of PET data. © 2006 Elsevier Ireland Ltd. All rights reserved. Keywords: PET; Time–activity curves; Brain template; Region of interest; Automated method; Binding potential 1. Introduction region-based analysis is the averaging of radioactivity in an anatomic or functional structure, called a region of Brain images obtained with positron emission tomog- interest (ROI). Manual techniques for ROI delineation raphy (PET) can be analyzed in two different ways: (a) require highly trained personnel and are subject to intra- using voxel-based methods or (b) using region-based and inter-operator variations, which can ultimately limit methods, the latter method being considered superior for the reproducibility of the results. Additionally, the time data quantification (Hammers et al., 2002). The goal of and the labour required for manual delineation of ROIs have been increased with the advent of high resolution PET scanners that can produce hundreds of PET slices. Corresponding author. Tel.: +1 416 535 8501x4215; fax: +1 416 To circumvent these limitations, computer-aided meth- 260 4164. ods have been developed to facilitate and improve the E-mail address: pablo.rusjan@camhpet.ca (P. Rusjan). reproducibility of the delineation of volumes of interest 0925-4927/$ - see front matter © 2006 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.pscychresns.2006.01.011
  • 2. 80 P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 (VOIs), i.e. set of ROIs describing the single target in a additional benefit of expanding on the number ROIs in volume space. the template as well as allowing for a more anatomically Since tracer distribution in PET imaging does not valid extension of boundaries pertaining to the respective always conform to the simple gray matter/white matter ROIs. Second, a proper differentiation of gray matter demarcations, or the lobar divisions made on the basis of from white matter or cerebrospinal fluid (CSF) is crucial anatomical divisions (e.g. prefrontal vs. motor cortex) for the accurate delineation of ROIs. This process, also (Evans et al., 1991), direct extraction of ROIs from PET called segmentation, uses a predetermined level of prob- images does not necessarily reflect the ROI's precise ability of gray matter (threshold). Since the previous anatomical space. While computer vision techniques have method was subject to error, particularly for small ROIs, been used in some specific situations (Mykkanen et al., we present a solution that is based on a fitting function 2000; Ohyama et al., 2000; Glatting et al., 2004), indirect empirically found. Third, one of the key features of an determination of ROIs from transformation and registra- automated ROI program is the establishment of bound- tion of atlas-based magnetic resonance (MR) images is aries between adjacent ROIs. In the present approach, we the most accepted method to perform region-based created a natural definition of boundary by using mul- analysis of PET images. tiple iterations of the morphological dilatation that pre- Since the earliest work in 1983 (Bajcsy et al., 1983; vents overlap between neighboring ROIs. Finally, we Bohm et al., 1983), we have seen the development of a explored the effect of varying the Full-Width at Half- number of atlases (Bohm et al., 1991; Greitz et al., 1991; Maximum (FWHM) of the Gaussian smoothing filter Mazziotta et al., 1995), non-linear image-matching tech- and the use of proton density (PD) weighted MR images niques (Collins et al., 1995; Thirion, 1998) of one or to improve the segmentation of the subcortical ROIs. more atlases (Hammers et al., 2003) as well as multi- Our aim is to present a methodology incorporating modal registration techniques (Woods et al., 1998a,b; these corrections that is applicable to cortical as well as Ashburner et al., 1997; Hammers et al., 2002; Studholme subcortical structures such as the caudate and putamen. et al., 1999). Several automatic methods have been Our method is validated for its internal consistency and presented for the delineation of ROIs in MR images; reliability versus trained human raters using PET however, most of them have not presented an accurate radioligands with different patterns of brain radioactivity validation to obtain time-activity curves in PET analysis. uptake: [11C]-WAY 100635, which is mainly taken up in Two exceptions are the work presented by Yasuno et al. cortical regions, [11C]-raclopride, which is mainly taken (2002), which we will discuss in detail, and the work of up in the striatum subcortical region, and [11C]-DASB Svarer et al. (2005), which attempts to reduce the which is taken up in both cortical and subcortical regions. individual variability by applying a warping algorithm to several segmented brains to estimate probabilistic ROIs 2. Methods for an individual brain. Yasuno et al. (2002) developed a technique to fit a standard template of ROIs to an Fig. 1 shows a scheme of the method proposed. It individual brain image assisted by a high-resolution consists of the following steps: (1) A standard brain reference MR image. This method utilizes computer template with a set of predefined ROIs is transformed to vision techniques based on the probabilities of gray match individual high-resolution MR images, (2) the matter to refine the transformed ROIs. The major ROIs from the transformed template are refined based limitations of this method, however, are its restricted on the gray matter probability of voxels in the individual applicability to sub-cortical regions (particularly the MR images, and (3) the individual MR images are co- striatum), the template of ROIs expressed in a non- registered to the PET images so that the individual standard brain and its validation using the area under the refined ROIs are transformed to the PET images space. curve (AUC) of the time–activity data, which may be Steps 1 and 3 are executed using the SPM2 (Wellcome affected by compensations of excesses and deficiencies Department of Cognitive Neurology, London, UK) of activities. algorithms of normalization and co-registration. Differ- In the present article, we address these limitations and ent values of cut-off distance and regularizations present the validation of a novel automated method for (smoothness of the deformation fields) are used in the the extraction of time–activity curves (TAC). First, non-linear transformation from the standard brain instead of basing the ROI template on a non-standard template to the subject MR images when SPM defaults space, our approach uses the Montreal Neurological do not satisfy visual inspection of the transformed Institute/International Consortium for Brain Mapping image. Nearest neighbor interpolation is used to (MNI/ICBM) 152 standard brain template, which has the preserve the codification in the ROIs (described
