SlideShare ist ein Scribd-Unternehmen logo
1 von 58
Numerical Methods and Analysis
Faruque Abdullah
Lecturer
Dept. of Civil Engineering
Dhaka International University
Roots of a equation
Roots of a equation is calculated by the following methods:
 Bi-section method
 Iteration method
 Method of false position/ Interpolation method
 Newton Raphson method, etc.
Bi-section/ Interval Halving Method(IVT)
IVT: If a function f(x) is continuous between a and b and f(a) and
f(b) is opposite sign, then there exists at least one root between a
and b.
f(x) = 𝑥4
- 2x;
f(2) = -ve
f(3) = +ve
 x =
𝑎+𝑏
2
=
2+3
2
= 2.5
Procedure:
Step-1: Choose a real two numbers a and b such that f(a)f(b)<0
Step-2: Set, 𝑥 𝑟 =
𝑎+ 𝑏
2
Step-3: a) If f(a) f(𝑥 𝑟) < 0, the root lies in the interval (a,𝑥 𝑟), Then
set b = 𝑥 𝑟 and go to step 2.
b) If f(a) f(𝑥 𝑟) > 0, the root lies in the interval (𝑥 𝑟,b), Then
set a = 𝑥 𝑟 and go to step 2.
c) If f(a) f(𝑥 𝑟) = 0, it means that 𝑥 𝑟 is a root of the
equation f(x) = 0 and the computation may be terminated.
Problem-1: Find a real root of the equation 𝑥3- 2x-5 = 0 by bi-section method
up to an accuracy of 10−4.
Solution: Let, f(x) = 𝑥3 - 2x -5
f(2) = 23 - 2.2 – 5 = -1
f(3) = 33
- 2.3 – 5 = 16
As f(2) is –ve and f(3) is +ve .
So f(2) f(3) < 0.
 Root lies between 2 and 3.
n a b 𝑥 𝑟 f(x)
(sign)
f(x)
1 2 3 2.5 +ve +5.63
2 2 2.5 2.25 +ve +1.89
3 2 2.25 2.125 +ve +0.34
4 2 2.125 2.0625 -ve -0.35
5 2.0625 2.125 2.09375 -ve -8.94 x10−3
6 2.09375 2.125 2.109375 +ve +0.17
7 2.09375 2.109375 2.1015625 +ve +0.08
8 2.09375 2.1015625 2.09765625 +ve +0.03
9 2.09375 2.09765625 2.095703125 +ve +0.01
10 2.09375 2.095703125 2.094726563 +ve +1.95 x 10−3
11 2.09375 2.094726563 2.094238282 -ve -3.5 x 10−3
12 2.094238282 2.094726563 2.094482423 -ve -7.7 x 10−4
Problem-2: Figure shows a uniform subject to a linearly increasing distributed load.
The equation of the resulting elastic curve , y =
𝑤0
120𝐸𝐼𝐿
(-𝑥5
+ 2𝐿2
𝑥3
-𝐿4
𝑥). Use bi-
section method to determine point of maximum deflection up to an accuracy of 10−10
.
Use the following parameter. E = 50000 KN/𝑐𝑚2, I = 30000 𝑐𝑚4, 𝑤0 = 2.5 KN/cm, L
= 3 m.
3 m
𝑤0
Solution: For maximum deflection,
𝑑𝑦
𝑑𝑥
= 0

