SlideShare ist ein Scribd-Unternehmen logo
1 von 53
Downloaden Sie, um offline zu lesen
Trang 7
BƀI T P TOƁN CAO C P A1 ā€“H Đ I H C
TRĘÆ NG Đ I H C CƔNG NGHI P THƀNH PH H CHƍ MINH
KHOA KHOA H C CĘ  B N
BƀI T P TOƁN A1
NHƓM I
TT H Vƀ TƊN SINH VIƊN Mƃ S SINH VIƊN L P GHI CHƚ
1 Nguy n Văn A 0771847 DHP5 NhĆ³m trĘ° ng
2 LĆŖ Th B 0770538 DHDI5
3
4
GVHD: ThS. LĆŖ Văn H i
1) Trang bƬa nhĘ° trĆŖn.
2) T trang th 2, chĆ©p đ cĆ¢u nĆ o xong thƬ gi i rƵ rĆ ng ngay cĆ¢u Ä‘Ć³.
3) Trang cu i cĆ¹ng lĆ  GiĆ”o trƬnh vĆ  tĆ i li u tham kh o:
1.GiĆ”o trƬnh chĆ­nh: ToĆ”n cao c p- Ch biĆŖn: TS Nguy n PhĆŗ Vinh, trĘ° ng ĐHCN TP HCM
2.Nguy n ĐƬnh Trƭ vƠ nhi u tƔc gi , ToƔn cao c p, t p I, NXB GiƔo D c, 2003
3.T Văn Đ nh-VÅ© Long-DĘ°Ę”ng Th y V , BĆ i t p toĆ”n cao c p, NXB ĐH&THCN
4.Tr n Văn H o, Đ i s cao c p, t p I, NXB GiƔo d c, 1977
5.TS.Nguy n PhĆŗ Vinh, TrĘ° ng ĐHCN TP H ChĆ­ Minh, NgĆ¢n hĆ ng cĆ¢u h i toĆ”n cao c p.
ā€¢ Ph n lĆ m bĆ i t p cĆ³ th Ä‘Ć”nh mĆ”y ho c vi t tay trĆŖn 01 m t gi y A 4 (khuy n khĆ­ch Ä‘Ć”nh mĆ”y)
ā€¢ Th i h n n p bĆ i t p: Ti t h c cu i cĆ¹ng (ChĆŗ Ć½: Sinh viĆŖn ph i nghiĆŖn c u trĘ° c tĆ i li u đ cĆ³ th gi i
đʰ c nh ng bƠi t p ph n chu i s vƠ chu i hƠm)
ā€¢ M i th c m c g i v : lvhmaths2008@gmail.com
PhĆ¢n nhĆ³m:
- NhĆ³m trĘ° ng cĆ³ trĆ”ch nhi m phĆ¢n cĆ“ng nhi m v c th cho t ng thĆ nh viĆŖn trong nhĆ³m c a mƬnh ph trĆ”ch
(t t c sinh viĆŖn đ u ph i tham gia gi i bĆ i t p)
+ NhĆ³m 1: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 0,1,2; vĆ­ d nhĘ° cĆ¢u: 1,2,10,11,12, 20,21,22,ā€¦.
+ NhĆ³m 2: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 1,2,3; vĆ­ d nhĘ° cĆ¢u: 1,2,3,11,12,13 21,22,23, ā€¦..
+ NhĆ³m 3: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 2,3,4; vĆ­ d nhĘ° cĆ¢u: 2,3,4,12,13,14, 22,23,24,ā€¦..
+ NhĆ³m 4: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 3,4,5 vĆ­ d nhĘ° cĆ¢u: 3,4,5,13,14,15,23,24,25,ā€¦.
+ NhĆ³m 5: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 4,5,6 vĆ­ d nhĘ° cĆ¢u: 4,5,6,14,15,16,24,25,26,ā€¦
+ NhĆ³m 6: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 5,6,7 vĆ­ d nhĘ° cĆ¢u: 5,6,7,15,16,17,25,26,27,ā€¦
+ NhĆ³m 7: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 6,7,8 vĆ­ d nhĘ° cĆ¢u: 6,7,8,16,17,18,26,27,28,ā€¦
+ NhĆ³m 8: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 7,8,9 vĆ­ d nhĘ° cĆ¢u: 7,8,9,17,18,19,27,28,29,ā€¦
+ NhĆ³m 9: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 8,9,0 vĆ­ d nhĘ° cĆ¢u: 0,8,9,10,18,19,20,28,29,ā€¦
+ NhĆ³m 10: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 9,0,1 vĆ­ d nhĘ° cĆ¢u: 0,1,9,10,11,19,20,21,29,ā€¦.
PH N BƀI T P
CaĆ¢u 1:CaĆ¢u 1:CaĆ¢u 1:CaĆ¢u 1: TƬm L =
1xxx2
1xxxx
lim 23
23
x
+āˆ’
+++
+āˆžā†’
a) L = 1 b) L = 1/2 c) L = 0 d) L = āˆž
www.VNMATH.com
Trang 8
CaĆ¢u 2:CaĆ¢u 2:CaĆ¢u 2:CaĆ¢u 2: TƬm L =
1xxxx8
1xx
lim 23
4
x
+++
++
+āˆžā†’
a) L = 1 b) L = 1/8 c) L = 0 d) L = āˆž
CaĆ¢u 3:CaĆ¢u 3:CaĆ¢u 3:CaĆ¢u 3: TƬm L =
2xxx
1xxx10
lim 45
34
x +++
++
āˆžā†’
a) L = 10 b) L = 0 c) L = āˆž d) L = 1/2
CaĆ¢u 4:CaĆ¢u 4:CaĆ¢u 4:CaĆ¢u 4: TƬm L =
3x4x
1x
lim 2
2
1x +āˆ’
āˆ’
ā†’
a) L = 0 b) L = ā€“1 c) L = 2 d) L = āˆž
CaĆ¢u 5:CaĆ¢u 5:CaĆ¢u 5:CaĆ¢u 5: TƬm L =
1x
1x
lim 21x āˆ’
āˆ’
ā†’
a) L = 0 b) L = 1 c) L = 1/2 d) L = 1/4
CaĆ¢u 6:CaĆ¢u 6:CaĆ¢u 6:CaĆ¢u 6: TƬm L =
1x
1x
lim 2
3
1x āˆ’
āˆ’
ā†’
a) L = 0 b) L = 1/2 c) L = 1/3 d) L = 1/6
CaĆ¢u 7:CaĆ¢u 7:CaĆ¢u 7:CaĆ¢u 7: TƬm L = ( )xxxxlim 22
x
āˆ’āˆ’+
+āˆžā†’
a) L = 1/2 b) L = 1/3 c) L = 1 d) L = 2
CaĆ¢u 8:CaĆ¢u 8:CaĆ¢u 8:CaĆ¢u 8: TƬm L = ( )x2xxlim 2
x
āˆ’āˆ’
+āˆžā†’
a) L = +āˆž b) L = 1 c) L = ā€“1 d) L khoĆ¢ng toĆ n taĆÆi
CaĆ¢u 9:CaĆ¢u 9:CaĆ¢u 9:CaĆ¢u 9: TƬm L = ( )x2xxlim 2
x
āˆ’āˆ’
āˆ’āˆžā†’
a) L = ā€“āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi
CaĆ¢u 10:CaĆ¢u 10:CaĆ¢u 10:CaĆ¢u 10: TƬm L = ( )x2xxlim 2
x
āˆ’āˆ’
āˆžā†’
a) L = āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi
CaĆ¢u 11:CaĆ¢u 11:CaĆ¢u 11:CaĆ¢u 11: TƬm L = ( )x2xx2lim 2
x
āˆ’āˆ’
āˆžā†’
a) L = āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi
CaĆ¢u 12:CaĆ¢u 12:CaĆ¢u 12:CaĆ¢u 12: TƬm L = ļ£·
ļ£ø
ļ£¶ļ£¬
ļ£­
ļ£« āˆ’āˆ’+āˆ’+
+āˆžā†’
x2x21x21x2lim 222
x
a) L = āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi
CaĆ¢u 13:CaĆ¢u 13:CaĆ¢u 13:CaĆ¢u 13: TƬm L = ( )3 23
x
4x3xxlim +āˆ’āˆ’
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = 2
CaĆ¢u 14:CaĆ¢u 14:CaĆ¢u 14:CaĆ¢u 14: TƬm L = ( )3 233 23
x
4x3x1x3x3xlim +āˆ’āˆ’++āˆ’
āˆžā†’
www.VNMATH.com
Trang 9
a) L = āˆž b) L = 0 c) L = 1 d) L = 2
CaĆ¢u 15:CaĆ¢u 15:CaĆ¢u 15:CaĆ¢u 15: TƬm L = ( )3 233 23
x
1xx21x3x2lim āˆ’+āˆ’++
āˆžā†’
a) L = 3 3/2 b) L = 3 2 c) L = āˆž d) L = 0
CaĆ¢u 16:CaĆ¢u 16:CaĆ¢u 16:CaĆ¢u 16: TƬm L = ļ£·
ļ£ø
ļ£¶ļ£¬
ļ£­
ļ£« +āˆ’āˆ’++āˆ’
+āˆžā†’
3 233 3
x
4x3x1x3xx3xlim
a) L = āˆž b) L = 0 c) L = ā€“1 d) L = 1
CaĆ¢u 17:CaĆ¢u 17:CaĆ¢u 17:CaĆ¢u 17: TƬm L = ļ£·
ļ£ø
ļ£¶ļ£¬
ļ£­
ļ£« +āˆ’āˆ’++āˆ’
+āˆžā†’
3 43
x
4x3x1x3xx3xlim
a) L = āˆž b) L = 1 c) L = ā€“1 d) L = 0
CaĆ¢u 18:CaĆ¢u 18:CaĆ¢u 18:CaĆ¢u 18: TƬm L = ( )3 233 3
x
4x3x2x4xlim +āˆ’āˆ’++
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = 2
CaĆ¢u 19:CaĆ¢u 19:CaĆ¢u 19:CaĆ¢u 19: TƬm L = ( )3 323 23
x
xx241x4xlim āˆ’++++
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = 2
CaĆ¢u 20:CaĆ¢u 20:CaĆ¢u 20:CaĆ¢u 20: TƬm L = ( )3 323 23
x
xx41x4xlim +āˆ’+++
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = 2
CaĆ¢u 21:CaĆ¢u 21:CaĆ¢u 21:CaĆ¢u 21: TƬm L = ( )3 323 23
x
xx41x4x2lim āˆ’āˆ’+++
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = ā€“1
CaĆ¢u 22:CaĆ¢u 22:CaĆ¢u 22:CaĆ¢u 22: TƬm L = ( )3 33 3
x
x2x41x4x2lim āˆ’āˆ’+++
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = 3 2 /2
CaĆ¢u 23:CaĆ¢u 23:CaĆ¢u 23:CaĆ¢u 23: TƬm L = ( )3 33 3
x
x2x41x4x2xlim āˆ’āˆ’+++
āˆžā†’
a) L = āˆž b) L = 0 c) L = 1 d) L = 3 2 /2
CaĆ¢u 24:CaĆ¢u 24:CaĆ¢u 24:CaĆ¢u 24: TƬm L =
x4sin
x2sin
lim
2
0xā†’
a) L = 0 b) L = 2 c) L = 1/2 d) L = 1/4
CaĆ¢u 25:CaĆ¢u 25:CaĆ¢u 25:CaĆ¢u 25: TƬm L =
x3sin
xsinx2sin
lim
2
0x
+
ā†’
a) L = 0 b) L = 1/3 c) L = 2/3 d) L = 4/3
CaĆ¢u 26:CaĆ¢u 26:CaĆ¢u 26:CaĆ¢u 26: TƬm L =
x2sinx
xcos1
lim
0x
āˆ’
ā†’
a) L = 0 b) L = 1 c) L = 1/2 d) L = 1/4
CaĆ¢uCaĆ¢uCaĆ¢uCaĆ¢u 22227:7:7:7: TƬm caĆ«p voĆ¢ cuĆøng beĆ¹ tƶƓng ƱƶƓng khi cho x ā†’ 0
www.VNMATH.com
Trang 10
a) sin2x vaĆø arcsinx b) arcsin3x vaĆø ln(1 + 3x)
c) arctgx vaĆø arccotgx d) 1 ā€“ ex
vaĆø x
CaĆ¢u 28:CaĆ¢u 28:CaĆ¢u 28:CaĆ¢u 28: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
xx2x
xarcsin3xarcsin2xarcsin
lim 23
23
0x +āˆ’
++
ā†’
a) L = 0 b) L = 1 c) L = 2 d) L = 3
CaĆ¢u 29:CaĆ¢u 29:CaĆ¢u 29:CaĆ¢u 29: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
( )
xxtgsinx
xcosc1
lim 2
2
0x
āˆ’
ā†’
a) L = 0 b) L = 1 c) L = 1/2 d) L = 1/4
CaĆ¢u 30:CaĆ¢u 30:CaĆ¢u 30:CaĆ¢u 30: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
arctgxxsin
xxcos1
lim 4
3
0x +
āˆ’āˆ’
ā†’
a) L = 0 b) L = 1/2 c) L = 2 d) L = 1
CaĆ¢u 31:CaĆ¢u 31:CaĆ¢u 31:CaĆ¢u 31: TƬm L =
xsin
x2cos1
lim 20x
āˆ’
ā†’
a) L = 2 b) L = 1/2 c) L = 1 d) L = 1/4
CaĆ¢u 32:CaĆ¢u 32:CaĆ¢u 32:CaĆ¢u 32: TƬm L =
x
tgx1xsin31
lim
0x
āˆ’āˆ’+
ā†’
a) L = 2 b) L = 1 c) L = 1/2 d) L = 0
CaĆ¢u 33:CaĆ¢u 33:CaĆ¢u 33:CaĆ¢u 33: TƬm L =
x2sin
2xsin1xsin31
lim
0x
āˆ’+++
ā†’
a) L = 1 b) L = 3 c) L = 2 d) L = 0
CaĆ¢u 34:CaĆ¢u 34:CaĆ¢u 34:CaĆ¢u 34: TƬm L = 20x x
xcos1
lim
āˆ’
ā†’
a) L = 1/4 b) L = 1/2 c) L = 1 d) L = 0
CaĆ¢u 35:CaĆ¢u 35:CaĆ¢u 35:CaĆ¢u 35: TƬm L = 22
2
0x xxarcsinx4
xsinx5sinx
lim
++
+āˆ’
ā†’
a) L = 1 b) L = ā€“1 c) L = 2 d) L = 3
CaĆ¢u 36:CaĆ¢u 36:CaĆ¢u 36:CaĆ¢u 36: TƬm L = 22
22
0x xxarcsinxsin
xsinx5sinx3arcsin
lim
++
+āˆ’
ā†’
a) L = 3 b) L = ā€“1 c) L = 0 d) L = 1
CaĆ¢u 37:CaĆ¢u 37:CaĆ¢u 37:CaĆ¢u 37: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
xsinxcos1
xarcsin2)x2tg1ln(xcos1
lim 2
32
0x +āˆ’
+++āˆ’
ā†’
a) L = 0 b) L = 1 c) L = 2 d) L = 3
CaĆ¢u 38:CaĆ¢u 38:CaĆ¢u 38:CaĆ¢u 38: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
xsinxcos1
xarcsin2)x3tgxarcsin(
lim 2
323
0x +āˆ’
++
ā†’
a) L = 0 b) L = 6 c) L = 8 d) L = 22/3
CaĆ¢u 39:CaĆ¢u 39:CaĆ¢u 39:CaĆ¢u 39: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
xsinxcos1
xarcsin2)x3tgxarcsin(
lim 3
323
0x +āˆ’
++
ā†’
www.VNMATH.com
Trang 11
a) L = 0 b) L = 6 c) L = 8 d) L = 18
CaĆ¢u 40:CaĆ¢u 40:CaĆ¢u 40:CaĆ¢u 40: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L =
xsin)x21ln(
xarcsin3x3sinx
lim 22
323
0x ++
++
ā†’
a) L = 0 b) L = 6 c) L = 5/2 d) L = 3
CaĆ¢u 41:CaĆ¢u 41:CaĆ¢u 41:CaĆ¢u 41: TƬm L = 20x xx2arcsin
1xsin21)x3tg1ln(
lim
+
āˆ’+++
ā†’
a) L = 4 b) L = 3 c) L = 2 d) L = 1
CaĆ¢u 42:CaĆ¢u 42:CaĆ¢u 42:CaĆ¢u 42: TƬm L = 2x
2
0x )1e(
1xsin21)xln(cos
lim
āˆ’
āˆ’++
ā†’
a) L = 1/2 b) L = 3/2 c) L = 5/2 d) L = ā€“3/2
CaĆ¢u 43:CaĆ¢u 43:CaĆ¢u 43:CaĆ¢u 43: TƬm L =
( )( ) ( )
( ) 3
2x22
0x xx4cosln
1ex2cos21x2tgx
lim
+
āˆ’+āˆ’+
ā†’
a) L = ā€“4/7 b) L = 1 c) L = ā€“1/2 d) L = ā€“8/7
CaĆ¢u 44:CaĆ¢u 44:CaĆ¢u 44:CaĆ¢u 44: TƬm L =
( ) ( )
( )( )222
2
0x
xx2sin1xx2
1x2cosxcosln4x3x
lim
+++
āˆ’+++
ā†’
a) L = 1 b) L = ā€“1 c) L = 1/2 d) L = ā€“1/2
CaĆ¢u 45:CaĆ¢u 45:CaĆ¢u 45:CaĆ¢u 45: TƬm L =
( )
( )( )x2sinx4sin4x3x
1xcosxsin
lim 3
2
0x āˆ’++
āˆ’+
ā†’
a) L = ā€“1/8 b) L = 1/8 c) L = ā€“1/4 d) L = 1/4
CaĆ¢u 46:CaĆ¢u 46:CaĆ¢u 46:CaĆ¢u 46: TƬm L =
( )( )
( ) ( )xcose1lnxcosx3cosx
xcos1xex2cos
lim
2x
0x āˆ’+āˆ’
āˆ’+āˆ’
ā†’
a) L = 3/8 b) L = ā€“3/8 c) L = ā€“3/4 d) L = Ā¾
CaĆ¢u 47:CaĆ¢u 47:CaĆ¢u 47:CaĆ¢u 47: TƬm L =
x
2
2
x 1xx
1xx
lim ļ£·ļ£·
ļ£ø
ļ£¶
ļ£¬ļ£¬
ļ£­
ļ£«
āˆ’āˆ’
++
āˆžā†’
a) L = āˆž b) L = 1 c) L = e d) L = e2
CaĆ¢u 48:CaĆ¢u 48:CaĆ¢u 48:CaĆ¢u 48: TƬm L = ( ) gxcot
0x
xsinxcoslim +
ā†’
a) L = 1 b) L = e c) L = 1/ e d) L = +āˆž
CaĆ¢u 49:CaĆ¢u 49:CaĆ¢u 49:CaĆ¢u 49: TƬm L = ( ) xgcot
0x
2
xcoslim
ā†’
a) L = 1 b) L = e c) L = 1/ e d) L = +āˆž
CaĆ¢u 50:CaĆ¢u 50:CaĆ¢u 50:CaĆ¢u 50: TƬm L = ( ) xgcot2
0x
3
xx2coslim +āˆ’
ā†’
a) L = 1 b) L = e c) L = 1/ e d) L = +āˆž
www.VNMATH.com
Trang 12
CaĆ¢u 51:CaĆ¢u 51:CaĆ¢u 51:CaĆ¢u 51: TƬm L = ( ) gxcot2
0x
xsinxcoslim +
ā†’
a) L = 1 b) L = e c) L = 1/ e d) L = e
CaĆ¢u 52:CaĆ¢u 52:CaĆ¢u 52:CaĆ¢u 52: TƬm L = ( ) xgcot2
0x
2
xsinxcoslim +
ā†’
a) L = 1 b) L = e c) L = 1/ e d) L = e
CaĆ¢u 53:CaĆ¢u 53:CaĆ¢u 53:CaĆ¢u 53: Cho haĆøm soĆ” y = 1/ln(x2
+ 1). KhaĆŗng Ć±Ć²nh naĆøo ƱuĆ¹ng?
a) y lieĆ¢n tuĆÆc treĆ¢n R  {0} b) y giaĆ¹n ƱoaĆÆn taĆÆo x = 0
c) y khoĆ¢ng xaĆ¹c Ć±Ć²nh taĆÆi x = 0 d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u ƱuĆ¹ng
CaĆ¢u 54:CaĆ¢u 54:CaĆ¢u 54:CaĆ¢u 54: Cho haĆøm soĆ” y = ( )
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
+
+
1a2
x1ln
xtgx
2
vĆ“Ć¹i x ā‰  0
vĆ“Ć¹i x = 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = 3 b) a = 1 c) a = 2 d) a = 0
CaĆ¢u 55:CaĆ¢u 55:CaĆ¢u 55:CaĆ¢u 55: Cho haĆøm soĆ” y =
ļ£“ļ£³
ļ£“
ļ£²
ļ£±
A
x
xsin vĆ“Ć¹i x ā‰  0
vĆ“Ć¹i x = 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a A thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) A = 0 b) A = 1 c) A = 2 d) CaĆ¹c keĆ”t quaĆ» ƱeĆ u sai
CaĆ¢u 5CaĆ¢u 5CaĆ¢u 5CaĆ¢u 56666:::: Cho haĆøm soĆ” y =
ļ£“ļ£³
ļ£“
ļ£²
ļ£±
A
x
xcos vĆ“Ć¹i x ā‰  0
vĆ“Ć¹i x = 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a A thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) A = 0 b) A = 1 c) A = 2 d) KhoĆ¢ng toĆ n taĆÆi A ƱeĆ„ haĆøm soĆ” lieĆ¢n tuĆÆc
CaĆ¢u 5CaĆ¢u 5CaĆ¢u 5CaĆ¢u 57777:::: Cho haĆøm soĆ”
y =
( )
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
++
++
axsinx
xsin
x21lnxsinx
2
vĆ“Ć¹i ā€“1/2 < x < 0
vĆ“Ć¹i x ā‰„ 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = 0 b) a = 2 c) a = 1 d) a = 3
CaĆ¢u 58:CaĆ¢u 58:CaĆ¢u 58:CaĆ¢u 58: Cho haĆøm soĆ” y =
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
+
+
a2xcos
x
xtg2xsinx
2
2
2
vĆ“Ć¹i x < 0
vĆ“Ć¹i x ā‰„ 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = 0 b) a = 2 c) a = ā€“1 d) a = 1
CaĆ¢u 59:CaĆ¢u 59:CaĆ¢u 59:CaĆ¢u 59: Cho haĆøm soĆ” y =
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
+
āˆ’+ āˆ’
1A2
x2
2ee
2
x2x2
vĆ“Ć¹i x ā‰  0
vĆ“Ć¹i x = 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a A thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) A = 1/2 b) A = ā€“3/2 c) A = 1 d) A = 2
www.VNMATH.com
Trang 13
CaĆ¢u 60CaĆ¢u 60CaĆ¢u 60CaĆ¢u 60:::: Cho haĆøm soĆ” y =
ļ£“ļ£³
ļ£“
ļ£²
ļ£±
+
āˆ’+
1a2
xsin
x)x1ln(
2
vĆ“Ć¹i x ā‰  0
vĆ“Ć¹i x = 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = ā€“2 b) a = ā€“3/2 c) a = ā€“3/4 d) a = 1
CaĆ¢u 61:CaĆ¢u 61:CaĆ¢u 61:CaĆ¢u 61: Cho haĆøm soĆ” y =
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
++
++
ax2xsin
xsin
)x21ln(xsinx
2
2
vĆ“Ć¹i ā€“Ļ€/2 < x < 0
vĆ“Ć¹i x ā‰„ 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = 0 b) a = 1 c) a = 2 d) a = 3
CaĆ¢u 62:CaĆ¢u 62:CaĆ¢u 62:CaĆ¢u 62: Cho haĆøm soĆ” y =
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
++
++
ax2x
xsin
)x21ln(xsinx
2
2
2
vĆ“Ć¹i ā€“1 < x < 0
vĆ“Ć¹i x ā‰„ 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = 0 b) a = 1 c) a = 2 d) a = 3
CaĆ¢u 63:CaĆ¢u 63:CaĆ¢u 63:CaĆ¢u 63: Cho haĆøm soĆ” y =
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
āˆ’
āˆ’āˆ’
1a3
xsin
1x2e
2
x2
vĆ“Ć¹i x ā‰  0
vĆ“Ć¹i x = 0
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0?
a) a = 1 b) a = 2 c) a = ā€“2 d) a = ā€“1
CaĆ¢u 6CaĆ¢u 6CaĆ¢u 6CaĆ¢u 64444:::: Cho haĆøm soĆ” y =
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
āˆ’
āˆ’
+āˆ’
1a
1x
1x3x2 3
vĆ“Ć¹i x ā‰  1
vĆ“Ć¹i x = 1
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1?
a) a = 1 b) a = 2 c) a = 3 d) a = 4
CaĆ¢u 65:CaĆ¢u 65:CaĆ¢u 65:CaĆ¢u 65: Cho haĆøm soĆ” y =
( )
ļ£“
ļ£“
ļ£³
ļ£“
ļ£“
ļ£²
ļ£±
+
++
āˆ’
1x
ax3x
1x
1
arctg
2
2
2
vĆ“Ć¹i x < 1
vĆ“Ć¹i x ā‰„ 1
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1?
a) a = Ļ€ b) a = Ļ€ ā€“ 4 c) a = Ļ€/2 d) KhoĆ¢ng toĆ n taĆÆi giaĆ¹ trĆ² a naĆøo
CaĆ¢u 66:CaĆ¢u 66:CaĆ¢u 66:CaĆ¢u 66: Cho haĆøm soĆ” y =
ļ£“
ļ£“
ļ£³
ļ£“ļ£“
ļ£²
ļ£±
+
++
āˆ’
Ļ€āˆ’Ļ€
1x
ax3x
1x
)xsin(
2
2
2
vĆ“Ć¹i x < 1
vĆ“Ć¹i x ā‰„ 1
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1?
a) a = ā€“Ļ€/2 + 4 b) a = Ļ€ ā€“ 4 c) a = ā€“Ļ€ ā€“ 4
d) KhoĆ¢ng toĆ n taĆÆi giaĆ¹ trĆ² a naĆøo
www.VNMATH.com
Trang 14
CaĆ¢u 67:CaĆ¢u 67:CaĆ¢u 67:CaĆ¢u 67: Cho haĆøm soĆ” y =
( )
ļ£“
ļ£“
ļ£³
ļ£“
ļ£“
ļ£²
ļ£±
+
+āˆ’
āˆ’
1x
ax3x3
1x
1
arctg
2
2
3
vĆ“Ć¹i x < 1
vĆ“Ć¹i x ā‰„ 1
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1?
a) a = Ļ€/2 b) a = ā€“Ļ€/2 c) a = ā€“Ļ€ d) a = Ļ€
CaĆ¢u 6CaĆ¢u 6CaĆ¢u 6CaĆ¢u 68888:::: Cho haĆøm soĆ” y =
ļ£“
ļ£“
ļ£³
ļ£“ļ£“
ļ£²
ļ£±
+āˆ’
āˆ’
2
2
x
ax6x3
2x
1
arctg vĆ“Ć¹i x ā‰  2
vĆ“Ć¹i x = 2
VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 2?
a) a = Ļ€/2 b) a = 2Ļ€ c) a = ā€“2Ļ€ d) KhoĆ¢ng toĆ n taĆÆi giaĆ¹ trĆ² a naĆøo
CaĆ¢u 69:CaĆ¢u 69:CaĆ¢u 69:CaĆ¢u 69: CoĆ¢ng thĆ¶Ć¹c ƱaĆÆo haĆøm naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ( )ā€²
x = 1/ x c) (arccosx)ā€² = 1/ 2
x1āˆ’
b) (1/x2
)ā€² = 2/x3
d) (tgx)ā€² = 1 + tg2
x
CaĆ¢u 70:CaĆ¢u 70:CaĆ¢u 70:CaĆ¢u 70: CoĆ¢ng thĆ¶Ć¹c ƱaĆÆo haĆøm naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
c) (logax)ā€² = lna/x (0 < aā‰  1)
d) CaĆ¹c coĆ¢ng thĆ¶Ć¹c treĆ¢n ƱeĆ u ƱuĆ¹ng
CaĆ¢u 71:CaĆ¢u 71:CaĆ¢u 71:CaĆ¢u 71: TƬm ƱaĆÆo haĆøm cuĆ»a haĆøm soĆ” y =
xcos
e
2
x
a) yā€² =
xcos
xsinexe2
2
xx 22
+
b) yā€² =
xcos
xsinexe2
2
xx 22
+
c) yā€² =
xcos
xsinee
2
xx 22
+
d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 72:CaĆ¢u 72:CaĆ¢u 72:CaĆ¢u 72: TƬm vi phaĆ¢n caĆ”p 1 cuĆ»a haĆøm soĆ” y = (3x)x
a) dy = 3x(3x)xā€“1
dx b) dy = (3x)x
ln3xdx
c) dy = (3x)x
(1 + ln3x)dx d) dy = (3x)x
(1 + 2ln3x)dx
CaĆ¢u 74:CaĆ¢u 74:CaĆ¢u 74:CaĆ¢u 74: TƬm vi phaĆ¢n dy = d(x/cosx)
a) dy = (cosx ā€“ xsinx) / cos2
x b) dy = (cosx + xsinx) / cos2
x
c) dy = (cosx + xsinx) dx / cos2
x d) dy = (cosx + xsinx) dx / cos2
x
CaĆ¢u 75:CaĆ¢u 75:CaĆ¢u 75:CaĆ¢u 75: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y = ln(2.arccotgx)
a) dy = ā€“
gxcotxarcsin
dx
2
b) dy =
gxcotarc
dx
c) dy =
gxcotarc)x1(
dx
2
+
d) dy = ā€“
gxcotarc)x1(
dx
2
+
CaĆ¢u 76:CaĆ¢u 76:CaĆ¢u 76:CaĆ¢u 76: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y = tgx
2
a) dy =
tgxx
2 tgx
dx b) dy =
xcostgx2
2ln2
2
tgx
dx
c) dy =
tgx2
2ln2 tgx
dx d) dy =
tgx2
)xtg1(2 21tgx
++
dx
CaĆ¢u 77:CaĆ¢u 77:CaĆ¢u 77:CaĆ¢u 77: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y = (4x)x
a) dy = 4x(4x)xā€“1
dx b) dy = (4x)x
ln4xdx
c) dy = (4x)x
(1 + 4ln4x)dx d) dy = (4x)x
(1 + ln4x)dx
www.VNMATH.com
Trang 15
CaĆ¢u 78:CaĆ¢u 78:CaĆ¢u 78:CaĆ¢u 78: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y= atctg
3
xln
a) dy =
)xln9(x
dx3
2
+
b) dy =
xln9
dx3
2
+
c) dy = ā€“
)xln9(x
dx3
2
+
d) dy =
)xln9(x
dx
2
+
CaĆ¢u 79:CaĆ¢u 79:CaĆ¢u 79:CaĆ¢u 79: TƬm vi phaĆ¢n caĆ”p hai cuĆ»a haĆøm soĆ” y = arccotg(x2
)
a) d2
y = 24
2
)x1(
)1x3(2
āˆ’
āˆ’
dx2
b) d2
y = 24
2
)x1(
)1x3(4
+
āˆ’
dx2
c) d2
y = 24
4
)x1(
)1x3(2
+
āˆ’
dx2
d) d2
y = 4
x1
x2
+
āˆ’
dx2
CaĆ¢u 80:CaĆ¢u 80:CaĆ¢u 80:CaĆ¢u 80: TĆ­nh ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² cuĆ»a haĆøm soĆ” y = arctg(x + 1) + 2x
a) yā€²ā€² = 22
)2x2x(
)1x(2
++
+
b) yā€²ā€² =
2x2x
2
2
++
c) yā€²ā€² = 22
)2x2x(
2
++
d) yā€²ā€² = 22
)2x2x(
)1x(2
++
+āˆ’
CaĆ¢u 81:CaĆ¢u 81:CaĆ¢u 81:CaĆ¢u 81: TƬm vi phaĆ¢n caĆ”p hai cuĆ»a haĆøm soĆ” y = ln(1 ā€“ x2
)
a) d2
y = 22
2
)x1(
)x1(2
āˆ’
+
dx2
b) d2
y = 22
2
)x1(
)x1(2
āˆ’
+āˆ’
dx2
c) d2
y = 22
2
)x1(
)x31(2
āˆ’
+
dx2
d) d2
y = 22
2
)x1(
x2
āˆ’
āˆ’
dx2
CaĆ¢u 82:CaĆ¢u 82:CaĆ¢u 82:CaĆ¢u 82: TƬm vi phaĆ¢n caĆ”p hai cuĆ»a haĆøm soĆ” y = ln(1 + 2x2
)
a) d2
y = 22
2
)x21(
)x21(4
+
āˆ’
dx2
c) d2
y = 22
2
)x21(
)x61(4
+
+
dx2
b) d2
y = 22
2
)x21(
)1x2(4
+
āˆ’
dx2
d) d2
y = 22
2
)x21(
x4
+
āˆ’
dx2
CaĆ¢u 83:CaĆ¢u 83:CaĆ¢u 83:CaĆ¢u 83: TĆ­nh ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² cuĆ»a haĆøm soĆ”
y = 2(x + 1)arctg(x + 1) ā€“ ln(x2
+ 2x + 2)
a) yā€²ā€² = 22
)2x2x(
)1x(2
++
+āˆ’
b) yā€²ā€² =
2x2x
2
2
++
c) yā€²ā€² = 22
)2x2x(
2
++
āˆ’
d) yā€²ā€² = 22
)2x2x(
)1x(2
++
+
CaĆ¢u 84:CaĆ¢u 84:CaĆ¢u 84:CaĆ¢u 84: TĆ­nh ƱaĆÆo haĆøm caĆ”p ba yā€²ā€²ā€² cuĆ»a haĆøm soĆ” y = 5x
+ 2x
a) yā€²ā€²ā€² = 5x
.ln3
5 + 2 b) yā€²ā€²ā€² = 5x
.ln2
5
c) yā€²ā€²ā€² = 5x
.ln3
5 d) yā€²ā€²ā€² = 5x
.ln5
CaĆ¢u 85:CaĆ¢u 85:CaĆ¢u 85:CaĆ¢u 85: TĆ­nh ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ”
ļ£³
ļ£²
ļ£±
=
=
tcosy
tsinx
2
vĆ“Ć¹i t āˆˆ (0, Ļ€ / 2)
a) yā€² = 2sint b) yā€² = ā€“2sint
c) yā€² = sin2t d) yā€² = ā€“sin2t
CaĆ¢u 86:CaĆ¢u 86:CaĆ¢u 86:CaĆ¢u 86: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham
soĆ”
ļ£³
ļ£²
ļ£±
āˆ’=
+=
arctgt2t2y
)t1ln(x 2
www.VNMATH.com
Trang 16
a) yā€² = 2
2
t1
t2
+
b) yā€² = 2
2
t1
t2
+
āˆ’
c) yā€² = t d) yā€² = ā€“t
CaĆ¢u 87:CaĆ¢u 87:CaĆ¢u 87:CaĆ¢u 87: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) taĆÆi x0 = Ļ€/4 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh
tham soĆ”
ļ£³
ļ£²
ļ£±
=
=
tlny
arctgtx
a) yā€²(Ļ€/4) = 1 b) yā€²(Ļ€/4) = 2
c) yā€²(Ļ€/4) = 4/Ļ€ d) yā€²(Ļ€/4) = Ļ€/4 + 4/Ļ€
CaĆ¢u 88:CaĆ¢u 88:CaĆ¢u 88:CaĆ¢u 88: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) taĆÆi x0 = Ļ€/3 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh
tham soĆ”
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
=
=
2
t
y
arctgtx
2
a) yā€²(Ļ€/3) = 4 3 b) yā€²(Ļ€/3) = 0
c) yā€²(Ļ€/3) = Ļ€/3 d) yā€²(Ļ€/3) = Ļ€/3 + Ļ€3
/9
CaĆ¢u 89:CaĆ¢u 89:CaĆ¢u 89:CaĆ¢u 89: TƬm ƱaĆÆo haĆøm yā€²(x) taĆÆi x0 = 2 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ”
ļ£“ļ£³
ļ£“
ļ£²
ļ£±
+=
=
2
t
tty
e2x
a) yā€²(1) = 1/2 b) yā€²(1) = 1
c) yā€²(1) = 5/e2
d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 90:CaĆ¢u 90:CaĆ¢u 90:CaĆ¢u 90: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² = yā€²ā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh
tham soĆ”
ļ£³
ļ£²
ļ£±
=
=
tcosy
tsinx
2
vĆ“Ć¹i t āˆˆ (0, Ļ€/2)
a) yā€² = ā€“2 b) yā€² = ā€“2cost
c) yā€² = 2cost d) yā€² = ā€“2cos2t
CaĆ¢u 91:CaĆ¢u 91:CaĆ¢u 91:CaĆ¢u 91: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² = yā€²ā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh
tham soĆ”
ļ£³
ļ£²
ļ£±
āˆ’=
+=
arctgt2t2y
)t1ln(x 2
a) yā€²ā€² = 22
)t1(
t4
+
b) yā€²ā€² = 2
2
t1
t2
+
āˆ’
c) yā€²ā€² =
t2
t1 2
+
d) yā€²ā€² =
t2
t1 2
+
āˆ’
CaĆ¢u 92:CaĆ¢u 92:CaĆ¢u 92:CaĆ¢u 92: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = Ļ€/4 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng
trƬnh tham soƔ
ļ£³
ļ£²
ļ£±
=
=
tlny
arctgtx
a) yā€²ā€²(Ļ€/4) = 0 b) yā€²ā€²(Ļ€/4) = 1
c) yā€²ā€²(Ļ€/4) = 2 d) yā€²ā€²(Ļ€/4) = 1 ā€“ 16/Ļ€2
CaĆ¢u 93:CaĆ¢u 93:CaĆ¢u 93:CaĆ¢u 93: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = Ļ€/3 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng
trƬnh tham soƔ
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
=
=
2
t
y
arctgtx
2
a) yā€²ā€²(Ļ€/3) = ā€“16/ 3 b) yā€²ā€²(Ļ€/3) = 8/3
www.VNMATH.com
Trang 17
c) yā€²ā€²(Ļ€/3) = 40 d) yā€²ā€²(Ļ€/3) = 2
CaĆ¢u 94:CaĆ¢u 94:CaĆ¢u 94:CaĆ¢u 94: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = 1 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh
tham soĆ”
ļ£³
ļ£²
ļ£±
=
=
3
ty
tlnx
a) yā€²ā€²(1) = ā€“6e3
b) yā€²ā€²(1) = 9e3
c) yā€²ā€²(1) = 6e d) yā€²ā€²(1) = 6
CaĆ¢u 95:CaĆ¢u 95:CaĆ¢u 95:CaĆ¢u 95: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = 2 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh
tham soĆ”
ļ£“ļ£³
ļ£“
ļ£²
ļ£±
+==
=
2
t
ttyy
e2x
a) yā€²ā€²(1) = 1/4 b) yā€²ā€²(1) = 1/8
c) yā€²ā€²(1) = 1/2 d) yā€²ā€²(1) = 0
CaĆ¢u 96:CaĆ¢u 96:CaĆ¢u 96:CaĆ¢u 96: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tgy = xy
a) yā€² =
ytgx1
y
2
+āˆ’
āˆ’ b) yā€² =
ytgx1
y
2
+āˆ’
c) yā€² =
ycosx1
ycosy
2
2
+
d) yā€² =
ycosx1
ycosy
2
2
+
āˆ’
CaĆ¢u 97:CaĆ¢u 97:CaĆ¢u 97:CaĆ¢u 97: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh y = x +
arctgy
a) yā€² = 2
y
y1+
b) ) yā€² = 2
2
y
y1+
āˆ’
c) yā€² = 2
2
y1
y2
+
+
d) yā€² = 2
2
y1
y2
+
+
āˆ’
CaĆ¢u 98: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh arctg(x + y) =
x
a) yā€² = 2
)yx(1
1
++
b) ) yā€² = 2
)yx(
1
+
c) yā€² = 1 + (x + y)2
d) yā€² = (x + y)2
CaĆ¢u 99:CaĆ¢u 99:CaĆ¢u 99:CaĆ¢u 99: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh y = 1 + xey
a) yā€² = (x + 1)ey
b) yā€² = ey
c) yā€² = y
y
xe1
e
āˆ’
d) yā€² = 0
CaĆ¢u 100:CaĆ¢u 100:CaĆ¢u 100:CaĆ¢u 100: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh lny +
y
x
= 1
a) yā€² = ā€“1 b) yā€² =
xy
y
+
c) yā€² =
yx
y
āˆ’
d) yā€² =
xy
y
āˆ’
CaĆ¢u 101:CaĆ¢u 101:CaĆ¢u 101:CaĆ¢u 101: TƬm ƱaĆÆo haĆøm yā€²(0) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh x3
+ lny ā€“ x2
ey
=
0
a) yā€²(0) = 0 b) yā€²(0) = 1 c) yā€²(0) = 2 d) yā€²(0) = 3
CaĆ¢u 102:CaĆ¢u 102:CaĆ¢u 102:CaĆ¢u 102: TƬm ƱaĆÆo haĆøm yā€²(0) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh ey
ā€“ xy = e
a) yā€²(0) = e b) yā€²(0) = ā€“e c) yā€²(0) = 1/e d) yā€²(0) = ā€“1/e
CaĆ¢u 103:CaĆ¢u 103:CaĆ¢u 103:CaĆ¢u 103: TƬm ƱaĆÆo haĆøm yā€²(0) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh x3
ā€“ xy ā€“ xey
+ y
ā€“ 1 = 0
a) yā€²(0) = 0 b) yā€²(0) = 1 c) yā€²(0) = e d) yā€²(0) = 1 + e
www.VNMATH.com
Trang 18
CaĆ¢u 104:CaĆ¢u 104:CaĆ¢u 104:CaĆ¢u 104: TƬm ƱaĆÆo haĆøm yā€²(Ļ€/2) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh ycosx + sinx +
lny = 0
a) yā€²(Ļ€/2) = 1 b) yā€²(Ļ€/2) = e c) yā€²(Ļ€/2) = 1/e2
d) yā€²(Ļ€/2) = e2
CaĆ¢u 118:CaĆ¢u 118:CaĆ¢u 118:CaĆ¢u 118: TƬm ƱaĆÆo haĆøm yā€² cuĆ»a haĆøm soĆ” y = (x + 1)x
a) yā€² = (x + 1)x
ļ£ŗ
ļ£»
ļ£¹
ļ£Æ
ļ£°
ļ£®
+
āˆ’+
1x
x
)1xln(
b) yā€² = (x + 1)x ļ£ŗ
ļ£»
ļ£¹
ļ£Æ
ļ£°
ļ£®
+
++
1x
x
)1xln(
c) yā€² = (x + 1)x ļ£ŗļ£»
ļ£¹
ļ£Æļ£°
ļ£®
+
++āˆ’
1x
x
)1xln( d) TaĆ”t caĆ» caĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 119:CaĆ¢u 119:CaĆ¢u 119:CaĆ¢u 119: Cho haĆøm soĆ” f(x) khaĆ» vi taĆÆi x0. CoĆ¢ng thĆ¶Ć¹c tĆ­nh xaĆ”p xƦ naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) f(x0 + āˆ†x) ā‰ˆ f(x0) ā€“ fā€²(x0)āˆ†x b) f(x0 + āˆ†x) ā‰ˆ f(x0) + fā€²(x0)āˆ†x
c) f(x0 + āˆ†x) ā‰ˆ fā€²(x0) ā€“ f(x0)āˆ†x d) f(x0 + āˆ†x) ā‰ˆ fā€²(x0) + f(x0)āˆ†x
CaĆ¢u 120:CaĆ¢u 120:CaĆ¢u 120:CaĆ¢u 120: BaĆØng caĆ¹ch sƶƻ duĆÆng ƱaĆÆo haĆøm caĆ”p moƤt, haƵy cho bieĆ”t caĆ¹ch tĆ­nh xaĆ”p xƦ naĆøo saĆ¢u ƱaĆ¢y
ƱuĆ¹ng?