  • 3. P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 81 Fig. 1. Flow chart showing the 3 main steps involved in Yasuno's methodology: Step 1: The ROI template in a standard space is transformed to the MR image space using a non-linear transformation. Step 2: The ROI Template is refined (see Fig. 2) using a probability of gray matter image extracted from the individual MR image. Step 3: The MR image is co-registered to the PET image using the Normalized Mutual Information algorithm carrying the ROI template. below). The multimodal co-registration between the MR number and an additional file was added to the Mayo and the PET images is done using the normalized mutual Clinic Analyze 7.5 Format (www.mayo.edu/bir/PDF/ information algorithm (Studholme et al., 1999) imple- ANALYZE75.pdf) including data on the codification as mented under SPM2. well as other parameters used in the refinement process. The input images are the MR image of the subject The goal of the present work was to show reliability of (T1 or PD), the dynamic PET image of the subject, a set the automated method when compared with manual of ROIs (ROI Template) expressed in a standard brain delineation of ROIs. However, since manual ROI space, and an MR image (MRI Template) in a standard delineation is done on a predetermined number of slices brain space. The standard brain template chosen was the (Bremner et al., 1998), it may not necessarily include all ICBM/MNI 152 PD brain template smoothed with a the anatomical structures under study. In this study we kernel of 8 mm that is included in SPM99 as PD.img limited the number of slices in the template to ap- (http://www.mrc-cbu.cam.ac.uk/Imaging/Common/ proximate volumes used by manual raters: cerebellar templates.shtml). This brain volume has a bounding box ROIs were cropped between slices representing planes of − 90:91, − 126:91, − 72:109 sampled at 2-mm inter- z = −48 and z = −34; putamen, caudate and insula be- vals with the origin of the coordinate system in the tween z = −6 and z = 12 and frontal cortex, thalamus, and anterior commissure and with the anterior/posterior temporal cortex between z = −6 and z = 16 in the Talairach commissural line as a reference to define the plane coordinate system. (Talairach and Tournoux, 1988). where z = 0 (Talairach and Tournoux, 1988). Since currently available methods for non-linear The ROI template was created to fit the standard transformation are inherently imperfect, the transformed brain image. The frontal cortex, temporal cortex, cere- ROIs are refined to reflect individual anatomical var- bellum, insula, and thalamus were taken from the ana- iations. This refinement step consists of iteratively tomical label atlas of Talairach transformed to the adding neighboring missing voxels of the ROIs and standard ICBM/MNI 152 Brain, which is included in the subsequently removing excess voxels from the ROIs WFU toolbox (Maldjian et al., 2003) for SPM. Since the based on the probability of each voxel to belong to the anatomical label atlas of the Talairach daemon does not gray matter. In order to do that, a gray matter probability distinguish between putamen and nucleus pallidus map is created with the segmentation algorithm of SPM2 (referred to as the lentiform nucleus), these two latter followed by the application of a Gaussian smoothing subcortical regions were taken from a segmented MNI filter (FWHM = 5 mm for [11C]-WAY 100635 and [11C]- normalized brain developed by Kabani et al. (1998). In DASB; FWHM = 1mm for [11C]-raclopride). For each the template, each ROI was codified with a unique ROI, a histogram of the probability of each voxel to
  • 4. 82 P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 Fig. 2. The refinement step: a) Due to the variability in the intersubject ROIs and characteristics of the methods of normalization, the template of the ROI is not placed perfectly on the individual brain. b) For each ROI a histogram of values of probability of gray matter is built. The typical shape of this histogram can be fitted by the function shown in Section 2. The maximum of the function is derived analytically. A threshold value of probability is determined as a prefixed fraction of the value that produces the maximum in the histogram. c) Voxels with probability of gray matter in each ROI below the threshold are removed from the ROIs. Secondary to this procedure, the ROI clearly follows the contour of gray matter. d) One iteration of a morphological dilatation is executed. In case of overlap between 2 or more ROIs, overlapped voxels are excluded from all the ROIs. The threshold value of probability is applied again to remove dilated voxels on tissue with low probability of gray matter. This dilatation can be applied iteratively. belong to the gray matter is built. This histogram is fitted threshold of probability and that were excluded in the with the following function: preceding non-linear transformation. This process is a 2 0 12 3 variation of a morphological dilatation (Serra, 1982) with a kernel or its natural extension to three dimensions, 0 1 1 1 1 @1 1 1A ln 1−P 1 1 1 1−P0 4−1@ 2 b A5 performed iteratively and constrained to the probability f ðPÞ ¼ f0 þ aexp ð1Þ of gray matter above the threshold (Fig. 2c and d). To prevent overlap of adjacent ROIs during the dilatation where f(P)represents the number of voxels with process, the