𝑑𝑦
𝑑𝑥
=
𝑤0
120𝐸𝐼𝐿
x
𝑑𝑦
𝑑𝑥
(-𝑥5 + 2 𝐿2 𝑥3-𝐿4 𝑥)
=
𝑤0
120𝐸𝐼𝐿
x (-5𝑥4 + 6 𝐿2 𝑥2-𝐿4)
=
2.5
120 X 50000 X 30000 X 300
x (-5𝑥4 + 6. 3002 𝑥2-3004)
= 4.63 x 10−14 x (- 5𝑥4 + 540000 𝑥2- 3004)
Let, f(x) = 4.63 x 10−14
x (- 5𝑥4
+ 540000 𝑥2
- 3004
)
f(134) = -7.34 x 10−7
f(135) = 3.73 x 10−6
As f(134) is –ve and f(135) is +ve .
So f(134) f(135) < 0.
 Root lies between 134 and 135.
n a b 𝑥 𝑟 f(x)
(sign)
f(x)
1 134 135 134.5 +ve +1.5 x 10−6
2 134 134.5 134.25 +ve +3.84 10−7
3 134 134.25 134.125 -ve -1.75 x 10−7
4 134.125 134.25 134.1875 +ve +1.05 x 10−7
5 134.125 134.1875 134.15625 -ve -3.5 x 10−8
6 134.15625 134.1875 134.171875 +ve +3.5 x 10−8
7 134.15625 134.171875 134.1640625 -ve -7.22 x 10−11
Method of False Position
(0,0)
X
Y
[a, f(a)]
[b, f(b)]
f(x) 𝑦−𝑓(𝑎)
𝑥−𝑎
=
𝑓 𝑏 − 𝑓(𝑎)
𝑏−𝑎
Let, y = 0,
−𝑓(𝑎)
𝑥−𝑎
=
𝑓 𝑏 − 𝑓(𝑎)
𝑏−𝑎
 x-a = -
(𝑏−𝑎)𝑓(𝑎)
𝑓 𝑏 −𝑓(𝑎)
 x = a -
(𝑏−𝑎)𝑓(𝑎)
𝑓 𝑏 −𝑓(𝑎)
Derive the root of a curve f(x) by False Position method.
Newton Raphson Method
Let, 𝑥0 be a root of the function f(𝑥0) = 0 and assume that 𝑥1 = 𝑥0 + h be the correct
root of the function f(𝑥1) = 0.
𝑥1 = 𝑥0 + h -----------------(1)
f(𝑥1) = 0
f(𝑥0 + h) = 0-----------------(2)
Expanding eq (2) by Tailor’s series we get,
f(𝑥0) + h𝑓′(𝑥0) +
ℎ2
2!
𝑓′′(𝑥0) + ----- = 0
Neglecting 2nd and higher order derivatives,
f(𝑥0) + h𝑓′
(𝑥0) = 0
Or, h = -
f( 𝑥0)
𝑓′( 𝑥0)
From eq (1),
𝑥1 = 𝑥0 -
f( 𝑥0)
𝑓′( 𝑥0)
Similar approximation for 𝑥2, 𝑥3, ----, 𝑥 𝑛+1 we get,
𝑥2 = 𝑥1 -
f( 𝑥1)
𝑓′( 𝑥1)
𝑥3 = 𝑥2 -
f( 𝑥2)
𝑓′( 𝑥2)
-------------
𝑥 𝑛+1 = 𝑥 𝑛 -
f( 𝑥 𝑛)
𝑓′( 𝑥 𝑛)
This is Newton Raphson Formula.
Problem-3: Find a real root of the equation 𝑥3- 2x-5 = 0 by Newton Raphson
method.
Solution: Let, f(x) = 𝑥3 - 2x -5
f(𝑥 𝑛) = 𝑥 𝑛
3 - 2𝑥 𝑛 -5
𝑓′(𝑥 𝑛) = 3𝑥 𝑛
2
- 2
From Newton Raphson Formula,
𝑥 𝑛+1 = 𝑥 𝑛 -
f( 𝑥 𝑛)
𝑓′( 𝑥 𝑛)
= 𝑥 𝑛 -
𝑥 𝑛
3 − 2 𝑥 𝑛 −5
3𝑥 𝑛
2 − 2
Putting n=0,
𝑥1 = 𝑥0 -
𝑥0
3 − 2 𝑥0 −5
3𝑥0
2 − 2
Assume, 𝑥0 = 2
𝑥1 = 2 -
23 − 2(2) −5
3(22) − 2
= 2.1
𝑥2 = 2.1 -
2.13 − 2(2.1) −5
3(2.1)2 − 2
= 2.0946
𝑥3 = 2.0946 -
2.09463 − 2(2.0946) −5
3(2.0946)2 − 2
= 2.0946
Problem-4: You are designing a spherical tank to hold water for a small village in a
developing country. The volume of liquid can be calculated as V = πℎ2 [3𝑅−ℎ]
3
. If R = 3
m, to what depth must the tank be filled so that it holds 30 𝑚3 water?
Solution: V = πℎ2 [3𝑅−ℎ]
3
=> 30 = πℎ2 [3.3−ℎ]
3
=> 90 = πℎ2(9-h)
=>
90
𝜋
= 9ℎ2 - ℎ3
=> ℎ3
- 9ℎ2
+ 28.65 = 0
Let, f(h) = ℎ3 - 9ℎ2 + 28.65
f(ℎ 𝑛) = ℎ 𝑛
3
- 9ℎ 𝑛
2
+ 28.65
𝑓′(ℎ 𝑛) = 3ℎ 𝑛
2
- 18ℎ 𝑛
From Newton Raphson Formula,
ℎ 𝑛+1 = ℎ 𝑛 -
f(ℎ 𝑛)
𝑓′(ℎ 𝑛)
= ℎ 𝑛 -
ℎ 𝑛
3
− 9ℎ 𝑛
2
+ 28.65
3ℎ 𝑛
2
−18ℎ 𝑛
Putting n=0,
ℎ1 = ℎ0 -
ℎ0
3
− 9ℎ0
2
+ 28.65
3ℎ0
2
− 18ℎ0
Assume, ℎ0 = 2
ℎ1 = 2 -
23 − 9(2)2+28.65
3(22) −18(2)
= 2.027
ℎ2 = 2.027 -
2.0273 − 9(2.027)2+28.65
3(2.0272) −18(2.027)
= 2.02699
ℎ3 = 2.02699 -
2.026993 − 9(2.02699)2+28.65
3(2.026992) −18(2.02699)
= 2.02699
Required depth is 2.02699 m to hold 30 𝑚3 volume of water in the tank.
Interpolation
Interpolation Method
Forward difference table:
x y ∆ ∆2 ∆3 ∆4
∆5 ∆6
x0 y0
∆y0
x1 y1 ∆2y0
∆y1 ∆3y0
x2 y2 ∆2
y1 ∆4
y0
∆y2 ∆3
y1 ∆5
y0
x3 y3 ∆2
y2 ∆4
y1 ∆6
y0
∆y3 ∆3y2 ∆5y1
x4 y4 ∆2
y3 ∆4
y2
∆y4 ∆3y3
x5 y5 ∆2
y4
∆y5
x6 y6
∆y0 = y1 - y0
∆2
y0 = ∆y1 - ∆y0 = y2 - y1- y1 + y0 = y2 - 2y1 + y0
∆3
y0 = ∆2
y1 - ∆2
y0 = y3 - 2 y2 + y1 - y2 + 2 y1 - y0 = y3 - 3 y2 + 3 y1 - y0
--------------------------------------------Continue--------------------------------------------
Newton’s Formula for Forward Interpolation
Let, y = f(x) denote a function which takes the values from y0, y1, y2,
y3,……….., yn for the equidistance values x0, 𝑥1, 𝑥2, 𝑥3,……….., xn. Φ(x)
denote a function of polygonal for nth degree. As x is equidistance xi = x0 +
ih. Where, i = 1,2,3,…….,n.
x1 = x0 + h
=> (x1 - x0) = h
x2 = x0 + 2h
=> (x2 - x0) = 2h
The polynomial φ(x) = 𝑎0 + 𝑎1 (x-x0) + 𝑎2 (x-x0) (x-x1) + 𝑎3 (x-x0) (x-x1) (x-x2)
+ ………………..+ 𝑎 𝑛 (x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1) ………(1)
When, x = 𝑥0, φ(x) = 𝑎0 = 𝑦0
When, x = 𝑥1, φ(x) = 𝑎0 + 𝑎1 (x1 -x0) = 𝑦1
 𝑎1 =
𝑦1−𝑦0
𝑥1−𝑥0
=
∆y0
ℎ
When, x = 𝑥2, φ(x) = 𝑎0 + 𝑎1 (x2 -x0) + 𝑎2 (x2 -x0) (x2 -x1) = 𝑦2
=> 𝑦2 = 𝑦0 +
∆y0
ℎ
. 2h + 𝑎2 . 2h . h [∆y0 = 𝑦1-𝑦0]
=> 𝑎2 =
𝑦2−2𝑦1+ 𝑦0
2ℎ2 =
∆2y0
2!ℎ2
Similarly we can write,
𝑎3 =
∆3y0
3!ℎ3 ; 𝑎4 =
∆4y0
4!ℎ4 ; ……., 𝑎 𝑛 =
∆ny0
𝑛!ℎ 𝑛
Putting this value in eq (1), we get,
φ(x) = 𝑦0 +
∆y0
ℎ
(x-x0) +
∆2y0
2!ℎ2 (x-x0) (x-x1) +
∆3y0
3!ℎ3 (x-x0) (x-x1) (x-x2) +
………………..+
∆ny0
𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1)
Let us assume, x = x0 + ph
=> p =
𝑥 − 𝑥0
ℎ
=>
𝑥 − 𝑥1
ℎ
=
𝑥 −𝑥0−ℎ
ℎ
=
𝑥 −𝑥0
ℎ
- 1= p-1
=>
𝑥 − 𝑥2
ℎ
=
𝑥 −𝑥0−2ℎ
ℎ
=
𝑥 −𝑥0
ℎ
- 2 = p-2
φ(x) = 𝑦0 +
∆y0
ℎ
(x-x0) +
∆2y0
2!ℎ2 (x-x0) (x-x1) +
∆3y0
3!ℎ3 (x-x0) (x-x1) (x-x2) +
………………..+
∆ny0
𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1)
 φ(x) = 𝑦0 + p ∆y0 + p (p-1)
∆2y0
2!
+ p (p-1)(p-2)
∆3y0
3!
+ ………………..+ p (p-1)
(p-2) ……… p(p-n+1)
∆ny0
𝑛!
Problem-5: Find the cubic polynomial which takes the following values
y(1) = 24
y(3) = 120
y(5) = 336
y(7) = 720
Hence, obtain the values of y(8) by Newton’s Forward Interpolation method.
Solution: We make the forward difference table,
h = (x1 - x0) = 3 – 1 = 2
x = 𝑥0 + ph => p =
𝑥 − 𝑥0
ℎ
=> p =
8 −1
2
= 3.5
x y ∆ ∆2 ∆3
1 24
96
3 120 120
216 48
5 336 168
384
7 720
From Newton’s formula for forward interpolation,
y(x) = 𝑦0 + p∆ 𝑦0 + p (p-1)
∆2 𝑦0
2!
+ p (p-1) (p-2)
∆3 𝑦0
3!
=> y(8)= 24 + 3.5 x 96 + 3.5 (3.5-1) x
120
2!
+ 3.5 (3.5-1) (3.5-2) x
48
3!
= 990.
Problem-6: Find the cubic polynomial which takes the following values
y(1) = 24
y(3) = 120
y(5) = 336
y(7) = 720
Hence, obtain the values of y(6) by Newton’s Backward Interpolation method.
Newton’s Formula for Backward Interpolation
Solution: We make the backward difference table,
h = (x1 - x0) = 3 – 1 = 2
x = 𝑥 𝑛 + ph => p =
𝑥 − 𝑥 𝑛
ℎ
=> p =
6 −7
2
= -0.5
x y ∇ ∇ 2
∇ 3
1 24
96
3 120 120
216 48
5 336 168
384
7 720
From Newton’s formula for backward interpolation,
y(x) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1)
∆2 𝑦 𝑛
2!
+ p (p+1)(p+2)
∆3 𝑦 𝑛
3!
=> y(6)= 720 + (-0.5) x 384 + (-0.5) (-0.5+1) x
168
2!
+ (-0.5) (-0.5+1) (-0.5+2) x
48
3!
= 576.
Problem-6: The table shows the value of tanx for 0.1 ≤ x ≤ 0.3
Find, (a) tan(0.12) by Forward Interpolation Method
(b) tan(0.26) by Backward Interpolation Method.
x Y = tanx
0.10 0.1745
0.15 0.2618
0.20 0.3491
0.25 0.4363
0.30 0.5236
Solution: We make the forward difference table,
x y ∆ ∆2
∆3
∆4
0.10 0.1745
0.0873
0.15 0.2618 0
0.0873 0
0.20 0.3491 0 0
0.0873 0
0.25 0.4364 0
0.0873
0.30 0.5237
(a) h = (x1 - x0) = 0.15 – 0.10 = 0.05
x = 𝑥0 + ph => p =
𝑥 − 𝑥0
ℎ
=> p =
0.12 −0.10
0.05
= 0.4
For Newton’s Forward formula,
tan(0.12) = 𝑦0 + p∆ 𝑦0 + p (p-1)
∆2 𝑦0
2!
+ p (p-1) (p-2)
∆3 𝑦0
3!
+ p (p-1) (p-2) (p-3)
∆4 𝑦0
4!
= 0.1745 + 0.4 x 0.0873 + 0.4 (0.4-1)
0
2!
+ 0.4 (0.4-1) (0.4-2)
0
3!
+
0.4 (0.4-1) (0.4-2)
0
4!
= 0.2094
(b) h = (x1 - x0) = 0.15 – 0.10 = 0.05
x = 𝑥 𝑛 + ph => p =
𝑥 − 𝑥 𝑛
ℎ
=> p =
0.26 −0.30
0.05
= -0.8
For Newton’s Backward formula,
tan(0.26) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1)
∆2 𝑦 𝑛
2!
+ p (p+1) (p+2)
∆3 𝑦 𝑛
3!
+ p (p+1) (p+2) (p+3)
∆4 𝑦 𝑛
4!
= 0.5237 + -0.8 x 0.0873 + -0.8 (-0.8+1)
0
2!
- 0.8 (-0.8+1) (-0.8+2)
0
3!
-
0.8 (-0.8+1) (-0.8+2)
0
4!
= 0.4538
Problem-7: The discharge through a hydraulic structure for different values of
head (H) is shown in table.
Calculate discharge, Q for H=3 ft using Lagrange formula.
H (ft) 1.2 2.1 2.7 4.0
Q (cusec) 25 60 90 155
Solution: From Lagrange formula,
Q (cusec) =
(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3)
𝑦0 +
(𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3)
𝑦1 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3)
(𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3)
𝑦2 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)
(𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2)
𝑦3
=
(3−2.1)(3−2.7)(3−4)
(1.2−2.1)(1.2−2.7)(1.2−4)
25 +
(3−1.2)(3−2.7)(3−4)
(2.1−1.2)(2.1−2.7)(2.1−4)
60 +
(3−1.2)(3−2.1)(3−4)
2.7−1.2 2.7−2.1 (2.7−4)
90 +
(3−1.2)(3−2.1)(3−2.7)
(4−1.2)(4−2.1)(4−2.7)
155
= 1.78 – 31.58 + 124.62 + 10.89 = 105.71 cusec.
Exercise: The load bearing capacity on different penetration level is given
below.
Calculate Load for D = 3.00 cm using Lagrange formula.
D (cm) 2.35 2.75 3.30 3.60
Load (KN) 25 43 66 70
Solution: From Lagrange formula,
Q (cusec) =
(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3)
𝑦0 +
(𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3)
𝑦1 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3)
(𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3)
𝑦2 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)
(𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2)
𝑦3
=
(3−2.75)(3−3.30)(3−3.60)
(2.35−2.75)(2.35−3.30)(2.35−3.60)
25 +
(3−2.35)(3−3.30)(3−3.60)
(2.75−2.35)(2.75−3.30)(2.75−3.60)
43 +
(3−2.35)(3−2.75)(3−3.60)
3.30−2.35 3.30−2.75 (3.30−3.60)
66 +
(3−2.35)(3−2.75)(3−3.30)
(3.60−2.35)(3.60−2.75)(3.60−3.30)
70
= −2.37 + 26.90 + 41.05 −10.71
= 54.87 KN
Matrix
Problem-8: Solve the following equations by Gauss-Jordan Elimination method.
x + y + z = 5
2x + 3y +5z = 8
4x +5z = 2
Solution: The augmented matrix =
=
=
1 1 1 5
2 3 5 8
4 0 5 2
1 1 1 5
0 1 3 -2
4 0 5 2
𝑅2
′
= 𝑅2- 2𝑅1
1 1 1 5
0 1 3 -2
0 4 -1 18
𝑅3
′
= 4𝑅1- 𝑅3
1 1 1 5
0 1 3 -2
0 4 -1 18
𝑅3
′
= 4𝑅1- 𝑅3
1 1 1 5
0 1 3 -2
0 0 13 -26
𝑅3
′
= 4𝑅2- 𝑅3
1 1 1 5
0 1 3 -2
0 0 1 -2
13z = -26
=> Z = -2
𝑅2
′
= 𝑅2- 3𝑅3
=
1 1 1 5
0 1 0 4
0 0 1 -2
=
=
=
𝑅1
′
= 𝑅1 - 𝑅2- 𝑅3
1 0 0 3
0 1 0 4
0 0 1 -2
=
Example: Solve the following equations by Gauss-Jordan Elimination method.
5x + 2y + 3z = 1
2x + 2y = 7
8y + 7z = 14
Solution: The augmented matrix =
=
=
5 2 3 1
2 2 0 7
0 8 7 14
1 -2 3 -13
2 2 0 7
0 8 7 14
𝑅1
′
= 𝑅1- 2𝑅2
𝑅2
′
= 𝑅2- 2𝑅1
1 -2 3 -13
0 6 -6 33
0 8 7 14
𝑅2
′
= 1/6𝑅2
𝑅3
′
= 𝑅3- 8𝑅2
15z = -30
=> Z = -2
=
=
=
=
𝑅1
′
= 𝑅1 + 2𝑅2 -3𝑅3
1 -2 3 -13
0 6 -6 33
0 8 7 14
1 -2 3 -13
0 1 -1 5.5
0 8 7 14
1 -2 3 -13
0 1 -1 5.5
0 0 15 -30
1 -2 3 -13
0 1 -1 5.5
0 0 1 -2
=
1 -2 3 -13
0 1 0 3.5
0 0 1 -2
=
1 0 0 0
0 1 0 3.5
0 0 1 -2
𝑅2
′
= 𝑅2+ 𝑅3
Example: Solve the following equations by Gauss-Jordan Elimination method.
x + 3y + 6z = 12
2x + 3y = 16
x + 9z = 14
Solution: x = 8, y = 0, z = 2/3
Problem-9: Find whether the following system is consistent or not.
x - 4y + 5z = 8
3x + 7y - z = 3
x + 15y -11z = -14
Solution: Forming the matrix, A=
Now, A = 0 and ≠ 0.
r (A) = 2
1 -4 5
3 7 -1
1 15 -11
1 -4
3 7