a) 3
02,1 ā‰ˆ 1 +
3
1
0,02 b) 3
02,1 ā‰ˆ 1 ā€“
3
1
0,02
c) 3
02,1 ā‰ˆ 1 +
3
2
0,02 d) 3
02,1 ā‰ˆ 1 ā€“
3
2
0,02
(T cĆ¢u 121 đ n cĆ¢u 155 Ä‘Ć£ đʰ c b đi)
CaĆ¢u 156:CaĆ¢u 156:CaĆ¢u 156:CaĆ¢u 156: Cho haĆøm soĆ” y = ln(x2
+ 1). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, 0), giaĆ»m treĆ¢n (0, +āˆž) b) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0)
c) y luoĆ¢n luoĆ¢n taĆŖng treĆ¢n d) y luoĆ¢n luoĆ¢n giaĆ»m
CaĆ¢u 157:CaĆ¢u 157:CaĆ¢u 157:CaĆ¢u 157: Cho haĆøm soĆ” y = x2
+ 1 + 2/x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (1, +āˆž) b) y giaĆ»m treĆ¢n (ā€“āˆž, 1), taĆŖng treĆ¢n (1, +āˆž)
c) y taĆŖng treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0) vaĆø (0, 1); giaĆ»m treĆ¢n (1, +āˆž)
d) y giaĆ»m treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0) vaĆø (0, 1); taĆŖng treĆ¢n (1, +āˆž)
CaĆ¢u 158:CaĆ¢u 158:CaĆ¢u 158:CaĆ¢u 158: Cho haĆøm soĆ” y = 2
2
)1x(
1x
āˆ’
+
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y giaĆ»m treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž), taĆŖng treĆ¢n (ā€“1, 1)
b) y taĆŖng treĆ¢n (ā€“āˆž, ā€“1), giaĆ»m treĆ¢n (ā€“1, 1)
c) y giaĆ»m treĆ¢n (ā€“āˆž, 1)
d) y taĆŖng treĆ¢n (ā€“āˆž, 1)
CaĆ¢u 159:CaĆ¢u 159:CaĆ¢u 159:CaĆ¢u 159: Cho haĆøm soĆ” y = xex
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, 0), giaĆ»m treĆ¢n (0, +āˆž)
b) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0)
c) y taĆŖng treĆ¢n (ā€“1, ā€“āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“1)
d) y taĆŖng treĆ¢n (ā€“āˆž, ā€“1), giaĆ»m treĆ¢n (ā€“1, +āˆž)
www.VNMATH.com
Trang 19
CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 160606060:::: Cho haĆøm soĆ” y = xlnx ā€“ x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (0, +āˆž) b) y giaĆ»m treĆ¢n (0, +āˆž)
c) y taĆŖng treĆ¢n (1, +āˆž) d) y giaĆ»m treĆ¢n (1, +āˆž)
CaĆ¢u 161:CaĆ¢u 161:CaĆ¢u 161:CaĆ¢u 161: Cho haĆøm soĆ” y =
x2x
1
2
āˆ’
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, 0), giaĆ»m treĆ¢n (2, +āˆž) b) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0)
c) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1) d) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (1, +āˆž)
CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 162626262:::: Cho haĆøm soĆ” y = 4x3
e āˆ’
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0 b) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 0
c) y luoĆ¢n luoĆ¢n taĆŖng d) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“2)
CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 163636363:::: Cho haĆøm soĆ” y = x3
ā€“ 3x2
+ 3x + 1. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y luoĆ¢n luoĆ¢n taĆŖng b) y luoĆ¢n luoĆ¢n giaĆ»m
c) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (1, +āˆž) d) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1)
CaĆ¢u 164:CaĆ¢u 164:CaĆ¢u 164:CaĆ¢u 164: Cho haĆøm soĆ” y = x2
+ 1 + 16/x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž)
b) y giaĆ»m treĆ¢n (ā€“āˆž, 2), taĆŖng treĆ¢n (2, +āˆž)
c) y taĆŖng treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0), vaĆø (0, 2); giaĆ»m treĆ¢n (2, +āˆž)
d) y giaĆ»m treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0), vaĆø (0, 2); taĆŖng treĆ¢n (2, +āˆž)
CaĆ¢u 165:CaĆ¢u 165:CaĆ¢u 165:CaĆ¢u 165: Cho haĆøm soĆ” y =
2x2
x3
2
āˆ’
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y giaĆ»m treĆ¢n (ā€“1, 1), taĆŖng treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž)
b) y taĆŖng treĆ¢n (ā€“1, 1), giaĆ»m treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž)
c) y giaĆ»m treĆ¢n (ā€“āˆž, ā€“1), (ā€“1, 1) vaĆø (1, +āˆž)
d) y giaĆ»m treĆ¢n R {Ā±1}
CaĆ¢u 166:CaĆ¢u 166:CaĆ¢u 166:CaĆ¢u 166: Cho haĆøm soĆ” y = 3x4x2
+āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 2)
b) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž)
c) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (3, +āˆž)
d) y taĆŖng treĆ¢n (3, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1)
CaĆ¢u 167:CaĆ¢u 167:CaĆ¢u 167:CaĆ¢u 167: Cho haĆøm soĆ” y =
3x4x
1
2
+āˆ’
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 2)
b) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž)
c) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (3, +āˆž)
d) y taĆŖng treĆ¢n (3, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1)
CaĆ¢u 168:CaĆ¢u 168:CaĆ¢u 168:CaĆ¢u 168: Cho haĆøm soĆ” y = ln(2x2
ā€“ 8). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0)
b) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 2)
c) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“2)
www.VNMATH.com
Trang 20
d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0
CaĆ¢u 169:CaĆ¢u 169:CaĆ¢u 169:CaĆ¢u 169: Cho haĆøm soĆ” y = x 2x3x2
e +āˆ’
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y giaĆ»m treĆ¢n (ā€“āˆž, 1/2) vaĆø (1, +āˆž), taĆŖng treĆ¢n (1/2, 1)
b) y taĆŖng treĆ¢n (ā€“āˆž, 1/2) vaĆø giaĆ»m treĆ¢n (1/2, +āˆž)
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/2 vaĆø ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1
d) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 vaĆø taĆÆi x = 1/2
CaĆ¢u 170:CaĆ¢u 170:CaĆ¢u 170:CaĆ¢u 170: Cho haĆøm soĆ” y = 3x4x2
āˆ’+āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y giaĆ»m treĆ¢n (ā€“āˆž, 2), taĆŖng treĆ¢n (2, +āˆž)
b) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž)
c) y giaĆ»m treĆ¢n (1, 2), taĆŖng treĆ¢n (2, 3)
d) y taĆŖng treĆ¢n (1, 2), giaĆ»m treĆ¢n (2, 3)
CaĆ¢u 171:CaĆ¢u 171:CaĆ¢u 171:CaĆ¢u 171: Cho haĆøm soĆ” y = x(1 ā€“ 2 x ). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y giaĆ»m treĆ¢n (0, 1/9), taĆŖng treĆ¢n (1/9, +āˆž)
b) y taĆŖng treĆ¢n (0, 1/9), giaĆ»m treĆ¢n (1/9, +āˆž)
c) y giaĆ»m treĆ¢n (ā€“āˆž, 1/9), taĆŖng treĆ¢n (1/9, +āˆž)
d) y taĆŖng treĆ¢n (ā€“āˆž, 1/9), giaĆ»m treĆ¢n (1/9, +āˆž)
CaĆ¢u 172CaĆ¢u 172CaĆ¢u 172CaĆ¢u 172:::: Cho haĆøm soĆ” y = ln(x2
ā€“ 1). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0)
b) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1)
c) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“1)
d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0
CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 173737373:::: Cho haĆøm soĆ” y = x 2x3x2
e +āˆ’
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, 1/2) vaĆø (1, +āˆž), giaĆ»m treĆ¢n (1/2, 1)
b) y taĆŖng treĆ¢n (ā€“āˆž, 1/2) vaĆø giaĆ»m treĆ¢n (1/2, +āˆž)
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 vaĆø ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/2
d) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 vaĆø taĆÆi x = 1/2
CaĆ¢u 174:CaĆ¢u 174:CaĆ¢u 174:CaĆ¢u 174: Cho haĆøm soĆ” y = x2
/2 ā€“ x ā€“ 6lnļ£¦xļ£¦. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (ā€“āˆž, ā€“2), (3, +āˆž); giaĆ»m treĆ¢n (ā€“2, 3)
b) y taĆŖng treĆ¢n (ā€“2, 0), (3, +āˆž); giaĆ»m treĆ¢n (ā€“āˆž, ā€“2), (0, 3)
c) y coĆ¹ 3 cƶĆÆc trĆ²
d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai
CaĆ¢u 175:CaĆ¢u 175:CaĆ¢u 175:CaĆ¢u 175: Cho haĆøm soĆ” y = lnļ£¦xļ£¦ ā€“ 2arctgx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y giaĆ»m treĆ¢n R b) y taĆŖng treĆ¢n R  {0}
c) y khoĆ¢ng coĆ¹ cƶĆÆc trĆ² d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0
CaĆ¢u 176:CaĆ¢u 176:CaĆ¢u 176:CaĆ¢u 176: Cho haĆøm soĆ” y = lnx ā€“ 2arctgx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n R
b) y giaĆ»m treĆ¢n R
www.VNMATH.com
Trang 21
c) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (0, 1)
d) y taĆŖng treĆ¢n (0, +āˆž)
CaĆ¢u 177:CaĆ¢u 177:CaĆ¢u 177:CaĆ¢u 177: Cho haĆøm soĆ” y = 2
x1āˆ’ ā€“ arcsinx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y luoĆ¢n luoĆ¢n taĆŖng
b) y luoĆ¢n luoĆ¢n giaĆ»m
c) y taĆŖng treĆ¢n (ā€“āˆž, ā€“1), giaĆ»m treĆ¢n (ā€“1, +āˆž)
d) ƑoĆ  thĆ² cuĆ»a y coĆ¹ caĆ¹c tieƤm caƤn y = Ā± Ļ€/2
CaĆ¢u 178:CaĆ¢u 178:CaĆ¢u 178:CaĆ¢u 178: Cho haĆøm soĆ” y = xlnx ā€“ x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y taĆŖng treĆ¢n (0, +āˆž)
b) y giaĆ»m treĆ¢n (0, +āˆž)
c) y taĆŖng treĆ¢n (1, +āˆž)
d) y giaĆ»m treĆ¢n (1, +āˆž)
CaĆ¢u 179:CaĆ¢u 179:CaĆ¢u 179:CaĆ¢u 179: Cho haĆøm soĆ” y = xlnx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/e
b) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = e
c) y khoĆ¢ng coĆ¹ cƶĆÆc trĆ²
d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai
CaĆ¢u 180:CaĆ¢u 180:CaĆ¢u 180:CaĆ¢u 180: Cho haĆøm soĆ” y = arctgx ā€“ ln(1 + x2
). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/2
b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1
c) y khoĆ¢ng coĆ¹ cƶĆÆc trĆ²
d) y coĆ¹ moƤt cƶĆÆc ƱaĆÆi vaĆø 1 cƶĆÆc tieĆ„u
CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 181818181:::: Cho haĆøm soĆ” y = arctg2x ā€“ ln(1 + 4x2
). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/8
b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/8
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/4
d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/4
CaĆ¢u 182:CaĆ¢u 182:CaĆ¢u 182:CaĆ¢u 182: Cho haĆøm soĆ” y = 2x. xx2
e +āˆ’
+ 3. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = ā€“1/2 vaĆø x = 1
b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = ā€“1/2 vaĆø x = 1
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = ā€“1/2 vaĆø ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1
d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = ā€“1/2 vaĆø ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1
CaĆ¢u 183CaĆ¢u 183CaĆ¢u 183CaĆ¢u 183:::: Cho haĆøm soĆ” y = 2ln(1 + 4x2
) ā€“ arctg2x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/8
b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/8
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/16
d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/16
www.VNMATH.com
Trang 22
CaĆ¢u 184:CaĆ¢u 184:CaĆ¢u 184:CaĆ¢u 184: Cho haĆøm soĆ” y = ln(1 + 9x2
) + 6arctg3x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1
b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/3
d) y luoĆ¢n luoĆ¢n taĆŖng vƬ yā€² > 0 vĆ“Ć¹i moĆÆi x
CaĆ¢u 185:CaĆ¢u 185:CaĆ¢u 185:CaĆ¢u 185: Cho haĆøm soĆ” y = 3x ā€“ 2sin2
x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) y luoĆ¢n luoĆ¢n giaĆ»m
b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 3Ļ€/2
c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = ā€“3/2
d) y khoĆ¢ng coĆ¹ cƶĆÆc tieĆ„u vaĆø cƶĆÆc ƱaĆÆi
CaĆ¢u 186:CaĆ¢u 186:CaĆ¢u 186:CaĆ¢u 186: Cho haĆøm soĆ” y = xlnx ā€“ x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ƑoĆ  thĆ² cuĆ»a y loĆ i khi 0 < x < 1, loƵm khi x > 1
b) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x > 1, loƵm khi 0 < x < 1
c) ƑoĆ  thĆ² cuĆ»a y luoĆ¢n luoĆ¢n loĆ i
d) ƑoĆ  thĆ² cuĆ»a y luoĆ¢n luoĆ¢n loƵm
CaĆ¢u 187:CaĆ¢u 187:CaĆ¢u 187:CaĆ¢u 187: Cho haĆøm soĆ” y = xex
ā€“ ex
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x < 0, loƵm khi x > 0
b) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x > 0, loƵm khi x < 0
c) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x > ā€“1, loƵm khi x < ā€“1
d) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x < ā€“1, loƵm khi x > ā€“1
CaĆ¢u 18CaĆ¢u 18CaĆ¢u 18CaĆ¢u 188888:::: Cho haĆøm soĆ” y = 2lnx ā€“ x2
. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loĆ i treĆ¢n (0, 1), loƵm treĆ¢n (1, +āˆž)
b) loĆ i treĆ¢n (1, +āˆž), loƵm treĆ¢n (0, 1)
c) loĆ i treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y
d) loƵm treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y
CaĆ¢u 189:CaĆ¢u 189:CaĆ¢u 189:CaĆ¢u 189: Cho haĆøm soĆ” y = arcsin(x/2). ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loĆ i treĆ¢n (ā€“2, 0), loƵm treĆ¢n (0, 2)
b) loƵm treĆ¢n (ā€“2, 0), loƵm treĆ¢n (0, 2)
c) loƵm treĆ¢n (ā€“āˆž, 0), loĆ i treĆ¢n (0, +āˆž)
d) loĆ i treĆ¢n (ā€“āˆž, 0), loƵm treĆ¢n (0, +āˆž)
CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 199990000:::: Cho haĆøm soĆ” y = x2
+ 8lnx. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loĆ i treĆ¢n (0, 2), loƵm treĆ¢n (2, +āˆž)
b) loĆ i treĆ¢n (2, +āˆž), loĆ i treĆ¢n (0, 2)
c) loĆ i treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y
d) loƵm treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y
CaĆ¢u 191:CaĆ¢u 191:CaĆ¢u 191:CaĆ¢u 191: Cho haĆøm soĆ” y = arccosx. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loĆ i treĆ¢n (ā€“1, 0), loƵm treĆ¢n (0, 1)
www.VNMATH.com
Trang 23
b) loƵm treĆ¢n (ā€“1, 0), loĆ i treĆ¢n (0, 1)
c) loƵm treĆ¢n (ā€“āˆž, 0), loĆ i treĆ¢n (0, +āˆž)
d) loĆ i treĆ¢n (ā€“āˆž, 0), loƵm treĆ¢n (0, +āˆž)
CaĆ¢u 192:CaĆ¢u 192:CaĆ¢u 192:CaĆ¢u 192: Cho haĆøm soĆ” y = arccotg2x. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) chƦ loƵm treĆ¢n (ā€“1, 0) vaĆø loĆ i treĆ¢n (ā€“1, 0)
b) chƦ loĆ i treĆ¢n (0, 1) vaĆø loƵm treĆ¢n (ā€“1, 0)
c) loƵm treĆ¢n (0, +āˆž), loĆ i treĆ¢n (ā€“āˆž, 0)
d) loĆ i treĆ¢n (0, +āˆž), loƵm treĆ¢n (ā€“āˆž, 0)
CaĆ¢u 193:CaĆ¢u 193:CaĆ¢u 193:CaĆ¢u 193: Cho haĆøm soĆ” y = 8lnļ£¦xļ£¦ + x2
. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loƵm treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loĆ i treĆ¢n khoaĆ»ng (ā€“2, 2)
b) loĆ i treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loƵm treĆ¢n khoaĆ»ng (ā€“2, 2)
c) loƵm treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loĆ i treĆ¢n caĆ¹c khoaĆ»ng (ā€“2, 0) vaĆø (0, 2)
d) loĆ i treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loƵm treĆ¢n caĆ¹c khoaĆ»ng (ā€“2, 0) vaĆø (0, 2)
CaĆ¢u 194:CaĆ¢u 194:CaĆ¢u 194:CaĆ¢u 194: Cho haĆøm soĆ” y =
x
1
ā€“ x2
. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loƠi khi x > 1, loƵm khi x < 1
b) loƠi khi x > 1 hay x < 0, loƵm khi 0 < x < 1
c) khoĆ¢ng coĆ¹ ƱieĆ„m uoĆ”n
d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai
CaĆ¢u 195:CaĆ¢u 195:CaĆ¢u 195:CaĆ¢u 195: Cho haĆøm soĆ” y = x + lnļ£¦xļ£¦. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) chƦ coĆ¹ moƤt ƱieĆ„m uoĆ”n
b) khoĆ¢ng coĆ¹ ƱieĆ„m uoĆ”n
c) luoĆ¢n luoĆ¢n loĆ i
d) luoĆ¢n luoĆ¢n loƵm
CaĆ¢u 196:CaĆ¢u 196:CaĆ¢u 196:CaĆ¢u 196: Cho haĆøm soĆ” y = x2
/2 + lnļ£¦xļ£¦. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loĆ i treĆ¢n (ā€“1, 1), loƵm treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž)
b) loƵm treĆ¢n (ā€“1, 1), loĆ i treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž)
c) chƦ coĆ¹ moƤt ƱieĆ„m uoĆ”n
d) chƦ coĆ¹ moƤt tieƤm caƤn
CaĆ¢u 197:CaĆ¢u 197:CaĆ¢u 197:CaĆ¢u 197: Cho haĆøm soĆ” y = x3
ā€“ 3x2
+ 5x + 2. ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n laĆø:
a) M(1, 5) b) N(1, ā€“5) c) P(ā€“1, ā€“7) d) Q(ā€“1, 7)
CaĆ¢u 198:CaĆ¢u 198:CaĆ¢u 198:CaĆ¢u 198: Cho haĆøm soĆ” y = xex
. ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n laĆø:
a) M(1, e) b) N(ā€“2, ā€“2eā€“2
) c) P(2, e2
)
d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 199:CaĆ¢u 199:CaĆ¢u 199:CaĆ¢u 199: Cho haĆøm soĆ” y = (x + 1)ex
. ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n laĆø:
a) M(1, e) b) N(3, 4e3
) c) P(ā€“3, ā€“2e-3
)
d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 200:CaĆ¢u 200:CaĆ¢u 200:CaĆ¢u 200: Cho haĆøm soĆ” y = x2
.lnx. ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n:
a) taĆÆi ƱieĆ„m coĆ¹ hoaĆønh ƱoƤ x = eā€“3/2
www.VNMATH.com
Trang 24
b) taĆÆi ƱieĆ„m coĆ¹ hoaĆønh ƱoƤ x = e3/2
c) taĆÆi ƱieĆ„m coĆ¹ hoaĆønh ƱoƤ x = ln3 ā€“ ln2
d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 201:CaĆ¢u 201:CaĆ¢u 201:CaĆ¢u 201: Cho haĆøm soĆ” y = ā€“2x5
+ 10x + 6. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy:
a) loĆ i treĆ¢n (ā€“āˆž, 0) vaĆø loƵm treĆ¢n (0, āˆž)
b) loƵm treĆ¢n (ā€“āˆž, 0) vaĆø loĆ i treĆ¢n (0, āˆž)
c) loƵm treĆ¢n (ā€“āˆž, ā€“1) vaĆø loĆ i treĆ¢n (1, +āˆž)
d) loĆ i treĆ¢n (ā€“āˆž, ā€“1) vaĆø loƵm treĆ¢n (1, +āˆž)
CaĆ¢u 238:CaĆ¢u 238:CaĆ¢u 238:CaĆ¢u 238: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = esinx
ƱeĆ”n soĆ” haĆÆng x3
a) esinx
= 1 + x +
2
x2
+ 0(x3
) b) esinx
= 1 + x +
2
x2
+
6
x3
+ 0(x3
)
c) esinx
= 1 + x +
2
x2
ā€“
6
x3
+ 0(x3
) d) esinx
= 1 + x +
2
x2
+
3
x3
+ 0(x3
)
CaĆ¢u 239:CaĆ¢u 239:CaĆ¢u 239:CaĆ¢u 239: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = 2x
ƱeĆ”n soĆ” haĆÆng x3
a) 2x
= 1 ā€“ xln2 +
!2
)2lnx( 2
+
!3
)2lnx( 3
+ 0(x3
)
b) 2x
= 1 ā€“ xln2 +
!2
2lnx2
+
!3
2lnx3
+ 0(x3
)
c) 2x
= 1 + xln2 +
!2
2lnx2
+
!3
2lnx3
+ 0(x3
)
d) 2x
= 1 + xln2 +
!2
)2lnx( 2
+
!3
)2lnx( 3
+ 0(x3
)
CaĆ¢u 2CaĆ¢u 2CaĆ¢u 2CaĆ¢u 240404040:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = sin(tgx) ƱeĆ”n soĆ” haĆÆng x3
a) sin(tgx) = x ā€“
6
x3
+ 0(x3
) b) sin(tgx) = x +
6
x3
+ 0(x3
)
c) sin(tgx) = x ā€“
2
x3
+ 0(x3
) d) sin(tgx) = x +
2
x3
+ 0(x3
)
CaĆ¢u 24CaĆ¢u 24CaĆ¢u 24CaĆ¢u 241111:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = arctg(sinx) ƱeĆ”n soĆ” haĆÆng x3
a) arctg(sinx) = x ā€“
2
x3
+ 0(x3
) b) arctg(sinx) = x +
2
x3
+ 0(x3
)
c) arctg(sinx) = x +
3
x3
+ 0(x3
) d) arctg(sinx) = x ā€“
3
x3
+ 0(x3
)
CaĆ¢u 242:CaĆ¢u 242:CaĆ¢u 242:CaĆ¢u 242: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = cos(sinx) ƱeĆ”n soĆ” haĆÆng x4
a) cos(sinx) = x ā€“
!2
x2
+
!4
1
x4
+ 0(x4
) b) cos(sinx) = x ā€“
!2
x2
+
!4
5
x4
+ 0(x4
)
c) cos(sinx) = x ā€“
!2
x2
ā€“
!4
1
x4
+ 0(x4
) d) cos(sinx) = x ā€“
!2
x2
ā€“
!4
5
x4
+ 0(x4
)
CaĆ¢u 24CaĆ¢u 24CaĆ¢u 24CaĆ¢u 243333:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = tg(sinx) ƱeĆ”n soĆ” haĆÆng x3
a) tg(sinx) = x ā€“
3
x3
+ 0(x3
) b) tg(sinx) = x +
3
x3
+ 0(x3
)
c) tg(sinx) = x ā€“
6
x3
+ 0(x3
) d) tg(sinx) = x +
6
x3
+ 0(x3
)
www.VNMATH.com
Trang 25
CaĆ¢u 244:CaĆ¢u 244:CaĆ¢u 244:CaĆ¢u 244: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y =
xsin1
1
āˆ’
ƱeĆ”n soĆ” haĆÆng x3
a)
xsin1
1
āˆ’
= 1 + x + x2
+
6
1
x3
+ 0(x3
) b)
xsin1
1
āˆ’
= 1 + x + x2
ā€“
6
1
x3
+ 0(x3
)
c)
xsin1
1
āˆ’
= 1 + x + x2
+
6
5
x3
+ 0(x3
) d)
xsin1
1
āˆ’
= 1 + x + x2
ā€“
6
5
x3
+ 0(x3
)
CaĆ¢u 24CaĆ¢u 24CaĆ¢u 24CaĆ¢u 245555:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y =
tgx1
1
+
ƱeĆ”n soĆ” haĆÆng x3
a)
tgx1
1
+
= 1 ā€“ x +
2
1
x2
+ x3
+ 0(x3
) b)
tgx1
1
+
= 1 ā€“ x ā€“
2
1
x2
+ x3
+ 0(x3
)
c)
tgx1
1
+
= 1 ā€“ x + x2
ā€“
3
4
x3
+ 0(x3
) d)
tgx1
1
+
= 1 ā€“ x + x2
+
3
4
x3
+ 0(x3
)
CaĆ¢u 246:CaĆ¢u 246:CaĆ¢u 246:CaĆ¢u 246: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = ln(1 ā€“ x2
) ƱeĆ”n soĆ” haĆÆng x6
a) ln(1 ā€“ x2
) = x2
+
2
x4
+
3
x6
+ 0(x6
) b) ln(1 ā€“ x2
) = ā€“x2
ā€“
2
x4
ā€“
3
x6
+ 0(x6
)
c) ln(1 ā€“ x2
) = x2
+
4
x4
+
6
x6
+ 0(x6
) d) ln(1 ā€“ x2
) = ā€“x2
ā€“
4
x4
ā€“
6
x6
+ 0(x6
)
CaĆ¢u 247:CaĆ¢u 247:CaĆ¢u 247:CaĆ¢u 247: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = ln(cosx) ƱeĆ”n soĆ” haĆÆng x4
a) ln(cosx) = ā€“
2
x2
ā€“
12
x4
+ 0(x5
) b) ln(cosx) =
2
x2
+
12
x4
+ 0(x5
)
c) ln(cosx) =
2
x2
ā€“
12
x4
+ 0(x5
) d) ln(cosx) = ā€“
2
x2
+
12
x4
+ 0(x5
)
CaĆ¢u 248:CaĆ¢u 248:CaĆ¢u 248:CaĆ¢u 248: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = arctg(1 ā€“ cosx) ƱeĆ”n soĆ” haĆÆng x4
a) arctg(1 ā€“ cosx) = x +
3
x3
+ 0(x4
) b) arctg(1 ā€“ cosx) = x ā€“
3
x3
+ 0(x4
)
c) arctg(1 ā€“ cosx) =
2
x2
ā€“
24
x4
+ 0(x4
) d) arctg(1 ā€“ cosx) =
2
x2
+
24
x4
+ 0(x4
)
CaĆ¢u 249:CaĆ¢u 249:CaĆ¢u 249:CaĆ¢u 249: Khi x ā†’ 0, VCB ex
ā€“ 1 ā€“ x ā€“
2
1
x2
tƶƓng ƱƶƓng vĆ“Ć¹i
a) ā€“
3
x3
b)
3
x3
c) ā€“
6
x3
d)
6
x3
CaĆ¢u 250CaĆ¢u 250CaĆ¢u 250CaĆ¢u 250:::: Khi x ā†’ 0, VCB sinx ā€“ x + x4
tƶƓng ƱƶƓng vĆ“Ć¹i
a) x4
b)
3
x3
c) ā€“
3
x3
d) ā€“
6
x3
CaĆ¢u 2CaĆ¢u 2CaĆ¢u 2CaĆ¢u 251515151:::: Khi x ā†’ 0, VCB 1 ā€“ cosx ā€“
2
x2
+ x4
tƶƓng ƱƶƓng vĆ“Ć¹i
a) x4
b)
24
x4
c)
24
x23 4
d)
24
x25 4
CaĆ¢u 252:CaĆ¢u 252:CaĆ¢u 252:CaĆ¢u 252: Khi x ā†’ 0, VCB tgx ā€“ x + x2
tƶƓng ƱƶƓng vĆ“Ć¹i
a) x2
b)
3
x3
c) ā€“
3
x3
d)
6
x3
CaĆ¢u 253:CaĆ¢u 253:CaĆ¢u 253:CaĆ¢u 253: Khi x ā†’ 0, VCB
x1
1
āˆ’
ā€“ 1 ā€“ sinx tƶƓng ƱƶƓng vĆ“Ć¹i
www.VNMATH.com
Trang 26
a) ā€“x b) x2
c) ā€“
3
x3
d)
6
x3
CaĆ¢u 254:CaĆ¢u 254:CaĆ¢u 254:CaĆ¢u 254: Khi x ā†’ 0, VCB
x1
1
+
ā€“ ex
tƶƓng ƱƶƓng vĆ“Ć¹i
a) 2x b) ā€“2x c) 2x2
d) ā€“2x2
CaĆ¢CaĆ¢CaĆ¢CaĆ¢u 255:u 255:u 255:u 255: Khi x ā†’ 0, VCB x ā€“ ln(1 + x) + x2
tƶƓng ƱƶƓng vĆ“Ć¹i
a) x2
b)
2
x2
c) ā€“
2
x2
d)
2
x3 2
CaĆ¢u 256:CaĆ¢u 256:CaĆ¢u 256:CaĆ¢u 256: Khi x ā†’ 0, VCB ln(1 ā€“ x) + x + x3
tƶƓng ƱƶƓng vĆ“Ć¹i
a) x3
b)
2
x2
c) ā€“
2
x2
d)
2
x3 2
CaĆ¢u 257:CaĆ¢u 257:CaĆ¢u 257:CaĆ¢u 257: Khi x ā†’ 0, VCB x ā€“ arctgx + x5
tƶƓng ƱƶƓng vĆ“Ć¹i
a) x5
b)
5
x6 5
c)
3
x3
d)
6
x3
CaĆ¢u 309:CaĆ¢u 309:CaĆ¢u 309:CaĆ¢u 309: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«tgxdx
a) I = lnļ£¦cosxļ£¦ + C b) I = ā€“lnļ£¦cosxļ£¦ + C
c) I = lnļ£¦sinxļ£¦ + C d) I = ā€“lnļ£¦sinxļ£¦ + C
CaĆ¢u 310:CaĆ¢u 310:CaĆ¢u 310:CaĆ¢u 310: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« āˆ’ 2
x1
dx
a) I = 2ln
x1
x1
āˆ’
+
+ C b) I = 4ln
x1
x1
āˆ’
+
+ C
c) I = 2ln
x1
x1
+
āˆ’
+ C d) I = 4ln
x1
x1
+
āˆ’
+ C
CaĆ¢u 311:CaĆ¢u 311:CaĆ¢u 311:CaĆ¢u 311: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +āˆ’ 4x4x
dx
2
a) I = lnļ£¦x ā€“ 2ļ£¦ + C b) I =
2x
1
āˆ’
+ C
c) I = ā€“
2x
1
āˆ’
+ C d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 31CaĆ¢u 31CaĆ¢u 31CaĆ¢u 312222:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +āˆ’ 2x3x
dx
2
a) I = ln
2x
1x
āˆ’
āˆ’
+ C b) I = ln
1x
2x
āˆ’
āˆ’
+ C
c) I = lnļ£¦x2
ā€“ 3x + 2ļ£¦ + C d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 313:CaĆ¢u 313:CaĆ¢u 313:CaĆ¢u 313: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + )1x(x
dx
a) I = arctg x + C b) I = 2arctg x + C
c) I = arcsin x + C d) I = ln x + C
CaĆ¢u 314:CaĆ¢u 314:CaĆ¢u 314:CaĆ¢u 314: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« xdxcos2
a) I = 2x ā€“ sinx + C b) I = 2x + sinx + C
c) I = 2x + sin2x + C d) I = 2x ā€“ sin2x + C
CaĆ¢u 31CaĆ¢u 31CaĆ¢u 31CaĆ¢u 315555:::: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« x
e
xdx
a) I =
2
e x2āˆ’
+ C b) I = (x + 1)eā€“x
+ C
www.VNMATH.com
Trang 27
c) I = ā€“(x + 1)eā€“x
+ C d) I = x
e
1
āˆ’
+ C
CaĆ¢u 316:CaĆ¢u 316:CaĆ¢u 316:CaĆ¢u 316: TĆ­nh tĆ­ch phaĆ¢n I = 3āˆ« dx.xcos.xsin2
a) I = sin3
x + C b) I = ā€“sin3
x + C
c) I = 3sin3
x + C d) I = ā€“ sin3
x + C
CaĆ¢u 317:CaĆ¢u 317:CaĆ¢u 317:CaĆ¢u 317: TĆ­nh tĆ­ch phaĆ¢n I = 3āˆ« dxsin3
a) I = 3cosx + cos3
x + C b) I = ā€“3cosx + cos3
x + C
c) I = 3cosx ā€“ cos3
x + C d) I = ā€“3cosx ā€“ cos3
x + C
CaĆ¢u 318:CaĆ¢u 318:CaĆ¢u 318:CaĆ¢u 318: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx
xcos
xsin
3
a) I = ā€“tg2
x + C b) I =
xcos2
1
2
āˆ’
+ C
c) I = tg2
x + C d) I =
xcos2
1
2
+ C
CaĆ¢u 319:CaĆ¢u 319:CaĆ¢u 319:CaĆ¢u 319: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +
dx
4xcos
xsin
2
a) I = ln(cosx + 4 + 4xcos2
+ ) + C b) I = ln(cosx + 2 + 4xcos2
+ ) + C
c) I = ln(cosx + 4xcos2
+ ) + C d) I =
)4xln(cos
1
2
+
+ C
CaĆ¢u 320:CaĆ¢u 320:CaĆ¢u 320:CaĆ¢u 320: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx
x
)xsin(ln
a) I = cos(lnx) + C b) I = ā€“cos(lnx) + C
c) I = cos(
2
1
ln2
x) + C d) I = ā€“cos(
2
1
ln2
x) + C
CaĆ¢u 321:CaĆ¢u 321:CaĆ¢u 321:CaĆ¢u 321: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx
x
e x
a) I = x . x
e + C b) I = ā€“ x . x
e + C
c) I = 2 x
e + C d) I = x
e + C
CaĆ¢u 322:CaĆ¢u 322:CaĆ¢u 322:CaĆ¢u 322: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« ++ dxx2xsinxcosx
a) I = xcosx ā€“ sinx + x2
+ C b) I = ā€“xsinx ā€“ cosx + x2
+ C
c) I = x(sinx + x) + C d) I = ā€“xsinx + x2
+ C
CaĆ¢u 323:CaĆ¢u 323:CaĆ¢u 323:CaĆ¢u 323: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +
dx
1xsin
x2sin
2
a) I = ln
1xsin
1xsin
+
āˆ’
+ C b) I = ln
1xsin
1xsin
āˆ’
+
+ C
c) I = 2arctg(sinx) + C d) I = lnļ£¦sin2
x + 1ļ£¦ + C
CaĆ¢u 324:CaĆ¢u 324:CaĆ¢u 324:CaĆ¢u 324: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx
)e(xcos
e
x2
x
a) I = ex
tg(ex
) + C b) I = 2ex
tg(ex
) + C
c) I = tg(ex
) + C d) I = 2tg(ex
) + C
CaĆ¢u 325:CaĆ¢u 325:CaĆ¢u 325:CaĆ¢u 325: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« ++ 5x4x
dx2
2
a) I = arctg(x + 2) + C b) I = 2 arcsin(x + 2) + C
c) I = 2lnļ£¦x + 2 + 5x4x2
++ ļ£¦ + C d) I = 5x4x2
++ + C
CaĆ¢u 326:CaĆ¢u 326:CaĆ¢u 326:CaĆ¢u 326: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +āˆ’ 8x6x
dx2
2
a) I = lnļ£¦x ā€“ 4ļ£¦ ā€“ lnļ£¦x ā€“ 2ļ£¦ + C b) I = lnļ£¦(x ā€“ 4)(x ā€“ 2)ļ£¦ + C
www.VNMATH.com
Trang 28
c) I = lnļ£¦x ā€“ 2ļ£¦ ā€“ lnļ£¦x ā€“ 4ļ£¦ + C d) I =
2xln
4xln
āˆ’
āˆ’
+ C
CaĆ¢u 327:CaĆ¢u 327:CaĆ¢u 327:CaĆ¢u 327: TĆ­nh tĆ­ch phaĆ¢n I = ( ) xdxgcot32 2
āˆ« āˆ’
a) I = 2x ā€“ 3cotgx + C b) I = 3cotgx + 5x + C
c) I = ā€“3cotgx + 5x + C d) I = ā€“2x + 3cotgx + C
CCCCaĆ¢u 328:aĆ¢u 328:aĆ¢u 328:aĆ¢u 328: TĆ­nh tĆ­ch phaĆ¢n I =
( ) xd
x
1xln3
2
āˆ«
āˆ’
a) I = 3(lnx ā€“ 1)3
+ C b) I = (lnx ā€“ 1)3
+ C
c) I =
3
1xlnxln 23
+āˆ’
+ C d) I = 2
23
x
1xlnxln +āˆ’
+ C
CaĆ¢u 329:CaĆ¢u 329:CaĆ¢u 329:CaĆ¢u 329: TĆ­nh tĆ­ch phaĆ¢n I = xd
xcos9
x2sin6
2āˆ« āˆ’
a) I = ln
3xcos
3xcos
āˆ’
+
+ C b) I = ln
3xcos
3xcos
+
āˆ’
+ C
c) I = 6arctg(3 ā€“ cosx) + C d) I = 6lnļ£¦9 ā€“ cos2
xļ£¦ + C
CaĆ¢u 330:CaĆ¢u 330:CaĆ¢u 330:CaĆ¢u 330: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« )x(sin
xdx2
22
a) I = x2
cotg(x2
) + C b) I = ā€“x2
cotg(x2
) + C
c) I = cotg(x2
) + C d) I = ā€“cotg(x2
) + C
CaĆ¢u 331:CaĆ¢u 331:CaĆ¢u 331:CaĆ¢u 331: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« ++ x2x
x
ee22
dxe2
a) I = 2ln(ex
+ 1 + x2x
ee22 ++ ) + C b) I = x2x
ee22 ++ + C
c) I = 2arcsin(ex
+ 1) + C d) I = 2arctg(ex
+ 1) + C
CaĆ¢u 332:CaĆ¢u 332:CaĆ¢u 332:CaĆ¢u 332: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 2e
dxe
x
x
a) I = lnļ£¦ex
ā€“ 2ļ£¦ + C b) I = 2lnļ£¦ex
ā€“ 2ļ£¦ + C
c) I = ex
lnļ£¦ex
ā€“ 2ļ£¦ + C d) I = 2ex
lnļ£¦ex
ā€“ 2ļ£¦ + C
CaĆ¢u 333:CaĆ¢u 333:CaĆ¢u 333:CaĆ¢u 333: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +
+
dx
xtg2
xtg1
2
2
a) I = xtg2 2
+ + C b) I = lnļ£¦2 + tg2
xļ£¦ + C
c) I = lnļ£¦tgx + xtg2 2
+ ļ£¦ + C d) I = arcsin(tgx / 2 ) + C
CaĆ¢u 334:CaĆ¢u 334:CaĆ¢u 334:CaĆ¢u 334: TĆ­nh tĆ­ch phaĆ¢n I = 2āˆ« ++
+
1xx2
dx)x3x(
23
2
a) I = lnļ£¦2x3
+ x2
+ 1ļ£¦ + C b) I = 2lnļ£¦2x3
+ x2
+ 1ļ£¦ + C
c) I = 1x2x 23
++ + C d) I = 2 1x2x 23
++ + C
CaĆ¢u 335:CaĆ¢u 335:CaĆ¢u 335:CaĆ¢u 335: TĆ­nh tĆ­ch phaĆ¢n I =
( )āˆ« +
2
xln1x
dx
a) I = ā€“
xln1
1
+
+ C b) I = ā€“lnļ£¦lnx + xln1 2
+ ļ£¦ + C
c) I = arctg(lnx) + C d) I = arcsin(lnx) + C
CaĆ¢u 336:CaĆ¢u 336:CaĆ¢u 336:CaĆ¢u 336: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ xsin4
xdx2sin
2
a) I = ā€“2 xsin4 2
āˆ’ + C b) I = 2lnļ£¦sinx + xsin4 2
āˆ’ ļ£¦ + C
c) I = ā€“arctg(
2
xsin
) + C d) I = ā€“2arctg(
2
xsin
) + C
www.VNMATH.com
Trang 29
CaĆ¢u 337:CaĆ¢u 337:CaĆ¢u 337:CaĆ¢u 337: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + x2
x
e1
dxe
a) I = ln(ex + x2
e1+ ) + C b) I = arctg(ex
) + C
c) I = arcsin(ex
) + C d) I = 2 x
e1+ + C
CaĆ¢u 338:CaĆ¢u 338:CaĆ¢u 338:CaĆ¢u 338: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« + )e(gcot1e x2x
dx
a) I = ā€“2lnļ£¦cos(ex
)ļ£¦ + C b) I = 2lnļ£¦sin(ex
)ļ£¦ + C
c) I = 2(1 + cotg(ex
)) + C d) I = ā€“cotg(ex
) + C
CaĆ¢u 339:CaĆ¢u 339:CaĆ¢u 339:CaĆ¢u 339: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xgcotarc)x1(
dx
22
a) I = ā€“1/arccotgx + C b) I = 1/arccotgx + C
c) I = arccotgx.lnļ£¦arccotgxļ£¦ + C d) I = ā€“ arccotgx.lnļ£¦arccotgxļ£¦ + C
CaĆ¢u 340:CaĆ¢u 340:CaĆ¢u 340:CaĆ¢u 340: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +
+
tgx5
xtg1 2
dx
a) I = lnļ£¦tgx + 5ļ£¦ + C b) I =
5tgx
1
+
+ C
c) I = ā€“
5tgx
1
+
+ C d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 341:CaĆ¢u 341:CaĆ¢u 341:CaĆ¢u 341: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
+
x
x2ln1
dx
a) I = (ln2x + 1)2
+ C b) I =
( )
2
1x2ln
2
+
+ C
c) I =
( )
x
1x2ln
2
+
+ C d) I =
2
1x2ln +
+ C
CaĆ¢u 342:CaĆ¢u 342:CaĆ¢u 342:CaĆ¢u 342: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ«
+āˆ’
āˆ’ 3xx2
e1x2 dx
a) I = 3xx2
e +āˆ’
+ C b) I = ā€“ 3xx2
e +āˆ’
+ C
c) I = x 3xx2
e +āˆ’
+ C d) I = ā€“2x 3xx2
e +āˆ’
+ C
CaĆ¢u 343:CaĆ¢u 343:CaĆ¢u 343:CaĆ¢u 343: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ xarcsin.x1
dx
2
a) I = lnļ£¦arcsinxļ£¦ + C b) I = 2 2
x1āˆ’ + C
c) I = 2
x1
1
āˆ’
+ C d) I = xarcsin + C
CaĆ¢u 344:CaĆ¢u 344:CaĆ¢u 344:CaĆ¢u 344: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 2
x251
dx5
a) I = lnļ£¦1 + 2
x251āˆ’ ļ£¦ + C b) I = arcsin(5x) + C
c) I = 2 2
x251āˆ’ + C d) I = arcsin(25x2
) + C
CaĆ¢u 345:CaĆ¢u 345:CaĆ¢u 345:CaĆ¢u 345: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 8
3
x1
dxx4
a) I = 2 8
x1āˆ’ + C b) I = ln(x4
ā€“ 8
x1āˆ’ ) + C
c) I = ln(x4
+ 8
x1āˆ’ ) + C d) I = arcsin(25x2
) + C
CaĆ¢u 346:CaĆ¢u 346:CaĆ¢u 346:CaĆ¢u 346: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x
xdx4ln
a) I = ā€“
2
xln2
+ C b) I = ā€“
2
x4ln2
+ C
c) I =
2
x4ln2
+ C d) I =
2
)x4ln(ln
+ C
www.VNMATH.com
Trang 30
CaĆ¢u 347:CaĆ¢u 347:CaĆ¢u 347:CaĆ¢u 347: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ )1x(x
dx
a) I = ln
1x
1x
āˆ’
+
+ C b) I = ln
1x
1x
+
āˆ’
+ C
c) I = 2arcsin( x )+ C d) I = arctg( x ) + C
CaĆ¢u 348:CaĆ¢u 348:CaĆ¢u 348:CaĆ¢u 348: TĆ­nh tĆ­ch phaĆ¢n I =
( )āˆ« xsinx
dx
2
a) I = ā€“2lnļ£¦sin x ļ£¦ + C b) I = 2lnļ£¦sin x ļ£¦ + C
c) I = ā€“2cotg( x )+ C d) I = 2cotg( x ) + C
CaĆ¢u 349:CaĆ¢u 349:CaĆ¢u 349:CaĆ¢u 349: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + x4
sin1
xdx2sin
a) I = ln(1 + sin4
x) + C b) I = lnļ£¦sin2
x + xsin1 4
+ ļ£¦ + C
c) I = arcsin(sin2
x) + C d) I = arctg(sin2
x) + C
CaĆ¢u 350:CaĆ¢u 350:CaĆ¢u 350:CaĆ¢u 350: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
āˆ’
x
1xln2
dx
a) I = ln2
x ā€“ lnx + C b) I = ln2
x ā€“ 2lnx + C
c) I = ln2
x + lnx + C d) I = ln2
x ā€“ 2lnx + C
CaĆ¢u 351:CaĆ¢u 351:CaĆ¢u 351:CaĆ¢u 351: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xlnx
dx
a) I = 2ln( x ) + C b) I = 2 xln + C
c) I =
xln
1
+ C d) I = ln( xln ) + C
CaĆ¢u 35CaĆ¢u 35CaĆ¢u 35CaĆ¢u 352222:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xln1x