following algorithm was applied: in the event probability of gray matter P within the ROI, and P0, f0, of multiple ROIs in the structure element of a voxel, the b and a are the variables to adjust. affected voxel was excluded. The net result of this pro- The threshold value of probability of gray matter is cess when applied iteratively is a natural definition of the determined as a fraction of the value maximizes the boundary of the ROIs. The number of ROIs in the tem- fitting function (P0). The magnitude of this value is plate and the extent of gray matter covered by the ROIs multiplied by 0.85 for the thalamus and 0.90 for all other determine the appropriate number of iterations. Results ROIs. These values are the ones that optimize the results presented in this study were obtained using 2D dilatation in the work of Yasuno et al. (2002). Voxels in the ROIs due to the highly asymmetrical voxel size of our MR corresponding to voxels in the MR image with a images (0.86 × 0.86 × 3mm). A single iteration in the probability of gray matter lower than these thresholds refinement step was performed due to the large space are removed (Fig. 2a and b). between ROIs in the template considered. The next step consists in the expansion of the ROIs The choice of the above parameters was a trade- with the goal of including all voxels that satisfy the off between faithfulness to anatomical detail and
  • 5. P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 83 susceptibility to partial volume effects. A more conser- measured in a series of sequential acquisitions of vative ROI is generally less susceptible to partial volume increasing duration (from 1 to 5 min) for a total duration effects and movement during a dynamic scan. Con- of 90 min. versely, a less conservative approach might incur significant partial volume effects so that the resulting 2.3. PET system AUC of the TACs and radioligand binding potential (BP) are lower. Studies were performed on an eight-ring brain PET camera system Scanditronix GE 2048-15B. The images 2.1. The software were corrected for attenuation with a 68Ge transmission scan and were reconstructed using filtered back The method was automated using software developed projection with a Hanning filter 5mm FWHM. Fifteen de novo by one of the authors (PR). The software runs all axial slice images, each 6.5 mm thick, were obtained. the procedures described in the previous section. It also The intrinsic in-plane resolution of the reconstructed allows for the saving of a tracking file with the images was 4.5mm FWHM. The voxel dimensions were parameters, algorithms employed, and results of each 2, 2, and 6.5mm in x, y, and z axes, with a resolution of procedure. The software was developed in C++ and 128 × 128 × 15. based on an open source cross-platform graphic user interface (wxWindows) and OpenGL. SPM2 is called in 2.4. MR image scanning batch mode using the API interface of MATLAB. The software was successfully compiled with a GNU C++ Each subject underwent MR imaging. Spin-echo compiler under different versions of Window and Linux. sequence T1- and proton density-weighted images were The hardware requirements are a video card supporting obtained on a General Electric Medical System Signa OpenGL. A copy of the software is available on written 1.5-T scanner with x, y, and z voxel dimensions of 0.86, request to the principal author. 0.86, and 3.00 mm, respectively, and a matrix of 256 × 256 × 43. 2.2. Subjects and data acquisition 2.5. Manual delineation of ROIs A total of 28 PET scans previously performed in our PET facilities with three different radiotracers were re- Each subject's MR image scan was co-registered to used for the purpose of the present study. These scans the PET scan by using Rview8/mpr realignment software were performed in healthy control volunteers and were (Studholme et al., 1999). Regions of interest (ROIs) for part of independent research protocols. The three radio- the caudate, putamen, thalamus, occipital cortex, frontal tracers, [11C]-raclopride, [11C]-DASB and [11C]-WAY cortex and cerebellum were drawn by two independent 100635, were chosen based on the different brain distri- raters on the co-registered MR images using commer- bution of their binding: [11C]-raclopride binding to cially available image analysis software (Alice, Hayden dopamine D2 receptors was analyzed in putamen and Image Processing Group, Perceptive Systems Inc., caudate; [11C]-DASB binding to the serotonin transport- Boulder, CO, USA). Both raters used the same criteria er was analyzed in thalamus and [11C]-WAY 100635 to delineate ROIs: the gray matter of the cerebellum was binding to serotonin 5-HT1A receptors was analyzed in drawn on two consecutive slices where the middle cortical regions. cerebellar peduncle was clearly visible, the frontal and Nine PET scans were done after bolus injection of temporal cortices were delineated on three axial MR 370 MBq of the D2-receptor radiotracer [11C]-raclopride. slices in each hemisphere where the striatum was clearly Radioactivity in the brain was measured in a series of visible, and the putamen, caudate, and thalamus were sequential acquisitions of increasing duration (from 1 to drawn on two contiguous slices where each one was 5 min) for a total duration of 60 min. Ten PET scans were clearly visible. Regional radioactivity was determined done after bolus injection of 370 MBq of the serotonin for each frame, corrected for decay, and plotted versus transporter radiotracer [11C]-DASB. Radioactivity in the time considering ROIs in each hemisphere independent- brain was measured in a series of sequential acquisitions ly. Calculation of regional binding potential (BP) values of increasing duration (from 1 to 5 min) for a total du- was done using the Simplified Reference Tissue Model ration of 90min. Nine PET scans were done after bolus (SRTM) (Lammertsma and Hume, 1996) and the kinetic injection of 370MBq of the 5-HT1A receptor radiotracer modeling software PMOD V2.4 (PMOD Technologies [11C]-WAY 100635. Radioactivity in the brain was Ltd., Zurich, Switzerland).