Forming the augmented matrix, (A,b)=
Determinant of = 31≠ 0.
r (A,b) = 3
When, r (A,b) ≥ r(A), the equation will be inconsistence (No solution).
As, r(A) < r (A,b) ;
Hence the system is inconsistence.
1 -4 5 8
3 7 -1 3
1 15 -11 -14
-4 5 8
7 -1 3
15 -11 -14
Curve Fitting
Problem-10: In a laboratory the data of water demand with respect to population
is shown in the following table .
Population (thousand) 2.10 6.22 7.17 10.52 13.68
Water Demand (cumec) 2.90 3.83 5.98 5.71 7.74
Fit a straight line from this data to find the discharge for any corresponding area
using least square method.
Linear Curve Fitting
Solution:
i x y 𝑥2
xy
1 2.10 2.90 4.41 6.09
2 6.22 3.83 38.69 23.83
3 7.17 5.98 51.40 42.90
4 10.52 5.71 110.67 60.10
5 13.68 7.74 187.14 105.88
∑ 39.69 26.16 392.30 238.74
m𝑎0 + 𝑎1∑𝑥𝑖 = ∑𝑦𝑖 ………..(1)
𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖
2
= ∑𝑥𝑖 𝑦𝑖 ………..(2)
From eq (1), 5 𝑎0 + 39.69 𝑎1 = 26.16
From eq (2), 39.69 𝑎0 + 392.30 𝑎1 = 238.74
Solving the equation, 𝑎0 = 2.04 & 𝑎1 = 0.402
⸫ y = 𝑎0 + 𝑎1x = 2.04 + 0.402x
Non-Linear Curve Fitting
Problem-11: In a laboratory the deformation (mm) of a pre-stressed cantilever
beam with respect to distance (m) from the fixed support is shown below:
Fit a parabolic curve line from this data to find the deflection for any point from
the fixed support.
2
12
10
8
6
4
0.01
0.36
0.29
0.22
0.18
0.09
Solution:
i x y 𝑥2 𝑥3 𝑥4 xy 𝑥2y
1 2 0.01 4 8 16 0.02 0.04
2 4 0.09 16 64 256 0.36 1.44
3 6 0.18 36 216 1296 1.08 6.48
4 8 0.22 64 512 4096 1.76 14.08
5 10 0.29 100 1000 10000 2.90 29.00
6 12 0.36 144 1728 20736 4.32 51.84
∑ 42 1.15 364 3528 36400 10.44 102.88
m𝑎0 + 𝑎1∑𝑥𝑖 + 𝑎2 ∑𝑥𝑖
2 = ∑𝑦𝑖 ………..(1)
𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖
2
+ 𝑎2 ∑𝑥𝑖
3
= ∑𝑥𝑖 𝑦𝑖 ………..(2)
𝑎0∑ 𝑥𝑖
2
+ 𝑎1 ∑𝑥𝑖
3
+ 𝑎2 ∑𝑥𝑖
4
= ∑𝑥𝑖
2
𝑦𝑖 ………..(3)
From eq (1), 6 𝑎0 + 42 𝑎1 + 364 𝑎2 = 1.15
From eq (2), 42 𝑎0 + 364 𝑎1 + 3528 𝑎2 = 10.44
From eq (3), 364 𝑎0 + 3528 𝑎1 + 36400 𝑎2 = 102.88
Solving the equation, 𝑎0 = -0.069, 𝑎1 = 0.042 & 𝑎2 = -5.803 x 10−4
⸫ y = 𝑎0 + 𝑎1x + 𝑎2 𝑥2 = -0.069 + 0.042 x + -5.803 x 10−4 𝑥2
Distance (m) 2 4 6 8 10 12
Deflection (mm)
y = -0.069 + 0.042 x + -5.803 x 10−4
𝑥2
0.01 0.10 0.18 0.27 0.35 0.43
Original Value(mm) 0.01 0.09 0.18 0.22 0.29 0.36
Problem-12: Use 4 segment to calculate the are of a function f(x) = 0.2 + 25 x +
3𝑥2 + 2𝑥4 from a = 0 to b = 2 by using Trapezoidal rule and Simpson's rule and
determine percentage of error.
Solution: For four segment n = 4. So, the value of x will be 0.5, 1.0, 1.5, 2.0.
Using Trapezoidal rules,
0
2
𝑦𝑑𝑥 =
ℎ
2
[𝑦0+ 𝑦𝑛 + 2 (𝑦1 +……..+ 𝑦(𝑛−1))]
=
0.5
2
[ 0.2 + 94.2 + 2(13.575 + 30.2 + 54.575)] = 72.775 unit
x 0 0.5 1.0 1.5 2.0
y 0.2 13.575 30.2 54.575 94.2
Using Simpson’s rules,
0
2
𝑦𝑑𝑥 =
ℎ
3
[𝑦0+ 𝑦𝑛 + 4 (𝑦1 + 𝑦3 + 𝑦5 +……..+ 𝑦(𝑛−1)) + 2 (𝑦2 + 𝑦4 + 𝑦6 +
……..+ 𝑦(𝑛−2))]
=
0.5
3
[ 0.2 + 94.2 + 4(13.575 + 54.575) + 2 (30.2)] = 71.23 unit
Actual area by integration method,
0
2
𝑦𝑑𝑥 = 0
2
(0.2 + 25 x + 3𝑥2 + 2𝑥4)𝑑𝑥
= 0.2x + 25
𝑥2
2
+ 3
𝑥3
3
+ 2
𝑥5
5 0
2
= 71.2 unit
Percentage of error for Trapezoidal rule =
72.775 −71.2
71.2
x 100% = 2.21%
Percentage of error for Simpson’s rule =
721.23 −71.2
71.2
x 100% = 0.042%
Problem-13: A irrigation reservoir discharging through sluice at a depth h, below the
water surface as a surface area A, for various value of h as given below:
If t denotes the time in min & the rate of fall of the surface is given by
𝑑ℎ
𝑑𝑡
= -
48
𝐴
ℎ , estimate the time taken for the water level to fall from 14 ft to 10 ft above
the sluice.
Solution: Area of the water reservoir, A =
ℎ
2
[ 950 + 1530 + 2 (1070 + 1200 + 1350)]
= 4860 𝑓𝑡2
h (ft) 10 11 12 13 14
A (𝑓𝑡2
) 950 1070 1200 1350 1530
𝑑ℎ
𝑑𝑡
= -
48
𝐴
ℎ