dx
2
a) I = ln(lnx + xln1 2
+ ) + C b) I = arcsin(lnx) + C
c) I = arctg(lnx) + C d) I = 2 xln1 2
+ + C
CaĆ¢u 353:CaĆ¢u 353:CaĆ¢u 353:CaĆ¢u 353: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xcos1
xdx2sin
2
a) I =
xcos1
1
2
+
+ C b) I = ā€“lnx(1 + cos2
x) + C
c) I =
xcos1
1
2
+
āˆ’
+ C d) I = arctg(cosx) + C
CaĆ¢u 354:CaĆ¢u 354:CaĆ¢u 354:CaĆ¢u 354: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +1e
e
x2
x
dx
a) I = ln(ex
+ 1e x2
+ ) + C b) I = ln
1e
1e
x
x
+
āˆ’
+ C
c) I = arcsin(ex
) + C d) I = arctg(ex
) + C
CaĆ¢u 355:CaĆ¢u 355:CaĆ¢u 355:CaĆ¢u 355: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xcos1
xsin
2
dx
a) I =
xsinxsin
xcos
2
+
āˆ’
+ C b) I = arcsin ļ£·
ļ£ø
ļ£¶
ļ£¬
ļ£­
ļ£« +
2
xcos1
+ C
c) I = ln
xcos1
xcos1
+
āˆ’
+ C d) I = ā€“arctg(cosx) + C
CaĆ¢u 356:CaĆ¢u 356:CaĆ¢u 356:CaĆ¢u 356: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xcos .esinx + 1
dx
a) I = sinx.esinx + 1
+ C b) I = cosx.esinx + 1
+ C
c) I = esinx + 1
+ C d) I = esinx
+ C
CaĆ¢u 357:CaĆ¢u 357:CaĆ¢u 357:CaĆ¢u 357: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«3 x2
e
x
dx
www.VNMATH.com
Trang 31
a) I = 33 x2
e + C b) I = ā€“33 x2
e + C
c) I =
3 x2
e2
3
+ C d) I = ā€“
3 x2
e2
3
+ C
CaĆ¢u 358:CaĆ¢u 358:CaĆ¢u 358:CaĆ¢u 358: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xarctgx2 dx
a) I = (x2
+ 1)arctgx + x + C b) I = (x2
+ 1)arctgx ā€“ x + C
c) I = (x2
+ 1)arctgx + C d) I = ā€“(x2
+ 1)arctgx + C
CaĆ¢u 359:CaĆ¢u 359:CaĆ¢u 359:CaĆ¢u 359: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x
e
ln dx
a) I = xlnx ā€“ x + C b) I = 2x ā€“ xlnx + C
c) I = 2x + xlnx + C d) I = 2x ā€“ 2xlnx + C
CaĆ¢u 3CaĆ¢u 3CaĆ¢u 3CaĆ¢u 360606060:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xsinx dx
a) I = xcosx ā€“ sinx + C b) I = ā€“xcosx + sinx + C
c) I = xsinx ā€“ cosx + C d) I = ā€“xsinx + cosx + C
CaĆ¢u 361:CaĆ¢u 361:CaĆ¢u 361:CaĆ¢u 361: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
x
xe dx
a) I = ex
ā€“ x + C b) I = ex
+ x + C
c) I = xex
+ ex
+ C d) I = xex
ā€“ ex
+ C
CaĆ¢u 362:CaĆ¢u 362:CaĆ¢u 362:CaĆ¢u 362: TĆ­nh tĆ­ch phaĆ¢n I =
( )āˆ« + x1x
dx
a) I = ln
1x
1x
āˆ’
+
+ C b) I = ln
1x
1x
+
āˆ’
+ C
c) I = 2arcsin( x ) + C d) I = 2arctg( x ) + C
CaĆ¢u 363:CaĆ¢u 363:CaĆ¢u 363:CaĆ¢u 363: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x
)x(lntg2
dx
a) I = ā€“2lnļ£¦cos(lnx)ļ£¦ + C b) I = 2lnļ£¦cos(lnx)ļ£¦ + C
c) I = tg2
(lnļ£¦lnxļ£¦) + C d) I = tg(ln2
x) + C
CaĆ¢u 364:CaĆ¢u 364:CaĆ¢u 364:CaĆ¢u 364: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ )2x(x
dx
dx
a) I = lnļ£¦ x ā€“ 2ļ£¦ + C b) I = 2lnļ£¦ x ā€“ 2ļ£¦ + C
c) I = ln
2x
x
āˆ’
+ C d) I = 2ln
2x
x
āˆ’
+ C
CaĆ¢u 365:CaĆ¢u 365:CaĆ¢u 365:CaĆ¢u 365: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’
+
xtg1
xtg1
2
2
dx
a) I = xtg1 2
āˆ’ + C b) I = lnļ£¦1 ā€“ tg2
xļ£¦ + C
c) I = lnļ£¦tgx + xtg1 2
āˆ’ ļ£¦ + C d) I = arcsin(tgx) + C
CaĆ¢u 36CaĆ¢u 36CaĆ¢u 36CaĆ¢u 366666:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« ++
+
1xx2
)x3x(
23
2
dx
a) I = lnļ£¦2x3
+ x2
+ 1ļ£¦ + C b) I = 2lnļ£¦2x3
+ x2
+ 1ļ£¦ + C
c) I = 1xx2 23
++ + C d) I = 2 1xx2 23
++ + C
CaĆ¢u 367:CaĆ¢u 367:CaĆ¢u 367:CaĆ¢u 367: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +1xcos
x2sin
4
dx
a) I = 1xcos4
+ + C b) I = ā€“lnļ£¦cos2
x + 1xcos4
+ ļ£¦ + C
c) I = arctg(cos2
x) + C d) I = arcsin(cos2
x) + C
www.VNMATH.com
Trang 32
CaĆ¢u 368:CaĆ¢u 368:CaĆ¢u 368:CaĆ¢u 368: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 2
x
xln
dx
a) I = ā€“
x
1xln āˆ’
+ C b) I =
x
1xln āˆ’
+ C
c) I = ā€“
x
1xln +
+ C d) I =
x
1xln +
+ C
CaĆ¢u 369:CaĆ¢u 369:CaĆ¢u 369:CaĆ¢u 369: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xcos
x
2
dx
a) I = xtgx ā€“ lnļ£¦cosxļ£¦ + C b) I = tgx + lnļ£¦cosxļ£¦ + C
c) I = xtgx + lnļ£¦cosxļ£¦ + C d) I = ln(tgx) + C
CaĆ¢u 370:CaĆ¢u 370:CaĆ¢u 370:CaĆ¢u 370: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ )x1(x
dx
a) I = ln
1x
1x
āˆ’
+
+ C b) I = ln
1x
1x
+
āˆ’
+ C
c) I = 2arcsinx( x ) + C d) I = arctg( x ) + C
CaĆ¢u 371:CaĆ¢u 371:CaĆ¢u 371:CaĆ¢u 371: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x
)x(gcot
dx
a) I = ā€“2lnļ£¦sin x ļ£¦ + C b) I = 2lnļ£¦sin x ļ£¦ + C
c) I = ā€“cotg( x ) + C d) I = cotg( x ) + C
CaĆ¢u 372:CaĆ¢u 372:CaĆ¢u 372:CaĆ¢u 372: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ xsin1
x2sin
4
dx
a) I = xsin1 4
āˆ’ + C b) I = lnļ£¦sin2x + xsin1 4
āˆ’ ļ£¦ + C
c) I = arcsin(sin2
x) + C d) I = arctg(sin2
x) + C
CaĆ¢u 373:CaĆ¢u 373:CaĆ¢u 373:CaĆ¢u 373: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x
)xln(
dx
a) I = ln( x ) + C b) I = 2ln( x ) + C
c) I = x (ln x ā€“ 1) + C d) I = 2 x (ln( x ) ā€“ 1) + C
CaĆ¢u 374:CaĆ¢u 374:CaĆ¢u 374:CaĆ¢u 374: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +
āˆ’
4xcos
xsin
2
dx
a) I = ā€“ln(cosx + 4xcos2
+ ) + C b) I = ln(cosx ā€“ 4xcos2
+ ) + C
c) I = 4xcos2
+ + C d) I = ln(cosx + 4xcos2
+ ) + C
CaĆ¢u 375:CaĆ¢u 375:CaĆ¢u 375:CaĆ¢u 375: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xgcot8 4
dx
a) I = ā€“cotg3
x + 3cotg + 3x + C b) I = cotg3
x + 3cotg + 3x + C
c) I = ā€“cotg3
x ā€“ 3cotg + 3x + C d) I = ā€“tg3
x + C
CaĆ¢u 376:CaĆ¢u 376:CaĆ¢u 376:CaĆ¢u 376: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x2
xln
dx
a) I = x (lnx + 2) + C b) I = x (lnx ā€“ 2) + C
c) I = x (lnx ā€“ 1) + C d) I = x (2 ā€“ lnx) + C
CaĆ¢u 377:CaĆ¢u 377:CaĆ¢u 377:CaĆ¢u 377: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + 4e
e
x2
x
dx
a) I = ln(ex
+ 4e x2
+ ) + C b) I = ex
+ 4e x2
+ + C
c) I = 2lnx(ex
+ 4e x2
+ ) + C d) I = 4e x2
+ + C
CaĆ¢u 37CaĆ¢u 37CaĆ¢u 37CaĆ¢u 378888:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’āˆ’ )xxln()1x3( 32
dx
a) I = (x3
ā€“ x).(ln(x3
ā€“ x) ā€“ 1) + C b) I = ln2
(x3
ā€“ x) + C
www.VNMATH.com
Trang 33
c) I = 3.ln(x3
ā€“ x) + C d) I =
( )xxln
3
32
āˆ’
+ C
CaĆ¢u 379:CaĆ¢u 379:CaĆ¢u 379:CaĆ¢u 379: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
+
xcos
)1tgx(4
2
3
dx
a) I = (tgx + 1)4
+ C b) I = 12(tgx + x) + C
c) I = tgx + x + C d) I = ā€“
xcos
)1tgx(
2
3
+
+ C
CaĆ¢u 380:CaĆ¢u 380:CaĆ¢u 380:CaĆ¢u 380: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + 3tgxxcos
2
2
dx
a) I = 2 3tgx + + C b) I = 4 3tgx + + C
c) I =
3tgx
2
+
+ C d) I = ln(tgx + 3tgx + ) + C
CaĆ¢u 381:CaĆ¢u 381:CaĆ¢u 381:CaĆ¢u 381: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 4xsin
4
2
dx
a) I = 4ln
3xsin
1xsin
āˆ’
āˆ’
+ C b) I = ln
2xsin
2xsin
+
āˆ’
+ C
c) I = 4arctg(sinx ā€“ 2) + C d) I = ln(sin2
x ā€“ 4) + C
CaĆ¢u 382:CaĆ¢u 382:CaĆ¢u 382:CaĆ¢u 382: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
+
x
)xtg1( 2
dx
a) I = x tg x + C b) I = 2 x tg x + C
c) I = 2tg x + C d) I = tg x + 2 x + C
CaCaCaCaĆ¢u 383:Ć¢u 383:Ć¢u 383:Ć¢u 383: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’+ x2x
x
ee23
e2
dx
a) I = 2lnļ£¦ex
ā€“ 1 + x2x
ee23 +āˆ’ ļ£¦ + C b) I = 2 x2x
ee23 +āˆ’ + C
c) I = arctg
2
1ex
āˆ’
+ C d) I = 2arcsin
2
1ex
āˆ’
+ C
CaĆ¢u 38CaĆ¢u 38CaĆ¢u 38CaĆ¢u 384444:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
3
x16 lnxdx
a) I = 4x4
lnx ā€“ x4
+ C b) I = 4x4
lnx + x4
+ C
c) I = ā€“4x4
lnx ā€“ x4
+ C d) I = ā€“4x4
lnx + x4
+ C
CaĆ¢u 385:CaĆ¢u 385:CaĆ¢u 385:CaĆ¢u 385: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
xsin
e.xcos.xsin dx
a) I = (sinx + 1)esinx
+ C b) I = sin2xesinx
/2 + C
c) I = sinxesinx
+ C d) I = (sinx ā€“ 1)esinx
+ C
CaĆ¢u 386:CaĆ¢u 386:CaĆ¢u 386:CaĆ¢u 386: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
2
x3 lnxdx
a) I = ln3
x + x3
+ C b) I = x3
/3 + C
c) I = x3
(ln ā€“ 1/3) + C d) I = x3
lnx + C
CaĆ¢u 387:CaĆ¢u 387:CaĆ¢u 387:CaĆ¢u 387: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«x cos2xdx
a) I = 2xsin2x ā€“ 2cos2x + C b) I = 2xsin2x + 2cos2x + C
c) I = 2xsin2x ā€“ cos2x + C d) I = 2xsin2x + cos2x + C
CaĆ¢u 388:CaĆ¢u 388:CaĆ¢u 388:CaĆ¢u 388: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x4 ln2xdx
a) I = ā€“2x2
ln2x ā€“ x2
+ C b) I = ā€“2x2
ln2x + x2
+ C
c) I = 2x2
ln2x ā€“ x2
+ C d) I = 2x2
ln2x + x2
+ C
CaĆ¢u 389:CaĆ¢u 389:CaĆ¢u 389:CaĆ¢u 389: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«
2
x9 lnxdx
a) I = x3
(3lnx ā€“ 1) + C b) I = (x3
+ x2
)lnx + C
www.VNMATH.com
Trang 34
c) I = 3x3
(lnx ā€“ 1) + C d) I = x3
(lnx + 1) + C
CaĆ¢u 390:CaĆ¢u 390:CaĆ¢u 390:CaĆ¢u 390: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + )1x2(xln2 dx
a) I = (2x + 1)ln(2x + 1) + 2x + C b) I = (2x + 1)ln(2x + 1) ā€“ 2x + C
c) I = 2xln(2x + 1) + 2x + C d) I = 2xln(2x + 1) ā€“ 2x + C
CaĆ¢u 391:CaĆ¢u 391:CaĆ¢u 391:CaĆ¢u 391: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« x2sinx dx
a) I = 2xcos2x ā€“ 2sin2x + C b) I = ā€“2xcos2x + sin2x + C
c) I = 2xcos2x ā€“ sin2x + C d) I = 2xcos2x + 2sin2x + C
CaĆ¢u 392:CaĆ¢u 392:CaĆ¢u 392:CaĆ¢u 392: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« 2
x
xln
dx
a) I =
x
1x2ln +
+ C b) I =
x
1x2ln āˆ’
+ C
c) I = ā€“
x2
1x2ln +
+ C d) I = ā€“
x
1x2ln +
+ C
CaĆ¢u 393:CaĆ¢u 393:CaĆ¢u 393:CaĆ¢u 393: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 3
x
xln
dx
a) I = ā€“ 2
x4
1xln2 āˆ’
+ C b) I = ā€“ 2
x
1xln2 +
+ C
c) I = 2
x4
1xln2 +
+ C d) I = ā€“ 2
x4
1xln2 +
+ C
CaĆ¢u 399:CaĆ¢u 399:CaĆ¢u 399:CaĆ¢u 399: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
1
0
x
2 dx
a) I = ln2 b) I = 2ln2 c) I = 1/ln2 d) I = 2/ln2
CaĆ¢u 400:CaĆ¢u 400:CaĆ¢u 400:CaĆ¢u 400: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« āˆ’
2/1
0 2
x1
x2
dx
a) I = ln2 b) I = ā€“ln2 c) I = 2ln2 d) I = ā€“2ln2
CaĆ¢u 401:CaĆ¢u 401:CaĆ¢u 401:CaĆ¢u 401: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
āˆ’
++
13
0 2
2x2x
dx
a) I = Ļ€/3 b) I = Ļ€/6 c) I = Ļ€/12 d) I = Ļ€/24
CaĆ¢u 402:CaĆ¢u 402:CaĆ¢u 402:CaĆ¢u 402: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
e
1
xln dx
a) I = 0 b) I = 1 c) I = 2 d) I = 3
CaĆ¢u 403:CaĆ¢u 403:CaĆ¢u 403:CaĆ¢u 403: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€ +4/
0 2
xcos
1tgx
dx
a) I = 1/2 b) I = 3/2 c) I = 1 d) I = 2
CaĆ¢u 40CaĆ¢u 40CaĆ¢u 40CaĆ¢u 404444:::: TĆ­nh tĆ­ch phaĆ¢n: I = 8āˆ« āˆ’
1
0 3 4
3
x1
x
dx
a) I = 2 b) I = 3 c) I = ā€“2 d) I = ā€“3
CaĆ¢u 40CaĆ¢u 40CaĆ¢u 40CaĆ¢u 405555:::: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
+e
1 x
1xln
dx
a) I = 3 b) I = 3/2 c) I = e2
ā€“ 1 d) I = e ā€“ 1
CaĆ¢u 406:CaĆ¢u 406:CaĆ¢u 406:CaĆ¢u 406: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
e
1
x4 lndx
a) I = 1 ā€“ e2
b) I = 1 + e2
c) I = 1 d) I = e
CaĆ¢u 407:CaĆ¢u 407:CaĆ¢u 407:CaĆ¢u 407: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
Ļ€
3/
4/ xcosxsin
dx
a) I = (ln3)/2 b) I = ā€“ln(3)/2 c) I = ln3 d) I = ā€“ln3
CaĆ¢u 408:CaĆ¢u 408:CaĆ¢u 408:CaĆ¢u 408: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
1
0 2
x1
)arctgxcos(
dx
www.VNMATH.com
Trang 35
a) I = 2 b) I = 2 /2 c) I = 0 d) I = 1
CaĆ¢u 409:CaĆ¢u 409:CaĆ¢u 409:CaĆ¢u 409: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
1
0
xarccos2 dx
a) I = Ļ€ + 2 b) I = Ļ€ ā€“ 2 c) I = 2 d) I = 1
CaĆ¢u 410:CaĆ¢u 410:CaĆ¢u 410:CaĆ¢u 410: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
e
1 2
)xln1(x
dx
a) I = 1 b) I = Ļ€ c) I = Ļ€/2 d) I = Ļ€/4
CaĆ¢u 411:CaĆ¢u 411:CaĆ¢u 411:CaĆ¢u 411: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
āˆ’
4/
0 22
xtg1xcos
dx
a) I = Ļ€/2 b) I = Ļ€/3 c) I = Ļ€/4 d) I = Ļ€/6
CaĆ¢u 412:CaĆ¢u 412:CaĆ¢u 412:CaĆ¢u 412: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’ ++
0
2 2
2x2x
dx
a) I = Ļ€/4 b) I = Ļ€/2 c) I = Ļ€ d) I = 1
CaĆ¢u 413:CaĆ¢u 413:CaĆ¢u 413:CaĆ¢u 413: TĆ­nh tĆ­ch phaĆ¢n: I = 3āˆ« +
1
0 3
2
x1
x
dx
a) I = ln2 b) I = ā€“ln2 c) I = 1 d) I = ā€“1
CaĆ¢u 414:CaĆ¢u 414:CaĆ¢u 414:CaĆ¢u 414: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
Ļ€
3/
6/
gxcot2 dx
a) I = 0 b) I = 1 c) I = ln3 d) I = ln2
CaĆ¢u 415:CaĆ¢u 415:CaĆ¢u 415:CaĆ¢u 415: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’
+
1
1 4
x1
x2
dx
a) I = 0 b) I = ln(1 + 2 ) c) I = ln( 2 ā€“ 1)
d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 41CaĆ¢u 41CaĆ¢u 41CaĆ¢u 416666:::: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
Ļ€āˆ’
+
2/
2/ 2
xsin32
x2sin
dx
a) I = 4 b) I = 2 c) I = 2 2 d) I = 0
CaĆ¢u 417:CaĆ¢u 417:CaĆ¢u 417:CaĆ¢u 417: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
+
0
2
)xsin1( dx
a) I = 16/3 b) I = 4/3 c) I = 0 d) I = 3 /2
CaĆ¢u 418:CaĆ¢u 418:CaĆ¢u 418:CaĆ¢u 418: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
+
2/
0 2
xsin1
xcos
dx
a) I = ln(1 + 2 ) b) I = 0 c) I = ln2 d) I = ā€“ln2
CaĆ¢u 419:CaĆ¢u 419:CaĆ¢u 419:CaĆ¢u 419: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
1
0 3
2
x1
x3
dx
a) I = ā€“ 2 b) I = 2 c) I = 2 2 ā€“ 2 d) I = 2 2
CaĆ¢u 420:CaĆ¢u 420:CaĆ¢u 420:CaĆ¢u 420: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’
1
1
x2
xe dx
a) I = 0 b) I = e/2 c) I = e d) I = 2e
CaĆ¢u 421:CaĆ¢u 421:CaĆ¢u 421:CaĆ¢u 421: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
2
1 2
x2x
2
dx
a) I = ln3 ā€“ ln2 b) I = ln2 ā€“ ln3 c) I = 0 d) I = 1
CaĆ¢u 422:CaĆ¢u 422:CaĆ¢u 422:CaĆ¢u 422: TĆ­nh tĆ­ch phaĆ¢n: I = 3āˆ« +
1
0 3
2
x1
x
dx
a) I = ln2 b) I = ā€“ln2 c) I = 2 2 ā€“ 2 d) I = 2 ā€“ 2 2
www.VNMATH.com
Trang 36
CaĆ¢u 423:CaĆ¢u 423:CaĆ¢u 423:CaĆ¢u 423: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
+
2/
0 2
)xsin1(
xcos
dx
a) I = ln2 b) I = ā€“ln2 c) I = 1/2 d) I = ā€“1/2
CaĆ¢u 424:CaĆ¢u 424:CaĆ¢u 424:CaĆ¢u 424: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
1
0 2
1x
x
dx
a) I = 2 ā€“ 1 c) 2 + 1
b) I = 2 d) 2 2 ā€“ 1
CaĆ¢u 425:CaĆ¢u 425:CaĆ¢u 425:CaĆ¢u 425: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
Ļ€āˆ’
3/
3/
64 .cosx.sin3
xdx
a) I = 0 b) I = 16 c) I = 8 d) I = ā€“16
CaĆ¢u 426:CaĆ¢u 426:CaĆ¢u 426:CaĆ¢u 426: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€ 2/
0
xcos .sinxdx
a) I = 2/3 b) I = 5/3 c) I = 1/3 d) I = 3/2
CaĆ¢u 427:CaĆ¢u 427:CaĆ¢u 427:CaĆ¢u 427: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€ 2/
0
xsin .sin3xdx
a) I = 0 b) I = 1 c) I = 1/2 d) I = 1/4
CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
1
0 2
x1
)arctgxsin(
dx
a) I = 0 b) I = 1 c) I = 1/2 d) I = 1/4
CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
2
e
1
2
x
xln2
dx
a) I = 9 b) I = 4 c) I = 2 d) I = 8
CaĆ¢u 430:CaĆ¢u 430:CaĆ¢u 430:CaĆ¢u 430: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’ ++
1
2 2
5x4x
dx
a) I = ln3 b) I = arctg3 c) I = arctg3 ā€“ Ļ€/4 d) I = arctg3 ā€“ arctg2
CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
Ļ€
āˆ’
2/
4/ 22
xgcot1xsin
dx
a) I = Ļ€/2 b) I = Ļ€/4 c) I = ā€“Ļ€/2 d) I = ā€“Ļ€/4
CaĆ¢u 432:CaĆ¢u 432:CaĆ¢u 432:CaĆ¢u 432: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
1
0
2arcsinxdx
a) I = 2 b) I = Ļ€ ā€“ 2 c) I = Ļ€ + 2 d) I = 2Ļ€ ā€“ 1
CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
1
0 6
2
x1
x12
dx
a) I = 1 b) I = Ļ€/6 c) I = Ļ€/2 d) I = Ļ€
CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
+āˆ’
āˆ’
1
0
xx2
e)1x2( dx
a) I = 0 b) I = e c) I = e2
d) I = 1/e
CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
e
1
x ex
dx
a) I = ee
+ 1b) I = ee
(e ā€“ 1) c) I = ee
(e + 1) d) I = ee
- e2
CaĆ¢u 43CaĆ¢u 43CaĆ¢u 43CaĆ¢u 436666:::: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
4
1
2
x ā€“ 1
dx
a) I = 2.ln2 b) I = 7.ln2 c) I = 3.ln2 d) I = 7/ln2
CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
e
1 2
)ln1(x
4
dx
a) I = Ļ€/4 b) I = 4 c) I = Ļ€ d) I = 2 /2
CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +
1
0 8
3
x1
x4
dx
www.VNMATH.com
Trang 37
a) I = Ļ€/4 b) I = Ļ€/2 c) I = Ļ€ d) I = 4Ļ€
CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
Ļ€
+
2/
0 2
xcos1
x2sin
dx
a) I = ā€“ln2 b) I = ln2 c) I = 0 d) I = 1
CaĆ¢u 440:CaĆ¢u 440:CaĆ¢u 440:CaĆ¢u 440: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« āˆ’
1
0 4
x1
x2
dx
a) I = Ļ€/4 b) I = Ļ€/3 c) I = Ļ€/2 d) I = Ļ€
CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
1
0
4 arctg(ā€“x)dx
a) I = 2ln2 + 2 b) I = ln2 ā€“ Ļ€ c) I = Ļ€ ā€“ ln2 d) I = 2ln2 ā€“ Ļ€
CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
2ln
0
4 xe2x
dx
a) I = ln2 b) I = 8ln2 ā€“ 3 c) I = 8ln2 ā€“ 2 d) I = 8ln2
CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
e
1
ln xdx
a) I = e + 1 b) I = e ā€“ 1 c) I = e d) I = 1
CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444: TĆ­nh tĆ­ch phaĆ¢n: I = 4āˆ«
e
1
x lnxdx
a) I = e2
+ 1 b) I = e2
ā€“ 1 c) I = e2
d) I = 1
CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
2
e
e 2
xln.x
dx
a) I = 0 b) I = 1 c) I = 1/2 d) I = ā€“1/2
CaĆ¢u 446:CaĆ¢u 446:CaĆ¢u 446:CaĆ¢u 446: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
e
1
ln
2
xdx
a) I = 2e b) I = 2 ā€“ e c) I = 2 + e d) I = e ā€“ 2
CaĆ¢u 447:CaĆ¢u 447:CaĆ¢u 447:CaĆ¢u 447: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
āˆ’
āˆ’
2e
1
ln (x + 2)dx
a) I = ā€“1 b) I = 1 c) I = 1 ā€“ ln3d) I = ln3 ā€“ 1
CaĆ¢u 448:CaĆ¢u 448:CaĆ¢u 448:CaĆ¢u 448: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«
1
0
2arctgxdx
a) I = Ļ€/2 + ln2 b) I = Ļ€/2 ā€“ ln2 c) I = Ļ€/4 d) I = ln2
CaĆ¢u 449:CaĆ¢u 449:CaĆ¢u 449:CaĆ¢u 449: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
1 5
x
dx
a) I = 0 b) I = 1 c) I = 2 d) I = 1/4
CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’
0
x
e dx
a) I = 0 b) I = 1 c) I = 2 d) I = 3
CaĆ¢u 451:CaĆ¢u 451:CaĆ¢u 451:CaĆ¢u 451: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’
0
x ex
dx
a) I = ā€“1 b) I = 1 c) I = ā€“2 d) I = 2
CaĆ¢uCaĆ¢uCaĆ¢uCaĆ¢u 452:452:452:452: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
+0 2
1x
dx
a) I = 0 b) I = Ļ€/6 c) I = Ļ€/4 d) I = Ļ€/2
CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453: XeĆ¹t tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
āˆžāˆ’ +
āˆ’
2
x1
dx
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) I = 0 b) I = Ļ€ c) I phaĆ¢n kyĆø
d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai
CaĆ¢u 454:CaĆ¢u 454:CaĆ¢u 454:CaĆ¢u 454: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’ +
0
4
x1
x
dx
www.VNMATH.com
Trang 38
a) I = Ļ€/4 b) I = Ļ€/2 c) I = ā€“Ļ€/4 d) I = ā€“Ļ€/2
CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
e xlnx
dx
a) I = ā€“1 b) I = e c) I = 1 d) I = +āˆž
CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
+0 2
)3x(
3
dx
a) I = 1 b) I = 2 c) I = 3 d) I = +āˆž
CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
+2 x1
2
dx
a) I = ln3 b) I = ā€“ln3 c) I = 0 d) I = +āˆž
CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458: XeĆ¹t tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
+0 x1
dx
. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) I = 0 b) I = 1 c) I phaĆ¢n kyĆø
d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai
CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’
+0
x
x
e
)1e(
dx
a) I = 1/2 b) I = Ļ€/2 c) I = ln2 d) I = +āˆž
CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
0 x2
e
x
dx
a) I = 2 b) I = 1 c) I = 1/2 d) I = +āˆž
CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
0 x
e2
dx
dx
a) I = 2 b) I = +āˆž c) I = 0 d) I = 1
CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
+0
4x2
dx
a) I = 1 b) I = 1/2 c) I = 2 d) I = +āˆž
CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
āˆžāˆ’ + 6
2
x1
x
dx
a) I = Ļ€/4 b) I = Ļ€/3 c) I = Ļ€/2 d) I = 0
CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
+0 2
2
x1
xarctg8
dx
a) I = 2Ļ€3
/3 b) I = Ļ€3
/3 c) I = Ļ€3
/24 d) I = Ļ€
CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
āˆžāˆ’ + 2
2
x1
xarctg
dx
a) I = ā€“Ļ€3
/3 b) I = Ļ€3
/3 c) I = Ļ€3
/24 d) I = 0
CaĆ¢u 466:CaĆ¢u 466:CaĆ¢u 466:CaĆ¢u 466: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
āˆž+
e 2
xlnx
dx
a) I = 1 b) I = 2 c) I = +āˆž d) I = 2e
CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆ’
2
1 3
1x
dx
a) I = 3/2 b) I = 1 c) I = +āˆž d) I = 3/4
CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
e
1
xlnx
dx
a) I = 0 b) I = 1 c) I = 2 d) I = +āˆž
www.VNMATH.com
Trang 39
CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
2/1
0 2
xlnx
dx
a) I = ln2 b) I = ā€“ln2 c) I =
2ln
1
d) I = ā€“
2ln
1
CaĆ¢u 470:CaĆ¢u 470:CaĆ¢u 470:CaĆ¢u 470: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
1
2/1 2
xlnx
dx
a) I = 0 b) I = 1 c) I = 2 d) I = +āˆž
CaĆ¢u 471:CaĆ¢u 471:CaĆ¢u 471:CaĆ¢u 471: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆ’
3/1
6/1 2
x91
3
a) I = Ļ€/6 b) I = Ļ€/3 c) I = +āˆž
d) CaĆ¹c caĆ¢u treĆ¢n ƱeĆ u sai
CaĆ¢u 472:CaĆ¢u 472:CaĆ¢u 472:CaĆ¢u 472: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ«
1
0
xln dx
a) I = ā€“1 b) I = 0 c) I = 1 d) I = 2
CaĆ¢u 473:CaĆ¢u 473:CaĆ¢u 473:CaĆ¢u 473: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±1 x
dx
hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± > 1
CaĆ¢u 474:CaĆ¢u 474:CaĆ¢u 474:CaĆ¢u 474: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
āˆ’āˆ’3
)2x)(1x(x
x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± < 1/2 c) Ī± > 1
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 475:CaĆ¢u 475:CaĆ¢u 475:CaĆ¢u 475: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
++
+āˆ’
3 3
2
1x4x
5x3x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± > 3 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 476:CaĆ¢u 476:CaĆ¢u 476:CaĆ¢u 476: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
++
+āˆ’
0. 5
2
1x4x
5x3x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± > 3 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 477:CaĆ¢u 477:CaĆ¢u 477:CaĆ¢u 477: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
++
+āˆ’
0. 3
22
)1xx4x(
)1x3xx(
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± > 2 c) Ī± tuĆøy yĆ¹
www.VNMATH.com
Trang 40
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 478:CaĆ¢u 478:CaĆ¢u 478:CaĆ¢u 478: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
+
Ī±
0. 2
1x
xsin
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < 1 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 479:CaĆ¢u 479:CaĆ¢u 479:CaĆ¢u 479: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī± ļ£·
ļ£ø
ļ£¶
ļ£¬
ļ£­
ļ£«
++
+
+
1 1x4x
5x3
x
xsin
dx phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± ā‰¤ 1 b) Ī± ā‰¤ 2 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 480:CaĆ¢u 480:CaĆ¢u 480:CaĆ¢u 480: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
ļ£·
ļ£·
ļ£ø
ļ£¶
ļ£¬
ļ£¬
ļ£­
ļ£«
+
Ī±
+
1 2
xsin1
x
x
xcos
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± = 0 b) Ī± ā‰  0 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 481:CaĆ¢u 481:CaĆ¢u 481:CaĆ¢u 481: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī± ļ£·ļ£·
ļ£ø
ļ£¶
ļ£¬ļ£¬
ļ£­
ļ£«
++
+
+
1
x
1x4x
5x3
x
e
dx phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± ā‰¤ 1 b) Ī± ā‰¤ 2 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 482:CaĆ¢u 482:CaĆ¢u 482:CaĆ¢u 482: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+ +Ī±+
1 x
xsin1
dx phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < 1 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 483:CaĆ¢u 483:CaĆ¢u 483:CaĆ¢u 483: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+ +Ī±
1
2
x
xsin
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± = ā€“1/2 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 484:CaĆ¢u 484:CaĆ¢u 484:CaĆ¢u 484: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+ +Ī±
1
xx
xcos
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± = 0 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 485:CaĆ¢u 485:CaĆ¢u 485:CaĆ¢u 485: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
1 x
e
x
dx phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± = 0 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 486:CaĆ¢u 486:CaĆ¢u 486:CaĆ¢u 486: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±1
x
x
e
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < ā€“1 c) Ī± tuĆøy yĆ¹
d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 487:CaĆ¢u 487:CaĆ¢u 487:CaĆ¢u 487: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī²
Ī±
1
x
x
e
dx (Ī± ā‰  0) hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < 0 vaĆø Ī² > 1 b) Ī± < 0 vaĆø Ī² tuĆøy yĆ¹
www.VNMATH.com
Trang 41
c) Ī± tuĆøy yĆ¹ vaĆø Ī² > 1 d) Ī± < ā€“1 vaĆø Ī² > 1
CaĆ¢u 488:CaĆ¢u 488:CaĆ¢u 488:CaĆ¢u 488: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
+1 x
x
xe
xe
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < 1 c) Ī± > 2 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 489:CaĆ¢u 489:CaĆ¢u 489:CaĆ¢u 489: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±
+1 x2
x2
xe
ex
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < 2 c) Ī± > 3 d) Ī± tuĆøy yĆ¹
CaĆ¢u 490:CaĆ¢u 490:CaĆ¢u 490:CaĆ¢u 490: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±1 x
x
e
e
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < 1 c) Ī± > 2 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 491:CaĆ¢u 491:CaĆ¢u 491:CaĆ¢u 491: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±1 xlnx
dx
dx phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± < 1
CaĆ¢u 492:CaĆ¢u 492:CaĆ¢u 492:CaĆ¢u 492: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±4 )x(lnlnxlnx
dx
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± ā‰¤ 1 b) Ī± < 1 c) Ī± > 1 d) Ī± ā‰„ 1
CaĆ¢u 493:CaĆ¢u 493:CaĆ¢u 493:CaĆ¢u 493: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±2 xln
dx
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± < 1 c) Ī± = 1 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 494:CaĆ¢u 494:CaĆ¢u 494:CaĆ¢u 494: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±2 xlnx
dx
dx phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± ā‰„ 1 c) Ī± ā‰¤ 1 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 495:CaĆ¢u 495:CaĆ¢u 495:CaĆ¢u 495: TĆ­ch phaĆ¢n suy roƤng: āˆ«
āˆž+
Ī±2 2
xlnx
dx
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± > 1 b) Ī± ā‰„ 1 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 496:CaĆ¢u 496:CaĆ¢u 496:CaĆ¢u 496: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī±
1
0 x
dx
hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± > 1
CaĆ¢u 497:CaĆ¢u 497:CaĆ¢u 497:CaĆ¢u 497: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī±
āˆ’
1
0 )x1(
dx
phaĆ¢n kyĆø khi vaĆø chƦ khi
a) Ī± < 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± > 1
CaĆ¢u 498:CaĆ¢u 498:CaĆ¢u 498:CaĆ¢u 498: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+
Ī±
1
0
)x2)(1x(x
x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± < 1/2 c) Ī± > ā€“1/2 d) Ī± tuĆøy yĆ¹
CaĆ¢u 499:CaĆ¢u 499:CaĆ¢u 499:CaĆ¢u 499: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+
Ī±+1
0
)x2)(1x(x
x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± < ā€“1/2 c) Ī± > 1/2 d) Ī± tuĆøy yĆ¹
CaĆ¢u 500:CaĆ¢u 500:CaĆ¢u 500:CaĆ¢u 500: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+
Ī±+1
0
2
)x2)(1x(x
x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
www.VNMATH.com
Trang 42
a) Ī± < ā€“1 b) Ī± > 1 c) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai
CaĆ¢u 501:CaĆ¢u 501:CaĆ¢u 501:CaĆ¢u 501: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+
Ī±
2
1
)x2)(1x(x
x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± < ā€“1/2 c) Ī± > ā€“1/2 d) Ī± tuĆøy yĆ¹
CaĆ¢u 502:CaĆ¢u 502:CaĆ¢u 502:CaĆ¢u 502: TĆ­ch phaĆ¢n suy roƤng: āˆ«
Ļ€
Ī±
Ī±āˆ’2/
1 x
cos1
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± ā‰„ 1 b) Ī± ā‰„ 3 c) Ī± ā‰„ 4 d) Ī± tuĆøy yĆ¹
CaĆ¢u 504:CaĆ¢u 504:CaĆ¢u 504:CaĆ¢u 504: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī±
āˆ’
1
0
)x1(
dx
hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± ā‰„ 1 b) Ī± ā‰„ 2 c) Ī± ā‰„ 3 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo
CaĆ¢u 505:CaĆ¢u 505:CaĆ¢u 505:CaĆ¢u 505: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’
Ī±
1
0 x
1e
dx
hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < 1 b) Ī± < ā€“1/2 c) Ī± > 1/2 d) Ī± tuĆøy yĆ¹
CaĆ¢u 506:CaĆ¢u 506:CaĆ¢u 506:CaĆ¢u 506: TĆ­ch phaĆ¢n suy roƤng: āˆ«
Ī±
āˆ’2
1 xln
)1x(
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < ā€“1 b) Ī± < ā€“1/2 c) Ī± > 0 d) Ī± > 2
CaĆ¢u 507:CaĆ¢u 507:CaĆ¢u 507:CaĆ¢u 507: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī±
1
0
3
)xcos/1(ln
x
dx hoƤi tuĆÆ khi vaĆø chƦ khi
a) Ī± < 1 b) Ī± < ā€“1/2 c) Ī± < 0 d) Ī± < 2
CaĆ¢u 508:CaĆ¢u 508:CaĆ¢u 508:CaĆ¢u 508: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 6x2
ā€“ 6x vaĆø y = 0
a) S = ā€“1 b) S = 1 c) S = 2 d) S = 3
CaĆ¢u 509:CaĆ¢u 509:CaĆ¢u 509:CaĆ¢u 509: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = ex
ā€“ 1; y = e2x
ā€“ 3 vaĆø x = 0
a) S = ln4 ā€“ 1/2b) S = ln4 + 1/2 c) S = (ln2 + 1)/2 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 510:CaĆ¢u 510:CaĆ¢u 510:CaĆ¢u 510: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 3x2
+ x vaĆø x ā€“ y + 3 = 0
a) S = ā€“3 b) S = 3 c) S = ā€“4 d) S = 4
CaĆ¢u 511:CaĆ¢u 511:CaĆ¢u 511:CaĆ¢u 511: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2
x1
2
+
vaĆø y = 1
a) S = 2Ļ€ b) S = 2Ļ€ ā€“ 2 c) S = Ļ€ ā€“ 4 d) S = Ļ€ + 2
CaĆ¢u 512:CaĆ¢u 512:CaĆ¢u 512:CaĆ¢u 512: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 2
x1
1
+
; y = 2
x1
x
+
; x = 0; x =1
a) S = Ļ€/4 b) S = (ln2)/2
c) S = (ln2)/2 ā€“ Ļ€/4 d) S = Ļ€/4 ā€“ (ln2)/2
CaĆ¢u 513:CaĆ¢u 513:CaĆ¢u 513:CaĆ¢u 513: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 2
x1
1
+
; y = 2
2
x1
x
+
; x = 0; x =1
a) S = Ļ€/2 ā€“ 1 b) S = 1 ā€“ Ļ€/2 c) S = (ln2)/2 ā€“ Ļ€/4 d) S = Ļ€/4 ā€“ (ln2)/2
www.VNMATH.com
Trang 43
CaĆ¢u 514:CaĆ¢u 514:CaĆ¢u 514:CaĆ¢u 514: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2
x1
1
+
; y =
2
x2
a) S = (2Ļ€ ā€“ 3)/3 b) S = (2Ļ€ ā€“ 3)/6 c) S = (3Ļ€ ā€“ 2)/3 d) S = (3Ļ€ ā€“ 2)/6
CaĆ¢u 515:CaĆ¢u 515:CaĆ¢u 515:CaĆ¢u 515: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 2x.
2
x
e ; y = 0; x = ā€“1; x = 1
a) S = 0 b) S = 4(e ā€“ 1) c) S = 2(e ā€“ 1)d) S = 2(e + 1)
CaĆ¢u 516:CaĆ¢u 516:CaĆ¢u 516:CaĆ¢u 516: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = x3
; y = x
a) S = 0 b) S = 1/2 c) S = 1/4 d) S = 1/8
CaĆ¢u 517:CaĆ¢u 517:CaĆ¢u 517:CaĆ¢u 517: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2
x1
x4
+
; y = 2x3
a) S = 4ln2 ā€“ 1 b) S = 2ln2 ā€“ 1/2 c) S = 1/2 ā€“ 2ln2 d) S = 4ln2 + 1
CaĆ¢u 518:CaĆ¢u 518:CaĆ¢u 518:CaĆ¢u 518: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2
3
x4
x4
+
; y = 2x
a) S = 24ln2 ā€“ 4 b) S = 16ln2 ā€“ 8 c) S = 4 ā€“ 8ln8 d) S = 8 ā€“ 16ln8
CaĆ¢u 519:CaĆ¢u 519:CaĆ¢u 519:CaĆ¢u 519: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 2x; y = 3 x ; x = 0; x = 1
a) S = 2 b) S = 1 c) S = 1/2 d) S = 1/6
CaĆ¢u 520:CaĆ¢u 520:CaĆ¢u 520:CaĆ¢u 520: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = 3 y ; y = x2
a) S = 1/12 b) S = 1/6 c) S = 1/3 d) S = 1/2
CaĆ¢u 521:CaĆ¢u 521:CaĆ¢u 521:CaĆ¢u 521: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 4sin2
x; y = 0; x = 0; x = Ļ€/4
a) S = 1 b) S = Ļ€ c) S = (Ļ€ ā€“ 1)/2 d) S = Ļ€/2 ā€“ 1
CaĆ¢u 522:CaĆ¢u 522:CaĆ¢u 522:CaĆ¢u 522: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = x; x = y2
a) S = 1 b) S = 1/2 c) S = 1/6 d) S = 1/12
CaĆ¢u 523:CaĆ¢u 523:CaĆ¢u 523:CaĆ¢u 523: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = 3y3
vaĆø x = 6y2
a) S = 1 b) S = 2 c) S = 4 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 524:CaĆ¢u 524:CaĆ¢u 524:CaĆ¢u 524: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = x3
vaĆø y = x4
a) S = 1/20 b) S = 1/10 c) S = 1 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 525:CaĆ¢u 525:CaĆ¢u 525:CaĆ¢u 525: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = x2
vaĆø y = x4
a) S = 1/15 b) S = 2/15 c) S = 4/15 d) S = 1
CaĆ¢u 526:CaĆ¢u 526:CaĆ¢u 526:CaĆ¢u 526: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
x = y2
ā€“ 2y vaĆø x = 2y2
ā€“ 4y
a) S = 20/3 b) S = 4/3 c) S = 6/3 d) S = 2/3
CaĆ¢u 527:CaĆ¢u 527:CaĆ¢u 527:CaĆ¢u 527: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 2
x1
x4
+
vaĆø y = 2
2
x1
x4
+
a) S = ln2 ā€“ 4 + Ļ€ b) S = ln2 ā€“ Ļ€ + 4 c) S = 4 ā€“ Ļ€ ā€“ 2ln2 d) S = 2ln2 ā€“ 4 + Ļ€
CaĆ¢u 528:CaĆ¢u 528:CaĆ¢u 528:CaĆ¢u 528: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
y = 2
x1
x4
+
; x = ā€“1; x = 1; y = 0
a) S = 1 b) S = Ļ€/2 c) S = Ļ€ d) S = +āˆž
CaĆ¢u 529:CaĆ¢u 529:CaĆ¢u 529:CaĆ¢u 529: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau:
www.VNMATH.com
Trang 44
y = x
e
x
; y = 0; x = 0; x = 1
a) S = e b) S = 2 c) S = (2 ā€“ e)/e d) S = (e ā€“ 2)/e
CaĆ¢u 530:CaĆ¢u 530:CaĆ¢u 530:CaĆ¢u 530: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
==
==
2lnx;0x
0y;e4y x
a) V = 4Ļ€ b) V = 8Ļ€ c) V = 16Ļ€ d) V = 24Ļ€
CaĆ¢u 531CaĆ¢u 531CaĆ¢u 531CaĆ¢u 531:::: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
==
==
ex;1x
0y;xlny
a) V = Ļ€ b) V = 2Ļ€ c) V = eĻ€ d) V = Ļ€e2
CaĆ¢u 532:CaĆ¢u 532:CaĆ¢u 532:CaĆ¢u 532: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
==
=+=
1x;0x
0y;)1xln(y
a) V = Ļ€ln2/2 b) V = Ļ€(ln2 ā€“ 1) c) V = Ļ€(2ln2 ā€“ 1) d) V = Ļ€ln2
CaĆ¢u 533:CaĆ¢u 533:CaĆ¢u 533:CaĆ¢u 533: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£“ļ£³
ļ£“
ļ£²
ļ£±
Ļ€==
==
4/x;0x
0y;tgxy
a) V = Ļ€ln2 b) V = Ļ€ln2/2 c) V = Ļ€/4 d) V = Ļ€ ā€“ Ļ€2
/16
CaĆ¢u 534:CaĆ¢u 534:CaĆ¢u 534:CaĆ¢u 534: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox: y = 2 x2sin1+ ; y = 0; x = 0; x = Ļ€/4
a) V = 2Ļ€ b) V = Ļ€(Ļ€ + 2) c) V = Ļ€ + 2 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai
CaĆ¢u 535:CaĆ¢u 535:CaĆ¢u 535:CaĆ¢u 535: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
Ļ€==
==
2/x;0x
0y;xsiny
a) V = 1 b) V = Ļ€ c) V = 2 d) V = 2Ļ€
CaĆ¢u 536:CaĆ¢u 536:CaĆ¢u 536:CaĆ¢u 536: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
==
==
ex;1x
0y;
x
xln
y
a) V = Ļ€/3 b) V = Ļ€/4 c) V = Ļ€/2 d) V = Ļ€
CaĆ¢u 537:CaĆ¢u 537:CaĆ¢u 537:CaĆ¢u 537: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
==
=
+
=
1x;0x
0y;
e1
e
y
x2
x
a) V = Ļ€[ln(1 + e2
] ā€“ ln2 b) V = Ļ€[ln 2
e1+ ā€“ ln 2 ]
c) V = Ļ€[ln(e + 2
e1+ ) ā€“ ln(1 + 2 )] d) V = Ļ€[2ln(e + 2
e1+ ) ā€“ ln4]
www.VNMATH.com
Trang 45
CaĆ¢u 538:CaĆ¢u 538:CaĆ¢u 538:CaĆ¢u 538: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
==
=
+
=
ex;1x
0y;
x
1xln2
y
a) V = 2Ļ€ b) V = 6Ļ€ c) V = 3Ļ€ d) V = Ļ€
CaĆ¢u 539:CaĆ¢u 539:CaĆ¢u 539:CaĆ¢u 539: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox: x = e; x = 1; y = xln21+ ; y = 0
a) V = Ļ€(Ļ€ + e)b) V = Ļ€(Ļ€ - 1) c) V = Ļ€(e ā€“ 2) d) V = Ļ€(e + 1)
CaĆ¢u 540:CaĆ¢u 540:CaĆ¢u 540:CaĆ¢u 540: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
Ļ€==
==
x;0x
0y;xsinxcosy
a) V = Ļ€/4 b) V = Ļ€/2 c) V = 2Ļ€/3 d) V = Ļ€
CaĆ¢u 541:CaĆ¢u 541:CaĆ¢u 541:CaĆ¢u 541: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
==
==
1x;0x
0y;xxy
a) V = Ļ€ b) V = Ļ€/2 c) V = Ļ€/4 d) V = Ļ€/12
CaĆ¢u 542:CaĆ¢u 542:CaĆ¢u 542:CaĆ¢u 542: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
==
=āˆ’=
1x;0x
0y;1xy
a) V = 8Ļ€/2 b) V = 4Ļ€/3 c) V = 2Ļ€/3 d) V = Ļ€/3
CaĆ¢u 543:CaĆ¢u 543:CaĆ¢u 543:CaĆ¢u 543: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox: y =
x
xln
; y = 0; x = e; x = e2
a) V = Ļ€ b) V = 3Ļ€/2 c) V = 3Ļ€/4 d) V = (e2
ā€“ e)Ļ€
CaĆ¢u 54CaĆ¢u 54CaĆ¢u 54CaĆ¢u 544:4:4:4: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
==
=
+
=
1x;0x
0y;
x1
xarcsin6
y
2
a) V = 24Ļ€3
b) V = 12Ļ€3
c) V = 3Ļ€4
/2 d) V = 3Ļ€4
/8
CaĆ¢u 545:CaĆ¢u 545:CaĆ¢u 545:CaĆ¢u 545: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£“
ļ£³
ļ£“
ļ£²
ļ£±
==
=
+
=
)3ln(x;0x
0y;
e1
e
y
x2
2/x
a) V = Ļ€2
/2 b) V = Ļ€2
/6 c) V = Ļ€2
/8 d) V = Ļ€2
/12
CaĆ¢u 546:CaĆ¢u 546:CaĆ¢u 546:CaĆ¢u 546: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
Ļ€==
==
4/x;0x
0y;tgx2y
a) V = 4 ā€“ Ļ€ b) V = Ļ€(4 ā€“ Ļ€)/4 c) V = Ļ€(4 ā€“ Ļ€) d) V = 4Ļ€(4 ā€“ Ļ€)
CaĆ¢u 547:CaĆ¢u 547:CaĆ¢u 547:CaĆ¢u 547: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau
ƱaĆ¢y quay quanh truĆÆc Ox:
ļ£³
ļ£²
ļ£±
Ļ€==
==
2/x;0x
0y;xcosy
www.VNMATH.com
Trang 46
a) V = Ļ€2
b) V = Ļ€(Ļ€- 1)/4 c) V = Ļ€2
/2 d) V = Ļ€2
/4
LƝ THUY T CHU I
CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428: Cho chuoĆ£i coĆ¹ soĆ” haĆÆng toĆ„ng quaĆ¹t: un =
)1n(n
1
+
(nā‰„1).
ƑaĆ«t sn = u1 + u2 + ā€¦ + un. KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) sn =
2
1
(1 ā€“
1n
1
+
) vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s =
2
1
b) sn = 1 +
1n
1
+
vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1
c) sn = 1 ā€“
1n
1
+
vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1
d) ChuoĆ£i phaĆ¢n kyĆø.
CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429: Cho chuoĆ£i āˆ‘
āˆž
=1n
nu . MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u chuoĆ£i treĆ¢n hoƤi tuĆÆ thƬ un ā†’ 0 khi n ā†’ āˆž
b) NeĆ”u un ā†’ 0 khi n ā†’ āˆž thƬ chuoĆ£i treĆ¢n hoƤi tuĆÆ
c) NeĆ”u chuoĆ£i treĆ¢n phaĆ¢n kyĆø thƬ un ā†’ 0 khi n ā†’ āˆž
d) NeĆ”u un ā†’ 0 khi n ā†’ āˆž thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø
CaĆ¢u 4CaĆ¢u 4CaĆ¢u 4CaĆ¢u 430:30:30:30: Cho chuoĆ£i coĆ¹ soĆ” haĆÆng toĆ„ng quaĆ¹t: u n =
)1n2)(1n2(
1
+āˆ’
ƑaĆ«t sn = u1 + u2 + ā€¦ + un. KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) sn =
2
1
(1 ā€“
1n2
1
+
) vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s =
2
1
b) sn = 1 ā€“
1n2
1
+
vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1
c) sn = 1 +
1n2
1
+
vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1
d) ChuoĆ£i phaĆ¢n kyĆø.
CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431: ChuoĆ£i āˆ‘
āˆž
=
āˆ’Ī±
1n
2
n
1
(Ī± laĆø moƤt tham soĆ”) 20cm hoƤi tuĆÆ khi vaĆø chƦ khi:
a) Ī± ā‰„ 3 b) Ī± > 3 c) Ī± > 1 d) Ī± ā‰„ 1
CaĆ¢u 432: ChuoĆ£i āˆ‘
āˆž
=
Ī²āˆ’āˆ’Ī± ļ£·
ļ£ø
ļ£¶
ļ£¬
ļ£­
ļ£«
+
1n
12
n
1
n
1
(Ī±, Ī² laĆø caĆ¹c tham soĆ”) hoƤi tuĆÆ khi vaĆø chƦ khi:
a) Ī± < 3 vaĆø Ī² < 0 b) Ī± > 3 vaĆø Ī² > 0 c) Ī± > 3 vaĆø Ī² < 0 d) Ī± < 3 vaĆø Ī² > 0
CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433: Cho chuoĆ£i āˆ‘
āˆž
=
āˆ’Ī± ļ£·
ļ£ø
ļ£¶
ļ£¬
ļ£­
ļ£«
+
+
1n
1
n
3n
1
2 (Ī± laĆø caĆ¹c tham soĆ”).
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 2.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± < 1. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø.
CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434: Cho chuoĆ£i āˆ‘
āˆž
=
Ī±
+
++
1n
4
23
n)1n(
1n2n
(Ī± laĆø moƤt tham soĆ” ) 20cm hoƤi tuĆÆ khi vaĆø chƦ khi:
www.VNMATH.com
Trang 47
a) Ī± > 0 b) Ī± ā‰¤ 0 c) Ī± > 1 d) Ī± ā‰„ 1
CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435: Cho chuoĆ£i āˆ‘
āˆž
=
āˆ’Ī± ļ£·
ļ£ø
ļ£¶
ļ£¬
ļ£­
ļ£«
+
1n
1n
n
1
2
1
(Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 2.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± < 1. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø.
CaĆ¢u 436:CaĆ¢u 436:CaĆ¢u 436:CaĆ¢u 436: Cho chuoĆ£i āˆ‘
āˆž
=
āˆ’Ī±
+
++
1n
3
26
2
n)2n(
1n2n
(Ī± laĆø moƤt tham soĆ”) phaĆ¢n kyĆø khi chƦ khi:
a) Ī± ā‰„ ā€“3 b) Ī± ā‰¤ 9 c) ā€“3 ā‰¤ Ī± ā‰¤ 3 d) ā€“3 < Ī± < 3
CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437: Cho chuoĆ£i āˆ‘
āˆž
=1n
n
q
2
(q laĆø moƤt tham soĆ” khaĆ¹c 0) hoƤi tuĆÆ khi vaĆø chƦ khi:
a) ā€“1 < q < 1 b) q > 1 c) q < ā€“1 d) q < ā€“1 hay q > 1
CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438: Cho chuoĆ£i ( )āˆ‘
āˆž
=
+
1n
n
q1 (q laĆø moƤt tham soĆ”) hoƤi tuĆÆ khi vaĆø chƦ khi:
a) ā€“1 < q < 1 b) ā€“2 < q < 1 c) ā€“2 < q < 0 d) ā€“2 ā‰¤ q ā‰¤ 0
CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439: Cho chuoĆ£i āˆ‘
āˆž
=
āˆ’Ī±
+
++
1n
3
24
n)2n(
1n2n
(Ī± laĆø moƤt tham soĆ”) 20cm hoƤi tuĆÆ khi vaĆø chƦ khi:
a) Ī± > 4 b) Ī± ā‰„ 4 c) Ī± ā‰„ 7 d) Ī± > 7
CaĆ¢u 440CaĆ¢u 440CaĆ¢u 440CaĆ¢u 440:::: Cho chuoĆ£i āˆ‘
āˆž
=1n
( 3
2
n
An +
)n
(A laĆø moƤt tham soĆ” ) MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“1 < A < 1
b) NeĆ”u ā€“1 < A < 1 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi A ā‰  0
d) ChuoĆ£i treĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi A āˆˆ R
CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441: Cho chuoĆ£i ( )āˆ‘
āˆž
=
++
1n
n2n2
)q1(p (p, q laĆø caĆ¹c tham soĆ”) hoƤi tuĆÆ khi vaĆø chƦ khi:
a) ā€“1 < p < 1 b) ā€“2 < q < 0
c) ā€“1 ā‰¤ p ā‰¤ 1 vaĆø ā€“2 ā‰¤ q ā‰¤ 0 d) ā€“1 < p < 1 vaĆø ā€“2 < q < 0
CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442: Cho chuoĆ£i āˆ‘
āˆž
=
+
1n
n
3
2
1An
(A laĆø moƤt tham soĆ”) MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u ļ£¦Aļ£¦ > 1 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø.
b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“1 < A < 1.
c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi A.
d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø vĆ“Ć¹i moĆÆi A.
CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443: Cho chuoĆ£i āˆ‘
āˆž
=
āˆ’
1n
n
2
2
)4n(p
(p laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u ļ£¦pļ£¦ > 1 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø.
b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“2 < p < 2.
c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi p.
d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n ky vĆ“Ć¹i moĆÆi p > 1.
CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444: Cho chuoĆ£i āˆ‘
āˆž
=
āˆ’
1n
n
22
3
n)3p(
(p laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u ļ£¦pļ£¦ > 2 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø.
www.VNMATH.com
Trang 48
b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“2 < p < 2.
c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi p.
d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kį»³ vĆ“Ć¹i moĆÆi ļ£¦pļ£¦ > 1.
CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
1n
1n
hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
)1n(n
3n
hoƤi tuĆÆ.
c) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
1n5
1n2
hoƤi tuĆÆ. d) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
)1n(n
1n2
phaĆ¢n kyĆø.
CaĆ¢u 446CaĆ¢u 446CaĆ¢u 446CaĆ¢u 446:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
keĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
1n
1n5
hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘
āˆž
= +
+
1n )1n(n
1n
hoƤi tuĆÆ.
c) ChuoĆ£i āˆ‘
āˆž
= +
++
1n
4
2
1n
1n3n
phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘
āˆž
= +
++
1n
2
2
)1n(n
1n2n10
phaĆ¢n kyĆø.
CaĆ¢u 447CaĆ¢u 447CaĆ¢u 447CaĆ¢u 447:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
. KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
nlnn
1n
hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
1n5
1n2
hoƤi tuĆÆ.
c) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
1nn
1n2
phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘
āˆž
= ++
+
1n
3
)1nln(n
3n
hoƤi tuĆÆ.
CaĆ¢u 448CaĆ¢u 448CaĆ¢u 448CaĆ¢u 448:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
. PhaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
8n
1n2
phaĆ¢n kyĆø. b) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
32
2
)1n(n
3n3
phaĆ¢n kyĆø.
c) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
4
2n5
1n2
phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘
āˆž
= +
+āˆ’
1n
3 2
n
)1n(n
)1n2()1(
ĆÆHT tuyeƤt ƱoĆ”i.
CaĆ¢u 449CaĆ¢u 449CaĆ¢u 449CaĆ¢u 449:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
8nn
1n2
phaĆ¢n kyĆø.b) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
32
2
)1n(n
3n3
phaĆ¢n kyĆø.
c) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
2
2n5
1n2
phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘
āˆž
= +
+āˆ’
1n
3 4
n
)1n(n
)1n3()1(
HTtuyeƤt ƱoƔi.
CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +++
+
1n
23
2
12nnn2
5n
phaĆ¢n kyĆø.
b) ChuoĆ£i āˆ‘
āˆž
= āˆ’+
+
1n
3
)23n2(n
5n3
phaĆ¢n kyĆø.
www.VNMATH.com
Trang 49
c) ChuoĆ£i āˆ‘
āˆž
= ++
+
1n
4
1n2n3
3n
phaĆ¢n kyĆø.
d) ChuoĆ£i āˆ‘
āˆž
= ++
+āˆ’
1n
3 2
n
)32n2(n
)1n()1(
hoƤi tuĆÆ tuyeƤt ƱoĆ”i.
CaĆ¢u 451CaĆ¢u 451CaĆ¢u 451CaĆ¢u 451:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
2
1n
5n
phaĆ¢n kyĆø. b) ChuoĆ£i
( )āˆ‘
āˆž
= āˆ’+
+
1n
2
23n2n
5n3
phaĆ¢n kyĆø.
c) ChuoĆ£i āˆ‘
āˆž
= ++
+
1n
4
1n2n3
3n
phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘
āˆž
= ++
+
āˆ’
1n
3 2
n
)32n2(n
1n
)1( hoƤi tuĆÆ tuyeƤt ƱoĆ”i.
CaĆ¢u 452CaĆ¢u 452CaĆ¢u 452CaĆ¢u 452:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
8nn
1n2
phaĆ¢n kyĆø.
b) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
32
2
)1n(n
3n3
phaĆ¢n kyĆø.
c) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
2
2n5
1n2
phaĆ¢n kyĆø.
d) ChuoĆ£i āˆ‘
āˆž
= +
+āˆ’
1n
3 4
n
)1n(n
)1n3()1(
hoƤi tuĆÆ nhƶng khoĆ¢ng hoƤi tuĆÆ tuyeƤt ƱoĆ”i.
CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= ++
+
1n
34
23
1nn4
nn
phaĆ¢n kyĆø.
b) ChuoĆ£i 2
1
5 12
( 15 45 1)n
n
n n
āˆž
=
+
+ +
āˆ‘ hoƤi tuĆÆ.
c) ChuoĆ£i āˆ‘
āˆž
= ++
+
1n
4
2
2nn
1n8
phaĆ¢n kyĆø.
d) ChuoĆ£i āˆ‘
āˆž
= ++
+
āˆ’
1n
3 2
n
)21n(n
3n
)1( hoƤi tuĆÆ tuyeƤt ƱoĆ”i.
CaĆ¢u 454CaĆ¢u 454CaĆ¢u 454CaĆ¢u 454:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘
āˆž
=
Ī±
1n n
1
phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
2
n8n
1n3
hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘
āˆž
= +
āˆ’
1n
32
2
)1n(n
3n3
phaĆ¢n kyĆø.
c) ChuoĆ£i āˆ‘
āˆž
= +
+
1n
3
2n5
1n2
phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘
āˆž
= +
+āˆ’
1n
3 2
n
)1n(n
)1n2()1(
hoƤi tuĆÆ nhƶng khoĆ¢ng hoƤi
tuĆÆ tuyeƤt ƱoĆ”i.
www.VNMATH.com
Trang 50
CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455: Cho 2 chuoĆ£i laĆ n lƶƓĆÆt coĆ¹ soĆ” haĆÆng toĆ„ng quaĆ¹t:
un =
1n2n
1n
34
++
+
(1) vaĆø vn =
2n
1n
5
+
+
(2)
KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i (1) phaĆ¢n kyĆø, chuoĆ£i (2) hoƤi tuĆÆ. b) ChuoĆ£i (1) hoƤi tuĆÆ, chuoĆ£i (2) phaĆ¢n kyĆø.
c) ChuoĆ£i (1) vaĆø (2) ƱeĆ u hoƤi tuĆÆ. d) ChuoĆ£i (1) vaĆø (2) ƱeĆ u phaĆ¢n kyĆø.
CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456: Cho chuoĆ£i āˆ‘
āˆž
=1n
n
2
1
(1 +
n
Ī±
)n
(Ī± laĆø moƤt tham soĆ”).
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“1 < Ī± < 1.
b) ChuoĆ£i treĆ¢n phaĆ¢n kyĆø khi vaĆø chƦ khi ā€“1 ā‰¤ Ī± ā‰¤ 1.
c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø.
d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ.
CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘
āˆž
=1n
nu (1) vaĆø vn thoĆ»a un ā‰¤ vn , āˆ€n
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u chuoĆ£i (1) hoƤi tuĆÆ thƬ chuoĆ£i (2) cuƵng hoƤi tuĆÆ.
b) NeĆ”u chuoĆ£i (1) phaĆ¢n kyĆø thƬ chuoĆ£i (2) cuƵng phaĆ¢n kyĆø.
c) ChuoĆ£i (1) hoƤi tuĆÆ khi vaĆø chƦ khi chuoĆ£i (2) hoƤi tuĆÆ.
d) CaĆ¹c meƤnh ƱeĆ  treĆ¢n ƱeĆ u sai.
CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘
āˆž
=1n
nu vaĆø āˆ‘
āˆž
=1n
nv thoƻa
n
n
n v
u
lim
āˆžā†’
= k (k āˆˆ R). Trong ƱieĆ u kieƤn naĆøo
sau ƱaĆ¢y hai chuoĆ£i naĆøy seƵ ƱoĆ ng thĆ“Ćøi hoƤi tuĆÆ hay phaĆ¢n kyĆø?
a) k < 1 c) k > 0
b) k < 2 d) k < 3
CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘
āˆž
=1n
nu (1) vaĆø āˆ‘
āˆž
=1n
nu (2) thoƻa
n
n
n v
u
lim
āˆžā†’
= 0.
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u chuoĆ£i (1) hoƤi tuĆÆ thƬ chuoĆ£i (2) cuƵng hoƤi tuĆÆ.
b) NeĆ”u chuoĆ£i (1) phaĆ¢n kyĆø thƬ chuoĆ£i (2) cuƵng phaĆ¢n kyĆø.
c) ChuoĆ£i (1) hoƤi tuĆÆ khi vaĆø chƦ khi chuoĆ£i (2) hoƤi tuĆÆ.
d) CaĆ¹c meƤnh ƱeĆ  treĆ¢n ƱeĆ u sai.
CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘
āˆž
=1n
nu (1) vaĆø āˆ‘
āˆž
=1n
nv (2) thoƻa
n
n
n v
u
lim
āˆžā†’
= +āˆž
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) NeĆ”u chuoĆ£i (1) hoƤi tuĆÆ thƬ chuoĆ£i (2) cuƵng hoƤi tuĆÆ.
b) NeĆ”u chuoĆ£i (1) phaĆ¢n kyĆø thƬ chuoĆ£i (2) cuƵng phaĆ¢n kyĆø.
www.VNMATH.com
Trang 51
c) ChuoĆ£i (1) hoƤi tuĆÆ khi vaĆø chƦ khi chuoĆ£i (2) hoƤi tuĆÆ.
d) CaĆ¹c meƤnh ƱeĆ  treĆ¢n ƱeĆ u sai.
CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461: ChuoĆ£i āˆ‘
āˆž
=
+Ī±
+1n
3
n)1n2(
n4
(Ī± laĆø moƤt tham soĆ”) phaĆ¢n kyĆø khi chƦ khi:
a) Ī± ā‰¤ ā€“2 b) Ī± < ā€“2 c) Ī± < 1 d) Ī± ā‰¤ 1
CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462: ChuoĆ£i āˆ‘
āˆž
= +1n
n
)q2)(1n(
n
(q laĆø moƤt tham soĆ” khaĆ¹c 0) hoƤi tuĆÆ khi chƦ khi:
a) ā€“1/2 < q < 1/2 c) q < ā€“1/2
b) q > 1/2 d) q < ā€“1/2 hay q > 1/2
CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463: Cho chuoĆ£i āˆ‘
āˆž
=
Ī±
++1n
4
2
1nn
n
(Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 3.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± < 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ.
CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464: Cho chuoĆ£i āˆ‘
āˆž
=
Ī±
++1n
4
3
1nn
n
(Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 4.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰„ 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø.
CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465: Cho chuoĆ£i āˆ‘
āˆž
=
Ī±
++
1n
5
4
n
3nn
(Ī± laĆø moƤt tham soĆ”).
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± < 4. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰¤ 4.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø.
CaĆ¢u 4CaĆ¢u 4CaĆ¢u 4CaĆ¢u 466:66:66:66: Cho chuoĆ£i āˆ‘
āˆž
=
Ī±
++
1n
6
4
n
3n2n
(Ī± laĆø moƤt tham soĆ”).
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± < 5. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰¤ 5.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ.
CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467: Cho chuoĆ£i āˆ‘
āˆž
=1n )1)(1(
33
++
+
Ī±
nn
n
(Ī± laĆø moƤt tham soĆ”) .
MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± >1 . b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰„2.
c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 2. d ) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø.
CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468: Cho chuoĆ£i āˆ‘
āˆž
=1n
(-1)n
Ī±
nn
nn
)2(
12 26
+
++
(Ī± laĆø moƤt tham soĆ”) . HoƤi tuĆÆ khi vaĆø chƦ khi:
a) Ī± > 6 b) Ī± .5 c)Ī± ā‰¤6 d) Ī± ā‰¤5
CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469: Cho chuoĆ£i āˆ‘
āˆž
=1n )!1(
2. 3
+
+
n
nnĪ±
(Ī± laĆø moƤt tham soĆ”) .MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng?
a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± =0 . b) ChuoĆ£i treĆ¢n phaĆ¢n kyĆø khi vaĆø chƦ khi Ī± =0.
c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø vĆ“Ć¹i moĆÆi Ī± . d ) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi Ī± .
www.VNMATH.com
525 bai tap_toan_a1
525 bai tap_toan_a1
525 bai tap_toan_a1
525 bai tap_toan_a1
525 bai tap_toan_a1
525 bai tap_toan_a1
525 bai tap_toan_a1
525 bai tap_toan_a1

Weitere Ƥhnliche Inhalte

Was ist angesagt?

Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...
Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...
Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...Nhįŗ­p VĆ¢n Long
Ā 
De cuong on tap chuong ii dai so 8
De cuong on tap chuong ii dai so 8De cuong on tap chuong ii dai so 8
De cuong on tap chuong ii dai so 8ToƔn THCS
Ā 
BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015
BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015
BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015BOIDUONGTOAN.COM
Ā 
Mot so bai toan ve dai luong ti le nghich
Mot so bai toan ve dai luong ti le nghichMot so bai toan ve dai luong ti le nghich
Mot so bai toan ve dai luong ti le nghichKim LiĆŖn Cao
Ā 
Khįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©c
Khįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©cKhįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©c
Khįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©ctuituhoc
Ā 
Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6
Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6
Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6Bį»“i dĘ°į»”ng ToĆ”n lį»›p 6
Ā 
CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7
CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7
CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7BOIDUONGTOAN.COM
Ā 
PhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©n
PhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©nPhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©n
PhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©nNhįŗ­p VĆ¢n Long
Ā 
CĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„t
CĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„tCĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„t
CĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„tBį»“i dĘ°į»”ng ToĆ”n lį»›p 6
Ā 
20 chuyen de boi duong toan 8
20 chuyen de boi duong toan 820 chuyen de boi duong toan 8
20 chuyen de boi duong toan 8cunbeo
Ā 
GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7
GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7
GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7Lį»›p 7 Gia sĘ°
Ā 
Giįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·p
Giįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·pGiįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·p
Giįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·pCįŗ£nh
Ā 
đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7
đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7
đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7Thįŗæ Giį»›i Tinh Hoa
Ā 
04 dang luong giac cua so phuc
04 dang luong giac cua so phuc04 dang luong giac cua so phuc
04 dang luong giac cua so phucHuynh ICT
Ā 
Chuyen de gioi han 11
Chuyen de gioi han 11Chuyen de gioi han 11
Chuyen de gioi han 11phongmathbmt
Ā 
CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...
CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...
CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...HoĆ ng ThĆ”i Viį»‡t
Ā 
Sį»‘ hį»Æu tį»·
Sį»‘ hį»Æu tį»·Sį»‘ hį»Æu tį»·
Sį»‘ hį»Æu tį»·Kim LiĆŖn Cao
Ā 
ChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘i
ChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘iChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘i
ChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘iyoungunoistalented1995
Ā 
PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1
PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1
PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1diemthic3
Ā 

Was ist angesagt? (20)

Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...
Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...
Đį»€ TOƁN VƀO Lį»šP 10 TRĘÆį»œNG THPT CHUYƊN LƊ Hį»’NG PHONG TP Hį»’ CHƍ MINH NĂM Hį»ŒC 20...
Ā 
De cuong on tap chuong ii dai so 8
De cuong on tap chuong ii dai so 8De cuong on tap chuong ii dai so 8
De cuong on tap chuong ii dai so 8
Ā 
BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015
BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015
BƀI Tįŗ¬P ƔN Tįŗ¬P Hį»† THį»NG CHĘÆĘ NG TRƌNH TOƁN Lį»šP 8 Hƈ NĂM 2015
Ā 
Mot so bai toan ve dai luong ti le nghich
Mot so bai toan ve dai luong ti le nghichMot so bai toan ve dai luong ti le nghich
Mot so bai toan ve dai luong ti le nghich
Ā 
Khįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©c
Khįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©cKhįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©c
Khįŗ£o sĆ”t hĆ m sį»‘ đį»ƒ chį»©ng mƬnh bįŗ„t đįŗ³ng thį»©c
Ā 
Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6
Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6
Sį» NGUYƊN - BƀI Tįŗ¬P CĘ  Bįŗ¢N Vƀ NƂNG CAO TOƁN Lį»šP 6
Ā 
CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7
CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7
CĆ”c chuyĆŖn đį» Bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n lį»›p 7
Ā 
Toan 9 cac-dang-toan-on-thi-vao-10
Toan 9 cac-dang-toan-on-thi-vao-10Toan 9 cac-dang-toan-on-thi-vao-10
Toan 9 cac-dang-toan-on-thi-vao-10
Ā 
PhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©n
PhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©nPhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©n
PhĘ°Ę”ng phĆ”p giįŗ£i hį»‡ phĘ°Ę”ng trƬnh bįŗ­c nhįŗ„t hai įŗ©n
Ā 
CĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„t
CĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„tCĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„t
CĆ”c chuyĆŖn đį» bį»“i dĘ°į»”ng HSG mĆ“n ToĆ”n THCS hay nhįŗ„t
Ā 
20 chuyen de boi duong toan 8
20 chuyen de boi duong toan 820 chuyen de boi duong toan 8
20 chuyen de boi duong toan 8
Ā 
GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7
GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7
GiĆ”o Ć”n bį»“i dĘ°į»”ng hį»c sinh giį»i ToĆ”n 7
Ā 
Giįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·p
Giįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·pGiįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·p
Giįŗ£i 30 bĆ i toĆ”n dĆ£y sį»‘ hay gįŗ·p
Ā 
đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7
đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7
đį» CĘ°Ę”ng Ć“n tįŗ­p toĆ”n 7
Ā 
04 dang luong giac cua so phuc
04 dang luong giac cua so phuc04 dang luong giac cua so phuc
04 dang luong giac cua so phuc
Ā 
Chuyen de gioi han 11
Chuyen de gioi han 11Chuyen de gioi han 11
Chuyen de gioi han 11
Ā 
CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...
CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...
CHUYƊN Đį»€ LÅØY THį»ŖA & Tį»¶ Lį»† THį»ØC DƃY Tį»¶ Sį» Bįŗ°NG NHAU TOƁN 7 Cį»°C HAY -HOƀNG THƁ...
Ā 
Sį»‘ hį»Æu tį»·
Sį»‘ hį»Æu tį»·Sį»‘ hį»Æu tį»·
Sį»‘ hį»Æu tį»·
Ā 
ChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘i
ChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘iChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘i
ChuyĆŖn đį» giĆ” trį»‹ tuyį»‡t đį»‘i
Ā 
PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1
PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1
PhĘ°Ę”ng trƬnh sį»‘ phį»©c - phįŗ§n 1
Ā 

Ƅhnlich wie 525 bai tap_toan_a1

Ɣn thi ToĆ”n
Ɣn thi ToĆ”nƔn thi ToĆ”n
Ɣn thi ToĆ”nLong Nguyen
Ā 
Ds10 c3 phan2-www.mathvn.com
Ds10 c3   phan2-www.mathvn.comDs10 c3   phan2-www.mathvn.com
Ds10 c3 phan2-www.mathvn.comnhacsautuongtu
Ā 
So phuc va cac bai toan lien quan 2
So phuc va cac bai toan lien quan 2So phuc va cac bai toan lien quan 2
So phuc va cac bai toan lien quan 2Huynh ICT
Ā 
Chuyen de 6. to hop, xac suat, nhi thuc newotn
Chuyen de 6. to hop, xac suat, nhi thuc newotnChuyen de 6. to hop, xac suat, nhi thuc newotn
Chuyen de 6. to hop, xac suat, nhi thuc newotnthuong hoai
Ā 
tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)
tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)
tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)HoĆ ng ThĆ”i Viį»‡t
Ā 
11 phuong phap giai pth
11 phuong phap giai pth11 phuong phap giai pth
11 phuong phap giai pthPhuc Nguyen
Ā 
Cac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dungCac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dungljmonking
Ā 
CHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁN
CHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁNCHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁN
CHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁNHoĆ ng ThĆ”i Viį»‡t
Ā 
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_ntmtam80
Ā 
Xuctu.com ch de-cuctri-gtln-gtnn
Xuctu.com ch de-cuctri-gtln-gtnnXuctu.com ch de-cuctri-gtln-gtnn
Xuctu.com ch de-cuctri-gtln-gtnnMinh Đį»©c
Ā 
Ch de cuctri-gtln-gtnn
Ch de cuctri-gtln-gtnnCh de cuctri-gtln-gtnn
Ch de cuctri-gtln-gtnnQuoc Nguyen
Ā 
07 nguyen ham luong giac p4
07 nguyen ham luong giac p407 nguyen ham luong giac p4
07 nguyen ham luong giac p4Huynh ICT
Ā 
CHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊN
CHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊNCHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊN
CHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊNBOIDUONGTOAN.COM
Ā 
PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©
PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©
PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©Linh Nguyį»…n
Ā 
Tįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vn
Tįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vnTįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vn
Tįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vnMegabook
Ā 
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802baolanchi
Ā 

Ƅhnlich wie 525 bai tap_toan_a1 (20)

Ɣn thi ToĆ”n
Ɣn thi ToĆ”nƔn thi ToĆ”n
Ɣn thi ToĆ”n
Ā 
Ds10 c3 phan2-www.mathvn.com
Ds10 c3   phan2-www.mathvn.comDs10 c3   phan2-www.mathvn.com
Ds10 c3 phan2-www.mathvn.com
Ā 
So phuc va cac bai toan lien quan 2
So phuc va cac bai toan lien quan 2So phuc va cac bai toan lien quan 2
So phuc va cac bai toan lien quan 2
Ā 
Chuyen de 6. to hop, xac suat, nhi thuc newotn
Chuyen de 6. to hop, xac suat, nhi thuc newotnChuyen de 6. to hop, xac suat, nhi thuc newotn
Chuyen de 6. to hop, xac suat, nhi thuc newotn
Ā 
tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)
tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)
tį»•ng hį»£p lĆ½ thuyįŗæt bĆ i tįŗ­p vĆ  đį» Ć“n tįŗ­p cĆ”c chĘ°Ę”ng toĆ”n 8 (2017)
Ā 
Gt12cb 50
Gt12cb 50Gt12cb 50
Gt12cb 50
Ā 
11 phuong phap giai pth
11 phuong phap giai pth11 phuong phap giai pth
11 phuong phap giai pth
Ā 
Cac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dungCac phuong phap giai pt ham thuong dung
Cac phuong phap giai pt ham thuong dung
Ā 
CHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁN
CHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁNCHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁN
CHUYƊN Đį»€ ƔN THI CHUYį»‚N Cįŗ¤P LƊN Lį»šP 10 MƔN TOƁN
Ā 
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Ā 
Xuctu.com ch de-cuctri-gtln-gtnn
Xuctu.com ch de-cuctri-gtln-gtnnXuctu.com ch de-cuctri-gtln-gtnn
Xuctu.com ch de-cuctri-gtln-gtnn
Ā 
Ch de cuctri-gtln-gtnn
Ch de cuctri-gtln-gtnnCh de cuctri-gtln-gtnn
Ch de cuctri-gtln-gtnn
Ā 
07 nguyen ham luong giac p4
07 nguyen ham luong giac p407 nguyen ham luong giac p4
07 nguyen ham luong giac p4
Ā 
CHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊN
CHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊNCHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊN
CHUYƊN Đį»€ Đįŗ I Sį» ƔN THI VƀO Lį»šP 10 CƁC TRĘÆį»œNG CHUYƊN
Ā 
PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©
PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©
PhĘ°Ę”ng phĆ”p giįŗ£i phĘ°Ę”ng trƬnh, bįŗ„t phĘ°Ę”ng trƬnh mÅ©
Ā 
Tįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vn
Tįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vnTįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vn
Tįŗ­p 7 chuyĆŖn đį» ToĆ”n hį»c: Sį»‘ phį»©c - Megabook.vn
Ā 
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Chuyen de boi_duong_hoc_sinh_gioi_lop_12_2802
Ā 
Tai lieu-on-thi-lop-10-mon-toan
Tai lieu-on-thi-lop-10-mon-toanTai lieu-on-thi-lop-10-mon-toan
Tai lieu-on-thi-lop-10-mon-toan
Ā 
Luong giac
Luong giacLuong giac
Luong giac
Ā 
Gt12cb 62
Gt12cb 62Gt12cb 62
Gt12cb 62
Ā 

525 bai tap_toan_a1

  • 1. Trang 7 BƀI T P TOƁN CAO C P A1 ā€“H Đ I H C TRĘÆ NG Đ I H C CƔNG NGHI P THƀNH PH H CHƍ MINH KHOA KHOA H C CĘ  B N BƀI T P TOƁN A1 NHƓM I TT H Vƀ TƊN SINH VIƊN Mƃ S SINH VIƊN L P GHI CHƚ 1 Nguy n Văn A 0771847 DHP5 NhĆ³m trĘ° ng 2 LĆŖ Th B 0770538 DHDI5 3 4 GVHD: ThS. LĆŖ Văn H i 1) Trang bƬa nhĘ° trĆŖn. 2) T trang th 2, chĆ©p đ cĆ¢u nĆ o xong thƬ gi i rƵ rĆ ng ngay cĆ¢u Ä‘Ć³. 3) Trang cu i cĆ¹ng lĆ  GiĆ”o trƬnh vĆ  tĆ i li u tham kh o: 1.GiĆ”o trƬnh chĆ­nh: ToĆ”n cao c p- Ch biĆŖn: TS Nguy n PhĆŗ Vinh, trĘ° ng ĐHCN TP HCM 2.Nguy n ĐƬnh TrĆ­ vĆ  nhi u tĆ”c gi , ToĆ”n cao c p, t p I, NXB GiĆ”o D c, 2003 3.T Văn Đ nh-VÅ© Long-DĘ°Ę”ng Th y V , BĆ i t p toĆ”n cao c p, NXB ĐH&THCN 4.Tr n Văn H o, Đ i s cao c p, t p I, NXB GiĆ”o d c, 1977 5.TS.Nguy n PhĆŗ Vinh, TrĘ° ng ĐHCN TP H ChĆ­ Minh, NgĆ¢n hĆ ng cĆ¢u h i toĆ”n cao c p. ā€¢ Ph n lĆ m bĆ i t p cĆ³ th Ä‘Ć”nh mĆ”y ho c vi t tay trĆŖn 01 m t gi y A 4 (khuy n khĆ­ch Ä‘Ć”nh mĆ”y) ā€¢ Th i h n n p bĆ i t p: Ti t h c cu i cĆ¹ng (ChĆŗ Ć½: Sinh viĆŖn ph i nghiĆŖn c u trĘ° c tĆ i li u đ cĆ³ th gi i đʰ c nh ng bĆ i t p ph n chu i s vĆ  chu i hĆ m) ā€¢ M i th c m c g i v : lvhmaths2008@gmail.com PhĆ¢n nhĆ³m: - NhĆ³m trĘ° ng cĆ³ trĆ”ch nhi m phĆ¢n cĆ“ng nhi m v c th cho t ng thĆ nh viĆŖn trong nhĆ³m c a mƬnh ph trĆ”ch (t t c sinh viĆŖn đ u ph i tham gia gi i bĆ i t p) + NhĆ³m 1: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 0,1,2; vĆ­ d nhĘ° cĆ¢u: 1,2,10,11,12, 20,21,22,ā€¦. + NhĆ³m 2: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 1,2,3; vĆ­ d nhĘ° cĆ¢u: 1,2,3,11,12,13 21,22,23, ā€¦.. + NhĆ³m 3: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 2,3,4; vĆ­ d nhĘ° cĆ¢u: 2,3,4,12,13,14, 22,23,24,ā€¦.. + NhĆ³m 4: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 3,4,5 vĆ­ d nhĘ° cĆ¢u: 3,4,5,13,14,15,23,24,25,ā€¦. + NhĆ³m 5: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 4,5,6 vĆ­ d nhĘ° cĆ¢u: 4,5,6,14,15,16,24,25,26,ā€¦ + NhĆ³m 6: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 5,6,7 vĆ­ d nhĘ° cĆ¢u: 5,6,7,15,16,17,25,26,27,ā€¦ + NhĆ³m 7: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 6,7,8 vĆ­ d nhĘ° cĆ¢u: 6,7,8,16,17,18,26,27,28,ā€¦ + NhĆ³m 8: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 7,8,9 vĆ­ d nhĘ° cĆ¢u: 7,8,9,17,18,19,27,28,29,ā€¦ + NhĆ³m 9: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 8,9,0 vĆ­ d nhĘ° cĆ¢u: 0,8,9,10,18,19,20,28,29,ā€¦ + NhĆ³m 10: Gi i cĆ”c cĆ¢u cĆ³ s th t chia h t cho 10 dĘ° 9,0,1 vĆ­ d nhĘ° cĆ¢u: 0,1,9,10,11,19,20,21,29,ā€¦. PH N BƀI T P CaĆ¢u 1:CaĆ¢u 1:CaĆ¢u 1:CaĆ¢u 1: TƬm L = 1xxx2 1xxxx lim 23 23 x +āˆ’ +++ +āˆžā†’ a) L = 1 b) L = 1/2 c) L = 0 d) L = āˆž www.VNMATH.com
  • 2. Trang 8 CaĆ¢u 2:CaĆ¢u 2:CaĆ¢u 2:CaĆ¢u 2: TƬm L = 1xxxx8 1xx lim 23 4 x +++ ++ +āˆžā†’ a) L = 1 b) L = 1/8 c) L = 0 d) L = āˆž CaĆ¢u 3:CaĆ¢u 3:CaĆ¢u 3:CaĆ¢u 3: TƬm L = 2xxx 1xxx10 lim 45 34 x +++ ++ āˆžā†’ a) L = 10 b) L = 0 c) L = āˆž d) L = 1/2 CaĆ¢u 4:CaĆ¢u 4:CaĆ¢u 4:CaĆ¢u 4: TƬm L = 3x4x 1x lim 2 2 1x +āˆ’ āˆ’ ā†’ a) L = 0 b) L = ā€“1 c) L = 2 d) L = āˆž CaĆ¢u 5:CaĆ¢u 5:CaĆ¢u 5:CaĆ¢u 5: TƬm L = 1x 1x lim 21x āˆ’ āˆ’ ā†’ a) L = 0 b) L = 1 c) L = 1/2 d) L = 1/4 CaĆ¢u 6:CaĆ¢u 6:CaĆ¢u 6:CaĆ¢u 6: TƬm L = 1x 1x lim 2 3 1x āˆ’ āˆ’ ā†’ a) L = 0 b) L = 1/2 c) L = 1/3 d) L = 1/6 CaĆ¢u 7:CaĆ¢u 7:CaĆ¢u 7:CaĆ¢u 7: TƬm L = ( )xxxxlim 22 x āˆ’āˆ’+ +āˆžā†’ a) L = 1/2 b) L = 1/3 c) L = 1 d) L = 2 CaĆ¢u 8:CaĆ¢u 8:CaĆ¢u 8:CaĆ¢u 8: TƬm L = ( )x2xxlim 2 x āˆ’āˆ’ +āˆžā†’ a) L = +āˆž b) L = 1 c) L = ā€“1 d) L khoĆ¢ng toĆ n taĆÆi CaĆ¢u 9:CaĆ¢u 9:CaĆ¢u 9:CaĆ¢u 9: TƬm L = ( )x2xxlim 2 x āˆ’āˆ’ āˆ’āˆžā†’ a) L = ā€“āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi CaĆ¢u 10:CaĆ¢u 10:CaĆ¢u 10:CaĆ¢u 10: TƬm L = ( )x2xxlim 2 x āˆ’āˆ’ āˆžā†’ a) L = āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi CaĆ¢u 11:CaĆ¢u 11:CaĆ¢u 11:CaĆ¢u 11: TƬm L = ( )x2xx2lim 2 x āˆ’āˆ’ āˆžā†’ a) L = āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi CaĆ¢u 12:CaĆ¢u 12:CaĆ¢u 12:CaĆ¢u 12: TƬm L = ļ£· ļ£ø ļ£¶ļ£¬ ļ£­ ļ£« āˆ’āˆ’+āˆ’+ +āˆžā†’ x2x21x21x2lim 222 x a) L = āˆž b) L = 0 c) L = 2 d) L khoĆ¢ng toĆ n taĆÆi CaĆ¢u 13:CaĆ¢u 13:CaĆ¢u 13:CaĆ¢u 13: TƬm L = ( )3 23 x 4x3xxlim +āˆ’āˆ’ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = 2 CaĆ¢u 14:CaĆ¢u 14:CaĆ¢u 14:CaĆ¢u 14: TƬm L = ( )3 233 23 x 4x3x1x3x3xlim +āˆ’āˆ’++āˆ’ āˆžā†’ www.VNMATH.com
  • 3. Trang 9 a) L = āˆž b) L = 0 c) L = 1 d) L = 2 CaĆ¢u 15:CaĆ¢u 15:CaĆ¢u 15:CaĆ¢u 15: TƬm L = ( )3 233 23 x 1xx21x3x2lim āˆ’+āˆ’++ āˆžā†’ a) L = 3 3/2 b) L = 3 2 c) L = āˆž d) L = 0 CaĆ¢u 16:CaĆ¢u 16:CaĆ¢u 16:CaĆ¢u 16: TƬm L = ļ£· ļ£ø ļ£¶ļ£¬ ļ£­ ļ£« +āˆ’āˆ’++āˆ’ +āˆžā†’ 3 233 3 x 4x3x1x3xx3xlim a) L = āˆž b) L = 0 c) L = ā€“1 d) L = 1 CaĆ¢u 17:CaĆ¢u 17:CaĆ¢u 17:CaĆ¢u 17: TƬm L = ļ£· ļ£ø ļ£¶ļ£¬ ļ£­ ļ£« +āˆ’āˆ’++āˆ’ +āˆžā†’ 3 43 x 4x3x1x3xx3xlim a) L = āˆž b) L = 1 c) L = ā€“1 d) L = 0 CaĆ¢u 18:CaĆ¢u 18:CaĆ¢u 18:CaĆ¢u 18: TƬm L = ( )3 233 3 x 4x3x2x4xlim +āˆ’āˆ’++ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = 2 CaĆ¢u 19:CaĆ¢u 19:CaĆ¢u 19:CaĆ¢u 19: TƬm L = ( )3 323 23 x xx241x4xlim āˆ’++++ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = 2 CaĆ¢u 20:CaĆ¢u 20:CaĆ¢u 20:CaĆ¢u 20: TƬm L = ( )3 323 23 x xx41x4xlim +āˆ’+++ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = 2 CaĆ¢u 21:CaĆ¢u 21:CaĆ¢u 21:CaĆ¢u 21: TƬm L = ( )3 323 23 x xx41x4x2lim āˆ’āˆ’+++ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = ā€“1 CaĆ¢u 22:CaĆ¢u 22:CaĆ¢u 22:CaĆ¢u 22: TƬm L = ( )3 33 3 x x2x41x4x2lim āˆ’āˆ’+++ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = 3 2 /2 CaĆ¢u 23:CaĆ¢u 23:CaĆ¢u 23:CaĆ¢u 23: TƬm L = ( )3 33 3 x x2x41x4x2xlim āˆ’āˆ’+++ āˆžā†’ a) L = āˆž b) L = 0 c) L = 1 d) L = 3 2 /2 CaĆ¢u 24:CaĆ¢u 24:CaĆ¢u 24:CaĆ¢u 24: TƬm L = x4sin x2sin lim 2 0xā†’ a) L = 0 b) L = 2 c) L = 1/2 d) L = 1/4 CaĆ¢u 25:CaĆ¢u 25:CaĆ¢u 25:CaĆ¢u 25: TƬm L = x3sin xsinx2sin lim 2 0x + ā†’ a) L = 0 b) L = 1/3 c) L = 2/3 d) L = 4/3 CaĆ¢u 26:CaĆ¢u 26:CaĆ¢u 26:CaĆ¢u 26: TƬm L = x2sinx xcos1 lim 0x āˆ’ ā†’ a) L = 0 b) L = 1 c) L = 1/2 d) L = 1/4 CaĆ¢uCaĆ¢uCaĆ¢uCaĆ¢u 22227:7:7:7: TƬm caĆ«p voĆ¢ cuĆøng beĆ¹ tƶƓng ƱƶƓng khi cho x ā†’ 0 www.VNMATH.com
  • 4. Trang 10 a) sin2x vaĆø arcsinx b) arcsin3x vaĆø ln(1 + 3x) c) arctgx vaĆø arccotgx d) 1 ā€“ ex vaĆø x CaĆ¢u 28:CaĆ¢u 28:CaĆ¢u 28:CaĆ¢u 28: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = xx2x xarcsin3xarcsin2xarcsin lim 23 23 0x +āˆ’ ++ ā†’ a) L = 0 b) L = 1 c) L = 2 d) L = 3 CaĆ¢u 29:CaĆ¢u 29:CaĆ¢u 29:CaĆ¢u 29: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = ( ) xxtgsinx xcosc1 lim 2 2 0x āˆ’ ā†’ a) L = 0 b) L = 1 c) L = 1/2 d) L = 1/4 CaĆ¢u 30:CaĆ¢u 30:CaĆ¢u 30:CaĆ¢u 30: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = arctgxxsin xxcos1 lim 4 3 0x + āˆ’āˆ’ ā†’ a) L = 0 b) L = 1/2 c) L = 2 d) L = 1 CaĆ¢u 31:CaĆ¢u 31:CaĆ¢u 31:CaĆ¢u 31: TƬm L = xsin x2cos1 lim 20x āˆ’ ā†’ a) L = 2 b) L = 1/2 c) L = 1 d) L = 1/4 CaĆ¢u 32:CaĆ¢u 32:CaĆ¢u 32:CaĆ¢u 32: TƬm L = x tgx1xsin31 lim 0x āˆ’āˆ’+ ā†’ a) L = 2 b) L = 1 c) L = 1/2 d) L = 0 CaĆ¢u 33:CaĆ¢u 33:CaĆ¢u 33:CaĆ¢u 33: TƬm L = x2sin 2xsin1xsin31 lim 0x āˆ’+++ ā†’ a) L = 1 b) L = 3 c) L = 2 d) L = 0 CaĆ¢u 34:CaĆ¢u 34:CaĆ¢u 34:CaĆ¢u 34: TƬm L = 20x x xcos1 lim āˆ’ ā†’ a) L = 1/4 b) L = 1/2 c) L = 1 d) L = 0 CaĆ¢u 35:CaĆ¢u 35:CaĆ¢u 35:CaĆ¢u 35: TƬm L = 22 2 0x xxarcsinx4 xsinx5sinx lim ++ +āˆ’ ā†’ a) L = 1 b) L = ā€“1 c) L = 2 d) L = 3 CaĆ¢u 36:CaĆ¢u 36:CaĆ¢u 36:CaĆ¢u 36: TƬm L = 22 22 0x xxarcsinxsin xsinx5sinx3arcsin lim ++ +āˆ’ ā†’ a) L = 3 b) L = ā€“1 c) L = 0 d) L = 1 CaĆ¢u 37:CaĆ¢u 37:CaĆ¢u 37:CaĆ¢u 37: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = xsinxcos1 xarcsin2)x2tg1ln(xcos1 lim 2 32 0x +āˆ’ +++āˆ’ ā†’ a) L = 0 b) L = 1 c) L = 2 d) L = 3 CaĆ¢u 38:CaĆ¢u 38:CaĆ¢u 38:CaĆ¢u 38: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = xsinxcos1 xarcsin2)x3tgxarcsin( lim 2 323 0x +āˆ’ ++ ā†’ a) L = 0 b) L = 6 c) L = 8 d) L = 22/3 CaĆ¢u 39:CaĆ¢u 39:CaĆ¢u 39:CaĆ¢u 39: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = xsinxcos1 xarcsin2)x3tgxarcsin( lim 3 323 0x +āˆ’ ++ ā†’ www.VNMATH.com
  • 5. Trang 11 a) L = 0 b) L = 6 c) L = 8 d) L = 18 CaĆ¢u 40:CaĆ¢u 40:CaĆ¢u 40:CaĆ¢u 40: DuĆøng khaĆ¹i nieƤm voĆ¢ cuĆøng beĆ¹ ƱeĆ„ tƬm giĆ“Ć¹i haĆÆn L = xsin)x21ln( xarcsin3x3sinx lim 22 323 0x ++ ++ ā†’ a) L = 0 b) L = 6 c) L = 5/2 d) L = 3 CaĆ¢u 41:CaĆ¢u 41:CaĆ¢u 41:CaĆ¢u 41: TƬm L = 20x xx2arcsin 1xsin21)x3tg1ln( lim + āˆ’+++ ā†’ a) L = 4 b) L = 3 c) L = 2 d) L = 1 CaĆ¢u 42:CaĆ¢u 42:CaĆ¢u 42:CaĆ¢u 42: TƬm L = 2x 2 0x )1e( 1xsin21)xln(cos lim āˆ’ āˆ’++ ā†’ a) L = 1/2 b) L = 3/2 c) L = 5/2 d) L = ā€“3/2 CaĆ¢u 43:CaĆ¢u 43:CaĆ¢u 43:CaĆ¢u 43: TƬm L = ( )( ) ( ) ( ) 3 2x22 0x xx4cosln 1ex2cos21x2tgx lim + āˆ’+āˆ’+ ā†’ a) L = ā€“4/7 b) L = 1 c) L = ā€“1/2 d) L = ā€“8/7 CaĆ¢u 44:CaĆ¢u 44:CaĆ¢u 44:CaĆ¢u 44: TƬm L = ( ) ( ) ( )( )222 2 0x xx2sin1xx2 1x2cosxcosln4x3x lim +++ āˆ’+++ ā†’ a) L = 1 b) L = ā€“1 c) L = 1/2 d) L = ā€“1/2 CaĆ¢u 45:CaĆ¢u 45:CaĆ¢u 45:CaĆ¢u 45: TƬm L = ( ) ( )( )x2sinx4sin4x3x 1xcosxsin lim 3 2 0x āˆ’++ āˆ’+ ā†’ a) L = ā€“1/8 b) L = 1/8 c) L = ā€“1/4 d) L = 1/4 CaĆ¢u 46:CaĆ¢u 46:CaĆ¢u 46:CaĆ¢u 46: TƬm L = ( )( ) ( ) ( )xcose1lnxcosx3cosx xcos1xex2cos lim 2x 0x āˆ’+āˆ’ āˆ’+āˆ’ ā†’ a) L = 3/8 b) L = ā€“3/8 c) L = ā€“3/4 d) L = Ā¾ CaĆ¢u 47:CaĆ¢u 47:CaĆ¢u 47:CaĆ¢u 47: TƬm L = x 2 2 x 1xx 1xx lim ļ£·ļ£· ļ£ø ļ£¶ ļ£¬ļ£¬ ļ£­ ļ£« āˆ’āˆ’ ++ āˆžā†’ a) L = āˆž b) L = 1 c) L = e d) L = e2 CaĆ¢u 48:CaĆ¢u 48:CaĆ¢u 48:CaĆ¢u 48: TƬm L = ( ) gxcot 0x xsinxcoslim + ā†’ a) L = 1 b) L = e c) L = 1/ e d) L = +āˆž CaĆ¢u 49:CaĆ¢u 49:CaĆ¢u 49:CaĆ¢u 49: TƬm L = ( ) xgcot 0x 2 xcoslim ā†’ a) L = 1 b) L = e c) L = 1/ e d) L = +āˆž CaĆ¢u 50:CaĆ¢u 50:CaĆ¢u 50:CaĆ¢u 50: TƬm L = ( ) xgcot2 0x 3 xx2coslim +āˆ’ ā†’ a) L = 1 b) L = e c) L = 1/ e d) L = +āˆž www.VNMATH.com
  • 6. Trang 12 CaĆ¢u 51:CaĆ¢u 51:CaĆ¢u 51:CaĆ¢u 51: TƬm L = ( ) gxcot2 0x xsinxcoslim + ā†’ a) L = 1 b) L = e c) L = 1/ e d) L = e CaĆ¢u 52:CaĆ¢u 52:CaĆ¢u 52:CaĆ¢u 52: TƬm L = ( ) xgcot2 0x 2 xsinxcoslim + ā†’ a) L = 1 b) L = e c) L = 1/ e d) L = e CaĆ¢u 53:CaĆ¢u 53:CaĆ¢u 53:CaĆ¢u 53: Cho haĆøm soĆ” y = 1/ln(x2 + 1). KhaĆŗng Ć±Ć²nh naĆøo ƱuĆ¹ng? a) y lieĆ¢n tuĆÆc treĆ¢n R {0} b) y giaĆ¹n ƱoaĆÆn taĆÆo x = 0 c) y khoĆ¢ng xaĆ¹c Ć±Ć²nh taĆÆi x = 0 d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u ƱuĆ¹ng CaĆ¢u 54:CaĆ¢u 54:CaĆ¢u 54:CaĆ¢u 54: Cho haĆøm soĆ” y = ( ) ļ£“ ļ£³ ļ£“ ļ£² ļ£± + + 1a2 x1ln xtgx 2 vĆ“Ć¹i x ā‰  0 vĆ“Ć¹i x = 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = 3 b) a = 1 c) a = 2 d) a = 0 CaĆ¢u 55:CaĆ¢u 55:CaĆ¢u 55:CaĆ¢u 55: Cho haĆøm soĆ” y = ļ£“ļ£³ ļ£“ ļ£² ļ£± A x xsin vĆ“Ć¹i x ā‰  0 vĆ“Ć¹i x = 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a A thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) A = 0 b) A = 1 c) A = 2 d) CaĆ¹c keĆ”t quaĆ» ƱeĆ u sai CaĆ¢u 5CaĆ¢u 5CaĆ¢u 5CaĆ¢u 56666:::: Cho haĆøm soĆ” y = ļ£“ļ£³ ļ£“ ļ£² ļ£± A x xcos vĆ“Ć¹i x ā‰  0 vĆ“Ć¹i x = 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a A thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) A = 0 b) A = 1 c) A = 2 d) KhoĆ¢ng toĆ n taĆÆi A ƱeĆ„ haĆøm soĆ” lieĆ¢n tuĆÆc CaĆ¢u 5CaĆ¢u 5CaĆ¢u 5CaĆ¢u 57777:::: Cho haĆøm soĆ” y = ( ) ļ£“ ļ£³ ļ£“ ļ£² ļ£± ++ ++ axsinx xsin x21lnxsinx 2 vĆ“Ć¹i ā€“1/2 < x < 0 vĆ“Ć¹i x ā‰„ 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = 0 b) a = 2 c) a = 1 d) a = 3 CaĆ¢u 58:CaĆ¢u 58:CaĆ¢u 58:CaĆ¢u 58: Cho haĆøm soĆ” y = ļ£“ ļ£³ ļ£“ ļ£² ļ£± + + a2xcos x xtg2xsinx 2 2 2 vĆ“Ć¹i x < 0 vĆ“Ć¹i x ā‰„ 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = 0 b) a = 2 c) a = ā€“1 d) a = 1 CaĆ¢u 59:CaĆ¢u 59:CaĆ¢u 59:CaĆ¢u 59: Cho haĆøm soĆ” y = ļ£“ ļ£³ ļ£“ ļ£² ļ£± + āˆ’+ āˆ’ 1A2 x2 2ee 2 x2x2 vĆ“Ć¹i x ā‰  0 vĆ“Ć¹i x = 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a A thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) A = 1/2 b) A = ā€“3/2 c) A = 1 d) A = 2 www.VNMATH.com
  • 7. Trang 13 CaĆ¢u 60CaĆ¢u 60CaĆ¢u 60CaĆ¢u 60:::: Cho haĆøm soĆ” y = ļ£“ļ£³ ļ£“ ļ£² ļ£± + āˆ’+ 1a2 xsin x)x1ln( 2 vĆ“Ć¹i x ā‰  0 vĆ“Ć¹i x = 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = ā€“2 b) a = ā€“3/2 c) a = ā€“3/4 d) a = 1 CaĆ¢u 61:CaĆ¢u 61:CaĆ¢u 61:CaĆ¢u 61: Cho haĆøm soĆ” y = ļ£“ ļ£³ ļ£“ ļ£² ļ£± ++ ++ ax2xsin xsin )x21ln(xsinx 2 2 vĆ“Ć¹i ā€“Ļ€/2 < x < 0 vĆ“Ć¹i x ā‰„ 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = 0 b) a = 1 c) a = 2 d) a = 3 CaĆ¢u 62:CaĆ¢u 62:CaĆ¢u 62:CaĆ¢u 62: Cho haĆøm soĆ” y = ļ£“ ļ£³ ļ£“ ļ£² ļ£± ++ ++ ax2x xsin )x21ln(xsinx 2 2 2 vĆ“Ć¹i ā€“1 < x < 0 vĆ“Ć¹i x ā‰„ 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = 0 b) a = 1 c) a = 2 d) a = 3 CaĆ¢u 63:CaĆ¢u 63:CaĆ¢u 63:CaĆ¢u 63: Cho haĆøm soĆ” y = ļ£“ ļ£³ ļ£“ ļ£² ļ£± āˆ’ āˆ’āˆ’ 1a3 xsin 1x2e 2 x2 vĆ“Ć¹i x ā‰  0 vĆ“Ć¹i x = 0 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 0? a) a = 1 b) a = 2 c) a = ā€“2 d) a = ā€“1 CaĆ¢u 6CaĆ¢u 6CaĆ¢u 6CaĆ¢u 64444:::: Cho haĆøm soĆ” y = ļ£“ ļ£³ ļ£“ ļ£² ļ£± āˆ’ āˆ’ +āˆ’ 1a 1x 1x3x2 3 vĆ“Ć¹i x ā‰  1 vĆ“Ć¹i x = 1 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1? a) a = 1 b) a = 2 c) a = 3 d) a = 4 CaĆ¢u 65:CaĆ¢u 65:CaĆ¢u 65:CaĆ¢u 65: Cho haĆøm soĆ” y = ( ) ļ£“ ļ£“ ļ£³ ļ£“ ļ£“ ļ£² ļ£± + ++ āˆ’ 1x ax3x 1x 1 arctg 2 2 2 vĆ“Ć¹i x < 1 vĆ“Ć¹i x ā‰„ 1 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1? a) a = Ļ€ b) a = Ļ€ ā€“ 4 c) a = Ļ€/2 d) KhoĆ¢ng toĆ n taĆÆi giaĆ¹ trĆ² a naĆøo CaĆ¢u 66:CaĆ¢u 66:CaĆ¢u 66:CaĆ¢u 66: Cho haĆøm soĆ” y = ļ£“ ļ£“ ļ£³ ļ£“ļ£“ ļ£² ļ£± + ++ āˆ’ Ļ€āˆ’Ļ€ 1x ax3x 1x )xsin( 2 2 2 vĆ“Ć¹i x < 1 vĆ“Ć¹i x ā‰„ 1 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1? a) a = ā€“Ļ€/2 + 4 b) a = Ļ€ ā€“ 4 c) a = ā€“Ļ€ ā€“ 4 d) KhoĆ¢ng toĆ n taĆÆi giaĆ¹ trĆ² a naĆøo www.VNMATH.com
  • 8. Trang 14 CaĆ¢u 67:CaĆ¢u 67:CaĆ¢u 67:CaĆ¢u 67: Cho haĆøm soĆ” y = ( ) ļ£“ ļ£“ ļ£³ ļ£“ ļ£“ ļ£² ļ£± + +āˆ’ āˆ’ 1x ax3x3 1x 1 arctg 2 2 3 vĆ“Ć¹i x < 1 vĆ“Ć¹i x ā‰„ 1 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 1? a) a = Ļ€/2 b) a = ā€“Ļ€/2 c) a = ā€“Ļ€ d) a = Ļ€ CaĆ¢u 6CaĆ¢u 6CaĆ¢u 6CaĆ¢u 68888:::: Cho haĆøm soĆ” y = ļ£“ ļ£“ ļ£³ ļ£“ļ£“ ļ£² ļ£± +āˆ’ āˆ’ 2 2 x ax6x3 2x 1 arctg vĆ“Ć¹i x ā‰  2 vĆ“Ć¹i x = 2 VĆ“Ć¹i giaĆ¹ trĆ² naĆøo cuĆ»a a thƬ haĆøm soĆ” treĆ¢n lieĆ¢n tuĆÆc taĆÆi x = 2? a) a = Ļ€/2 b) a = 2Ļ€ c) a = ā€“2Ļ€ d) KhoĆ¢ng toĆ n taĆÆi giaĆ¹ trĆ² a naĆøo CaĆ¢u 69:CaĆ¢u 69:CaĆ¢u 69:CaĆ¢u 69: CoĆ¢ng thĆ¶Ć¹c ƱaĆÆo haĆøm naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ( )ā€² x = 1/ x c) (arccosx)ā€² = 1/ 2 x1āˆ’ b) (1/x2 )ā€² = 2/x3 d) (tgx)ā€² = 1 + tg2 x CaĆ¢u 70:CaĆ¢u 70:CaĆ¢u 70:CaĆ¢u 70: CoĆ¢ng thĆ¶Ć¹c ƱaĆÆo haĆøm naĆøo sau ƱaĆ¢y ƱuĆ¹ng? c) (logax)ā€² = lna/x (0 < aā‰  1) d) CaĆ¹c coĆ¢ng thĆ¶Ć¹c treĆ¢n ƱeĆ u ƱuĆ¹ng CaĆ¢u 71:CaĆ¢u 71:CaĆ¢u 71:CaĆ¢u 71: TƬm ƱaĆÆo haĆøm cuĆ»a haĆøm soĆ” y = xcos e 2 x a) yā€² = xcos xsinexe2 2 xx 22 + b) yā€² = xcos xsinexe2 2 xx 22 + c) yā€² = xcos xsinee 2 xx 22 + d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 72:CaĆ¢u 72:CaĆ¢u 72:CaĆ¢u 72: TƬm vi phaĆ¢n caĆ”p 1 cuĆ»a haĆøm soĆ” y = (3x)x a) dy = 3x(3x)xā€“1 dx b) dy = (3x)x ln3xdx c) dy = (3x)x (1 + ln3x)dx d) dy = (3x)x (1 + 2ln3x)dx CaĆ¢u 74:CaĆ¢u 74:CaĆ¢u 74:CaĆ¢u 74: TƬm vi phaĆ¢n dy = d(x/cosx) a) dy = (cosx ā€“ xsinx) / cos2 x b) dy = (cosx + xsinx) / cos2 x c) dy = (cosx + xsinx) dx / cos2 x d) dy = (cosx + xsinx) dx / cos2 x CaĆ¢u 75:CaĆ¢u 75:CaĆ¢u 75:CaĆ¢u 75: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y = ln(2.arccotgx) a) dy = ā€“ gxcotxarcsin dx 2 b) dy = gxcotarc dx c) dy = gxcotarc)x1( dx 2 + d) dy = ā€“ gxcotarc)x1( dx 2 + CaĆ¢u 76:CaĆ¢u 76:CaĆ¢u 76:CaĆ¢u 76: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y = tgx 2 a) dy = tgxx 2 tgx dx b) dy = xcostgx2 2ln2 2 tgx dx c) dy = tgx2 2ln2 tgx dx d) dy = tgx2 )xtg1(2 21tgx ++ dx CaĆ¢u 77:CaĆ¢u 77:CaĆ¢u 77:CaĆ¢u 77: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y = (4x)x a) dy = 4x(4x)xā€“1 dx b) dy = (4x)x ln4xdx c) dy = (4x)x (1 + 4ln4x)dx d) dy = (4x)x (1 + ln4x)dx www.VNMATH.com
  • 9. Trang 15 CaĆ¢u 78:CaĆ¢u 78:CaĆ¢u 78:CaĆ¢u 78: TƬm vi phaĆ¢n caĆ”p moƤt cuĆ»a haĆøm soĆ” y= atctg 3 xln a) dy = )xln9(x dx3 2 + b) dy = xln9 dx3 2 + c) dy = ā€“ )xln9(x dx3 2 + d) dy = )xln9(x dx 2 + CaĆ¢u 79:CaĆ¢u 79:CaĆ¢u 79:CaĆ¢u 79: TƬm vi phaĆ¢n caĆ”p hai cuĆ»a haĆøm soĆ” y = arccotg(x2 ) a) d2 y = 24 2 )x1( )1x3(2 āˆ’ āˆ’ dx2 b) d2 y = 24 2 )x1( )1x3(4 + āˆ’ dx2 c) d2 y = 24 4 )x1( )1x3(2 + āˆ’ dx2 d) d2 y = 4 x1 x2 + āˆ’ dx2 CaĆ¢u 80:CaĆ¢u 80:CaĆ¢u 80:CaĆ¢u 80: TĆ­nh ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² cuĆ»a haĆøm soĆ” y = arctg(x + 1) + 2x a) yā€²ā€² = 22 )2x2x( )1x(2 ++ + b) yā€²ā€² = 2x2x 2 2 ++ c) yā€²ā€² = 22 )2x2x( 2 ++ d) yā€²ā€² = 22 )2x2x( )1x(2 ++ +āˆ’ CaĆ¢u 81:CaĆ¢u 81:CaĆ¢u 81:CaĆ¢u 81: TƬm vi phaĆ¢n caĆ”p hai cuĆ»a haĆøm soĆ” y = ln(1 ā€“ x2 ) a) d2 y = 22 2 )x1( )x1(2 āˆ’ + dx2 b) d2 y = 22 2 )x1( )x1(2 āˆ’ +āˆ’ dx2 c) d2 y = 22 2 )x1( )x31(2 āˆ’ + dx2 d) d2 y = 22 2 )x1( x2 āˆ’ āˆ’ dx2 CaĆ¢u 82:CaĆ¢u 82:CaĆ¢u 82:CaĆ¢u 82: TƬm vi phaĆ¢n caĆ”p hai cuĆ»a haĆøm soĆ” y = ln(1 + 2x2 ) a) d2 y = 22 2 )x21( )x21(4 + āˆ’ dx2 c) d2 y = 22 2 )x21( )x61(4 + + dx2 b) d2 y = 22 2 )x21( )1x2(4 + āˆ’ dx2 d) d2 y = 22 2 )x21( x4 + āˆ’ dx2 CaĆ¢u 83:CaĆ¢u 83:CaĆ¢u 83:CaĆ¢u 83: TĆ­nh ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² cuĆ»a haĆøm soĆ” y = 2(x + 1)arctg(x + 1) ā€“ ln(x2 + 2x + 2) a) yā€²ā€² = 22 )2x2x( )1x(2 ++ +āˆ’ b) yā€²ā€² = 2x2x 2 2 ++ c) yā€²ā€² = 22 )2x2x( 2 ++ āˆ’ d) yā€²ā€² = 22 )2x2x( )1x(2 ++ + CaĆ¢u 84:CaĆ¢u 84:CaĆ¢u 84:CaĆ¢u 84: TĆ­nh ƱaĆÆo haĆøm caĆ”p ba yā€²ā€²ā€² cuĆ»a haĆøm soĆ” y = 5x + 2x a) yā€²ā€²ā€² = 5x .ln3 5 + 2 b) yā€²ā€²ā€² = 5x .ln2 5 c) yā€²ā€²ā€² = 5x .ln3 5 d) yā€²ā€²ā€² = 5x .ln5 CaĆ¢u 85:CaĆ¢u 85:CaĆ¢u 85:CaĆ¢u 85: TĆ­nh ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± = = tcosy tsinx 2 vĆ“Ć¹i t āˆˆ (0, Ļ€ / 2) a) yā€² = 2sint b) yā€² = ā€“2sint c) yā€² = sin2t d) yā€² = ā€“sin2t CaĆ¢u 86:CaĆ¢u 86:CaĆ¢u 86:CaĆ¢u 86: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± āˆ’= += arctgt2t2y )t1ln(x 2 www.VNMATH.com
  • 10. Trang 16 a) yā€² = 2 2 t1 t2 + b) yā€² = 2 2 t1 t2 + āˆ’ c) yā€² = t d) yā€² = ā€“t CaĆ¢u 87:CaĆ¢u 87:CaĆ¢u 87:CaĆ¢u 87: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) taĆÆi x0 = Ļ€/4 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± = = tlny arctgtx a) yā€²(Ļ€/4) = 1 b) yā€²(Ļ€/4) = 2 c) yā€²(Ļ€/4) = 4/Ļ€ d) yā€²(Ļ€/4) = Ļ€/4 + 4/Ļ€ CaĆ¢u 88:CaĆ¢u 88:CaĆ¢u 88:CaĆ¢u 88: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) taĆÆi x0 = Ļ€/3 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£“ ļ£³ ļ£“ ļ£² ļ£± = = 2 t y arctgtx 2 a) yā€²(Ļ€/3) = 4 3 b) yā€²(Ļ€/3) = 0 c) yā€²(Ļ€/3) = Ļ€/3 d) yā€²(Ļ€/3) = Ļ€/3 + Ļ€3 /9 CaĆ¢u 89:CaĆ¢u 89:CaĆ¢u 89:CaĆ¢u 89: TƬm ƱaĆÆo haĆøm yā€²(x) taĆÆi x0 = 2 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£“ļ£³ ļ£“ ļ£² ļ£± += = 2 t tty e2x a) yā€²(1) = 1/2 b) yā€²(1) = 1 c) yā€²(1) = 5/e2 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 90:CaĆ¢u 90:CaĆ¢u 90:CaĆ¢u 90: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² = yā€²ā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± = = tcosy tsinx 2 vĆ“Ć¹i t āˆˆ (0, Ļ€/2) a) yā€² = ā€“2 b) yā€² = ā€“2cost c) yā€² = 2cost d) yā€² = ā€“2cos2t CaĆ¢u 91:CaĆ¢u 91:CaĆ¢u 91:CaĆ¢u 91: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€² = yā€²ā€²(x) cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± āˆ’= += arctgt2t2y )t1ln(x 2 a) yā€²ā€² = 22 )t1( t4 + b) yā€²ā€² = 2 2 t1 t2 + āˆ’ c) yā€²ā€² = t2 t1 2 + d) yā€²ā€² = t2 t1 2 + āˆ’ CaĆ¢u 92:CaĆ¢u 92:CaĆ¢u 92:CaĆ¢u 92: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = Ļ€/4 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± = = tlny arctgtx a) yā€²ā€²(Ļ€/4) = 0 b) yā€²ā€²(Ļ€/4) = 1 c) yā€²ā€²(Ļ€/4) = 2 d) yā€²ā€²(Ļ€/4) = 1 ā€“ 16/Ļ€2 CaĆ¢u 93:CaĆ¢u 93:CaĆ¢u 93:CaĆ¢u 93: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = Ļ€/3 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£“ ļ£³ ļ£“ ļ£² ļ£± = = 2 t y arctgtx 2 a) yā€²ā€²(Ļ€/3) = ā€“16/ 3 b) yā€²ā€²(Ļ€/3) = 8/3 www.VNMATH.com
  • 11. Trang 17 c) yā€²ā€²(Ļ€/3) = 40 d) yā€²ā€²(Ļ€/3) = 2 CaĆ¢u 94:CaĆ¢u 94:CaĆ¢u 94:CaĆ¢u 94: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = 1 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£³ ļ£² ļ£± = = 3 ty tlnx a) yā€²ā€²(1) = ā€“6e3 b) yā€²ā€²(1) = 9e3 c) yā€²ā€²(1) = 6e d) yā€²ā€²(1) = 6 CaĆ¢u 95:CaĆ¢u 95:CaĆ¢u 95:CaĆ¢u 95: TƬm ƱaĆÆo haĆøm caĆ”p hai yā€²ā€²(x) taĆÆi x0 = 2 cuĆ»a haĆøm soĆ” y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tham soĆ” ļ£“ļ£³ ļ£“ ļ£² ļ£± +== = 2 t ttyy e2x a) yā€²ā€²(1) = 1/4 b) yā€²ā€²(1) = 1/8 c) yā€²ā€²(1) = 1/2 d) yā€²ā€²(1) = 0 CaĆ¢u 96:CaĆ¢u 96:CaĆ¢u 96:CaĆ¢u 96: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh tgy = xy a) yā€² = ytgx1 y 2 +āˆ’ āˆ’ b) yā€² = ytgx1 y 2 +āˆ’ c) yā€² = ycosx1 ycosy 2 2 + d) yā€² = ycosx1 ycosy 2 2 + āˆ’ CaĆ¢u 97:CaĆ¢u 97:CaĆ¢u 97:CaĆ¢u 97: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh y = x + arctgy a) yā€² = 2 y y1+ b) ) yā€² = 2 2 y y1+ āˆ’ c) yā€² = 2 2 y1 y2 + + d) yā€² = 2 2 y1 y2 + + āˆ’ CaĆ¢u 98: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh arctg(x + y) = x a) yā€² = 2 )yx(1 1 ++ b) ) yā€² = 2 )yx( 1 + c) yā€² = 1 + (x + y)2 d) yā€² = (x + y)2 CaĆ¢u 99:CaĆ¢u 99:CaĆ¢u 99:CaĆ¢u 99: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh y = 1 + xey a) yā€² = (x + 1)ey b) yā€² = ey c) yā€² = y y xe1 e āˆ’ d) yā€² = 0 CaĆ¢u 100:CaĆ¢u 100:CaĆ¢u 100:CaĆ¢u 100: TƬm ƱaĆÆo haĆøm yā€² = yā€²(x) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh lny + y x = 1 a) yā€² = ā€“1 b) yā€² = xy y + c) yā€² = yx y āˆ’ d) yā€² = xy y āˆ’ CaĆ¢u 101:CaĆ¢u 101:CaĆ¢u 101:CaĆ¢u 101: TƬm ƱaĆÆo haĆøm yā€²(0) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh x3 + lny ā€“ x2 ey = 0 a) yā€²(0) = 0 b) yā€²(0) = 1 c) yā€²(0) = 2 d) yā€²(0) = 3 CaĆ¢u 102:CaĆ¢u 102:CaĆ¢u 102:CaĆ¢u 102: TƬm ƱaĆÆo haĆøm yā€²(0) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh ey ā€“ xy = e a) yā€²(0) = e b) yā€²(0) = ā€“e c) yā€²(0) = 1/e d) yā€²(0) = ā€“1/e CaĆ¢u 103:CaĆ¢u 103:CaĆ¢u 103:CaĆ¢u 103: TƬm ƱaĆÆo haĆøm yā€²(0) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh x3 ā€“ xy ā€“ xey + y ā€“ 1 = 0 a) yā€²(0) = 0 b) yā€²(0) = 1 c) yā€²(0) = e d) yā€²(0) = 1 + e www.VNMATH.com
  • 12. Trang 18 CaĆ¢u 104:CaĆ¢u 104:CaĆ¢u 104:CaĆ¢u 104: TƬm ƱaĆÆo haĆøm yā€²(Ļ€/2) cuĆ»a haĆøm aĆ„n y = y(x) ƱƶƓĆÆc cho bĆ“Ć»i phƶƓng trƬnh ycosx + sinx + lny = 0 a) yā€²(Ļ€/2) = 1 b) yā€²(Ļ€/2) = e c) yā€²(Ļ€/2) = 1/e2 d) yā€²(Ļ€/2) = e2 CaĆ¢u 118:CaĆ¢u 118:CaĆ¢u 118:CaĆ¢u 118: TƬm ƱaĆÆo haĆøm yā€² cuĆ»a haĆøm soĆ” y = (x + 1)x a) yā€² = (x + 1)x ļ£ŗ ļ£» ļ£¹ ļ£Æ ļ£° ļ£® + āˆ’+ 1x x )1xln( b) yā€² = (x + 1)x ļ£ŗ ļ£» ļ£¹ ļ£Æ ļ£° ļ£® + ++ 1x x )1xln( c) yā€² = (x + 1)x ļ£ŗļ£» ļ£¹ ļ£Æļ£° ļ£® + ++āˆ’ 1x x )1xln( d) TaĆ”t caĆ» caĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 119:CaĆ¢u 119:CaĆ¢u 119:CaĆ¢u 119: Cho haĆøm soĆ” f(x) khaĆ» vi taĆÆi x0. CoĆ¢ng thĆ¶Ć¹c tĆ­nh xaĆ”p xƦ naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) f(x0 + āˆ†x) ā‰ˆ f(x0) ā€“ fā€²(x0)āˆ†x b) f(x0 + āˆ†x) ā‰ˆ f(x0) + fā€²(x0)āˆ†x c) f(x0 + āˆ†x) ā‰ˆ fā€²(x0) ā€“ f(x0)āˆ†x d) f(x0 + āˆ†x) ā‰ˆ fā€²(x0) + f(x0)āˆ†x CaĆ¢u 120:CaĆ¢u 120:CaĆ¢u 120:CaĆ¢u 120: BaĆØng caĆ¹ch sƶƻ duĆÆng ƱaĆÆo haĆøm caĆ”p moƤt, haƵy cho bieĆ”t caĆ¹ch tĆ­nh xaĆ”p xƦ naĆøo saĆ¢u ƱaĆ¢y ƱuĆ¹ng? a) 3 02,1 ā‰ˆ 1 + 3 1 0,02 b) 3 02,1 ā‰ˆ 1 ā€“ 3 1 0,02 c) 3 02,1 ā‰ˆ 1 + 3 2 0,02 d) 3 02,1 ā‰ˆ 1 ā€“ 3 2 0,02 (T cĆ¢u 121 đ n cĆ¢u 155 Ä‘Ć£ đʰ c b đi) CaĆ¢u 156:CaĆ¢u 156:CaĆ¢u 156:CaĆ¢u 156: Cho haĆøm soĆ” y = ln(x2 + 1). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, 0), giaĆ»m treĆ¢n (0, +āˆž) b) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0) c) y luoĆ¢n luoĆ¢n taĆŖng treĆ¢n d) y luoĆ¢n luoĆ¢n giaĆ»m CaĆ¢u 157:CaĆ¢u 157:CaĆ¢u 157:CaĆ¢u 157: Cho haĆøm soĆ” y = x2 + 1 + 2/x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (1, +āˆž) b) y giaĆ»m treĆ¢n (ā€“āˆž, 1), taĆŖng treĆ¢n (1, +āˆž) c) y taĆŖng treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0) vaĆø (0, 1); giaĆ»m treĆ¢n (1, +āˆž) d) y giaĆ»m treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0) vaĆø (0, 1); taĆŖng treĆ¢n (1, +āˆž) CaĆ¢u 158:CaĆ¢u 158:CaĆ¢u 158:CaĆ¢u 158: Cho haĆøm soĆ” y = 2 2 )1x( 1x āˆ’ + . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y giaĆ»m treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž), taĆŖng treĆ¢n (ā€“1, 1) b) y taĆŖng treĆ¢n (ā€“āˆž, ā€“1), giaĆ»m treĆ¢n (ā€“1, 1) c) y giaĆ»m treĆ¢n (ā€“āˆž, 1) d) y taĆŖng treĆ¢n (ā€“āˆž, 1) CaĆ¢u 159:CaĆ¢u 159:CaĆ¢u 159:CaĆ¢u 159: Cho haĆøm soĆ” y = xex . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, 0), giaĆ»m treĆ¢n (0, +āˆž) b) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0) c) y taĆŖng treĆ¢n (ā€“1, ā€“āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“1) d) y taĆŖng treĆ¢n (ā€“āˆž, ā€“1), giaĆ»m treĆ¢n (ā€“1, +āˆž) www.VNMATH.com
  • 13. Trang 19 CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 160606060:::: Cho haĆøm soĆ” y = xlnx ā€“ x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (0, +āˆž) b) y giaĆ»m treĆ¢n (0, +āˆž) c) y taĆŖng treĆ¢n (1, +āˆž) d) y giaĆ»m treĆ¢n (1, +āˆž) CaĆ¢u 161:CaĆ¢u 161:CaĆ¢u 161:CaĆ¢u 161: Cho haĆøm soĆ” y = x2x 1 2 āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, 0), giaĆ»m treĆ¢n (2, +āˆž) b) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0) c) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1) d) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (1, +āˆž) CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 162626262:::: Cho haĆøm soĆ” y = 4x3 e āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0 b) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 0 c) y luoĆ¢n luoĆ¢n taĆŖng d) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“2) CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 163636363:::: Cho haĆøm soĆ” y = x3 ā€“ 3x2 + 3x + 1. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y luoĆ¢n luoĆ¢n taĆŖng b) y luoĆ¢n luoĆ¢n giaĆ»m c) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (1, +āˆž) d) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1) CaĆ¢u 164:CaĆ¢u 164:CaĆ¢u 164:CaĆ¢u 164: Cho haĆøm soĆ” y = x2 + 1 + 16/x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž) b) y giaĆ»m treĆ¢n (ā€“āˆž, 2), taĆŖng treĆ¢n (2, +āˆž) c) y taĆŖng treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0), vaĆø (0, 2); giaĆ»m treĆ¢n (2, +āˆž) d) y giaĆ»m treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, 0), vaĆø (0, 2); taĆŖng treĆ¢n (2, +āˆž) CaĆ¢u 165:CaĆ¢u 165:CaĆ¢u 165:CaĆ¢u 165: Cho haĆøm soĆ” y = 2x2 x3 2 āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y giaĆ»m treĆ¢n (ā€“1, 1), taĆŖng treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž) b) y taĆŖng treĆ¢n (ā€“1, 1), giaĆ»m treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž) c) y giaĆ»m treĆ¢n (ā€“āˆž, ā€“1), (ā€“1, 1) vaĆø (1, +āˆž) d) y giaĆ»m treĆ¢n R {Ā±1} CaĆ¢u 166:CaĆ¢u 166:CaĆ¢u 166:CaĆ¢u 166: Cho haĆøm soĆ” y = 3x4x2 +āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 2) b) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž) c) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (3, +āˆž) d) y taĆŖng treĆ¢n (3, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1) CaĆ¢u 167:CaĆ¢u 167:CaĆ¢u 167:CaĆ¢u 167: Cho haĆøm soĆ” y = 3x4x 1 2 +āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 2) b) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž) c) y taĆŖng treĆ¢n (ā€“āˆž, 1), giaĆ»m treĆ¢n (3, +āˆž) d) y taĆŖng treĆ¢n (3, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1) CaĆ¢u 168:CaĆ¢u 168:CaĆ¢u 168:CaĆ¢u 168: Cho haĆøm soĆ” y = ln(2x2 ā€“ 8). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0) b) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 2) c) y taĆŖng treĆ¢n (2, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“2) www.VNMATH.com
  • 14. Trang 20 d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0 CaĆ¢u 169:CaĆ¢u 169:CaĆ¢u 169:CaĆ¢u 169: Cho haĆøm soĆ” y = x 2x3x2 e +āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y giaĆ»m treĆ¢n (ā€“āˆž, 1/2) vaĆø (1, +āˆž), taĆŖng treĆ¢n (1/2, 1) b) y taĆŖng treĆ¢n (ā€“āˆž, 1/2) vaĆø giaĆ»m treĆ¢n (1/2, +āˆž) c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/2 vaĆø ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1 d) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 vaĆø taĆÆi x = 1/2 CaĆ¢u 170:CaĆ¢u 170:CaĆ¢u 170:CaĆ¢u 170: Cho haĆøm soĆ” y = 3x4x2 āˆ’+āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y giaĆ»m treĆ¢n (ā€“āˆž, 2), taĆŖng treĆ¢n (2, +āˆž) b) y taĆŖng treĆ¢n (ā€“āˆž, 2), giaĆ»m treĆ¢n (2, +āˆž) c) y giaĆ»m treĆ¢n (1, 2), taĆŖng treĆ¢n (2, 3) d) y taĆŖng treĆ¢n (1, 2), giaĆ»m treĆ¢n (2, 3) CaĆ¢u 171:CaĆ¢u 171:CaĆ¢u 171:CaĆ¢u 171: Cho haĆøm soĆ” y = x(1 ā€“ 2 x ). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y giaĆ»m treĆ¢n (0, 1/9), taĆŖng treĆ¢n (1/9, +āˆž) b) y taĆŖng treĆ¢n (0, 1/9), giaĆ»m treĆ¢n (1/9, +āˆž) c) y giaĆ»m treĆ¢n (ā€“āˆž, 1/9), taĆŖng treĆ¢n (1/9, +āˆž) d) y taĆŖng treĆ¢n (ā€“āˆž, 1/9), giaĆ»m treĆ¢n (1/9, +āˆž) CaĆ¢u 172CaĆ¢u 172CaĆ¢u 172CaĆ¢u 172:::: Cho haĆøm soĆ” y = ln(x2 ā€“ 1). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (0, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 0) b) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, 1) c) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (ā€“āˆž, ā€“1) d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0 CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 173737373:::: Cho haĆøm soĆ” y = x 2x3x2 e +āˆ’ . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, 1/2) vaĆø (1, +āˆž), giaĆ»m treĆ¢n (1/2, 1) b) y taĆŖng treĆ¢n (ā€“āˆž, 1/2) vaĆø giaĆ»m treĆ¢n (1/2, +āˆž) c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 vaĆø ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/2 d) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 vaĆø taĆÆi x = 1/2 CaĆ¢u 174:CaĆ¢u 174:CaĆ¢u 174:CaĆ¢u 174: Cho haĆøm soĆ” y = x2 /2 ā€“ x ā€“ 6lnļ£¦xļ£¦. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (ā€“āˆž, ā€“2), (3, +āˆž); giaĆ»m treĆ¢n (ā€“2, 3) b) y taĆŖng treĆ¢n (ā€“2, 0), (3, +āˆž); giaĆ»m treĆ¢n (ā€“āˆž, ā€“2), (0, 3) c) y coĆ¹ 3 cƶĆÆc trĆ² d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai CaĆ¢u 175:CaĆ¢u 175:CaĆ¢u 175:CaĆ¢u 175: Cho haĆøm soĆ” y = lnļ£¦xļ£¦ ā€“ 2arctgx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y giaĆ»m treĆ¢n R b) y taĆŖng treĆ¢n R {0} c) y khoĆ¢ng coĆ¹ cƶĆÆc trĆ² d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 0 CaĆ¢u 176:CaĆ¢u 176:CaĆ¢u 176:CaĆ¢u 176: Cho haĆøm soĆ” y = lnx ā€“ 2arctgx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n R b) y giaĆ»m treĆ¢n R www.VNMATH.com
  • 15. Trang 21 c) y taĆŖng treĆ¢n (1, +āˆž), giaĆ»m treĆ¢n (0, 1) d) y taĆŖng treĆ¢n (0, +āˆž) CaĆ¢u 177:CaĆ¢u 177:CaĆ¢u 177:CaĆ¢u 177: Cho haĆøm soĆ” y = 2 x1āˆ’ ā€“ arcsinx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y luoĆ¢n luoĆ¢n taĆŖng b) y luoĆ¢n luoĆ¢n giaĆ»m c) y taĆŖng treĆ¢n (ā€“āˆž, ā€“1), giaĆ»m treĆ¢n (ā€“1, +āˆž) d) ƑoĆ  thĆ² cuĆ»a y coĆ¹ caĆ¹c tieƤm caƤn y = Ā± Ļ€/2 CaĆ¢u 178:CaĆ¢u 178:CaĆ¢u 178:CaĆ¢u 178: Cho haĆøm soĆ” y = xlnx ā€“ x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y taĆŖng treĆ¢n (0, +āˆž) b) y giaĆ»m treĆ¢n (0, +āˆž) c) y taĆŖng treĆ¢n (1, +āˆž) d) y giaĆ»m treĆ¢n (1, +āˆž) CaĆ¢u 179:CaĆ¢u 179:CaĆ¢u 179:CaĆ¢u 179: Cho haĆøm soĆ” y = xlnx. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/e b) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = e c) y khoĆ¢ng coĆ¹ cƶĆÆc trĆ² d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai CaĆ¢u 180:CaĆ¢u 180:CaĆ¢u 180:CaĆ¢u 180: Cho haĆøm soĆ” y = arctgx ā€“ ln(1 + x2 ). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/2 b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1 c) y khoĆ¢ng coĆ¹ cƶĆÆc trĆ² d) y coĆ¹ moƤt cƶĆÆc ƱaĆÆi vaĆø 1 cƶĆÆc tieĆ„u CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 181818181:::: Cho haĆøm soĆ” y = arctg2x ā€“ ln(1 + 4x2 ). KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/8 b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/8 c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/4 d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/4 CaĆ¢u 182:CaĆ¢u 182:CaĆ¢u 182:CaĆ¢u 182: Cho haĆøm soĆ” y = 2x. xx2 e +āˆ’ + 3. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = ā€“1/2 vaĆø x = 1 b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = ā€“1/2 vaĆø x = 1 c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = ā€“1/2 vaĆø ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1 d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = ā€“1/2 vaĆø ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 CaĆ¢u 183CaĆ¢u 183CaĆ¢u 183CaĆ¢u 183:::: Cho haĆøm soĆ” y = 2ln(1 + 4x2 ) ā€“ arctg2x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/8 b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/8 c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/16 d) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1/16 www.VNMATH.com
  • 16. Trang 22 CaĆ¢u 184:CaĆ¢u 184:CaĆ¢u 184:CaĆ¢u 184: Cho haĆøm soĆ” y = ln(1 + 9x2 ) + 6arctg3x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1 b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 1 c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = 1/3 d) y luoĆ¢n luoĆ¢n taĆŖng vƬ yā€² > 0 vĆ“Ć¹i moĆÆi x CaĆ¢u 185:CaĆ¢u 185:CaĆ¢u 185:CaĆ¢u 185: Cho haĆøm soĆ” y = 3x ā€“ 2sin2 x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) y luoĆ¢n luoĆ¢n giaĆ»m b) y ƱaĆÆt cƶĆÆc tieĆ„u taĆÆi x = 3Ļ€/2 c) y ƱaĆÆt cƶĆÆc ƱaĆÆi taĆÆi x = ā€“3/2 d) y khoĆ¢ng coĆ¹ cƶĆÆc tieĆ„u vaĆø cƶĆÆc ƱaĆÆi CaĆ¢u 186:CaĆ¢u 186:CaĆ¢u 186:CaĆ¢u 186: Cho haĆøm soĆ” y = xlnx ā€“ x. KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ƑoĆ  thĆ² cuĆ»a y loĆ i khi 0 < x < 1, loƵm khi x > 1 b) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x > 1, loƵm khi 0 < x < 1 c) ƑoĆ  thĆ² cuĆ»a y luoĆ¢n luoĆ¢n loĆ i d) ƑoĆ  thĆ² cuĆ»a y luoĆ¢n luoĆ¢n loƵm CaĆ¢u 187:CaĆ¢u 187:CaĆ¢u 187:CaĆ¢u 187: Cho haĆøm soĆ” y = xex ā€“ ex . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x < 0, loƵm khi x > 0 b) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x > 0, loƵm khi x < 0 c) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x > ā€“1, loƵm khi x < ā€“1 d) ƑoĆ  thĆ² cuĆ»a y loĆ i khi x < ā€“1, loƵm khi x > ā€“1 CaĆ¢u 18CaĆ¢u 18CaĆ¢u 18CaĆ¢u 188888:::: Cho haĆøm soĆ” y = 2lnx ā€“ x2 . ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i treĆ¢n (0, 1), loƵm treĆ¢n (1, +āˆž) b) loĆ i treĆ¢n (1, +āˆž), loƵm treĆ¢n (0, 1) c) loĆ i treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y d) loƵm treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y CaĆ¢u 189:CaĆ¢u 189:CaĆ¢u 189:CaĆ¢u 189: Cho haĆøm soĆ” y = arcsin(x/2). ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i treĆ¢n (ā€“2, 0), loƵm treĆ¢n (0, 2) b) loƵm treĆ¢n (ā€“2, 0), loƵm treĆ¢n (0, 2) c) loƵm treĆ¢n (ā€“āˆž, 0), loĆ i treĆ¢n (0, +āˆž) d) loĆ i treĆ¢n (ā€“āˆž, 0), loƵm treĆ¢n (0, +āˆž) CaĆ¢u 1CaĆ¢u 1CaĆ¢u 1CaĆ¢u 199990000:::: Cho haĆøm soĆ” y = x2 + 8lnx. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i treĆ¢n (0, 2), loƵm treĆ¢n (2, +āˆž) b) loĆ i treĆ¢n (2, +āˆž), loĆ i treĆ¢n (0, 2) c) loĆ i treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y d) loƵm treĆ¢n mieĆ n xaĆ¹c Ć±Ć²nh cuĆ»a y CaĆ¢u 191:CaĆ¢u 191:CaĆ¢u 191:CaĆ¢u 191: Cho haĆøm soĆ” y = arccosx. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i treĆ¢n (ā€“1, 0), loƵm treĆ¢n (0, 1) www.VNMATH.com
  • 17. Trang 23 b) loƵm treĆ¢n (ā€“1, 0), loĆ i treĆ¢n (0, 1) c) loƵm treĆ¢n (ā€“āˆž, 0), loĆ i treĆ¢n (0, +āˆž) d) loĆ i treĆ¢n (ā€“āˆž, 0), loƵm treĆ¢n (0, +āˆž) CaĆ¢u 192:CaĆ¢u 192:CaĆ¢u 192:CaĆ¢u 192: Cho haĆøm soĆ” y = arccotg2x. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) chƦ loƵm treĆ¢n (ā€“1, 0) vaĆø loĆ i treĆ¢n (ā€“1, 0) b) chƦ loĆ i treĆ¢n (0, 1) vaĆø loƵm treĆ¢n (ā€“1, 0) c) loƵm treĆ¢n (0, +āˆž), loĆ i treĆ¢n (ā€“āˆž, 0) d) loĆ i treĆ¢n (0, +āˆž), loƵm treĆ¢n (ā€“āˆž, 0) CaĆ¢u 193:CaĆ¢u 193:CaĆ¢u 193:CaĆ¢u 193: Cho haĆøm soĆ” y = 8lnļ£¦xļ£¦ + x2 . ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loƵm treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loĆ i treĆ¢n khoaĆ»ng (ā€“2, 2) b) loĆ i treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loƵm treĆ¢n khoaĆ»ng (ā€“2, 2) c) loƵm treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loĆ i treĆ¢n caĆ¹c khoaĆ»ng (ā€“2, 0) vaĆø (0, 2) d) loĆ i treĆ¢n caĆ¹c khoaĆ»ng (ā€“āˆž, ā€“2) vaĆø (2, +āˆž); loƵm treĆ¢n caĆ¹c khoaĆ»ng (ā€“2, 0) vaĆø (0, 2) CaĆ¢u 194:CaĆ¢u 194:CaĆ¢u 194:CaĆ¢u 194: Cho haĆøm soĆ” y = x 1 ā€“ x2 . ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i khi x > 1, loƵm khi x < 1 b) loĆ i khi x > 1 hay x < 0, loƵm khi 0 < x < 1 c) khoĆ¢ng coĆ¹ ƱieĆ„m uoĆ”n d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai CaĆ¢u 195:CaĆ¢u 195:CaĆ¢u 195:CaĆ¢u 195: Cho haĆøm soĆ” y = x + lnļ£¦xļ£¦. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) chƦ coĆ¹ moƤt ƱieĆ„m uoĆ”n b) khoĆ¢ng coĆ¹ ƱieĆ„m uoĆ”n c) luoĆ¢n luoĆ¢n loĆ i d) luoĆ¢n luoĆ¢n loƵm CaĆ¢u 196:CaĆ¢u 196:CaĆ¢u 196:CaĆ¢u 196: Cho haĆøm soĆ” y = x2 /2 + lnļ£¦xļ£¦. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i treĆ¢n (ā€“1, 1), loƵm treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž) b) loƵm treĆ¢n (ā€“1, 1), loĆ i treĆ¢n (ā€“āˆž, ā€“1) vaĆø (1, +āˆž) c) chƦ coĆ¹ moƤt ƱieĆ„m uoĆ”n d) chƦ coĆ¹ moƤt tieƤm caƤn CaĆ¢u 197:CaĆ¢u 197:CaĆ¢u 197:CaĆ¢u 197: Cho haĆøm soĆ” y = x3 ā€“ 3x2 + 5x + 2. ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n laĆø: a) M(1, 5) b) N(1, ā€“5) c) P(ā€“1, ā€“7) d) Q(ā€“1, 7) CaĆ¢u 198:CaĆ¢u 198:CaĆ¢u 198:CaĆ¢u 198: Cho haĆøm soĆ” y = xex . ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n laĆø: a) M(1, e) b) N(ā€“2, ā€“2eā€“2 ) c) P(2, e2 ) d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 199:CaĆ¢u 199:CaĆ¢u 199:CaĆ¢u 199: Cho haĆøm soĆ” y = (x + 1)ex . ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n laĆø: a) M(1, e) b) N(3, 4e3 ) c) P(ā€“3, ā€“2e-3 ) d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 200:CaĆ¢u 200:CaĆ¢u 200:CaĆ¢u 200: Cho haĆøm soĆ” y = x2 .lnx. ƑoĆ  thĆ² cuĆ»a y coĆ¹ ƱieĆ„m uoĆ”n: a) taĆÆi ƱieĆ„m coĆ¹ hoaĆønh ƱoƤ x = eā€“3/2 www.VNMATH.com
  • 18. Trang 24 b) taĆÆi ƱieĆ„m coĆ¹ hoaĆønh ƱoƤ x = e3/2 c) taĆÆi ƱieĆ„m coĆ¹ hoaĆønh ƱoƤ x = ln3 ā€“ ln2 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 201:CaĆ¢u 201:CaĆ¢u 201:CaĆ¢u 201: Cho haĆøm soĆ” y = ā€“2x5 + 10x + 6. ƑoĆ  thĆ² cuĆ»a haĆøm soĆ” naĆøy: a) loĆ i treĆ¢n (ā€“āˆž, 0) vaĆø loƵm treĆ¢n (0, āˆž) b) loƵm treĆ¢n (ā€“āˆž, 0) vaĆø loĆ i treĆ¢n (0, āˆž) c) loƵm treĆ¢n (ā€“āˆž, ā€“1) vaĆø loĆ i treĆ¢n (1, +āˆž) d) loĆ i treĆ¢n (ā€“āˆž, ā€“1) vaĆø loƵm treĆ¢n (1, +āˆž) CaĆ¢u 238:CaĆ¢u 238:CaĆ¢u 238:CaĆ¢u 238: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = esinx ƱeĆ”n soĆ” haĆÆng x3 a) esinx = 1 + x + 2 x2 + 0(x3 ) b) esinx = 1 + x + 2 x2 + 6 x3 + 0(x3 ) c) esinx = 1 + x + 2 x2 ā€“ 6 x3 + 0(x3 ) d) esinx = 1 + x + 2 x2 + 3 x3 + 0(x3 ) CaĆ¢u 239:CaĆ¢u 239:CaĆ¢u 239:CaĆ¢u 239: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = 2x ƱeĆ”n soĆ” haĆÆng x3 a) 2x = 1 ā€“ xln2 + !2 )2lnx( 2 + !3 )2lnx( 3 + 0(x3 ) b) 2x = 1 ā€“ xln2 + !2 2lnx2 + !3 2lnx3 + 0(x3 ) c) 2x = 1 + xln2 + !2 2lnx2 + !3 2lnx3 + 0(x3 ) d) 2x = 1 + xln2 + !2 )2lnx( 2 + !3 )2lnx( 3 + 0(x3 ) CaĆ¢u 2CaĆ¢u 2CaĆ¢u 2CaĆ¢u 240404040:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = sin(tgx) ƱeĆ”n soĆ” haĆÆng x3 a) sin(tgx) = x ā€“ 6 x3 + 0(x3 ) b) sin(tgx) = x + 6 x3 + 0(x3 ) c) sin(tgx) = x ā€“ 2 x3 + 0(x3 ) d) sin(tgx) = x + 2 x3 + 0(x3 ) CaĆ¢u 24CaĆ¢u 24CaĆ¢u 24CaĆ¢u 241111:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = arctg(sinx) ƱeĆ”n soĆ” haĆÆng x3 a) arctg(sinx) = x ā€“ 2 x3 + 0(x3 ) b) arctg(sinx) = x + 2 x3 + 0(x3 ) c) arctg(sinx) = x + 3 x3 + 0(x3 ) d) arctg(sinx) = x ā€“ 3 x3 + 0(x3 ) CaĆ¢u 242:CaĆ¢u 242:CaĆ¢u 242:CaĆ¢u 242: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = cos(sinx) ƱeĆ”n soĆ” haĆÆng x4 a) cos(sinx) = x ā€“ !2 x2 + !4 1 x4 + 0(x4 ) b) cos(sinx) = x ā€“ !2 x2 + !4 5 x4 + 0(x4 ) c) cos(sinx) = x ā€“ !2 x2 ā€“ !4 1 x4 + 0(x4 ) d) cos(sinx) = x ā€“ !2 x2 ā€“ !4 5 x4 + 0(x4 ) CaĆ¢u 24CaĆ¢u 24CaĆ¢u 24CaĆ¢u 243333:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = tg(sinx) ƱeĆ”n soĆ” haĆÆng x3 a) tg(sinx) = x ā€“ 3 x3 + 0(x3 ) b) tg(sinx) = x + 3 x3 + 0(x3 ) c) tg(sinx) = x ā€“ 6 x3 + 0(x3 ) d) tg(sinx) = x + 6 x3 + 0(x3 ) www.VNMATH.com
  • 19. Trang 25 CaĆ¢u 244:CaĆ¢u 244:CaĆ¢u 244:CaĆ¢u 244: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = xsin1 1 āˆ’ ƱeĆ”n soĆ” haĆÆng x3 a) xsin1 1 āˆ’ = 1 + x + x2 + 6 1 x3 + 0(x3 ) b) xsin1 1 āˆ’ = 1 + x + x2 ā€“ 6 1 x3 + 0(x3 ) c) xsin1 1 āˆ’ = 1 + x + x2 + 6 5 x3 + 0(x3 ) d) xsin1 1 āˆ’ = 1 + x + x2 ā€“ 6 5 x3 + 0(x3 ) CaĆ¢u 24CaĆ¢u 24CaĆ¢u 24CaĆ¢u 245555:::: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = tgx1 1 + ƱeĆ”n soĆ” haĆÆng x3 a) tgx1 1 + = 1 ā€“ x + 2 1 x2 + x3 + 0(x3 ) b) tgx1 1 + = 1 ā€“ x ā€“ 2 1 x2 + x3 + 0(x3 ) c) tgx1 1 + = 1 ā€“ x + x2 ā€“ 3 4 x3 + 0(x3 ) d) tgx1 1 + = 1 ā€“ x + x2 + 3 4 x3 + 0(x3 ) CaĆ¢u 246:CaĆ¢u 246:CaĆ¢u 246:CaĆ¢u 246: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = ln(1 ā€“ x2 ) ƱeĆ”n soĆ” haĆÆng x6 a) ln(1 ā€“ x2 ) = x2 + 2 x4 + 3 x6 + 0(x6 ) b) ln(1 ā€“ x2 ) = ā€“x2 ā€“ 2 x4 ā€“ 3 x6 + 0(x6 ) c) ln(1 ā€“ x2 ) = x2 + 4 x4 + 6 x6 + 0(x6 ) d) ln(1 ā€“ x2 ) = ā€“x2 ā€“ 4 x4 ā€“ 6 x6 + 0(x6 ) CaĆ¢u 247:CaĆ¢u 247:CaĆ¢u 247:CaĆ¢u 247: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = ln(cosx) ƱeĆ”n soĆ” haĆÆng x4 a) ln(cosx) = ā€“ 2 x2 ā€“ 12 x4 + 0(x5 ) b) ln(cosx) = 2 x2 + 12 x4 + 0(x5 ) c) ln(cosx) = 2 x2 ā€“ 12 x4 + 0(x5 ) d) ln(cosx) = ā€“ 2 x2 + 12 x4 + 0(x5 ) CaĆ¢u 248:CaĆ¢u 248:CaĆ¢u 248:CaĆ¢u 248: VieĆ”t trieĆ„n khai Maclaurin cuĆ»a haĆøm soĆ” y = arctg(1 ā€“ cosx) ƱeĆ”n soĆ” haĆÆng x4 a) arctg(1 ā€“ cosx) = x + 3 x3 + 0(x4 ) b) arctg(1 ā€“ cosx) = x ā€“ 3 x3 + 0(x4 ) c) arctg(1 ā€“ cosx) = 2 x2 ā€“ 24 x4 + 0(x4 ) d) arctg(1 ā€“ cosx) = 2 x2 + 24 x4 + 0(x4 ) CaĆ¢u 249:CaĆ¢u 249:CaĆ¢u 249:CaĆ¢u 249: Khi x ā†’ 0, VCB ex ā€“ 1 ā€“ x ā€“ 2 1 x2 tƶƓng ƱƶƓng vĆ“Ć¹i a) ā€“ 3 x3 b) 3 x3 c) ā€“ 6 x3 d) 6 x3 CaĆ¢u 250CaĆ¢u 250CaĆ¢u 250CaĆ¢u 250:::: Khi x ā†’ 0, VCB sinx ā€“ x + x4 tƶƓng ƱƶƓng vĆ“Ć¹i a) x4 b) 3 x3 c) ā€“ 3 x3 d) ā€“ 6 x3 CaĆ¢u 2CaĆ¢u 2CaĆ¢u 2CaĆ¢u 251515151:::: Khi x ā†’ 0, VCB 1 ā€“ cosx ā€“ 2 x2 + x4 tƶƓng ƱƶƓng vĆ“Ć¹i a) x4 b) 24 x4 c) 24 x23 4 d) 24 x25 4 CaĆ¢u 252:CaĆ¢u 252:CaĆ¢u 252:CaĆ¢u 252: Khi x ā†’ 0, VCB tgx ā€“ x + x2 tƶƓng ƱƶƓng vĆ“Ć¹i a) x2 b) 3 x3 c) ā€“ 3 x3 d) 6 x3 CaĆ¢u 253:CaĆ¢u 253:CaĆ¢u 253:CaĆ¢u 253: Khi x ā†’ 0, VCB x1 1 āˆ’ ā€“ 1 ā€“ sinx tƶƓng ƱƶƓng vĆ“Ć¹i www.VNMATH.com
  • 20. Trang 26 a) ā€“x b) x2 c) ā€“ 3 x3 d) 6 x3 CaĆ¢u 254:CaĆ¢u 254:CaĆ¢u 254:CaĆ¢u 254: Khi x ā†’ 0, VCB x1 1 + ā€“ ex tƶƓng ƱƶƓng vĆ“Ć¹i a) 2x b) ā€“2x c) 2x2 d) ā€“2x2 CaĆ¢CaĆ¢CaĆ¢CaĆ¢u 255:u 255:u 255:u 255: Khi x ā†’ 0, VCB x ā€“ ln(1 + x) + x2 tƶƓng ƱƶƓng vĆ“Ć¹i a) x2 b) 2 x2 c) ā€“ 2 x2 d) 2 x3 2 CaĆ¢u 256:CaĆ¢u 256:CaĆ¢u 256:CaĆ¢u 256: Khi x ā†’ 0, VCB ln(1 ā€“ x) + x + x3 tƶƓng ƱƶƓng vĆ“Ć¹i a) x3 b) 2 x2 c) ā€“ 2 x2 d) 2 x3 2 CaĆ¢u 257:CaĆ¢u 257:CaĆ¢u 257:CaĆ¢u 257: Khi x ā†’ 0, VCB x ā€“ arctgx + x5 tƶƓng ƱƶƓng vĆ“Ć¹i a) x5 b) 5 x6 5 c) 3 x3 d) 6 x3 CaĆ¢u 309:CaĆ¢u 309:CaĆ¢u 309:CaĆ¢u 309: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«tgxdx a) I = lnļ£¦cosxļ£¦ + C b) I = ā€“lnļ£¦cosxļ£¦ + C c) I = lnļ£¦sinxļ£¦ + C d) I = ā€“lnļ£¦sinxļ£¦ + C CaĆ¢u 310:CaĆ¢u 310:CaĆ¢u 310:CaĆ¢u 310: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« āˆ’ 2 x1 dx a) I = 2ln x1 x1 āˆ’ + + C b) I = 4ln x1 x1 āˆ’ + + C c) I = 2ln x1 x1 + āˆ’ + C d) I = 4ln x1 x1 + āˆ’ + C CaĆ¢u 311:CaĆ¢u 311:CaĆ¢u 311:CaĆ¢u 311: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +āˆ’ 4x4x dx 2 a) I = lnļ£¦x ā€“ 2ļ£¦ + C b) I = 2x 1 āˆ’ + C c) I = ā€“ 2x 1 āˆ’ + C d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 31CaĆ¢u 31CaĆ¢u 31CaĆ¢u 312222:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +āˆ’ 2x3x dx 2 a) I = ln 2x 1x āˆ’ āˆ’ + C b) I = ln 1x 2x āˆ’ āˆ’ + C c) I = lnļ£¦x2 ā€“ 3x + 2ļ£¦ + C d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 313:CaĆ¢u 313:CaĆ¢u 313:CaĆ¢u 313: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + )1x(x dx a) I = arctg x + C b) I = 2arctg x + C c) I = arcsin x + C d) I = ln x + C CaĆ¢u 314:CaĆ¢u 314:CaĆ¢u 314:CaĆ¢u 314: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« xdxcos2 a) I = 2x ā€“ sinx + C b) I = 2x + sinx + C c) I = 2x + sin2x + C d) I = 2x ā€“ sin2x + C CaĆ¢u 31CaĆ¢u 31CaĆ¢u 31CaĆ¢u 315555:::: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« x e xdx a) I = 2 e x2āˆ’ + C b) I = (x + 1)eā€“x + C www.VNMATH.com
  • 21. Trang 27 c) I = ā€“(x + 1)eā€“x + C d) I = x e 1 āˆ’ + C CaĆ¢u 316:CaĆ¢u 316:CaĆ¢u 316:CaĆ¢u 316: TĆ­nh tĆ­ch phaĆ¢n I = 3āˆ« dx.xcos.xsin2 a) I = sin3 x + C b) I = ā€“sin3 x + C c) I = 3sin3 x + C d) I = ā€“ sin3 x + C CaĆ¢u 317:CaĆ¢u 317:CaĆ¢u 317:CaĆ¢u 317: TĆ­nh tĆ­ch phaĆ¢n I = 3āˆ« dxsin3 a) I = 3cosx + cos3 x + C b) I = ā€“3cosx + cos3 x + C c) I = 3cosx ā€“ cos3 x + C d) I = ā€“3cosx ā€“ cos3 x + C CaĆ¢u 318:CaĆ¢u 318:CaĆ¢u 318:CaĆ¢u 318: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx xcos xsin 3 a) I = ā€“tg2 x + C b) I = xcos2 1 2 āˆ’ + C c) I = tg2 x + C d) I = xcos2 1 2 + C CaĆ¢u 319:CaĆ¢u 319:CaĆ¢u 319:CaĆ¢u 319: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + dx 4xcos xsin 2 a) I = ln(cosx + 4 + 4xcos2 + ) + C b) I = ln(cosx + 2 + 4xcos2 + ) + C c) I = ln(cosx + 4xcos2 + ) + C d) I = )4xln(cos 1 2 + + C CaĆ¢u 320:CaĆ¢u 320:CaĆ¢u 320:CaĆ¢u 320: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx x )xsin(ln a) I = cos(lnx) + C b) I = ā€“cos(lnx) + C c) I = cos( 2 1 ln2 x) + C d) I = ā€“cos( 2 1 ln2 x) + C CaĆ¢u 321:CaĆ¢u 321:CaĆ¢u 321:CaĆ¢u 321: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx x e x a) I = x . x e + C b) I = ā€“ x . x e + C c) I = 2 x e + C d) I = x e + C CaĆ¢u 322:CaĆ¢u 322:CaĆ¢u 322:CaĆ¢u 322: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« ++ dxx2xsinxcosx a) I = xcosx ā€“ sinx + x2 + C b) I = ā€“xsinx ā€“ cosx + x2 + C c) I = x(sinx + x) + C d) I = ā€“xsinx + x2 + C CaĆ¢u 323:CaĆ¢u 323:CaĆ¢u 323:CaĆ¢u 323: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + dx 1xsin x2sin 2 a) I = ln 1xsin 1xsin + āˆ’ + C b) I = ln 1xsin 1xsin āˆ’ + + C c) I = 2arctg(sinx) + C d) I = lnļ£¦sin2 x + 1ļ£¦ + C CaĆ¢u 324:CaĆ¢u 324:CaĆ¢u 324:CaĆ¢u 324: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« dx )e(xcos e x2 x a) I = ex tg(ex ) + C b) I = 2ex tg(ex ) + C c) I = tg(ex ) + C d) I = 2tg(ex ) + C CaĆ¢u 325:CaĆ¢u 325:CaĆ¢u 325:CaĆ¢u 325: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« ++ 5x4x dx2 2 a) I = arctg(x + 2) + C b) I = 2 arcsin(x + 2) + C c) I = 2lnļ£¦x + 2 + 5x4x2 ++ ļ£¦ + C d) I = 5x4x2 ++ + C CaĆ¢u 326:CaĆ¢u 326:CaĆ¢u 326:CaĆ¢u 326: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +āˆ’ 8x6x dx2 2 a) I = lnļ£¦x ā€“ 4ļ£¦ ā€“ lnļ£¦x ā€“ 2ļ£¦ + C b) I = lnļ£¦(x ā€“ 4)(x ā€“ 2)ļ£¦ + C www.VNMATH.com
  • 22. Trang 28 c) I = lnļ£¦x ā€“ 2ļ£¦ ā€“ lnļ£¦x ā€“ 4ļ£¦ + C d) I = 2xln 4xln āˆ’ āˆ’ + C CaĆ¢u 327:CaĆ¢u 327:CaĆ¢u 327:CaĆ¢u 327: TĆ­nh tĆ­ch phaĆ¢n I = ( ) xdxgcot32 2 āˆ« āˆ’ a) I = 2x ā€“ 3cotgx + C b) I = 3cotgx + 5x + C c) I = ā€“3cotgx + 5x + C d) I = ā€“2x + 3cotgx + C CCCCaĆ¢u 328:aĆ¢u 328:aĆ¢u 328:aĆ¢u 328: TĆ­nh tĆ­ch phaĆ¢n I = ( ) xd x 1xln3 2 āˆ« āˆ’ a) I = 3(lnx ā€“ 1)3 + C b) I = (lnx ā€“ 1)3 + C c) I = 3 1xlnxln 23 +āˆ’ + C d) I = 2 23 x 1xlnxln +āˆ’ + C CaĆ¢u 329:CaĆ¢u 329:CaĆ¢u 329:CaĆ¢u 329: TĆ­nh tĆ­ch phaĆ¢n I = xd xcos9 x2sin6 2āˆ« āˆ’ a) I = ln 3xcos 3xcos āˆ’ + + C b) I = ln 3xcos 3xcos + āˆ’ + C c) I = 6arctg(3 ā€“ cosx) + C d) I = 6lnļ£¦9 ā€“ cos2 xļ£¦ + C CaĆ¢u 330:CaĆ¢u 330:CaĆ¢u 330:CaĆ¢u 330: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« )x(sin xdx2 22 a) I = x2 cotg(x2 ) + C b) I = ā€“x2 cotg(x2 ) + C c) I = cotg(x2 ) + C d) I = ā€“cotg(x2 ) + C CaĆ¢u 331:CaĆ¢u 331:CaĆ¢u 331:CaĆ¢u 331: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« ++ x2x x ee22 dxe2 a) I = 2ln(ex + 1 + x2x ee22 ++ ) + C b) I = x2x ee22 ++ + C c) I = 2arcsin(ex + 1) + C d) I = 2arctg(ex + 1) + C CaĆ¢u 332:CaĆ¢u 332:CaĆ¢u 332:CaĆ¢u 332: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 2e dxe x x a) I = lnļ£¦ex ā€“ 2ļ£¦ + C b) I = 2lnļ£¦ex ā€“ 2ļ£¦ + C c) I = ex lnļ£¦ex ā€“ 2ļ£¦ + C d) I = 2ex lnļ£¦ex ā€“ 2ļ£¦ + C CaĆ¢u 333:CaĆ¢u 333:CaĆ¢u 333:CaĆ¢u 333: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + + dx xtg2 xtg1 2 2 a) I = xtg2 2 + + C b) I = lnļ£¦2 + tg2 xļ£¦ + C c) I = lnļ£¦tgx + xtg2 2 + ļ£¦ + C d) I = arcsin(tgx / 2 ) + C CaĆ¢u 334:CaĆ¢u 334:CaĆ¢u 334:CaĆ¢u 334: TĆ­nh tĆ­ch phaĆ¢n I = 2āˆ« ++ + 1xx2 dx)x3x( 23 2 a) I = lnļ£¦2x3 + x2 + 1ļ£¦ + C b) I = 2lnļ£¦2x3 + x2 + 1ļ£¦ + C c) I = 1x2x 23 ++ + C d) I = 2 1x2x 23 ++ + C CaĆ¢u 335:CaĆ¢u 335:CaĆ¢u 335:CaĆ¢u 335: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« + 2 xln1x dx a) I = ā€“ xln1 1 + + C b) I = ā€“lnļ£¦lnx + xln1 2 + ļ£¦ + C c) I = arctg(lnx) + C d) I = arcsin(lnx) + C CaĆ¢u 336:CaĆ¢u 336:CaĆ¢u 336:CaĆ¢u 336: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ xsin4 xdx2sin 2 a) I = ā€“2 xsin4 2 āˆ’ + C b) I = 2lnļ£¦sinx + xsin4 2 āˆ’ ļ£¦ + C c) I = ā€“arctg( 2 xsin ) + C d) I = ā€“2arctg( 2 xsin ) + C www.VNMATH.com
  • 23. Trang 29 CaĆ¢u 337:CaĆ¢u 337:CaĆ¢u 337:CaĆ¢u 337: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + x2 x e1 dxe a) I = ln(ex + x2 e1+ ) + C b) I = arctg(ex ) + C c) I = arcsin(ex ) + C d) I = 2 x e1+ + C CaĆ¢u 338:CaĆ¢u 338:CaĆ¢u 338:CaĆ¢u 338: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« + )e(gcot1e x2x dx a) I = ā€“2lnļ£¦cos(ex )ļ£¦ + C b) I = 2lnļ£¦sin(ex )ļ£¦ + C c) I = 2(1 + cotg(ex )) + C d) I = ā€“cotg(ex ) + C CaĆ¢u 339:CaĆ¢u 339:CaĆ¢u 339:CaĆ¢u 339: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xgcotarc)x1( dx 22 a) I = ā€“1/arccotgx + C b) I = 1/arccotgx + C c) I = arccotgx.lnļ£¦arccotgxļ£¦ + C d) I = ā€“ arccotgx.lnļ£¦arccotgxļ£¦ + C CaĆ¢u 340:CaĆ¢u 340:CaĆ¢u 340:CaĆ¢u 340: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + + tgx5 xtg1 2 dx a) I = lnļ£¦tgx + 5ļ£¦ + C b) I = 5tgx 1 + + C c) I = ā€“ 5tgx 1 + + C d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 341:CaĆ¢u 341:CaĆ¢u 341:CaĆ¢u 341: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + x x2ln1 dx a) I = (ln2x + 1)2 + C b) I = ( ) 2 1x2ln 2 + + C c) I = ( ) x 1x2ln 2 + + C d) I = 2 1x2ln + + C CaĆ¢u 342:CaĆ¢u 342:CaĆ¢u 342:CaĆ¢u 342: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« +āˆ’ āˆ’ 3xx2 e1x2 dx a) I = 3xx2 e +āˆ’ + C b) I = ā€“ 3xx2 e +āˆ’ + C c) I = x 3xx2 e +āˆ’ + C d) I = ā€“2x 3xx2 e +āˆ’ + C CaĆ¢u 343:CaĆ¢u 343:CaĆ¢u 343:CaĆ¢u 343: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ xarcsin.x1 dx 2 a) I = lnļ£¦arcsinxļ£¦ + C b) I = 2 2 x1āˆ’ + C c) I = 2 x1 1 āˆ’ + C d) I = xarcsin + C CaĆ¢u 344:CaĆ¢u 344:CaĆ¢u 344:CaĆ¢u 344: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 2 x251 dx5 a) I = lnļ£¦1 + 2 x251āˆ’ ļ£¦ + C b) I = arcsin(5x) + C c) I = 2 2 x251āˆ’ + C d) I = arcsin(25x2 ) + C CaĆ¢u 345:CaĆ¢u 345:CaĆ¢u 345:CaĆ¢u 345: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 8 3 x1 dxx4 a) I = 2 8 x1āˆ’ + C b) I = ln(x4 ā€“ 8 x1āˆ’ ) + C c) I = ln(x4 + 8 x1āˆ’ ) + C d) I = arcsin(25x2 ) + C CaĆ¢u 346:CaĆ¢u 346:CaĆ¢u 346:CaĆ¢u 346: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x xdx4ln a) I = ā€“ 2 xln2 + C b) I = ā€“ 2 x4ln2 + C c) I = 2 x4ln2 + C d) I = 2 )x4ln(ln + C www.VNMATH.com
  • 24. Trang 30 CaĆ¢u 347:CaĆ¢u 347:CaĆ¢u 347:CaĆ¢u 347: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ )1x(x dx a) I = ln 1x 1x āˆ’ + + C b) I = ln 1x 1x + āˆ’ + C c) I = 2arcsin( x )+ C d) I = arctg( x ) + C CaĆ¢u 348:CaĆ¢u 348:CaĆ¢u 348:CaĆ¢u 348: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« xsinx dx 2 a) I = ā€“2lnļ£¦sin x ļ£¦ + C b) I = 2lnļ£¦sin x ļ£¦ + C c) I = ā€“2cotg( x )+ C d) I = 2cotg( x ) + C CaĆ¢u 349:CaĆ¢u 349:CaĆ¢u 349:CaĆ¢u 349: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + x4 sin1 xdx2sin a) I = ln(1 + sin4 x) + C b) I = lnļ£¦sin2 x + xsin1 4 + ļ£¦ + C c) I = arcsin(sin2 x) + C d) I = arctg(sin2 x) + C CaĆ¢u 350:CaĆ¢u 350:CaĆ¢u 350:CaĆ¢u 350: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ x 1xln2 dx a) I = ln2 x ā€“ lnx + C b) I = ln2 x ā€“ 2lnx + C c) I = ln2 x + lnx + C d) I = ln2 x ā€“ 2lnx + C CaĆ¢u 351:CaĆ¢u 351:CaĆ¢u 351:CaĆ¢u 351: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xlnx dx a) I = 2ln( x ) + C b) I = 2 xln + C c) I = xln 1 + C d) I = ln( xln ) + C CaĆ¢u 35CaĆ¢u 35CaĆ¢u 35CaĆ¢u 352222:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xln1x dx 2 a) I = ln(lnx + xln1 2 + ) + C b) I = arcsin(lnx) + C c) I = arctg(lnx) + C d) I = 2 xln1 2 + + C CaĆ¢u 353:CaĆ¢u 353:CaĆ¢u 353:CaĆ¢u 353: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xcos1 xdx2sin 2 a) I = xcos1 1 2 + + C b) I = ā€“lnx(1 + cos2 x) + C c) I = xcos1 1 2 + āˆ’ + C d) I = arctg(cosx) + C CaĆ¢u 354:CaĆ¢u 354:CaĆ¢u 354:CaĆ¢u 354: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +1e e x2 x dx a) I = ln(ex + 1e x2 + ) + C b) I = ln 1e 1e x x + āˆ’ + C c) I = arcsin(ex ) + C d) I = arctg(ex ) + C CaĆ¢u 355:CaĆ¢u 355:CaĆ¢u 355:CaĆ¢u 355: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xcos1 xsin 2 dx a) I = xsinxsin xcos 2 + āˆ’ + C b) I = arcsin ļ£· ļ£ø ļ£¶ ļ£¬ ļ£­ ļ£« + 2 xcos1 + C c) I = ln xcos1 xcos1 + āˆ’ + C d) I = ā€“arctg(cosx) + C CaĆ¢u 356:CaĆ¢u 356:CaĆ¢u 356:CaĆ¢u 356: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xcos .esinx + 1 dx a) I = sinx.esinx + 1 + C b) I = cosx.esinx + 1 + C c) I = esinx + 1 + C d) I = esinx + C CaĆ¢u 357:CaĆ¢u 357:CaĆ¢u 357:CaĆ¢u 357: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«3 x2 e x dx www.VNMATH.com
  • 25. Trang 31 a) I = 33 x2 e + C b) I = ā€“33 x2 e + C c) I = 3 x2 e2 3 + C d) I = ā€“ 3 x2 e2 3 + C CaĆ¢u 358:CaĆ¢u 358:CaĆ¢u 358:CaĆ¢u 358: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xarctgx2 dx a) I = (x2 + 1)arctgx + x + C b) I = (x2 + 1)arctgx ā€“ x + C c) I = (x2 + 1)arctgx + C d) I = ā€“(x2 + 1)arctgx + C CaĆ¢u 359:CaĆ¢u 359:CaĆ¢u 359:CaĆ¢u 359: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x e ln dx a) I = xlnx ā€“ x + C b) I = 2x ā€“ xlnx + C c) I = 2x + xlnx + C d) I = 2x ā€“ 2xlnx + C CaĆ¢u 3CaĆ¢u 3CaĆ¢u 3CaĆ¢u 360606060:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xsinx dx a) I = xcosx ā€“ sinx + C b) I = ā€“xcosx + sinx + C c) I = xsinx ā€“ cosx + C d) I = ā€“xsinx + cosx + C CaĆ¢u 361:CaĆ¢u 361:CaĆ¢u 361:CaĆ¢u 361: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x xe dx a) I = ex ā€“ x + C b) I = ex + x + C c) I = xex + ex + C d) I = xex ā€“ ex + C CaĆ¢u 362:CaĆ¢u 362:CaĆ¢u 362:CaĆ¢u 362: TĆ­nh tĆ­ch phaĆ¢n I = ( )āˆ« + x1x dx a) I = ln 1x 1x āˆ’ + + C b) I = ln 1x 1x + āˆ’ + C c) I = 2arcsin( x ) + C d) I = 2arctg( x ) + C CaĆ¢u 363:CaĆ¢u 363:CaĆ¢u 363:CaĆ¢u 363: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x )x(lntg2 dx a) I = ā€“2lnļ£¦cos(lnx)ļ£¦ + C b) I = 2lnļ£¦cos(lnx)ļ£¦ + C c) I = tg2 (lnļ£¦lnxļ£¦) + C d) I = tg(ln2 x) + C CaĆ¢u 364:CaĆ¢u 364:CaĆ¢u 364:CaĆ¢u 364: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ )2x(x dx dx a) I = lnļ£¦ x ā€“ 2ļ£¦ + C b) I = 2lnļ£¦ x ā€“ 2ļ£¦ + C c) I = ln 2x x āˆ’ + C d) I = 2ln 2x x āˆ’ + C CaĆ¢u 365:CaĆ¢u 365:CaĆ¢u 365:CaĆ¢u 365: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ + xtg1 xtg1 2 2 dx a) I = xtg1 2 āˆ’ + C b) I = lnļ£¦1 ā€“ tg2 xļ£¦ + C c) I = lnļ£¦tgx + xtg1 2 āˆ’ ļ£¦ + C d) I = arcsin(tgx) + C CaĆ¢u 36CaĆ¢u 36CaĆ¢u 36CaĆ¢u 366666:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« ++ + 1xx2 )x3x( 23 2 dx a) I = lnļ£¦2x3 + x2 + 1ļ£¦ + C b) I = 2lnļ£¦2x3 + x2 + 1ļ£¦ + C c) I = 1xx2 23 ++ + C d) I = 2 1xx2 23 ++ + C CaĆ¢u 367:CaĆ¢u 367:CaĆ¢u 367:CaĆ¢u 367: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« +1xcos x2sin 4 dx a) I = 1xcos4 + + C b) I = ā€“lnļ£¦cos2 x + 1xcos4 + ļ£¦ + C c) I = arctg(cos2 x) + C d) I = arcsin(cos2 x) + C www.VNMATH.com
  • 26. Trang 32 CaĆ¢u 368:CaĆ¢u 368:CaĆ¢u 368:CaĆ¢u 368: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 2 x xln dx a) I = ā€“ x 1xln āˆ’ + C b) I = x 1xln āˆ’ + C c) I = ā€“ x 1xln + + C d) I = x 1xln + + C CaĆ¢u 369:CaĆ¢u 369:CaĆ¢u 369:CaĆ¢u 369: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xcos x 2 dx a) I = xtgx ā€“ lnļ£¦cosxļ£¦ + C b) I = tgx + lnļ£¦cosxļ£¦ + C c) I = xtgx + lnļ£¦cosxļ£¦ + C d) I = ln(tgx) + C CaĆ¢u 370:CaĆ¢u 370:CaĆ¢u 370:CaĆ¢u 370: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ )x1(x dx a) I = ln 1x 1x āˆ’ + + C b) I = ln 1x 1x + āˆ’ + C c) I = 2arcsinx( x ) + C d) I = arctg( x ) + C CaĆ¢u 371:CaĆ¢u 371:CaĆ¢u 371:CaĆ¢u 371: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x )x(gcot dx a) I = ā€“2lnļ£¦sin x ļ£¦ + C b) I = 2lnļ£¦sin x ļ£¦ + C c) I = ā€“cotg( x ) + C d) I = cotg( x ) + C CaĆ¢u 372:CaĆ¢u 372:CaĆ¢u 372:CaĆ¢u 372: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ xsin1 x2sin 4 dx a) I = xsin1 4 āˆ’ + C b) I = lnļ£¦sin2x + xsin1 4 āˆ’ ļ£¦ + C c) I = arcsin(sin2 x) + C d) I = arctg(sin2 x) + C CaĆ¢u 373:CaĆ¢u 373:CaĆ¢u 373:CaĆ¢u 373: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x )xln( dx a) I = ln( x ) + C b) I = 2ln( x ) + C c) I = x (ln x ā€“ 1) + C d) I = 2 x (ln( x ) ā€“ 1) + C CaĆ¢u 374:CaĆ¢u 374:CaĆ¢u 374:CaĆ¢u 374: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + āˆ’ 4xcos xsin 2 dx a) I = ā€“ln(cosx + 4xcos2 + ) + C b) I = ln(cosx ā€“ 4xcos2 + ) + C c) I = 4xcos2 + + C d) I = ln(cosx + 4xcos2 + ) + C CaĆ¢u 375:CaĆ¢u 375:CaĆ¢u 375:CaĆ¢u 375: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xgcot8 4 dx a) I = ā€“cotg3 x + 3cotg + 3x + C b) I = cotg3 x + 3cotg + 3x + C c) I = ā€“cotg3 x ā€“ 3cotg + 3x + C d) I = ā€“tg3 x + C CaĆ¢u 376:CaĆ¢u 376:CaĆ¢u 376:CaĆ¢u 376: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x2 xln dx a) I = x (lnx + 2) + C b) I = x (lnx ā€“ 2) + C c) I = x (lnx ā€“ 1) + C d) I = x (2 ā€“ lnx) + C CaĆ¢u 377:CaĆ¢u 377:CaĆ¢u 377:CaĆ¢u 377: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + 4e e x2 x dx a) I = ln(ex + 4e x2 + ) + C b) I = ex + 4e x2 + + C c) I = 2lnx(ex + 4e x2 + ) + C d) I = 4e x2 + + C CaĆ¢u 37CaĆ¢u 37CaĆ¢u 37CaĆ¢u 378888:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’āˆ’ )xxln()1x3( 32 dx a) I = (x3 ā€“ x).(ln(x3 ā€“ x) ā€“ 1) + C b) I = ln2 (x3 ā€“ x) + C www.VNMATH.com
  • 27. Trang 33 c) I = 3.ln(x3 ā€“ x) + C d) I = ( )xxln 3 32 āˆ’ + C CaĆ¢u 379:CaĆ¢u 379:CaĆ¢u 379:CaĆ¢u 379: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + xcos )1tgx(4 2 3 dx a) I = (tgx + 1)4 + C b) I = 12(tgx + x) + C c) I = tgx + x + C d) I = ā€“ xcos )1tgx( 2 3 + + C CaĆ¢u 380:CaĆ¢u 380:CaĆ¢u 380:CaĆ¢u 380: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + 3tgxxcos 2 2 dx a) I = 2 3tgx + + C b) I = 4 3tgx + + C c) I = 3tgx 2 + + C d) I = ln(tgx + 3tgx + ) + C CaĆ¢u 381:CaĆ¢u 381:CaĆ¢u 381:CaĆ¢u 381: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’ 4xsin 4 2 dx a) I = 4ln 3xsin 1xsin āˆ’ āˆ’ + C b) I = ln 2xsin 2xsin + āˆ’ + C c) I = 4arctg(sinx ā€“ 2) + C d) I = ln(sin2 x ā€“ 4) + C CaĆ¢u 382:CaĆ¢u 382:CaĆ¢u 382:CaĆ¢u 382: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + x )xtg1( 2 dx a) I = x tg x + C b) I = 2 x tg x + C c) I = 2tg x + C d) I = tg x + 2 x + C CaCaCaCaĆ¢u 383:Ć¢u 383:Ć¢u 383:Ć¢u 383: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« āˆ’+ x2x x ee23 e2 dx a) I = 2lnļ£¦ex ā€“ 1 + x2x ee23 +āˆ’ ļ£¦ + C b) I = 2 x2x ee23 +āˆ’ + C c) I = arctg 2 1ex āˆ’ + C d) I = 2arcsin 2 1ex āˆ’ + C CaĆ¢u 38CaĆ¢u 38CaĆ¢u 38CaĆ¢u 384444:::: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 3 x16 lnxdx a) I = 4x4 lnx ā€“ x4 + C b) I = 4x4 lnx + x4 + C c) I = ā€“4x4 lnx ā€“ x4 + C d) I = ā€“4x4 lnx + x4 + C CaĆ¢u 385:CaĆ¢u 385:CaĆ¢u 385:CaĆ¢u 385: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« xsin e.xcos.xsin dx a) I = (sinx + 1)esinx + C b) I = sin2xesinx /2 + C c) I = sinxesinx + C d) I = (sinx ā€“ 1)esinx + C CaĆ¢u 386:CaĆ¢u 386:CaĆ¢u 386:CaĆ¢u 386: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 2 x3 lnxdx a) I = ln3 x + x3 + C b) I = x3 /3 + C c) I = x3 (ln ā€“ 1/3) + C d) I = x3 lnx + C CaĆ¢u 387:CaĆ¢u 387:CaĆ¢u 387:CaĆ¢u 387: TĆ­nh tĆ­ch phaĆ¢n I = āˆ«x cos2xdx a) I = 2xsin2x ā€“ 2cos2x + C b) I = 2xsin2x + 2cos2x + C c) I = 2xsin2x ā€“ cos2x + C d) I = 2xsin2x + cos2x + C CaĆ¢u 388:CaĆ¢u 388:CaĆ¢u 388:CaĆ¢u 388: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« x4 ln2xdx a) I = ā€“2x2 ln2x ā€“ x2 + C b) I = ā€“2x2 ln2x + x2 + C c) I = 2x2 ln2x ā€“ x2 + C d) I = 2x2 ln2x + x2 + C CaĆ¢u 389:CaĆ¢u 389:CaĆ¢u 389:CaĆ¢u 389: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 2 x9 lnxdx a) I = x3 (3lnx ā€“ 1) + C b) I = (x3 + x2 )lnx + C www.VNMATH.com
  • 28. Trang 34 c) I = 3x3 (lnx ā€“ 1) + C d) I = x3 (lnx + 1) + C CaĆ¢u 390:CaĆ¢u 390:CaĆ¢u 390:CaĆ¢u 390: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« + )1x2(xln2 dx a) I = (2x + 1)ln(2x + 1) + 2x + C b) I = (2x + 1)ln(2x + 1) ā€“ 2x + C c) I = 2xln(2x + 1) + 2x + C d) I = 2xln(2x + 1) ā€“ 2x + C CaĆ¢u 391:CaĆ¢u 391:CaĆ¢u 391:CaĆ¢u 391: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« x2sinx dx a) I = 2xcos2x ā€“ 2sin2x + C b) I = ā€“2xcos2x + sin2x + C c) I = 2xcos2x ā€“ sin2x + C d) I = 2xcos2x + 2sin2x + C CaĆ¢u 392:CaĆ¢u 392:CaĆ¢u 392:CaĆ¢u 392: TĆ­nh tĆ­ch phaĆ¢n I = 4āˆ« 2 x xln dx a) I = x 1x2ln + + C b) I = x 1x2ln āˆ’ + C c) I = ā€“ x2 1x2ln + + C d) I = ā€“ x 1x2ln + + C CaĆ¢u 393:CaĆ¢u 393:CaĆ¢u 393:CaĆ¢u 393: TĆ­nh tĆ­ch phaĆ¢n I = āˆ« 3 x xln dx a) I = ā€“ 2 x4 1xln2 āˆ’ + C b) I = ā€“ 2 x 1xln2 + + C c) I = 2 x4 1xln2 + + C d) I = ā€“ 2 x4 1xln2 + + C CaĆ¢u 399:CaĆ¢u 399:CaĆ¢u 399:CaĆ¢u 399: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 1 0 x 2 dx a) I = ln2 b) I = 2ln2 c) I = 1/ln2 d) I = 2/ln2 CaĆ¢u 400:CaĆ¢u 400:CaĆ¢u 400:CaĆ¢u 400: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« āˆ’ 2/1 0 2 x1 x2 dx a) I = ln2 b) I = ā€“ln2 c) I = 2ln2 d) I = ā€“2ln2 CaĆ¢u 401:CaĆ¢u 401:CaĆ¢u 401:CaĆ¢u 401: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« āˆ’ ++ 13 0 2 2x2x dx a) I = Ļ€/3 b) I = Ļ€/6 c) I = Ļ€/12 d) I = Ļ€/24 CaĆ¢u 402:CaĆ¢u 402:CaĆ¢u 402:CaĆ¢u 402: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« e 1 xln dx a) I = 0 b) I = 1 c) I = 2 d) I = 3 CaĆ¢u 403:CaĆ¢u 403:CaĆ¢u 403:CaĆ¢u 403: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ +4/ 0 2 xcos 1tgx dx a) I = 1/2 b) I = 3/2 c) I = 1 d) I = 2 CaĆ¢u 40CaĆ¢u 40CaĆ¢u 40CaĆ¢u 404444:::: TĆ­nh tĆ­ch phaĆ¢n: I = 8āˆ« āˆ’ 1 0 3 4 3 x1 x dx a) I = 2 b) I = 3 c) I = ā€“2 d) I = ā€“3 CaĆ¢u 40CaĆ¢u 40CaĆ¢u 40CaĆ¢u 405555:::: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +e 1 x 1xln dx a) I = 3 b) I = 3/2 c) I = e2 ā€“ 1 d) I = e ā€“ 1 CaĆ¢u 406:CaĆ¢u 406:CaĆ¢u 406:CaĆ¢u 406: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« e 1 x4 lndx a) I = 1 ā€“ e2 b) I = 1 + e2 c) I = 1 d) I = e CaĆ¢u 407:CaĆ¢u 407:CaĆ¢u 407:CaĆ¢u 407: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ Ļ€ 3/ 4/ xcosxsin dx a) I = (ln3)/2 b) I = ā€“ln(3)/2 c) I = ln3 d) I = ā€“ln3 CaĆ¢u 408:CaĆ¢u 408:CaĆ¢u 408:CaĆ¢u 408: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 1 0 2 x1 )arctgxcos( dx www.VNMATH.com
  • 29. Trang 35 a) I = 2 b) I = 2 /2 c) I = 0 d) I = 1 CaĆ¢u 409:CaĆ¢u 409:CaĆ¢u 409:CaĆ¢u 409: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 1 0 xarccos2 dx a) I = Ļ€ + 2 b) I = Ļ€ ā€“ 2 c) I = 2 d) I = 1 CaĆ¢u 410:CaĆ¢u 410:CaĆ¢u 410:CaĆ¢u 410: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + e 1 2 )xln1(x dx a) I = 1 b) I = Ļ€ c) I = Ļ€/2 d) I = Ļ€/4 CaĆ¢u 411:CaĆ¢u 411:CaĆ¢u 411:CaĆ¢u 411: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ āˆ’ 4/ 0 22 xtg1xcos dx a) I = Ļ€/2 b) I = Ļ€/3 c) I = Ļ€/4 d) I = Ļ€/6 CaĆ¢u 412:CaĆ¢u 412:CaĆ¢u 412:CaĆ¢u 412: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’ ++ 0 2 2 2x2x dx a) I = Ļ€/4 b) I = Ļ€/2 c) I = Ļ€ d) I = 1 CaĆ¢u 413:CaĆ¢u 413:CaĆ¢u 413:CaĆ¢u 413: TĆ­nh tĆ­ch phaĆ¢n: I = 3āˆ« + 1 0 3 2 x1 x dx a) I = ln2 b) I = ā€“ln2 c) I = 1 d) I = ā€“1 CaĆ¢u 414:CaĆ¢u 414:CaĆ¢u 414:CaĆ¢u 414: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ Ļ€ 3/ 6/ gxcot2 dx a) I = 0 b) I = 1 c) I = ln3 d) I = ln2 CaĆ¢u 415:CaĆ¢u 415:CaĆ¢u 415:CaĆ¢u 415: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’ + 1 1 4 x1 x2 dx a) I = 0 b) I = ln(1 + 2 ) c) I = ln( 2 ā€“ 1) d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 41CaĆ¢u 41CaĆ¢u 41CaĆ¢u 416666:::: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ Ļ€āˆ’ + 2/ 2/ 2 xsin32 x2sin dx a) I = 4 b) I = 2 c) I = 2 2 d) I = 0 CaĆ¢u 417:CaĆ¢u 417:CaĆ¢u 417:CaĆ¢u 417: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ + 0 2 )xsin1( dx a) I = 16/3 b) I = 4/3 c) I = 0 d) I = 3 /2 CaĆ¢u 418:CaĆ¢u 418:CaĆ¢u 418:CaĆ¢u 418: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ + 2/ 0 2 xsin1 xcos dx a) I = ln(1 + 2 ) b) I = 0 c) I = ln2 d) I = ā€“ln2 CaĆ¢u 419:CaĆ¢u 419:CaĆ¢u 419:CaĆ¢u 419: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 1 0 3 2 x1 x3 dx a) I = ā€“ 2 b) I = 2 c) I = 2 2 ā€“ 2 d) I = 2 2 CaĆ¢u 420:CaĆ¢u 420:CaĆ¢u 420:CaĆ¢u 420: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’ 1 1 x2 xe dx a) I = 0 b) I = e/2 c) I = e d) I = 2e CaĆ¢u 421:CaĆ¢u 421:CaĆ¢u 421:CaĆ¢u 421: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 2 1 2 x2x 2 dx a) I = ln3 ā€“ ln2 b) I = ln2 ā€“ ln3 c) I = 0 d) I = 1 CaĆ¢u 422:CaĆ¢u 422:CaĆ¢u 422:CaĆ¢u 422: TĆ­nh tĆ­ch phaĆ¢n: I = 3āˆ« + 1 0 3 2 x1 x dx a) I = ln2 b) I = ā€“ln2 c) I = 2 2 ā€“ 2 d) I = 2 ā€“ 2 2 www.VNMATH.com
  • 30. Trang 36 CaĆ¢u 423:CaĆ¢u 423:CaĆ¢u 423:CaĆ¢u 423: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ + 2/ 0 2 )xsin1( xcos dx a) I = ln2 b) I = ā€“ln2 c) I = 1/2 d) I = ā€“1/2 CaĆ¢u 424:CaĆ¢u 424:CaĆ¢u 424:CaĆ¢u 424: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 1 0 2 1x x dx a) I = 2 ā€“ 1 c) 2 + 1 b) I = 2 d) 2 2 ā€“ 1 CaĆ¢u 425:CaĆ¢u 425:CaĆ¢u 425:CaĆ¢u 425: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ Ļ€āˆ’ 3/ 3/ 64 .cosx.sin3 xdx a) I = 0 b) I = 16 c) I = 8 d) I = ā€“16 CaĆ¢u 426:CaĆ¢u 426:CaĆ¢u 426:CaĆ¢u 426: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ 2/ 0 xcos .sinxdx a) I = 2/3 b) I = 5/3 c) I = 1/3 d) I = 3/2 CaĆ¢u 427:CaĆ¢u 427:CaĆ¢u 427:CaĆ¢u 427: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ 2/ 0 xsin .sin3xdx a) I = 0 b) I = 1 c) I = 1/2 d) I = 1/4 CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 1 0 2 x1 )arctgxsin( dx a) I = 0 b) I = 1 c) I = 1/2 d) I = 1/4 CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 2 e 1 2 x xln2 dx a) I = 9 b) I = 4 c) I = 2 d) I = 8 CaĆ¢u 430:CaĆ¢u 430:CaĆ¢u 430:CaĆ¢u 430: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ«āˆ’ ++ 1 2 2 5x4x dx a) I = ln3 b) I = arctg3 c) I = arctg3 ā€“ Ļ€/4 d) I = arctg3 ā€“ arctg2 CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ Ļ€ āˆ’ 2/ 4/ 22 xgcot1xsin dx a) I = Ļ€/2 b) I = Ļ€/4 c) I = ā€“Ļ€/2 d) I = ā€“Ļ€/4 CaĆ¢u 432:CaĆ¢u 432:CaĆ¢u 432:CaĆ¢u 432: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 1 0 2arcsinxdx a) I = 2 b) I = Ļ€ ā€“ 2 c) I = Ļ€ + 2 d) I = 2Ļ€ ā€“ 1 CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 1 0 6 2 x1 x12 dx a) I = 1 b) I = Ļ€/6 c) I = Ļ€/2 d) I = Ļ€ CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« +āˆ’ āˆ’ 1 0 xx2 e)1x2( dx a) I = 0 b) I = e c) I = e2 d) I = 1/e CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« e 1 x ex dx a) I = ee + 1b) I = ee (e ā€“ 1) c) I = ee (e + 1) d) I = ee - e2 CaĆ¢u 43CaĆ¢u 43CaĆ¢u 43CaĆ¢u 436666:::: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 4 1 2 x ā€“ 1 dx a) I = 2.ln2 b) I = 7.ln2 c) I = 3.ln2 d) I = 7/ln2 CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + e 1 2 )ln1(x 4 dx a) I = Ļ€/4 b) I = 4 c) I = Ļ€ d) I = 2 /2 CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« + 1 0 8 3 x1 x4 dx www.VNMATH.com
  • 31. Trang 37 a) I = Ļ€/4 b) I = Ļ€/2 c) I = Ļ€ d) I = 4Ļ€ CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« Ļ€ + 2/ 0 2 xcos1 x2sin dx a) I = ā€“ln2 b) I = ln2 c) I = 0 d) I = 1 CaĆ¢u 440:CaĆ¢u 440:CaĆ¢u 440:CaĆ¢u 440: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« āˆ’ 1 0 4 x1 x2 dx a) I = Ļ€/4 b) I = Ļ€/3 c) I = Ļ€/2 d) I = Ļ€ CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 1 0 4 arctg(ā€“x)dx a) I = 2ln2 + 2 b) I = ln2 ā€“ Ļ€ c) I = Ļ€ ā€“ ln2 d) I = 2ln2 ā€“ Ļ€ CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 2ln 0 4 xe2x dx a) I = ln2 b) I = 8ln2 ā€“ 3 c) I = 8ln2 ā€“ 2 d) I = 8ln2 CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« e 1 ln xdx a) I = e + 1 b) I = e ā€“ 1 c) I = e d) I = 1 CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444: TĆ­nh tĆ­ch phaĆ¢n: I = 4āˆ« e 1 x lnxdx a) I = e2 + 1 b) I = e2 ā€“ 1 c) I = e2 d) I = 1 CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 2 e e 2 xln.x dx a) I = 0 b) I = 1 c) I = 1/2 d) I = ā€“1/2 CaĆ¢u 446:CaĆ¢u 446:CaĆ¢u 446:CaĆ¢u 446: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« e 1 ln 2 xdx a) I = 2e b) I = 2 ā€“ e c) I = 2 + e d) I = e ā€“ 2 CaĆ¢u 447:CaĆ¢u 447:CaĆ¢u 447:CaĆ¢u 447: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« āˆ’ āˆ’ 2e 1 ln (x + 2)dx a) I = ā€“1 b) I = 1 c) I = 1 ā€“ ln3d) I = ln3 ā€“ 1 CaĆ¢u 448:CaĆ¢u 448:CaĆ¢u 448:CaĆ¢u 448: TĆ­nh tĆ­ch phaĆ¢n: I = āˆ« 1 0 2arctgxdx a) I = Ļ€/2 + ln2 b) I = Ļ€/2 ā€“ ln2 c) I = Ļ€/4 d) I = ln2 CaĆ¢u 449:CaĆ¢u 449:CaĆ¢u 449:CaĆ¢u 449: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ 1 5 x dx a) I = 0 b) I = 1 c) I = 2 d) I = 1/4 CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’ 0 x e dx a) I = 0 b) I = 1 c) I = 2 d) I = 3 CaĆ¢u 451:CaĆ¢u 451:CaĆ¢u 451:CaĆ¢u 451: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’ 0 x ex dx a) I = ā€“1 b) I = 1 c) I = ā€“2 d) I = 2 CaĆ¢uCaĆ¢uCaĆ¢uCaĆ¢u 452:452:452:452: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ +0 2 1x dx a) I = 0 b) I = Ļ€/6 c) I = Ļ€/4 d) I = Ļ€/2 CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453: XeĆ¹t tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ āˆžāˆ’ + āˆ’ 2 x1 dx . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) I = 0 b) I = Ļ€ c) I phaĆ¢n kyĆø d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai CaĆ¢u 454:CaĆ¢u 454:CaĆ¢u 454:CaĆ¢u 454: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’ + 0 4 x1 x dx www.VNMATH.com
  • 32. Trang 38 a) I = Ļ€/4 b) I = Ļ€/2 c) I = ā€“Ļ€/4 d) I = ā€“Ļ€/2 CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ e xlnx dx a) I = ā€“1 b) I = e c) I = 1 d) I = +āˆž CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ +0 2 )3x( 3 dx a) I = 1 b) I = 2 c) I = 3 d) I = +āˆž CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ +2 x1 2 dx a) I = ln3 b) I = ā€“ln3 c) I = 0 d) I = +āˆž CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458: XeĆ¹t tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ +0 x1 dx . KhaĆŗng Ć±Ć²nh naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) I = 0 b) I = 1 c) I phaĆ¢n kyĆø d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆžāˆ’ +0 x x e )1e( dx a) I = 1/2 b) I = Ļ€/2 c) I = ln2 d) I = +āˆž CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ 0 x2 e x dx a) I = 2 b) I = 1 c) I = 1/2 d) I = +āˆž CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ 0 x e2 dx dx a) I = 2 b) I = +āˆž c) I = 0 d) I = 1 CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ +0 4x2 dx a) I = 1 b) I = 1/2 c) I = 2 d) I = +āˆž CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ āˆžāˆ’ + 6 2 x1 x dx a) I = Ļ€/4 b) I = Ļ€/3 c) I = Ļ€/2 d) I = 0 CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ +0 2 2 x1 xarctg8 dx a) I = 2Ļ€3 /3 b) I = Ļ€3 /3 c) I = Ļ€3 /24 d) I = Ļ€ CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ āˆžāˆ’ + 2 2 x1 xarctg dx a) I = ā€“Ļ€3 /3 b) I = Ļ€3 /3 c) I = Ļ€3 /24 d) I = 0 CaĆ¢u 466:CaĆ¢u 466:CaĆ¢u 466:CaĆ¢u 466: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆž+ e 2 xlnx dx a) I = 1 b) I = 2 c) I = +āˆž d) I = 2e CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆ’ 2 1 3 1x dx a) I = 3/2 b) I = 1 c) I = +āˆž d) I = 3/4 CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« e 1 xlnx dx a) I = 0 b) I = 1 c) I = 2 d) I = +āˆž www.VNMATH.com
  • 33. Trang 39 CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« 2/1 0 2 xlnx dx a) I = ln2 b) I = ā€“ln2 c) I = 2ln 1 d) I = ā€“ 2ln 1 CaĆ¢u 470:CaĆ¢u 470:CaĆ¢u 470:CaĆ¢u 470: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« 1 2/1 2 xlnx dx a) I = 0 b) I = 1 c) I = 2 d) I = +āˆž CaĆ¢u 471:CaĆ¢u 471:CaĆ¢u 471:CaĆ¢u 471: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« āˆ’ 3/1 6/1 2 x91 3 a) I = Ļ€/6 b) I = Ļ€/3 c) I = +āˆž d) CaĆ¹c caĆ¢u treĆ¢n ƱeĆ u sai CaĆ¢u 472:CaĆ¢u 472:CaĆ¢u 472:CaĆ¢u 472: TĆ­nh tĆ­ch phaĆ¢n suy roƤng: I = āˆ« 1 0 xln dx a) I = ā€“1 b) I = 0 c) I = 1 d) I = 2 CaĆ¢u 473:CaĆ¢u 473:CaĆ¢u 473:CaĆ¢u 473: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±1 x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± > 1 CaĆ¢u 474:CaĆ¢u 474:CaĆ¢u 474:CaĆ¢u 474: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± āˆ’āˆ’3 )2x)(1x(x x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± < 1/2 c) Ī± > 1 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 475:CaĆ¢u 475:CaĆ¢u 475:CaĆ¢u 475: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± ++ +āˆ’ 3 3 2 1x4x 5x3x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± > 3 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 476:CaĆ¢u 476:CaĆ¢u 476:CaĆ¢u 476: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± ++ +āˆ’ 0. 5 2 1x4x 5x3x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± > 3 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 477:CaĆ¢u 477:CaĆ¢u 477:CaĆ¢u 477: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± ++ +āˆ’ 0. 3 22 )1xx4x( )1x3xx( dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± > 2 c) Ī± tuĆøy yĆ¹ www.VNMATH.com
  • 34. Trang 40 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 478:CaĆ¢u 478:CaĆ¢u 478:CaĆ¢u 478: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ + Ī± 0. 2 1x xsin dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < 1 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 479:CaĆ¢u 479:CaĆ¢u 479:CaĆ¢u 479: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± ļ£· ļ£ø ļ£¶ ļ£¬ ļ£­ ļ£« ++ + + 1 1x4x 5x3 x xsin dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± ā‰¤ 1 b) Ī± ā‰¤ 2 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 480:CaĆ¢u 480:CaĆ¢u 480:CaĆ¢u 480: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ ļ£· ļ£· ļ£ø ļ£¶ ļ£¬ ļ£¬ ļ£­ ļ£« + Ī± + 1 2 xsin1 x x xcos dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± = 0 b) Ī± ā‰  0 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 481:CaĆ¢u 481:CaĆ¢u 481:CaĆ¢u 481: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± ļ£·ļ£· ļ£ø ļ£¶ ļ£¬ļ£¬ ļ£­ ļ£« ++ + + 1 x 1x4x 5x3 x e dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± ā‰¤ 1 b) Ī± ā‰¤ 2 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 482:CaĆ¢u 482:CaĆ¢u 482:CaĆ¢u 482: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ +Ī±+ 1 x xsin1 dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < 1 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 483:CaĆ¢u 483:CaĆ¢u 483:CaĆ¢u 483: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ +Ī± 1 2 x xsin dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± = ā€“1/2 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 484:CaĆ¢u 484:CaĆ¢u 484:CaĆ¢u 484: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ +Ī± 1 xx xcos dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± = 0 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 485:CaĆ¢u 485:CaĆ¢u 485:CaĆ¢u 485: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± 1 x e x dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± = 0 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 486:CaĆ¢u 486:CaĆ¢u 486:CaĆ¢u 486: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±1 x x e dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < ā€“1 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 487:CaĆ¢u 487:CaĆ¢u 487:CaĆ¢u 487: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī² Ī± 1 x x e dx (Ī± ā‰  0) hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < 0 vaĆø Ī² > 1 b) Ī± < 0 vaĆø Ī² tuĆøy yĆ¹ www.VNMATH.com
  • 35. Trang 41 c) Ī± tuĆøy yĆ¹ vaĆø Ī² > 1 d) Ī± < ā€“1 vaĆø Ī² > 1 CaĆ¢u 488:CaĆ¢u 488:CaĆ¢u 488:CaĆ¢u 488: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± +1 x x xe xe dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < 1 c) Ī± > 2 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 489:CaĆ¢u 489:CaĆ¢u 489:CaĆ¢u 489: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī± +1 x2 x2 xe ex dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < 2 c) Ī± > 3 d) Ī± tuĆøy yĆ¹ CaĆ¢u 490:CaĆ¢u 490:CaĆ¢u 490:CaĆ¢u 490: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±1 x x e e dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < 1 c) Ī± > 2 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 491:CaĆ¢u 491:CaĆ¢u 491:CaĆ¢u 491: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±1 xlnx dx dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± > 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± < 1 CaĆ¢u 492:CaĆ¢u 492:CaĆ¢u 492:CaĆ¢u 492: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±4 )x(lnlnxlnx dx dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± ā‰¤ 1 b) Ī± < 1 c) Ī± > 1 d) Ī± ā‰„ 1 CaĆ¢u 493:CaĆ¢u 493:CaĆ¢u 493:CaĆ¢u 493: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±2 xln dx dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± < 1 c) Ī± = 1 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 494:CaĆ¢u 494:CaĆ¢u 494:CaĆ¢u 494: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±2 xlnx dx dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± > 1 b) Ī± ā‰„ 1 c) Ī± ā‰¤ 1 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 495:CaĆ¢u 495:CaĆ¢u 495:CaĆ¢u 495: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆž+ Ī±2 2 xlnx dx dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± > 1 b) Ī± ā‰„ 1 c) Ī± tuĆøy yĆ¹ d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 496:CaĆ¢u 496:CaĆ¢u 496:CaĆ¢u 496: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī± 1 0 x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± > 1 CaĆ¢u 497:CaĆ¢u 497:CaĆ¢u 497:CaĆ¢u 497: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī± āˆ’ 1 0 )x1( dx phaĆ¢n kyĆø khi vaĆø chƦ khi a) Ī± < 1 b) Ī± ā‰¤ 1 c) Ī± ā‰„ 1 d) Ī± > 1 CaĆ¢u 498:CaĆ¢u 498:CaĆ¢u 498:CaĆ¢u 498: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+ Ī± 1 0 )x2)(1x(x x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± < 1/2 c) Ī± > ā€“1/2 d) Ī± tuĆøy yĆ¹ CaĆ¢u 499:CaĆ¢u 499:CaĆ¢u 499:CaĆ¢u 499: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+ Ī±+1 0 )x2)(1x(x x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± < ā€“1/2 c) Ī± > 1/2 d) Ī± tuĆøy yĆ¹ CaĆ¢u 500:CaĆ¢u 500:CaĆ¢u 500:CaĆ¢u 500: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+ Ī±+1 0 2 )x2)(1x(x x dx hoƤi tuĆÆ khi vaĆø chƦ khi www.VNMATH.com
  • 36. Trang 42 a) Ī± < ā€“1 b) Ī± > 1 c) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo d) CaĆ¹c khaĆŗng Ć±Ć²nh treĆ¢n ƱeĆ u sai CaĆ¢u 501:CaĆ¢u 501:CaĆ¢u 501:CaĆ¢u 501: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’+ Ī± 2 1 )x2)(1x(x x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± < ā€“1/2 c) Ī± > ā€“1/2 d) Ī± tuĆøy yĆ¹ CaĆ¢u 502:CaĆ¢u 502:CaĆ¢u 502:CaĆ¢u 502: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ļ€ Ī± Ī±āˆ’2/ 1 x cos1 dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± ā‰„ 1 b) Ī± ā‰„ 3 c) Ī± ā‰„ 4 d) Ī± tuĆøy yĆ¹ CaĆ¢u 504:CaĆ¢u 504:CaĆ¢u 504:CaĆ¢u 504: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī± āˆ’ 1 0 )x1( dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± ā‰„ 1 b) Ī± ā‰„ 2 c) Ī± ā‰„ 3 d) KhoĆ¢ng coĆ¹ giaĆ¹ trĆ² Ī± naĆøo CaĆ¢u 505:CaĆ¢u 505:CaĆ¢u 505:CaĆ¢u 505: TĆ­ch phaĆ¢n suy roƤng: āˆ« āˆ’ Ī± 1 0 x 1e dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < 1 b) Ī± < ā€“1/2 c) Ī± > 1/2 d) Ī± tuĆøy yĆ¹ CaĆ¢u 506:CaĆ¢u 506:CaĆ¢u 506:CaĆ¢u 506: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī± āˆ’2 1 xln )1x( dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < ā€“1 b) Ī± < ā€“1/2 c) Ī± > 0 d) Ī± > 2 CaĆ¢u 507:CaĆ¢u 507:CaĆ¢u 507:CaĆ¢u 507: TĆ­ch phaĆ¢n suy roƤng: āˆ« Ī± 1 0 3 )xcos/1(ln x dx hoƤi tuĆÆ khi vaĆø chƦ khi a) Ī± < 1 b) Ī± < ā€“1/2 c) Ī± < 0 d) Ī± < 2 CaĆ¢u 508:CaĆ¢u 508:CaĆ¢u 508:CaĆ¢u 508: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 6x2 ā€“ 6x vaĆø y = 0 a) S = ā€“1 b) S = 1 c) S = 2 d) S = 3 CaĆ¢u 509:CaĆ¢u 509:CaĆ¢u 509:CaĆ¢u 509: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = ex ā€“ 1; y = e2x ā€“ 3 vaĆø x = 0 a) S = ln4 ā€“ 1/2b) S = ln4 + 1/2 c) S = (ln2 + 1)/2 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 510:CaĆ¢u 510:CaĆ¢u 510:CaĆ¢u 510: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 3x2 + x vaĆø x ā€“ y + 3 = 0 a) S = ā€“3 b) S = 3 c) S = ā€“4 d) S = 4 CaĆ¢u 511:CaĆ¢u 511:CaĆ¢u 511:CaĆ¢u 511: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 2 + vaĆø y = 1 a) S = 2Ļ€ b) S = 2Ļ€ ā€“ 2 c) S = Ļ€ ā€“ 4 d) S = Ļ€ + 2 CaĆ¢u 512:CaĆ¢u 512:CaĆ¢u 512:CaĆ¢u 512: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 1 + ; y = 2 x1 x + ; x = 0; x =1 a) S = Ļ€/4 b) S = (ln2)/2 c) S = (ln2)/2 ā€“ Ļ€/4 d) S = Ļ€/4 ā€“ (ln2)/2 CaĆ¢u 513:CaĆ¢u 513:CaĆ¢u 513:CaĆ¢u 513: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 1 + ; y = 2 2 x1 x + ; x = 0; x =1 a) S = Ļ€/2 ā€“ 1 b) S = 1 ā€“ Ļ€/2 c) S = (ln2)/2 ā€“ Ļ€/4 d) S = Ļ€/4 ā€“ (ln2)/2 www.VNMATH.com
  • 37. Trang 43 CaĆ¢u 514:CaĆ¢u 514:CaĆ¢u 514:CaĆ¢u 514: TĆ­nh dieƤn tĆ­ch S cuĆ»a hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 1 + ; y = 2 x2 a) S = (2Ļ€ ā€“ 3)/3 b) S = (2Ļ€ ā€“ 3)/6 c) S = (3Ļ€ ā€“ 2)/3 d) S = (3Ļ€ ā€“ 2)/6 CaĆ¢u 515:CaĆ¢u 515:CaĆ¢u 515:CaĆ¢u 515: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2x. 2 x e ; y = 0; x = ā€“1; x = 1 a) S = 0 b) S = 4(e ā€“ 1) c) S = 2(e ā€“ 1)d) S = 2(e + 1) CaĆ¢u 516:CaĆ¢u 516:CaĆ¢u 516:CaĆ¢u 516: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = x3 ; y = x a) S = 0 b) S = 1/2 c) S = 1/4 d) S = 1/8 CaĆ¢u 517:CaĆ¢u 517:CaĆ¢u 517:CaĆ¢u 517: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 x4 + ; y = 2x3 a) S = 4ln2 ā€“ 1 b) S = 2ln2 ā€“ 1/2 c) S = 1/2 ā€“ 2ln2 d) S = 4ln2 + 1 CaĆ¢u 518:CaĆ¢u 518:CaĆ¢u 518:CaĆ¢u 518: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 3 x4 x4 + ; y = 2x a) S = 24ln2 ā€“ 4 b) S = 16ln2 ā€“ 8 c) S = 4 ā€“ 8ln8 d) S = 8 ā€“ 16ln8 CaĆ¢u 519:CaĆ¢u 519:CaĆ¢u 519:CaĆ¢u 519: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2x; y = 3 x ; x = 0; x = 1 a) S = 2 b) S = 1 c) S = 1/2 d) S = 1/6 CaĆ¢u 520:CaĆ¢u 520:CaĆ¢u 520:CaĆ¢u 520: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = 3 y ; y = x2 a) S = 1/12 b) S = 1/6 c) S = 1/3 d) S = 1/2 CaĆ¢u 521:CaĆ¢u 521:CaĆ¢u 521:CaĆ¢u 521: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 4sin2 x; y = 0; x = 0; x = Ļ€/4 a) S = 1 b) S = Ļ€ c) S = (Ļ€ ā€“ 1)/2 d) S = Ļ€/2 ā€“ 1 CaĆ¢u 522:CaĆ¢u 522:CaĆ¢u 522:CaĆ¢u 522: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = x; x = y2 a) S = 1 b) S = 1/2 c) S = 1/6 d) S = 1/12 CaĆ¢u 523:CaĆ¢u 523:CaĆ¢u 523:CaĆ¢u 523: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = 3y3 vaĆø x = 6y2 a) S = 1 b) S = 2 c) S = 4 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 524:CaĆ¢u 524:CaĆ¢u 524:CaĆ¢u 524: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = x3 vaĆø y = x4 a) S = 1/20 b) S = 1/10 c) S = 1 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 525:CaĆ¢u 525:CaĆ¢u 525:CaĆ¢u 525: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = x2 vaĆø y = x4 a) S = 1/15 b) S = 2/15 c) S = 4/15 d) S = 1 CaĆ¢u 526:CaĆ¢u 526:CaĆ¢u 526:CaĆ¢u 526: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: x = y2 ā€“ 2y vaĆø x = 2y2 ā€“ 4y a) S = 20/3 b) S = 4/3 c) S = 6/3 d) S = 2/3 CaĆ¢u 527:CaĆ¢u 527:CaĆ¢u 527:CaĆ¢u 527: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 x4 + vaĆø y = 2 2 x1 x4 + a) S = ln2 ā€“ 4 + Ļ€ b) S = ln2 ā€“ Ļ€ + 4 c) S = 4 ā€“ Ļ€ ā€“ 2ln2 d) S = 2ln2 ā€“ 4 + Ļ€ CaĆ¢u 528:CaĆ¢u 528:CaĆ¢u 528:CaĆ¢u 528: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: y = 2 x1 x4 + ; x = ā€“1; x = 1; y = 0 a) S = 1 b) S = Ļ€/2 c) S = Ļ€ d) S = +āˆž CaĆ¢u 529:CaĆ¢u 529:CaĆ¢u 529:CaĆ¢u 529: TĆ­nh dieƤn tĆ­ch S cuĆ»a mieĆ n phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau: www.VNMATH.com
  • 38. Trang 44 y = x e x ; y = 0; x = 0; x = 1 a) S = e b) S = 2 c) S = (2 ā€“ e)/e d) S = (e ā€“ 2)/e CaĆ¢u 530:CaĆ¢u 530:CaĆ¢u 530:CaĆ¢u 530: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± == == 2lnx;0x 0y;e4y x a) V = 4Ļ€ b) V = 8Ļ€ c) V = 16Ļ€ d) V = 24Ļ€ CaĆ¢u 531CaĆ¢u 531CaĆ¢u 531CaĆ¢u 531:::: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± == == ex;1x 0y;xlny a) V = Ļ€ b) V = 2Ļ€ c) V = eĻ€ d) V = Ļ€e2 CaĆ¢u 532:CaĆ¢u 532:CaĆ¢u 532:CaĆ¢u 532: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± == =+= 1x;0x 0y;)1xln(y a) V = Ļ€ln2/2 b) V = Ļ€(ln2 ā€“ 1) c) V = Ļ€(2ln2 ā€“ 1) d) V = Ļ€ln2 CaĆ¢u 533:CaĆ¢u 533:CaĆ¢u 533:CaĆ¢u 533: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£“ļ£³ ļ£“ ļ£² ļ£± Ļ€== == 4/x;0x 0y;tgxy a) V = Ļ€ln2 b) V = Ļ€ln2/2 c) V = Ļ€/4 d) V = Ļ€ ā€“ Ļ€2 /16 CaĆ¢u 534:CaĆ¢u 534:CaĆ¢u 534:CaĆ¢u 534: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: y = 2 x2sin1+ ; y = 0; x = 0; x = Ļ€/4 a) V = 2Ļ€ b) V = Ļ€(Ļ€ + 2) c) V = Ļ€ + 2 d) CaĆ¹c keĆ”t quaĆ» treĆ¢n ƱeĆ u sai CaĆ¢u 535:CaĆ¢u 535:CaĆ¢u 535:CaĆ¢u 535: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± Ļ€== == 2/x;0x 0y;xsiny a) V = 1 b) V = Ļ€ c) V = 2 d) V = 2Ļ€ CaĆ¢u 536:CaĆ¢u 536:CaĆ¢u 536:CaĆ¢u 536: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£“ ļ£³ ļ£“ ļ£² ļ£± == == ex;1x 0y; x xln y a) V = Ļ€/3 b) V = Ļ€/4 c) V = Ļ€/2 d) V = Ļ€ CaĆ¢u 537:CaĆ¢u 537:CaĆ¢u 537:CaĆ¢u 537: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£“ ļ£³ ļ£“ ļ£² ļ£± == = + = 1x;0x 0y; e1 e y x2 x a) V = Ļ€[ln(1 + e2 ] ā€“ ln2 b) V = Ļ€[ln 2 e1+ ā€“ ln 2 ] c) V = Ļ€[ln(e + 2 e1+ ) ā€“ ln(1 + 2 )] d) V = Ļ€[2ln(e + 2 e1+ ) ā€“ ln4] www.VNMATH.com
  • 39. Trang 45 CaĆ¢u 538:CaĆ¢u 538:CaĆ¢u 538:CaĆ¢u 538: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£“ ļ£³ ļ£“ ļ£² ļ£± == = + = ex;1x 0y; x 1xln2 y a) V = 2Ļ€ b) V = 6Ļ€ c) V = 3Ļ€ d) V = Ļ€ CaĆ¢u 539:CaĆ¢u 539:CaĆ¢u 539:CaĆ¢u 539: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: x = e; x = 1; y = xln21+ ; y = 0 a) V = Ļ€(Ļ€ + e)b) V = Ļ€(Ļ€ - 1) c) V = Ļ€(e ā€“ 2) d) V = Ļ€(e + 1) CaĆ¢u 540:CaĆ¢u 540:CaĆ¢u 540:CaĆ¢u 540: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± Ļ€== == x;0x 0y;xsinxcosy a) V = Ļ€/4 b) V = Ļ€/2 c) V = 2Ļ€/3 d) V = Ļ€ CaĆ¢u 541:CaĆ¢u 541:CaĆ¢u 541:CaĆ¢u 541: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± == == 1x;0x 0y;xxy a) V = Ļ€ b) V = Ļ€/2 c) V = Ļ€/4 d) V = Ļ€/12 CaĆ¢u 542:CaĆ¢u 542:CaĆ¢u 542:CaĆ¢u 542: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± == =āˆ’= 1x;0x 0y;1xy a) V = 8Ļ€/2 b) V = 4Ļ€/3 c) V = 2Ļ€/3 d) V = Ļ€/3 CaĆ¢u 543:CaĆ¢u 543:CaĆ¢u 543:CaĆ¢u 543: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: y = x xln ; y = 0; x = e; x = e2 a) V = Ļ€ b) V = 3Ļ€/2 c) V = 3Ļ€/4 d) V = (e2 ā€“ e)Ļ€ CaĆ¢u 54CaĆ¢u 54CaĆ¢u 54CaĆ¢u 544:4:4:4: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£“ ļ£³ ļ£“ ļ£² ļ£± == = + = 1x;0x 0y; x1 xarcsin6 y 2 a) V = 24Ļ€3 b) V = 12Ļ€3 c) V = 3Ļ€4 /2 d) V = 3Ļ€4 /8 CaĆ¢u 545:CaĆ¢u 545:CaĆ¢u 545:CaĆ¢u 545: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£“ ļ£³ ļ£“ ļ£² ļ£± == = + = )3ln(x;0x 0y; e1 e y x2 2/x a) V = Ļ€2 /2 b) V = Ļ€2 /6 c) V = Ļ€2 /8 d) V = Ļ€2 /12 CaĆ¢u 546:CaĆ¢u 546:CaĆ¢u 546:CaĆ¢u 546: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± Ļ€== == 4/x;0x 0y;tgx2y a) V = 4 ā€“ Ļ€ b) V = Ļ€(4 ā€“ Ļ€)/4 c) V = Ļ€(4 ā€“ Ļ€) d) V = 4Ļ€(4 ā€“ Ļ€) CaĆ¢u 547:CaĆ¢u 547:CaĆ¢u 547:CaĆ¢u 547: TĆ­nh theĆ„ tĆ­ch V cuĆ»a vaƤt theĆ„ troĆøn xoay do hƬnh phaĆŗng giĆ“Ć¹i haĆÆn bĆ“Ć»i caĆ¹c ƱƶƓĆøng sau ƱaĆ¢y quay quanh truĆÆc Ox: ļ£³ ļ£² ļ£± Ļ€== == 2/x;0x 0y;xcosy www.VNMATH.com
  • 40. Trang 46 a) V = Ļ€2 b) V = Ļ€(Ļ€- 1)/4 c) V = Ļ€2 /2 d) V = Ļ€2 /4 LƝ THUY T CHU I CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428:CaĆ¢u 428: Cho chuoĆ£i coĆ¹ soĆ” haĆÆng toĆ„ng quaĆ¹t: un = )1n(n 1 + (nā‰„1). ƑaĆ«t sn = u1 + u2 + ā€¦ + un. KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) sn = 2 1 (1 ā€“ 1n 1 + ) vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 2 1 b) sn = 1 + 1n 1 + vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1 c) sn = 1 ā€“ 1n 1 + vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1 d) ChuoĆ£i phaĆ¢n kyĆø. CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429:CaĆ¢u 429: Cho chuoĆ£i āˆ‘ āˆž =1n nu . MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u chuoĆ£i treĆ¢n hoƤi tuĆÆ thƬ un ā†’ 0 khi n ā†’ āˆž b) NeĆ”u un ā†’ 0 khi n ā†’ āˆž thƬ chuoĆ£i treĆ¢n hoƤi tuĆÆ c) NeĆ”u chuoĆ£i treĆ¢n phaĆ¢n kyĆø thƬ un ā†’ 0 khi n ā†’ āˆž d) NeĆ”u un ā†’ 0 khi n ā†’ āˆž thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø CaĆ¢u 4CaĆ¢u 4CaĆ¢u 4CaĆ¢u 430:30:30:30: Cho chuoĆ£i coĆ¹ soĆ” haĆÆng toĆ„ng quaĆ¹t: u n = )1n2)(1n2( 1 +āˆ’ ƑaĆ«t sn = u1 + u2 + ā€¦ + un. KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) sn = 2 1 (1 ā€“ 1n2 1 + ) vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 2 1 b) sn = 1 ā€“ 1n2 1 + vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1 c) sn = 1 + 1n2 1 + vaĆø chuoĆ£i hoƤi tuĆÆ, coĆ¹ toĆ„ng s = 1 d) ChuoĆ£i phaĆ¢n kyĆø. CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431:CaĆ¢u 431: ChuoĆ£i āˆ‘ āˆž = āˆ’Ī± 1n 2 n 1 (Ī± laĆø moƤt tham soĆ”) 20cm hoƤi tuĆÆ khi vaĆø chƦ khi: a) Ī± ā‰„ 3 b) Ī± > 3 c) Ī± > 1 d) Ī± ā‰„ 1 CaĆ¢u 432: ChuoĆ£i āˆ‘ āˆž = Ī²āˆ’āˆ’Ī± ļ£· ļ£ø ļ£¶ ļ£¬ ļ£­ ļ£« + 1n 12 n 1 n 1 (Ī±, Ī² laĆø caĆ¹c tham soĆ”) hoƤi tuĆÆ khi vaĆø chƦ khi: a) Ī± < 3 vaĆø Ī² < 0 b) Ī± > 3 vaĆø Ī² > 0 c) Ī± > 3 vaĆø Ī² < 0 d) Ī± < 3 vaĆø Ī² > 0 CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433:CaĆ¢u 433: Cho chuoĆ£i āˆ‘ āˆž = āˆ’Ī± ļ£· ļ£ø ļ£¶ ļ£¬ ļ£­ ļ£« + + 1n 1 n 3n 1 2 (Ī± laĆø caĆ¹c tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 2. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± < 1. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø. CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434:CaĆ¢u 434: Cho chuoĆ£i āˆ‘ āˆž = Ī± + ++ 1n 4 23 n)1n( 1n2n (Ī± laĆø moƤt tham soĆ” ) 20cm hoƤi tuĆÆ khi vaĆø chƦ khi: www.VNMATH.com
  • 41. Trang 47 a) Ī± > 0 b) Ī± ā‰¤ 0 c) Ī± > 1 d) Ī± ā‰„ 1 CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435:CaĆ¢u 435: Cho chuoĆ£i āˆ‘ āˆž = āˆ’Ī± ļ£· ļ£ø ļ£¶ ļ£¬ ļ£­ ļ£« + 1n 1n n 1 2 1 (Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± > 2. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi chƦ khi Ī± < 1. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø. CaĆ¢u 436:CaĆ¢u 436:CaĆ¢u 436:CaĆ¢u 436: Cho chuoĆ£i āˆ‘ āˆž = āˆ’Ī± + ++ 1n 3 26 2 n)2n( 1n2n (Ī± laĆø moƤt tham soĆ”) phaĆ¢n kyĆø khi chƦ khi: a) Ī± ā‰„ ā€“3 b) Ī± ā‰¤ 9 c) ā€“3 ā‰¤ Ī± ā‰¤ 3 d) ā€“3 < Ī± < 3 CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437:CaĆ¢u 437: Cho chuoĆ£i āˆ‘ āˆž =1n n q 2 (q laĆø moƤt tham soĆ” khaĆ¹c 0) hoƤi tuĆÆ khi vaĆø chƦ khi: a) ā€“1 < q < 1 b) q > 1 c) q < ā€“1 d) q < ā€“1 hay q > 1 CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438:CaĆ¢u 438: Cho chuoĆ£i ( )āˆ‘ āˆž = + 1n n q1 (q laĆø moƤt tham soĆ”) hoƤi tuĆÆ khi vaĆø chƦ khi: a) ā€“1 < q < 1 b) ā€“2 < q < 1 c) ā€“2 < q < 0 d) ā€“2 ā‰¤ q ā‰¤ 0 CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439:CaĆ¢u 439: Cho chuoĆ£i āˆ‘ āˆž = āˆ’Ī± + ++ 1n 3 24 n)2n( 1n2n (Ī± laĆø moƤt tham soĆ”) 20cm hoƤi tuĆÆ khi vaĆø chƦ khi: a) