SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
10.8 Mohr’s Circle for Moments
          of Inertia
It can be found that
                   2                     2
         Ix + I y            Ix − Iy 
    Iu −
                   + I uv = 
                         2
                                         + I xy
                                              2

            2    
                               2 
                                       
In a given problem, Iu and Iv are variables and Ix,
Iy and Ixy are known constants
    (I u − a )2 + I uv = R 2
                    2


When this equation is plotted on a set of axes
that represent the respective moment of inertia
and the product of inertia, the resulting graph
represents a circle
10.8 Mohr’s Circle for Moments
          of Inertia
The circle constructed is known as a Mohr’s
circle with radius
                       2
    Ix + Iy 
R= 
    2       + I xy
                   2

            
and center at (a, 0) where
a = (I x + I y ) / 2
10.8 Mohr’s Circle for Moments
            of Inertia
Procedure for Analysis
Determine Ix, Iy and Ixy
  Establish the x, y axes for the area, with the
  origin located at point P of interest and
  determine Ix, Iy and Ixy

Construct the Circle
  Construct a rectangular coordinate system such
  that the abscissa represents the moment of
  inertia I and the ordinate represent the product
  of inertia Ixy
10.8 Mohr’s Circle for Moments
            of Inertia
Procedure for Analysis
Construct the Circle
  Determine center of the circle O, which is located
  at a distance (Ix + Iy)/2 from the origin, and plot
  the reference point a having coordinates (Ix, Ixy)
  By definition, Ix is always positive, whereas Ixy
  will either be positive or negative
  Connect the reference point A with the center of
  the circle and determine distance OA (radius of
  the circle) by trigonometry
  Draw the circle
10.8 Mohr’s Circle for Moments
            of Inertia
Procedure for Analysis
Principal of Moments of Inertia
  Points where the circle intersects the abscissa
  give the values of the principle moments of
  inertia Imin and Imax
  Product of inertia will be zero at these points

Principle Axes
  To find direction of major principal axis,
  determine by trigonometry, angle 2θp1,
  measured from the radius OA to the positive I
  axis
10.8 Mohr’s Circle for Moments
            of Inertia
Procedure for Analysis
Principle Axes
  This angle represent twice the angle from the x
  axis to the area in question to the axis of
  maximum moment of inertia Imax
  Both the angle on the circle, 2θp1, and the angle
  to the axis on the area, θp1must be measured in
  the same sense
  The axis for the minimum moment of inertia Imin
  is perpendicular to the axis for Imax
10.8 Mohr’s Circle for Moments
               of Inertia
Example 10.10
Using Mohr’s circle, determine the principle
moments of the beam’s cross-sectional area
with respect to an axis
passing through the
centroid.
10.8 Mohr’s Circle for Moments
            of Inertia
Solution
Determine Ix, Iy and Ixy
  Moments of inertia and the product of inertia
  have been determined in previous examples
               ( )
     I x = 2.90 109 mm4    I y = 5.60(109 )mm4
     I xy = −3.00(109 )mm4
Construct the Circle
  Center of circle, O, lies from the origin, at a
  distance
     (I x + I y )/ 2 = (2.90 + 5.60) / 2 = 4.25
10.8 Mohr’s Circle for Moments
            of Inertia
Solution
  With reference point A (2.90, -3.00) connected to
  point O, radius OA is determined using
  Pythagorean theorem
    OA =     (1.35)2 + (− 3.00)2
    = 3.29
Principal Moments of Inertia
  Circle intersects I axis at
  points (7.54, 0) and
  (0.960, 0)
10.8 Mohr’s Circle for Moments
                of Inertia
Solution
                     ( )
       I max = 7.54 109 mm4                   ( )
                                  I min = 0.960 109 mm 4
Principal Axes
  Angle 2θp1 is determined from
  the circle by measuring CCW
  from OA to the direction of the
  positive I axis
                           −1
                           BA 
       2θ p1 = 180 − sin 
                 o
                          OA 
                              
                             
            o        −1 3.00     o
       = 180 − sin        = 114.2
                    3.29 
10.8 Mohr’s Circle for Moments
               of Inertia
Solution
  The principal axis for Imax = 7.54(109) mm4
  is therefore orientated at an angle θp1 =
  57.1°,
  measured CCW from the positive x axis
  to the positive u axis
  v axis is perpendicular
  to this axis

Weitere ähnliche Inhalte

Was ist angesagt?

Exercices rdm diplomes 05 14
Exercices  rdm diplomes 05 14Exercices  rdm diplomes 05 14
Exercices rdm diplomes 05 14m.a bensaaoud
 
D alemberts principle
D alemberts principleD alemberts principle
D alemberts principlePralhad Kore
 
7. centroid and centre of gravity
7. centroid and centre of gravity7. centroid and centre of gravity
7. centroid and centre of gravityEkeeda
 
8 beam deflection
8 beam deflection8 beam deflection
8 beam deflectionLisa Benson
 
Beams design and analysis
Beams design and analysisBeams design and analysis
Beams design and analysisAman Adam
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
9789810682460 sm 05
9789810682460 sm 059789810682460 sm 05
9789810682460 sm 05aryaanuj1
 
Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...zaezo
 
SFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment DiagramSFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment DiagramSanjay Kumawat
 
III - resultant of non-concurrent forces
III -  resultant of non-concurrent forcesIII -  resultant of non-concurrent forces
III - resultant of non-concurrent forcesdjpprkut
 
Lecture 5 castigliono's theorem
Lecture 5 castigliono's theoremLecture 5 castigliono's theorem
Lecture 5 castigliono's theoremDeepak Agarwal
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5laiba javed
 
Beam deflections using singularity functions
Beam deflections using singularity functionsBeam deflections using singularity functions
Beam deflections using singularity functionsaabhash
 
Calcul des aciers longitudinaux à l’elu
Calcul des aciers longitudinaux à l’eluCalcul des aciers longitudinaux à l’elu
Calcul des aciers longitudinaux à l’eluEl Hassasna Riadh
 
BENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMSBENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMSVj NiroSh
 

Was ist angesagt? (20)

Exercices rdm diplomes 05 14
Exercices  rdm diplomes 05 14Exercices  rdm diplomes 05 14
Exercices rdm diplomes 05 14
 
D alemberts principle
D alemberts principleD alemberts principle
D alemberts principle
 
7. centroid and centre of gravity
7. centroid and centre of gravity7. centroid and centre of gravity
7. centroid and centre of gravity
 
8 beam deflection
8 beam deflection8 beam deflection
8 beam deflection
 
Beams design and analysis
Beams design and analysisBeams design and analysis
Beams design and analysis
 
Moment of inertia revision
Moment of inertia revisionMoment of inertia revision
Moment of inertia revision
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Cables
CablesCables
Cables
 
9789810682460 sm 05
9789810682460 sm 059789810682460 sm 05
9789810682460 sm 05
 
Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...
 
SFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment DiagramSFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment Diagram
 
III - resultant of non-concurrent forces
III -  resultant of non-concurrent forcesIII -  resultant of non-concurrent forces
III - resultant of non-concurrent forces
 
Lecture 5 castigliono's theorem
Lecture 5 castigliono's theoremLecture 5 castigliono's theorem
Lecture 5 castigliono's theorem
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5
 
Beam deflections using singularity functions
Beam deflections using singularity functionsBeam deflections using singularity functions
Beam deflections using singularity functions
 
Calcul des aciers longitudinaux à l’elu
Calcul des aciers longitudinaux à l’eluCalcul des aciers longitudinaux à l’elu
Calcul des aciers longitudinaux à l’elu
 
BENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMSBENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMS
 
Chapter 19(statically indeterminate beams continuous beams)
Chapter 19(statically indeterminate beams continuous beams)Chapter 19(statically indeterminate beams continuous beams)
Chapter 19(statically indeterminate beams continuous beams)
 
Unit 6: Bending and shear Stresses in beams
Unit 6: Bending and shear Stresses in beamsUnit 6: Bending and shear Stresses in beams
Unit 6: Bending and shear Stresses in beams
 
Deflection in beams 1
Deflection in beams 1Deflection in beams 1
Deflection in beams 1
 

Andere mochten auch

6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axesetcenterrbru
 
6161103 10.6 inertia for an area
6161103 10.6 inertia for an area6161103 10.6 inertia for an area
6161103 10.6 inertia for an areaetcenterrbru
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
 
6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and reviewetcenterrbru
 
6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertiaetcenterrbru
 
AP Physics 2 - Hydrostatics
AP Physics 2 - HydrostaticsAP Physics 2 - Hydrostatics
AP Physics 2 - Hydrostaticskampkorten
 