𝑑ℎ
ℎ
1
2
= -
48
𝐴
dt
 10
14
ℎ−1
2 𝑑ℎ = -
48
𝐴 0
𝑡
𝑑𝑡
 [
ℎ
1
2
1
2
]
10
14
= -
48
4860
t
 t =
4860
48
x
0.58
1
2
= 117.45 min.

Weitere ähnliche Inhalte

Was ist angesagt?

Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Suddhasheel GHOSH, PhD
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential EquationShrey Patel
 
Solution of matlab chapter 2
Solution of matlab chapter 2Solution of matlab chapter 2
Solution of matlab chapter 2AhsanIrshad8
 
Modern Control Systems 12th Edition Dorf Solutions Manual
Modern Control Systems 12th Edition Dorf Solutions ManualModern Control Systems 12th Edition Dorf Solutions Manual
Modern Control Systems 12th Edition Dorf Solutions Manualnofycygo
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)sarkawtn
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferArun Sarasan
 
Bisection & Regual falsi methods
Bisection & Regual falsi methodsBisection & Regual falsi methods
Bisection & Regual falsi methodsDivya Bhatia
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsaman1894
 
2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx
2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx
2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptxDickyDjayadi1
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula Deep Dalsania
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve Mukuldev Khunte
 

Was ist angesagt? (20)

Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...
 