  • 6. 84 P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 Table 1 Table 3 Comparison between BPs and TACs obtained with the automated Comparison between BPs and TACs obtained with the automated method and by the two manual raters in the [11C]-WAY 100635 PET method and by the two manual raters in the [11C]-DASB PET studies studies j = Computer j = Computer j = Rater 2 j = Computer j = Computer j = Rater 2 k = Rater 1 k = Rater 2 k = Rater 1 k = Rater 1 k = Rater 2 k = Rater 1 Thalamus Frontal %BP(j, k)a (mean ± S.D.) 8 (± 15) 2 (± 8) − 7 (±12 %BP(j, k)a (mean ± S.D.) 5 (±4) 5 (±7) 1 (±5) ICC BP by pairs 0.77 0.90 0.87 ICC BP by pairs 0.96 0.92 0.97 Overlap ratiob (mean ± S.D.) 0.51 (±0.06) 0.63 (±0.05) Overlap ratiob( ± S.D.) 0.42 (±.08) 0.36 (±0.06) %TAC(j, k)b (mean ± S.D.) − 8 (±3) − 3 (±2) − 5 (±2) %TAC(j, k) b (mean ± S.D.) 7 (±1) 5 (±2) 2 (±2) Cerebellum Temporal Overlap ratiob (mean ± S.D.) 0.32 (±0.05) 0.67 (±0.10) %BP(j, k)a (mean ± S.D.) 0 (±7) 0 (±7) 0 (±6) %TAC(j, k)b (mean ± S.D.) − 5 (±3) − 3 (±3) − 3 (±1) ICC BP by pairs 0.95 0.93 0.95 a %BP(j, k) is the mean (n = 10) percentage difference of binding Overlap ratiob (mean ± S.D.) 0.47 (±.09) 0.41 (±0.10) potential (BP) values obtained between methods and was calculated as: %TAC(j, k)b (mean ± S.D.) 4 (±4) 2 (±3) 1 (±3) 100% × (BPj − BPk) / BPk with j and k defined in the header of the columns. Cerebellum b Overlap radio, a measure of overlap between ROI, and %TAC(j, k), Overlap ratiob (mean ± S.D.) 0.54 (±0.19) 0.59 (±0.20) the percentage difference of time–activity data, were calculated as %TAC(j, k)b (mean ± S.D.) 3 (±2) 1 (±2) 2 (±4) defined in Section 2.6. a %BP(j, k) is the mean (n = 9) percentage difference of binding potential (BP) values obtained between methods and was calculated as: 2.6. Validation process 100% × (BPj − BPk) / BPk with j and k defined in the header of the columns. b Overlap radio, a measure of overlap between ROI, and %TAC(j, k), We examined the reliability of the new automated the percentage difference of time–activity data, were calculated as method by comparing BP estimates derived using this defined in Section 2.6. method to those derived using manually delineated ROIs as obtained by two independent raters. The reliability of BP values was determined by Table 2 means of the intraclass correlation coefficients (ICC) Comparison between BPs and TACs obtained with the automated (Lahey et al., 1983; Shrout and Fleiss, 1979): method and by the two manual raters in the [11C]-raclopride PET studies BMS−WMS ICCð1; 1Þ ¼ ; ð2Þ j = Computer j = Computer j = Rater 2 BMS þ ðk−1ÞWMS k = Rater 1 k = Rater 2 k = Rater 1 where BMS is the mean square between targets, WMS is Caudate the within-subject mean square and k is the number of %BP(j, k)a (mean ± S.D.) 4 (±3) − 3 (±8) 7 (±8) methods or raters: k = 2 has been used in the comparison ICC BP by pairs 0.94 0.82 0.76 Overlap ratiob (mean ± S.D.) 0.48 (±0.15) 0.48 (±0.15) of BP by pairs in Tables 1, 2, and 3, and k = 3 has been %TAC(j, k)b (mean ± S.D.) −4 (±5) − 4 (±5) 2(± 4) used in the text in Section 3.2. This coefficient can vary between − 1 and + 1 where values close to + 1 indicate Putamen the highest degree of concordance between compared %BP(j, k)a (mean ± S.D.) 1 (±6) − 4 (±9) 6 (±4) values. We calculated the ICC for BP as it is the main ICC BP by pairs 0.86 0.74 0.81 Overlap ratiob (mean ± S.D.) 0.54 (±.09) 0.54 (±0.10) outcome measure used in PET studies. %TAC(j, k)b (mean ± S.D.) −4 (±5) − 4 (±5) 1 (±2) Since TACs with slightly different profiles may give rise to a similar BP, we also computed in each ROI the Cerebellum ICCs for mean activities as well as the mean percentage Overlap ratiob (mean ± S.D.) 0.30 (±0.05) 0.53 (±0.13) difference across subjects between TACs as follows: %TAC(j, k)b (mean ± S.D.) −6 (±3) − 2 (±2) − 4 (± 2) a N X %BP(j, k) is the mean (n = 9) percentage difference of binding potential (BP) values obtained between methods and was calculated as: %TACðj; kÞ ¼ ðAij −Aik Þ=Aik  100% ð3Þ 100% × (BPj − BPk) / BPk with j and k defined in the header of the i¼1 columns. b Overlap radio, a measure of overlap between ROI, and %TAC(j, k), where j and k can be either rater 1, rater 2 or the the percentage difference of time–activity data, were calculated as computer, N is the total number of data points in the defined in Section 2.6. TAC, and Aji is the activity value in a given data point i
  • 7. P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 85 To obtain a measure of the overlap between the ROI drawn by the computer and the ROI drawn by the human rater, the overlap ratio that was defined as: (ROI computer ∩ ROI rater ) / (ROI computer ∪ ROI rater ) was used. The numerator represents the intersection ROI between computer and human rater, and the dominator represents the union ROI drawn by both. An overlap ratio value of 1 means complete agreement, a value of 0 means no overlap at all, and an overlap of 75% in two ROIs of the same size has a overlap ratio 0.6 (Carmichael et al., 2005). 3. Results 3.1. Methodological issues Yasuno et al. (2002) identified the maximum value of the histogram of probability inside of the ROI and then defined the threshold of probability as a fraction of this peak value. While this procedure may be adequate for large ROIs, the paucity of statistics within a small ROI may result in the occurrence of multiple peaks in the histogram as a result of either poor statistics (symbols in Fig. 3a) or a shift of the ROI into adjacent cerebrospinal fluid or white matter (symbols in Fig. 3b). We defined a fitting function that clearly characterized the gray matter (dashed lines in Fig. 3a and b). If the fitting is not successful, the procedure is aborted and a new attempt can be made to improve the parameters used in the non- linear transformation. Yasuno et al. (2002) applied a 6-mm FWHM smoothing filter on the probability image of gray matter (Fig. 4a). This value was adequate for cortical regions but may be excessive for the striatum due to poor segmentation of the subcortical region, particularly in Fig. 3. Two examples in which the fitting function gives robusticity to the border of the insula–putamen. The solution the method. In the superior section of the figure, the transformed left proposed in this work is as follows: for a cortical ROI thalamus and right caudate are shown on a 5-mm smooth gray matter where gyri and sulci result in a discontinuity in probability map. (a) The thalamus falling half inside of the gray matter probability of gray matter, a filter of 5 mm (FWHM) is and half outside shows a histogram of probability of gray matter that presents multiple peaks. The fitting function finds the overall shape of applied, while a smaller filter of 1 mm (FWHM) is more the histogram and gives a precise value for the maximum. (b) The appropriate for more homogenous subcortical ROIs caudate is almost outside of the gray matter so the maximum of the such as the putamen or caudate. The results obtained fitting function falls in the negatives values of probability. The solution when applying a 1-mm filter (FWHM) for segmentation proposed in this work to this last case in caudate or putamen uses 1-mm of the striatum are illustrated in Fig. 4b. The procedure smoothing. allowed a successful separation of right insula–putamen as measured by j. An overall positive value of %TAC on the right hemisphere but was, as observed in some (j = computer, k = rater1) indicates that activities obtained cases, unable to resolve it in the left hemisphere. using the computer (i.e. automated method) are It is important to note that in this work we have used systematically higher than those obtained manually by PD-weighted MR images that present a greater contrast rater 1 in a given ROI. ROIs were drawn in both in the subcortical areas than T1-weighted MR images: hemispheres, but data from the same ROI were pooled resulting in a better segmentation by SPM in these to obtain the mean of %TAC(j, k). regions.