Chapter 3 static forces on surfaces [compatibility mode]
Chapter 3  static forces on surfaces [compatibility mode]Chapter 3  static forces on surfaces [compatibility mode]
Chapter 3 static forces on surfaces [compatibility mode]imshahbaz
 
6.2 volume of solid of revolution dfs
6.2  volume of solid of revolution dfs6.2  volume of solid of revolution dfs
6.2 volume of solid of revolution dfsFarhana Shaheen
 
3. fs submerged bodies class 3
3. fs submerged bodies class 33. fs submerged bodies class 3
3. fs submerged bodies class 3Zaza Eureka
 
Fluid Mechanics Properties
Fluid Mechanics PropertiesFluid Mechanics Properties
Fluid Mechanics Propertiesstooty s
 
Moment of inertia of non symmetric object
Moment of inertia of non symmetric objectMoment of inertia of non symmetric object
Moment of inertia of non symmetric objectIntishar Rahman
 
Centroids and center of mass
Centroids and center of massCentroids and center of mass
Centroids and center of massIntishar Rahman
 
Hibbeler chapter10
Hibbeler chapter10Hibbeler chapter10
Hibbeler chapter10ahmedalnamer
 
6.2 volume of solid of revolution
6.2  volume of solid of revolution6.2  volume of solid of revolution
6.2 volume of solid of revolutionFarhana Shaheen
 

Andere mochten auch (17)

6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes6161103 10.7 moments of inertia for an area about inclined axes
6161103 10.7 moments of inertia for an area about inclined axes
 
6161103 10.6 inertia for an area
6161103 10.6 inertia for an area6161103 10.6 inertia for an area
6161103 10.6 inertia for an area
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review
 
Fm hydrostatics
Fm hydrostaticsFm hydrostatics
Fm hydrostatics
 
Theorem pappus (1)
Theorem pappus (1)Theorem pappus (1)
Theorem pappus (1)
 
6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia
 
AP Physics 2 - Hydrostatics
AP Physics 2 - HydrostaticsAP Physics 2 - Hydrostatics
AP Physics 2 - Hydrostatics
 
Chapter 3 static forces on surfaces [compatibility mode]
Chapter 3  static forces on surfaces [compatibility mode]Chapter 3  static forces on surfaces [compatibility mode]
Chapter 3 static forces on surfaces [compatibility mode]
 
6.2 volume of solid of revolution dfs
6.2  volume of solid of revolution dfs6.2  volume of solid of revolution dfs
6.2 volume of solid of revolution dfs
 
3. fs submerged bodies class 3
3. fs submerged bodies class 33. fs submerged bodies class 3
3. fs submerged bodies class 3
 
Statics
StaticsStatics
Statics
 
Fluid Mechanics Properties
Fluid Mechanics PropertiesFluid Mechanics Properties
Fluid Mechanics Properties
 
Moment of inertia of non symmetric object
Moment of inertia of non symmetric objectMoment of inertia of non symmetric object
Moment of inertia of non symmetric object
 
Centroids and center of mass
Centroids and center of massCentroids and center of mass
Centroids and center of mass
 
Hibbeler chapter10
Hibbeler chapter10Hibbeler chapter10
Hibbeler chapter10
 
6.2 volume of solid of revolution
6.2  volume of solid of revolution6.2  volume of solid of revolution
6.2 volume of solid of revolution
 

Ähnlich wie 6161103 10.8 mohr’s circle for moments of inertia

Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalVrushali Nalawade
 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaVrushali Nalawade
 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertiaUsman Sajid
 
(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdfRajuSingh806014
 
L10-T7 MOS Jul 2019-1.pptx .
L10-T7 MOS Jul 2019-1.pptx                        .L10-T7 MOS Jul 2019-1.pptx                        .
L10-T7 MOS Jul 2019-1.pptx .happycocoman
 
Mohr circle
Mohr circleMohr circle
Mohr circleShobbbe
 
An Algorithm to Find the Largest Circle inside a Polygon
An Algorithm to Find the Largest Circle inside a PolygonAn Algorithm to Find the Largest Circle inside a Polygon
An Algorithm to Find the Largest Circle inside a PolygonKasun Ranga Wijeweera
 
Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)Simran Vats
 
Lec1 Ocsillation and Waves
Lec1 Ocsillation and WavesLec1 Ocsillation and Waves
Lec1 Ocsillation and WavesVladimir Morote
 