Romberg’s method
Romberg’s methodRomberg’s method
Romberg’s method
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
 
Solution of matlab chapter 2
Solution of matlab chapter 2Solution of matlab chapter 2
Solution of matlab chapter 2
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Mean Value Theorems
Mean Value TheoremsMean Value Theorems
Mean Value Theorems
 
Chapter2
Chapter2Chapter2
Chapter2
 
Modern Control Systems 12th Edition Dorf Solutions Manual
Modern Control Systems 12th Edition Dorf Solutions ManualModern Control Systems 12th Edition Dorf Solutions Manual
Modern Control Systems 12th Edition Dorf Solutions Manual
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
Math1.2
Math1.2Math1.2
Math1.2
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Bisection & Regual falsi methods
Bisection & Regual falsi methodsBisection & Regual falsi methods
Bisection & Regual falsi methods
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx
2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx
2-CE5101 Lecture 2 - Darcy Law and Soil Permeability (24 AUG 2020).pptx
 
Introduction of Partial Differential Equations
Introduction of Partial Differential EquationsIntroduction of Partial Differential Equations
Introduction of Partial Differential Equations
 
Bisection method
Bisection methodBisection method
Bisection method
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 

Ähnlich wie Numerical Methods and Analysis

Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSaidatina Khadijah
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullahAli Abdullah
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdfIILSASTOWER
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...RhiannonBanksss
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10Yasser Ahmed
 

Ähnlich wie Numerical Methods and Analysis (20)

05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
AJMS_389_22.pdf
AJMS_389_22.pdfAJMS_389_22.pdf
AJMS_389_22.pdf
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Appendex
AppendexAppendex
Appendex
 
Interpolation
InterpolationInterpolation
Interpolation
 
final15
final15final15
final15
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 

Kürzlich hochgeladen

Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Kürzlich hochgeladen (20)

Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 

Numerical Methods and Analysis

  • 1. Numerical Methods and Analysis Faruque Abdullah Lecturer Dept. of Civil Engineering Dhaka International University
  • 2. Roots of a equation Roots of a equation is calculated by the following methods:  Bi-section method  Iteration method  Method of false position/ Interpolation method  Newton Raphson method, etc.
  • 3. Bi-section/ Interval Halving Method(IVT) IVT: If a function f(x) is continuous between a and b and f(a) and f(b) is opposite sign, then there exists at least one root between a and b. f(x) = 𝑥4 - 2x; f(2) = -ve f(3) = +ve  x = 𝑎+𝑏 2 = 2+3 2 = 2.5
  • 4. Procedure: Step-1: Choose a real two numbers a and b such that f(a)f(b)<0 Step-2: Set, 𝑥 𝑟 = 𝑎+ 𝑏 2 Step-3: a) If f(a) f(𝑥 𝑟) < 0, the root lies in the interval (a,𝑥 𝑟), Then set b = 𝑥 𝑟 and go to step 2. b) If f(a) f(𝑥 𝑟) > 0, the root lies in the interval (𝑥 𝑟,b), Then set a = 𝑥 𝑟 and go to step 2. c) If f(a) f(𝑥 𝑟) = 0, it means that 𝑥 𝑟 is a root of the equation f(x) = 0 and the computation may be terminated.
  • 5. Problem-1: Find a real root of the equation 𝑥3- 2x-5 = 0 by bi-section method up to an accuracy of 10−4. Solution: Let, f(x) = 𝑥3 - 2x -5 f(2) = 23 - 2.2 – 5 = -1 f(3) = 33 - 2.3 – 5 = 16 As f(2) is –ve and f(3) is +ve . So f(2) f(3) < 0.  Root lies between 2 and 3.
  • 6. n a b 𝑥 𝑟 f(x) (sign) f(x) 1 2 3 2.5 +ve +5.63 2 2 2.5 2.25 +ve +1.89 3 2 2.25 2.125 +ve +0.34 4 2 2.125 2.0625 -ve -0.35 5 2.0625 2.125 2.09375 -ve -8.94 x10−3 6 2.09375 2.125 2.109375 +ve +0.17 7 2.09375 2.109375 2.1015625 +ve +0.08 8 2.09375 2.1015625 2.09765625 +ve +0.03 9 2.09375 2.09765625 2.095703125 +ve +0.01 10 2.09375 2.095703125 2.094726563 +ve +1.95 x 10−3 11 2.09375 2.094726563 2.094238282 -ve -3.5 x 10−3 12 2.094238282 2.094726563 2.094482423 -ve -7.7 x 10−4
  • 7. Problem-2: Figure shows a uniform subject to a linearly increasing distributed load. The equation of the resulting elastic curve , y = 𝑤0 120𝐸𝐼𝐿 (-𝑥5 + 2𝐿2 𝑥3 -𝐿4 𝑥). Use bi- section method to determine point of maximum deflection up to an accuracy of 10−10 . Use the following parameter. E = 50000 KN/𝑐𝑚2, I = 30000 𝑐𝑚4, 𝑤0 = 2.5 KN/cm, L = 3 m. 3 m 𝑤0
  • 8. Solution: For maximum deflection, 𝑑𝑦 𝑑𝑥 = 0  𝑑𝑦 𝑑𝑥 = 𝑤0 120𝐸𝐼𝐿 x 𝑑𝑦 𝑑𝑥 (-𝑥5 + 2 𝐿2 𝑥3-𝐿4 𝑥) = 𝑤0 120𝐸𝐼𝐿 x (-5𝑥4 + 6 𝐿2 𝑥2-𝐿4) = 2.5 120 X 50000 X 30000 X 300 x (-5𝑥4 + 6. 3002 𝑥2-3004) = 4.63 x 10−14 x (- 5𝑥4 + 540000 𝑥2- 3004)
  • 9. Let, f(x) = 4.63 x 10−14 x (- 5𝑥4 + 540000 𝑥2 - 3004 ) f(134) = -7.34 x 10−7 f(135) = 3.73 x 10−6 As f(134) is –ve and f(135) is +ve . So f(134) f(135) < 0.  Root lies between 134 and 135.
  • 10. n a b 𝑥 𝑟 f(x) (sign) f(x) 1 134 135 134.5 +ve +1.5 x 10−6 2 134 134.5 134.25 +ve +3.84 10−7 3 134 134.25 134.125 -ve -1.75 x 10−7 4 134.125 134.25 134.1875 +ve +1.05 x 10−7 5 134.125 134.1875 134.15625 -ve -3.5 x 10−8 6 134.15625 134.1875 134.171875 +ve +3.5 x 10−8 7 134.15625 134.171875 134.1640625 -ve -7.22 x 10−11
  • 11. Method of False Position (0,0) X Y [a, f(a)] [b, f(b)] f(x) 𝑦−𝑓(𝑎) 𝑥−𝑎 = 𝑓 𝑏 − 𝑓(𝑎) 𝑏−𝑎 Let, y = 0, −𝑓(𝑎) 𝑥−𝑎 = 𝑓 𝑏 − 𝑓(𝑎) 𝑏−𝑎  x-a = - (𝑏−𝑎)𝑓(𝑎) 𝑓 𝑏 −𝑓(𝑎)  x = a - (𝑏−𝑎)𝑓(𝑎) 𝑓 𝑏 −𝑓(𝑎) Derive the root of a curve f(x) by False Position method.
  • 12. Newton Raphson Method Let, 𝑥0 be a root of the function f(𝑥0) = 0 and assume that 𝑥1 = 𝑥0 + h be the correct root of the function f(𝑥1) = 0. 𝑥1 = 𝑥0 + h -----------------(1) f(𝑥1) = 0 f(𝑥0 + h) = 0-----------------(2) Expanding eq (2) by Tailor’s series we get, f(𝑥0) + h𝑓′(𝑥0) + ℎ2 2! 𝑓′′(𝑥0) + ----- = 0
  • 13. Neglecting 2nd and higher order derivatives, f(𝑥0) + h𝑓′ (𝑥0) = 0 Or, h = - f( 𝑥0) 𝑓′( 𝑥0) From eq (1), 𝑥1 = 𝑥0 - f( 𝑥0) 𝑓′( 𝑥0) Similar approximation for 𝑥2, 𝑥3, ----, 𝑥 𝑛+1 we get, 𝑥2 = 𝑥1 - f( 𝑥1) 𝑓′( 𝑥1)
  • 14. 𝑥3 = 𝑥2 - f( 𝑥2) 𝑓′( 𝑥2) ------------- 𝑥 𝑛+1 = 𝑥 𝑛 - f( 𝑥 𝑛) 𝑓′( 𝑥 𝑛) This is Newton Raphson Formula.
  • 15. Problem-3: Find a real root of the equation 𝑥3- 2x-5 = 0 by Newton Raphson method. Solution: Let, f(x) = 𝑥3 - 2x -5 f(𝑥 𝑛) = 𝑥 𝑛 3 - 2𝑥 𝑛 -5 𝑓′(𝑥 𝑛) = 3𝑥 𝑛 2 - 2 From Newton Raphson Formula, 𝑥 𝑛+1 = 𝑥 𝑛 - f( 𝑥 𝑛) 𝑓′( 𝑥 𝑛) = 𝑥 𝑛 - 𝑥 𝑛 3 − 2 𝑥 𝑛 −5 3𝑥 𝑛 2 − 2
  • 16. Putting n=0, 𝑥1 = 𝑥0 - 𝑥0 3 − 2 𝑥0 −5 3𝑥0 2 − 2 Assume, 𝑥0 = 2 𝑥1 = 2 - 23 − 2(2) −5 3(22) − 2 = 2.1 𝑥2 = 2.1 - 2.13 − 2(2.1) −5 3(2.1)2 − 2 = 2.0946 𝑥3 = 2.0946 - 2.09463 − 2(2.0946) −5 3(2.0946)2 − 2 = 2.0946
  • 17. Problem-4: You are designing a spherical tank to hold water for a small village in a developing country. The volume of liquid can be calculated as V = πℎ2 [3𝑅−ℎ] 3 . If R = 3 m, to what depth must the tank be filled so that it holds 30 𝑚3 water? Solution: V = πℎ2 [3𝑅−ℎ] 3 => 30 = πℎ2 [3.3−ℎ] 3 => 90 = πℎ2(9-h) => 90 𝜋 = 9ℎ2 - ℎ3 => ℎ3 - 9ℎ2 + 28.65 = 0
  • 18. Let, f(h) = ℎ3 - 9ℎ2 + 28.65 f(ℎ 𝑛) = ℎ 𝑛 3 - 9ℎ 𝑛 2 + 28.65 𝑓′(ℎ 𝑛) = 3ℎ 𝑛 2 - 18ℎ 𝑛 From Newton Raphson Formula, ℎ 𝑛+1 = ℎ 𝑛 - f(ℎ 𝑛) 𝑓′(ℎ 𝑛) = ℎ 𝑛 - ℎ 𝑛 3 − 9ℎ 𝑛 2 + 28.65 3ℎ 𝑛 2 −18ℎ 𝑛
  • 19. Putting n=0, ℎ1 = ℎ0 - ℎ0 3 − 9ℎ0 2 + 28.65 3ℎ0 2 − 18ℎ0 Assume, ℎ0 = 2 ℎ1 = 2 - 23 − 9(2)2+28.65 3(22) −18(2) = 2.027 ℎ2 = 2.027 - 2.0273 − 9(2.027)2+28.65 3(2.0272) −18(2.027) = 2.02699 ℎ3 = 2.02699 - 2.026993 − 9(2.02699)2+28.65 3(2.026992) −18(2.02699) = 2.02699 Required depth is 2.02699 m to hold 30 𝑚3 volume of water in the tank.
  • 21. Interpolation Method Forward difference table: x y ∆ ∆2 ∆3 ∆4 ∆5 ∆6 x0 y0 ∆y0 x1 y1 ∆2y0 ∆y1 ∆3y0 x2 y2 ∆2 y1 ∆4 y0 ∆y2 ∆3 y1 ∆5 y0 x3 y3 ∆2 y2 ∆4 y1 ∆6 y0 ∆y3 ∆3y2 ∆5y1 x4 y4 ∆2 y3 ∆4 y2 ∆y4 ∆3y3 x5 y5 ∆2 y4 ∆y5 x6 y6