  • 8. 86 P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 Fig. 4. Sections (a) and (b) show the differences in the striatum–insula boundaries when the probability maps of gray matter are smoothed with a Gaussian filter of FWHM = 6mm and FWHM = 1 mm, respectively. A large size of the filter completely removes the boundaries (a), and a smaller filter (b) is not enough in some cases to see the border. The solution proposed in this work is to add an ROI representing the insula in which to find a border between both ROIs. Section (c) shows the ROIs on the MR image after 4 iterations of the refinement step. Morphological dilatation of an ROI may result in the rized in Table 1. We found very high correlations be- overlap of two or more adjacent ROIs. Thus, in our tween BP values obtained from manual delineation of method, the growth of an ROI is limited to one voxel in the ROIs and those obtained using the automated meth- every point of the surface of the ROI during each od in both frontal (ICC = 0.95) and temporal (ICC = iteration. Voxels that overlap are not allowed to dilate 0.94) cortices. The differences between BP values were further. Iterative application of this procedure not only minimal, being only 5% for the frontal cortex. No avoids overlap but also stops unwanted growth of the difference was observed for BP values in temporal ROIs. Taking advantage of this property, we have cortex. included the insula to create a natural boundary for the Comparison of the TAC data obtained by the manual putamen. A border automatically appears in images raters and those obtained by the automated method also where the map of probability of the gray matter does not demonstrated a very high correlation in both brain present a border insula–putamen. This can be seen for structures, with an ICC N 0.99. Moreover, the overall the border between the left insula and the left putamen in difference between TAC data obtained with the auto- Fig. 4b and c. mated method and those obtained by the manual raters was positive, thereby indicating that radioactivity con- 3.2. Validation results centrations obtained using the automated method were systematically higher than those obtained by the manual The first step of the validation procedure was to perform a rigorous visual inspection to check concor- dance between the automated ROIs and the anatomical images as well as the manually drawn ROIs. A global comparison of 92 BPs obtained by two independent raters and with our automated method for five ROIs and three radiotracers in 28 subjects showed a very good correlation (r = 0.96 for each rater; Fig. 5). The linear regression for each rater with respect to the computer shows a straight line near to the identity line (slopes 0.94 and 1.02 and intercepts 0.1 and − 0.2, respectively). A detailed comparison of these results is presented in the next three subsections. 3.2.1. Frontal and temporal cortex: studies using [11C]-WAY 100635 Fig. 5. Comparison of 92 BPs obtained by two independent raters and The results for nine subjects using [11C]-WAY with our computer software for 5 ROIs and 3 radiotracers in 28 100635 in the temporal and frontal ROIs are summa- subjects.
  • 9. P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 87 raters (Table 1). The overlap ratio between ROIs for 4. Discussion frontal and temporal cortex was around 0.4 (see Table 1). A complete visual comparison of the ROIs (not Our principal goal was to develop an automated presented here) shows that the automated method was method to delineate brain ROIs, generate TACs, and able to carefully delineate the cortices according to their derive BP measures of PET radioligands binding. The typical sulci, resulting in a more accurate definition of reliability of the method was tested by comparing TACs the ROIs than the manually obtained ROI. and BP measures obtained with this method with those obtained by a conventional manual procedure accom- 3.2.2. Striatum: studies using [11C]-raclopride plished by two experienced raters. Our results showed The results for nine subjects using [11C]-raclopride in that the automated method yielded fully reproducible the caudate and putamen are summarized in Table 2. We TAC and BP data that were highly consistent with those found good agreement between automated and manu- obtained by manual drawing of ROIs. For all TAC ally derived BPs in the caudate (ICC = 0.837) and the obtained, the ICCs were greater than 0.95, and for each putamen (ICC = 0.800), with the BP value falling be- ROI the ICC for BP was in the range of 0.8–0.95 — tween both raters. suggesting that our method is consistent with the results The ICC for all TACs was 0.96. The mean percentage obtained by well-trained raters. More importantly, any differences between radioactivity levels measured by the trained rater introduces intra-rater variance in the computer and the manual raters, %TAC(j = computer, decision regarding ROI boundaries made in every new k = manual), were in general negative. The overlap ratio attempt. In that respect, the “intra-rater” reproducibility for the caudate was 0.48 and for the putamen was 0.54. of our automatic method is always 100% due to its Differences in BPs are probably explained by different automated nature. It means the difference between two or criteria used by the manual rater to draw the reference more consecutive automated BP determinations is ROI (cerebellum). The computer drew similarly to rater always 0% while, according to studies performed in 2, including the whole cortex of the cerebellum. Rater 1 our laboratory, the manual intra-rater reproducibility is, drew the cerebellum excluding the vermis. This may for example, 3% in striatum using [11C]-raclopride (data explain the somewhat smaller overlap ratio in the cere- not shown). Regarding the inter-rater differences, our bellum between the computer and rater 1. method could not be distinguished from the manual raters. For the temporal cortex, caudate and putamen, the 3.2.3. Thalamus: studies using [11C]-DASB automated method generally gave an intermediate BP BP values obtained in thalamus using [11C]-DASB value between those obtained by the two raters. For the are summarized in Table 3. There was a good agreement frontal cortex and thalamus, it gave values generally between BP estimates obtained using the manual and the higher than those obtained by the manual raters. Thus, automated methods (ICC = 0.819). The BPs generated from all perspectives of inter-rater variance, this method by the two manual raters were different (mean = 7%) and performs quite well, with the added advantage of no highly variable (S.D. = 12%). The computer yielded intra-rater variance. higher BPs with respect to both raters, with values closer The criteria to solve the overlap of two or more to those generated by rater 2 (2%). adjacent ROIs during the dilatation in the refinement Evaluation of the TACs obtained by the automated step are an important contribution to the original and manual methods also showed excellent agreement method. As a result, BPs obtained in putamen were (ICC for TAC N 0.98). Radioactivity concentrations reliable and highly consistent with those estimated by obtained by the manual raters were higher than those manual rating. This was achieved through the inclusion obtained by the computer. With respect to rater 2, the of the insula as an ROI, which limited the excessive differences in cerebellum and thalamus were similar (% dilatation of the ROI in the putamen. The number of TAC(j = computer, k = rater2) = 3%). For rater 1, differ- iterations of the dilatation depends on the quantity of ences for thalamus (%TAC(j = computer, k = rater1) = ROIs included in the template as well as the volume of − 8%) were more important than for cerebellum (%TAC gray matter covered by the ROIs. For a limited number (j = computer, k = rater1) = − 5%), which explains the of small ROIs (representing a limited fraction of the gray larger differences in BPs. The computer drew a thalamus matter volume), excessive iterations will likely lead to and a cerebellum closer to rater 2 (overlap ratio N 0 .6). A ROIs beyond their true anatomical boundaries. Con- different criterion in drawing the cerebellum, as in the versely, multiple iterations for large ROIs covering most previous section, may explain the low overlap ratio or all of the gray matter will lead to a stable solution. The (0.32) with rater 1 and the difference in BPs. use of a standard template of ROIs has conferred higher
  • 10. 88 P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 accuracy for ROI definition through the adoption of Bohm, C., Greitz, T., Kingsley, D., Berggren, B.M., Olsson, L., 1983. accepted standard methodology. Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. AJNR American Journal of Neurora- Finally, it should be noted that while the procedure diology 4, 731–733. described here does not necessarily require any direct Bohm, C., Greitz, T., Seitz, R., Eriksson, L., 1991. Specification and intervention from the user, we suggest that some user selection of regions of interest (ROIs) in a computerized brain supervision is required after the non-linear transforma- atlas. Journal of Cerebral Blood Flow and Metabolism 11, A64–A68. tion is performed by SPM to ensure a correct global Bremner, J.D., Bronen, R.A., De Erasquin, G., Vermetten, E., Staib, initial position of the ROIs. The time demanded for a L.H., Ng, C.K., Soufer, R., Charney, D.S., Innis, R.B., 1998. single study is around 10 min in a PC Pentium 4, Development and reliability of a method for using magnetic 2.6 GHz, 1 GB RAM. resonance imaging for the definition of regions of interest for positron emission tomography. Clinical Positron Imaging 1, 5. Conclusion 145–159. Carmichael, O.T., Aizenstein, H.A., Davis, S.W., Becker, J.T., Thompson, P.M., Meltzer, C.C., Liu, Y., 2005. Atlas-based We described a new method for automatic ROI hippocampus segmentation in Alzheimer's disease and mild delineation and generation of TACs for brain PET cognitive impairment. Neuroimage 27, 979–990. images, addressing the limitations of previous work by Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A., 1995. Automatic Yasuno et al. (2002). The fitting function of the gray 3-d model-based neuroanatomical segmentation. Human Brain Mapping 3, 190–208. matter probability, the criteria to find borders during the Evans, A.C., Marrett, S., Torrescorzo, J., Ku, S., Collins, L., 1991. dilatation, the new template expressed in a standard MRI–PET correlation in three dimensions using a volume-of- space, and the change in the smoothing of the template interest (VOI) atlas. Journal of Cerebral Blood Flow and confer excellent stability, increasing the probability of Metabolism 11, A69–A78. recognizing small ROIs and aborting the process when Glatting, G., Mottaghy, F.M., Karitzky, J., Baune, A., Sommer, F.T., Landwehrmeyer, G.B., Reske, S.N., 2004. Improving binding the non-linear transformation leads to insurmountable potential analysis in [11C]raclopride PET studies using cluster initial conditions. The validation of our method based analysis. Medical Physics 31, 902–906. on the reliability of BP values introduces a rigorous test Greitz, T., Bohm, C., Holte, S., Eriksson, L., 1991. A for the procedure. computerized brain atlas: construction, anatomical content, The method only tries to correct inaccuracy on the and some applications. Journal of Computer Assisted Tomog- raphy 15, 26–38. non-linear transformation. When new image-to-image Hammers, A., Koepp, M.J., Free, S.L., Brett, M., Richardson, M.P., matching algorithms (Thirion, 1998), geodesics actives Labbe, C., Cunningham, V.J., Brooks, D.J., Duncan, J., 2002. contour, and other state of the art algorithms of com- Implementation and application of a brain template for multiple puter vision are fully automated, validated and freely volumes of interest. Human Brain Mapping 15, 165–174. Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux, available for non-rigid registration of MR images, the L., Mitchell, T.N., Brooks, D.J., Duncan, J.S., 2003. Three- necessity of such a correction will likely decrease. Until dimensional maximum probability atlas of the human brain, with that time, this method provides a tool for the particular reference to the temporal lobe. Human Brain Mapping individualization of the standard atlas using widely 19, 224–247. accepted software like SPM. Kabani, N.J., MacDonald, D., Holmes, C.J., Evans, A.C., 1998. 3D anatomical atlas of the human brain. Neuroimage 7, S717. Lahey, M.A., Downey, R.G., Saal, F.E., 1983. Intraclass correlations: Acknowledgments there's more there than meets the eye. Psychological Bulletin 93, 586–595. We thank Alvina Ng and Anahita Boovariwala for Lammertsma, A.A., Hume, S.P., 1996. Simplified reference tissue drawing the ROIs, Noor Kabani for the templates of model for PET receptor studies. Neuroimage 4, 153–158. anatomical regions of interest, Jeff Meyer for providing Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H., 2003. An automated method for neuroanatomic and cytoarchitectonic atlas- PET data and Laura Acion for statistical help. based interrogation of fMRI data sets. Neuroimage 19, 1233–1239. Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J., 1995. A References probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K., 1997. (ICBM). Neuroimage 2, 89–101. Incorporating prior knowledge into image registration. Neuro- Mykkanen, J.M., Juhola, M., Ruotsalainen, U., 2000. Extracting VOIs image 6, 344–352. from brain PET images. International Journal of Medical Bajcsy, R., Lieberson, R., Reivich, M., 1983. A computerized system Informatics 58–59, 51–57. for the elastic matching of deformed radiographic images to Ohyama, M., Senda, M., Mishina, M., Kitamura, S., Tanizaki, N., idealized atlas images. Journal of Computer Assisted Tomography Ishii, K., Katayama, Y., 2000. Semi-automatic ROI placement 7, 618–625. system for analysis of brain PET images based on elastic model:
  • 11. P. Rusjan et al. / Psychiatry Research: Neuroimaging 147 (2006) 79–89 89 application to diagnosis of Alzheimer's disease. Keio Journal of Approach to Medical Cerebral Imaging. Georg Thieme Verlag, Medicine 49 (Suppl 1), A105–A106. Stuttgart. Serra, J.P., 1982. Image Analysis and Mathematical Morphology. Thirion, J.P., 1998. Image matching as a diffusion process: an analogy Academic Press, London; New York. with Maxwell's demons. Medical Image Analysis 2, 243–260. Shrout, P.E., Fleiss, J.L., 1979. Intraclass correlations: uses in Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, assessing rater reliability. Psychological Bulletin 86, 420–428. J.C., 1998a. Automated image registration: I. General methods Studholme, C., Hill, D.L.G., Hawkes, D.J., 1999. An overlap invariant and intrasubject, intramodality validation. Journal of Computer entropy measure of 3D medical image alignment. Pattern Assisted Tomography 22, 139–152. Recognition 32, 71–86. Woods, R.P., Grafton, S.T., Watson, J.D., Sicotte, N.L., Mazziotta, Svarer, C., Madsen, K., Hasselbalch, S.G., Pinborg, L.H., Haugbol, S., J.C., 1998b. Automated image registration: II. Intersubject valida- Frokjaer, V.G., Holm, S., Paulson, O.B., Knudsen, G.M., 2005. tion of linear and nonlinear models. Journal of Computer Assisted MR-based automatic delineation of volumes of interest in human Tomography 22, 153–165. brain PET images using probability maps. Neuroimage 24, Yasuno, F., Hasnine, A.H., Suhara, T., Ichimiya, T., Sudo, Y., Inoue, 969–979. M., Takano, A., Ou, T., Ando, T., Toyama, H., 2002. Template- Talairach, J., Tournoux, P., 1988. Co-Planar Stereotaxic Atlas of the based method for multiple volumes of interest of human brain PET Human Brain: Three-Dimensional Proportional System: An images. Neuroimage 16, 577–586.