J3010 Unit 2
J3010   Unit 2J3010   Unit 2
J3010 Unit 2mechestud
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motionAdarsh Ang
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...BernardMourrain
 
Physics Chapter 9-Simple Harmonic Motion
Physics Chapter 9-Simple Harmonic MotionPhysics Chapter 9-Simple Harmonic Motion
Physics Chapter 9-Simple Harmonic MotionMuhammad Solehin
 
Pre c alc module 1-conic-sections
Pre c alc module 1-conic-sectionsPre c alc module 1-conic-sections
Pre c alc module 1-conic-sectionsEclaro College
 

Ähnlich wie 6161103 10.8 mohr’s circle for moments of inertia (20)

Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numerical
 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertia
 
(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf
 
MOMENT OF INERTIA
MOMENT OF INERTIAMOMENT OF INERTIA
MOMENT OF INERTIA
 
L10-T7 MOS Jul 2019-1.pptx .
L10-T7 MOS Jul 2019-1.pptx                        .L10-T7 MOS Jul 2019-1.pptx                        .
L10-T7 MOS Jul 2019-1.pptx .
 
Mohr_Circle.pdf
Mohr_Circle.pdfMohr_Circle.pdf
Mohr_Circle.pdf
 
Mohr circle
Mohr circleMohr circle
Mohr circle
 
Mi2
Mi2Mi2
Mi2
 
An Algorithm to Find the Largest Circle inside a Polygon
An Algorithm to Find the Largest Circle inside a PolygonAn Algorithm to Find the Largest Circle inside a Polygon
An Algorithm to Find the Largest Circle inside a Polygon
 
Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)
 
Robot Manipulation Basics
Robot Manipulation BasicsRobot Manipulation Basics
Robot Manipulation Basics
 
Lec1 Ocsillation and Waves
Lec1 Ocsillation and WavesLec1 Ocsillation and Waves
Lec1 Ocsillation and Waves
 
Note chapter9 0708-edit-1
Note chapter9 0708-edit-1Note chapter9 0708-edit-1
Note chapter9 0708-edit-1
 
Note chapter9 0708-edit-1
Note chapter9 0708-edit-1Note chapter9 0708-edit-1
Note chapter9 0708-edit-1
 
J3010 Unit 2
J3010   Unit 2J3010   Unit 2
J3010 Unit 2
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...
 
Physics Chapter 9-Simple Harmonic Motion
Physics Chapter 9-Simple Harmonic MotionPhysics Chapter 9-Simple Harmonic Motion
Physics Chapter 9-Simple Harmonic Motion
 
Pre c alc module 1-conic-sections
Pre c alc module 1-conic-sectionsPre c alc module 1-conic-sections
Pre c alc module 1-conic-sections
 

Mehr von etcenterrbru

บทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดบทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดetcenterrbru
 
บทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลบทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลetcenterrbru
 
บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์etcenterrbru
 
6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibriumetcenterrbru
 
6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodiesetcenterrbru
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual worketcenterrbru
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integrationetcenterrbru
 
6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and reviewetcenterrbru
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a bodyetcenterrbru
 
6161103 9.6 fluid pressure
6161103 9.6 fluid pressure6161103 9.6 fluid pressure
6161103 9.6 fluid pressureetcenterrbru
 
6161103 9.3 composite bodies
6161103 9.3 composite bodies6161103 9.3 composite bodies
6161103 9.3 composite bodiesetcenterrbru
 
6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screwsetcenterrbru
 
6161103 8.3 wedges
6161103 8.3 wedges6161103 8.3 wedges
6161103 8.3 wedgesetcenterrbru
 
6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry frictionetcenterrbru
 
6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and reviewetcenterrbru
 
6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and reviewetcenterrbru
 
6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and momentetcenterrbru
 
6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagramsetcenterrbru
 
6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural membersetcenterrbru
 
6161103 7.4 cables
6161103 7.4 cables6161103 7.4 cables
6161103 7.4 cablesetcenterrbru
 

Mehr von etcenterrbru (20)

บทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดบทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาด
 
บทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลบทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคล
 
บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์
 
6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium
 
6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration
 
6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
 
6161103 9.6 fluid pressure
6161103 9.6 fluid pressure6161103 9.6 fluid pressure
6161103 9.6 fluid pressure
 
6161103 9.3 composite bodies
6161103 9.3 composite bodies6161103 9.3 composite bodies
6161103 9.3 composite bodies
 