  • 22. ∆y0 = y1 - y0 ∆2 y0 = ∆y1 - ∆y0 = y2 - y1- y1 + y0 = y2 - 2y1 + y0 ∆3 y0 = ∆2 y1 - ∆2 y0 = y3 - 2 y2 + y1 - y2 + 2 y1 - y0 = y3 - 3 y2 + 3 y1 - y0 --------------------------------------------Continue--------------------------------------------
  • 23. Newton’s Formula for Forward Interpolation Let, y = f(x) denote a function which takes the values from y0, y1, y2, y3,……….., yn for the equidistance values x0, 𝑥1, 𝑥2, 𝑥3,……….., xn. Φ(x) denote a function of polygonal for nth degree. As x is equidistance xi = x0 + ih. Where, i = 1,2,3,…….,n. x1 = x0 + h => (x1 - x0) = h x2 = x0 + 2h => (x2 - x0) = 2h
  • 24. The polynomial φ(x) = 𝑎0 + 𝑎1 (x-x0) + 𝑎2 (x-x0) (x-x1) + 𝑎3 (x-x0) (x-x1) (x-x2) + ………………..+ 𝑎 𝑛 (x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1) ………(1) When, x = 𝑥0, φ(x) = 𝑎0 = 𝑦0 When, x = 𝑥1, φ(x) = 𝑎0 + 𝑎1 (x1 -x0) = 𝑦1  𝑎1 = 𝑦1−𝑦0 𝑥1−𝑥0 = ∆y0 ℎ When, x = 𝑥2, φ(x) = 𝑎0 + 𝑎1 (x2 -x0) + 𝑎2 (x2 -x0) (x2 -x1) = 𝑦2 => 𝑦2 = 𝑦0 + ∆y0 ℎ . 2h + 𝑎2 . 2h . h [∆y0 = 𝑦1-𝑦0] => 𝑎2 = 𝑦2−2𝑦1+ 𝑦0 2ℎ2 = ∆2y0 2!ℎ2
  • 25. Similarly we can write, 𝑎3 = ∆3y0 3!ℎ3 ; 𝑎4 = ∆4y0 4!ℎ4 ; ……., 𝑎 𝑛 = ∆ny0 𝑛!ℎ 𝑛 Putting this value in eq (1), we get, φ(x) = 𝑦0 + ∆y0 ℎ (x-x0) + ∆2y0 2!ℎ2 (x-x0) (x-x1) + ∆3y0 3!ℎ3 (x-x0) (x-x1) (x-x2) + ………………..+ ∆ny0 𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1) Let us assume, x = x0 + ph => p = 𝑥 − 𝑥0 ℎ
  • 26. => 𝑥 − 𝑥1 ℎ = 𝑥 −𝑥0−ℎ ℎ = 𝑥 −𝑥0 ℎ - 1= p-1 => 𝑥 − 𝑥2 ℎ = 𝑥 −𝑥0−2ℎ ℎ = 𝑥 −𝑥0 ℎ - 2 = p-2 φ(x) = 𝑦0 + ∆y0 ℎ (x-x0) + ∆2y0 2!ℎ2 (x-x0) (x-x1) + ∆3y0 3!ℎ3 (x-x0) (x-x1) (x-x2) + ………………..+ ∆ny0 𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1)  φ(x) = 𝑦0 + p ∆y0 + p (p-1) ∆2y0 2! + p (p-1)(p-2) ∆3y0 3! + ………………..+ p (p-1) (p-2) ……… p(p-n+1) ∆ny0 𝑛!
  • 27. Problem-5: Find the cubic polynomial which takes the following values y(1) = 24 y(3) = 120 y(5) = 336 y(7) = 720 Hence, obtain the values of y(8) by Newton’s Forward Interpolation method.
  • 28. Solution: We make the forward difference table, h = (x1 - x0) = 3 – 1 = 2 x = 𝑥0 + ph => p = 𝑥 − 𝑥0 ℎ => p = 8 −1 2 = 3.5 x y ∆ ∆2 ∆3 1 24 96 3 120 120 216 48 5 336 168 384 7 720
  • 29. From Newton’s formula for forward interpolation, y(x) = 𝑦0 + p∆ 𝑦0 + p (p-1) ∆2 𝑦0 2! + p (p-1) (p-2) ∆3 𝑦0 3! => y(8)= 24 + 3.5 x 96 + 3.5 (3.5-1) x 120 2! + 3.5 (3.5-1) (3.5-2) x 48 3! = 990.
  • 30. Problem-6: Find the cubic polynomial which takes the following values y(1) = 24 y(3) = 120 y(5) = 336 y(7) = 720 Hence, obtain the values of y(6) by Newton’s Backward Interpolation method. Newton’s Formula for Backward Interpolation
  • 31. Solution: We make the backward difference table, h = (x1 - x0) = 3 – 1 = 2 x = 𝑥 𝑛 + ph => p = 𝑥 − 𝑥 𝑛 ℎ => p = 6 −7 2 = -0.5 x y ∇ ∇ 2 ∇ 3 1 24 96 3 120 120 216 48 5 336 168 384 7 720
  • 32. From Newton’s formula for backward interpolation, y(x) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1) ∆2 𝑦 𝑛 2! + p (p+1)(p+2) ∆3 𝑦 𝑛 3! => y(6)= 720 + (-0.5) x 384 + (-0.5) (-0.5+1) x 168 2! + (-0.5) (-0.5+1) (-0.5+2) x 48 3! = 576.
  • 33. Problem-6: The table shows the value of tanx for 0.1 ≤ x ≤ 0.3 Find, (a) tan(0.12) by Forward Interpolation Method (b) tan(0.26) by Backward Interpolation Method. x Y = tanx 0.10 0.1745 0.15 0.2618 0.20 0.3491 0.25 0.4363 0.30 0.5236
  • 34. Solution: We make the forward difference table, x y ∆ ∆2 ∆3 ∆4 0.10 0.1745 0.0873 0.15 0.2618 0 0.0873 0 0.20 0.3491 0 0 0.0873 0 0.25 0.4364 0 0.0873 0.30 0.5237
  • 35. (a) h = (x1 - x0) = 0.15 – 0.10 = 0.05 x = 𝑥0 + ph => p = 𝑥 − 𝑥0 ℎ => p = 0.12 −0.10 0.05 = 0.4 For Newton’s Forward formula, tan(0.12) = 𝑦0 + p∆ 𝑦0 + p (p-1) ∆2 𝑦0 2! + p (p-1) (p-2) ∆3 𝑦0 3! + p (p-1) (p-2) (p-3) ∆4 𝑦0 4! = 0.1745 + 0.4 x 0.0873 + 0.4 (0.4-1) 0 2! + 0.4 (0.4-1) (0.4-2) 0 3! + 0.4 (0.4-1) (0.4-2) 0 4! = 0.2094
  • 36. (b) h = (x1 - x0) = 0.15 – 0.10 = 0.05 x = 𝑥 𝑛 + ph => p = 𝑥 − 𝑥 𝑛 ℎ => p = 0.26 −0.30 0.05 = -0.8 For Newton’s Backward formula, tan(0.26) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1) ∆2 𝑦 𝑛 2! + p (p+1) (p+2) ∆3 𝑦 𝑛 3! + p (p+1) (p+2) (p+3) ∆4 𝑦 𝑛 4! = 0.5237 + -0.8 x 0.0873 + -0.8 (-0.8+1) 0 2! - 0.8 (-0.8+1) (-0.8+2) 0 3! - 0.8 (-0.8+1) (-0.8+2) 0 4! = 0.4538
  • 37. Problem-7: The discharge through a hydraulic structure for different values of head (H) is shown in table. Calculate discharge, Q for H=3 ft using Lagrange formula. H (ft) 1.2 2.1 2.7 4.0 Q (cusec) 25 60 90 155
  • 38. Solution: From Lagrange formula, Q (cusec) = (𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3) 𝑦0 + (𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3) 𝑦1 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3) (𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3) 𝑦2 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2) (𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2) 𝑦3 = (3−2.1)(3−2.7)(3−4) (1.2−2.1)(1.2−2.7)(1.2−4) 25 + (3−1.2)(3−2.7)(3−4) (2.1−1.2)(2.1−2.7)(2.1−4) 60 + (3−1.2)(3−2.1)(3−4) 2.7−1.2 2.7−2.1 (2.7−4) 90 + (3−1.2)(3−2.1)(3−2.7) (4−1.2)(4−2.1)(4−2.7) 155 = 1.78 – 31.58 + 124.62 + 10.89 = 105.71 cusec.
  • 39. Exercise: The load bearing capacity on different penetration level is given below. Calculate Load for D = 3.00 cm using Lagrange formula. D (cm) 2.35 2.75 3.30 3.60 Load (KN) 25 43 66 70
  • 40. Solution: From Lagrange formula, Q (cusec) = (𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3) 𝑦0 + (𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3) 𝑦1 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3) (𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3) 𝑦2 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2) (𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2) 𝑦3 = (3−2.75)(3−3.30)(3−3.60) (2.35−2.75)(2.35−3.30)(2.35−3.60) 25 + (3−2.35)(3−3.30)(3−3.60) (2.75−2.35)(2.75−3.30)(2.75−3.60) 43 + (3−2.35)(3−2.75)(3−3.60) 3.30−2.35 3.30−2.75 (3.30−3.60) 66 + (3−2.35)(3−2.75)(3−3.30) (3.60−2.35)(3.60−2.75)(3.60−3.30) 70 = −2.37 + 26.90 + 41.05 −10.71 = 54.87 KN