6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws
 
6161103 8.3 wedges
6161103 8.3 wedges6161103 8.3 wedges
6161103 8.3 wedges
 
6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction
 
6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review
 
6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review
 
6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment
 
6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams
 
6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members
 
6161103 7.4 cables
6161103 7.4 cables6161103 7.4 cables
6161103 7.4 cables
 

Kürzlich hochgeladen

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 

Kürzlich hochgeladen (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 

6161103 10.8 mohr’s circle for moments of inertia

  • 1. 10.8 Mohr’s Circle for Moments of Inertia It can be found that 2 2  Ix + I y   Ix − Iy   Iu −   + I uv =  2  + I xy 2  2    2    In a given problem, Iu and Iv are variables and Ix, Iy and Ixy are known constants (I u − a )2 + I uv = R 2 2 When this equation is plotted on a set of axes that represent the respective moment of inertia and the product of inertia, the resulting graph represents a circle
  • 2. 10.8 Mohr’s Circle for Moments of Inertia The circle constructed is known as a Mohr’s circle with radius 2  Ix + Iy  R=   2   + I xy 2   and center at (a, 0) where a = (I x + I y ) / 2
  • 3. 10.8 Mohr’s Circle for Moments of Inertia Procedure for Analysis Determine Ix, Iy and Ixy Establish the x, y axes for the area, with the origin located at point P of interest and determine Ix, Iy and Ixy Construct the Circle Construct a rectangular coordinate system such that the abscissa represents the moment of inertia I and the ordinate represent the product of inertia Ixy
  • 4. 10.8 Mohr’s Circle for Moments of Inertia Procedure for Analysis Construct the Circle Determine center of the circle O, which is located at a distance (Ix + Iy)/2 from the origin, and plot the reference point a having coordinates (Ix, Ixy) By definition, Ix is always positive, whereas Ixy will either be positive or negative Connect the reference point A with the center of the circle and determine distance OA (radius of the circle) by trigonometry Draw the circle
  • 5. 10.8 Mohr’s Circle for Moments of Inertia Procedure for Analysis Principal of Moments of Inertia Points where the circle intersects the abscissa give the values of the principle moments of inertia Imin and Imax Product of inertia will be zero at these points Principle Axes To find direction of major principal axis, determine by trigonometry, angle 2θp1, measured from the radius OA to the positive I axis
  • 6. 10.8 Mohr’s Circle for Moments of Inertia Procedure for Analysis Principle Axes This angle represent twice the angle from the x axis to the area in question to the axis of maximum moment of inertia Imax Both the angle on the circle, 2θp1, and the angle to the axis on the area, θp1must be measured in the same sense The axis for the minimum moment of inertia Imin is perpendicular to the axis for Imax
  • 7. 10.8 Mohr’s Circle for Moments of Inertia Example 10.10 Using Mohr’s circle, determine the principle moments of the beam’s cross-sectional area with respect to an axis passing through the centroid.
  • 8. 10.8 Mohr’s Circle for Moments of Inertia Solution Determine Ix, Iy and Ixy Moments of inertia and the product of inertia have been determined in previous examples ( ) I x = 2.90 109 mm4 I y = 5.60(109 )mm4 I xy = −3.00(109 )mm4 Construct the Circle Center of circle, O, lies from the origin, at a distance (I x + I y )/ 2 = (2.90 + 5.60) / 2 = 4.25
  • 9. 10.8 Mohr’s Circle for Moments of Inertia Solution With reference point A (2.90, -3.00) connected to point O, radius OA is determined using Pythagorean theorem OA = (1.35)2 + (− 3.00)2 = 3.29 Principal Moments of Inertia Circle intersects I axis at points (7.54, 0) and (0.960, 0)
  • 10. 10.8 Mohr’s Circle for Moments of Inertia Solution ( ) I max = 7.54 109 mm4 ( ) I min = 0.960 109 mm 4 Principal Axes Angle 2θp1 is determined from the circle by measuring CCW from OA to the direction of the positive I axis −1 BA  2θ p1 = 180 − sin  o  OA     o −1 3.00  o = 180 − sin   = 114.2  3.29 
  • 11. 10.8 Mohr’s Circle for Moments of Inertia Solution The principal axis for Imax = 7.54(109) mm4 is therefore orientated at an angle θp1 = 57.1°, measured CCW from the positive x axis to the positive u axis v axis is perpendicular to this axis