  • 42. Problem-8: Solve the following equations by Gauss-Jordan Elimination method. x + y + z = 5 2x + 3y +5z = 8 4x +5z = 2 Solution: The augmented matrix = = = 1 1 1 5 2 3 5 8 4 0 5 2 1 1 1 5 0 1 3 -2 4 0 5 2 𝑅2 ′ = 𝑅2- 2𝑅1 1 1 1 5 0 1 3 -2 0 4 -1 18 𝑅3 ′ = 4𝑅1- 𝑅3
  • 43. 1 1 1 5 0 1 3 -2 0 4 -1 18 𝑅3 ′ = 4𝑅1- 𝑅3 1 1 1 5 0 1 3 -2 0 0 13 -26 𝑅3 ′ = 4𝑅2- 𝑅3 1 1 1 5 0 1 3 -2 0 0 1 -2 13z = -26 => Z = -2 𝑅2 ′ = 𝑅2- 3𝑅3 = 1 1 1 5 0 1 0 4 0 0 1 -2 = = = 𝑅1 ′ = 𝑅1 - 𝑅2- 𝑅3 1 0 0 3 0 1 0 4 0 0 1 -2 =
  • 44. Example: Solve the following equations by Gauss-Jordan Elimination method. 5x + 2y + 3z = 1 2x + 2y = 7 8y + 7z = 14 Solution: The augmented matrix = = = 5 2 3 1 2 2 0 7 0 8 7 14 1 -2 3 -13 2 2 0 7 0 8 7 14 𝑅1 ′ = 𝑅1- 2𝑅2 𝑅2 ′ = 𝑅2- 2𝑅1 1 -2 3 -13 0 6 -6 33 0 8 7 14
  • 45. 𝑅2 ′ = 1/6𝑅2 𝑅3 ′ = 𝑅3- 8𝑅2 15z = -30 => Z = -2 = = = = 𝑅1 ′ = 𝑅1 + 2𝑅2 -3𝑅3 1 -2 3 -13 0 6 -6 33 0 8 7 14 1 -2 3 -13 0 1 -1 5.5 0 8 7 14 1 -2 3 -13 0 1 -1 5.5 0 0 15 -30 1 -2 3 -13 0 1 -1 5.5 0 0 1 -2 = 1 -2 3 -13 0 1 0 3.5 0 0 1 -2 = 1 0 0 0 0 1 0 3.5 0 0 1 -2 𝑅2 ′ = 𝑅2+ 𝑅3
  • 46. Example: Solve the following equations by Gauss-Jordan Elimination method. x + 3y + 6z = 12 2x + 3y = 16 x + 9z = 14 Solution: x = 8, y = 0, z = 2/3
  • 47. Problem-9: Find whether the following system is consistent or not. x - 4y + 5z = 8 3x + 7y - z = 3 x + 15y -11z = -14 Solution: Forming the matrix, A= Now, A = 0 and ≠ 0. r (A) = 2 1 -4 5 3 7 -1 1 15 -11 1 -4 3 7 
  • 48. Forming the augmented matrix, (A,b)= Determinant of = 31≠ 0. r (A,b) = 3 When, r (A,b) ≥ r(A), the equation will be inconsistence (No solution). As, r(A) < r (A,b) ; Hence the system is inconsistence. 1 -4 5 8 3 7 -1 3 1 15 -11 -14 -4 5 8 7 -1 3 15 -11 -14
  • 50. Problem-10: In a laboratory the data of water demand with respect to population is shown in the following table . Population (thousand) 2.10 6.22 7.17 10.52 13.68 Water Demand (cumec) 2.90 3.83 5.98 5.71 7.74 Fit a straight line from this data to find the discharge for any corresponding area using least square method. Linear Curve Fitting
  • 51. Solution: i x y 𝑥2 xy 1 2.10 2.90 4.41 6.09 2 6.22 3.83 38.69 23.83 3 7.17 5.98 51.40 42.90 4 10.52 5.71 110.67 60.10 5 13.68 7.74 187.14 105.88 ∑ 39.69 26.16 392.30 238.74 m𝑎0 + 𝑎1∑𝑥𝑖 = ∑𝑦𝑖 ………..(1) 𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖 2 = ∑𝑥𝑖 𝑦𝑖 ………..(2) From eq (1), 5 𝑎0 + 39.69 𝑎1 = 26.16 From eq (2), 39.69 𝑎0 + 392.30 𝑎1 = 238.74 Solving the equation, 𝑎0 = 2.04 & 𝑎1 = 0.402 ⸫ y = 𝑎0 + 𝑎1x = 2.04 + 0.402x
  • 52. Non-Linear Curve Fitting Problem-11: In a laboratory the deformation (mm) of a pre-stressed cantilever beam with respect to distance (m) from the fixed support is shown below: Fit a parabolic curve line from this data to find the deflection for any point from the fixed support. 2 12 10 8 6 4 0.01 0.36 0.29 0.22 0.18 0.09
  • 53. Solution: i x y 𝑥2 𝑥3 𝑥4 xy 𝑥2y 1 2 0.01 4 8 16 0.02 0.04 2 4 0.09 16 64 256 0.36 1.44 3 6 0.18 36 216 1296 1.08 6.48 4 8 0.22 64 512 4096 1.76 14.08 5 10 0.29 100 1000 10000 2.90 29.00 6 12 0.36 144 1728 20736 4.32 51.84 ∑ 42 1.15 364 3528 36400 10.44 102.88 m𝑎0 + 𝑎1∑𝑥𝑖 + 𝑎2 ∑𝑥𝑖 2 = ∑𝑦𝑖 ………..(1) 𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖 2 + 𝑎2 ∑𝑥𝑖 3 = ∑𝑥𝑖 𝑦𝑖 ………..(2) 𝑎0∑ 𝑥𝑖 2 + 𝑎1 ∑𝑥𝑖 3 + 𝑎2 ∑𝑥𝑖 4 = ∑𝑥𝑖 2 𝑦𝑖 ………..(3)
  • 54. From eq (1), 6 𝑎0 + 42 𝑎1 + 364 𝑎2 = 1.15 From eq (2), 42 𝑎0 + 364 𝑎1 + 3528 𝑎2 = 10.44 From eq (3), 364 𝑎0 + 3528 𝑎1 + 36400 𝑎2 = 102.88 Solving the equation, 𝑎0 = -0.069, 𝑎1 = 0.042 & 𝑎2 = -5.803 x 10−4 ⸫ y = 𝑎0 + 𝑎1x + 𝑎2 𝑥2 = -0.069 + 0.042 x + -5.803 x 10−4 𝑥2 Distance (m) 2 4 6 8 10 12 Deflection (mm) y = -0.069 + 0.042 x + -5.803 x 10−4 𝑥2 0.01 0.10 0.18 0.27 0.35 0.43 Original Value(mm) 0.01 0.09 0.18 0.22 0.29 0.36
  • 55. Problem-12: Use 4 segment to calculate the are of a function f(x) = 0.2 + 25 x + 3𝑥2 + 2𝑥4 from a = 0 to b = 2 by using Trapezoidal rule and Simpson's rule and determine percentage of error. Solution: For four segment n = 4. So, the value of x will be 0.5, 1.0, 1.5, 2.0. Using Trapezoidal rules, 0 2 𝑦𝑑𝑥 = ℎ 2 [𝑦0+ 𝑦𝑛 + 2 (𝑦1 +……..+ 𝑦(𝑛−1))] = 0.5 2 [ 0.2 + 94.2 + 2(13.575 + 30.2 + 54.575)] = 72.775 unit x 0 0.5 1.0 1.5 2.0 y 0.2 13.575 30.2 54.575 94.2
  • 56. Using Simpson’s rules, 0 2 𝑦𝑑𝑥 = ℎ 3 [𝑦0+ 𝑦𝑛 + 4 (𝑦1 + 𝑦3 + 𝑦5 +……..+ 𝑦(𝑛−1)) + 2 (𝑦2 + 𝑦4 + 𝑦6 + ……..+ 𝑦(𝑛−2))] = 0.5 3 [ 0.2 + 94.2 + 4(13.575 + 54.575) + 2 (30.2)] = 71.23 unit Actual area by integration method, 0 2 𝑦𝑑𝑥 = 0 2 (0.2 + 25 x + 3𝑥2 + 2𝑥4)𝑑𝑥 = 0.2x + 25 𝑥2 2 + 3 𝑥3 3 + 2 𝑥5 5 0 2 = 71.2 unit Percentage of error for Trapezoidal rule = 72.775 −71.2 71.2 x 100% = 2.21% Percentage of error for Simpson’s rule = 721.23 −71.2 71.2 x 100% = 0.042%
  • 57. Problem-13: A irrigation reservoir discharging through sluice at a depth h, below the water surface as a surface area A, for various value of h as given below: If t denotes the time in min & the rate of fall of the surface is given by 𝑑ℎ 𝑑𝑡 = - 48 𝐴 ℎ , estimate the time taken for the water level to fall from 14 ft to 10 ft above the sluice. Solution: Area of the water reservoir, A = ℎ 2 [ 950 + 1530 + 2 (1070 + 1200 + 1350)] = 4860 𝑓𝑡2 h (ft) 10 11 12 13 14 A (𝑓𝑡2 ) 950 1070 1200 1350 1530
  • 58. 𝑑ℎ 𝑑𝑡 = - 48 𝐴 ℎ  𝑑ℎ ℎ 1 2 = - 48 𝐴 dt  10 14 ℎ−1 2 𝑑ℎ = - 48 𝐴 0 𝑡 𝑑𝑡  [ ℎ 1 2 1 2 ] 10 14 = - 48 4860 t  t = 4860 48 x 0.58 1 2 = 117.45 min.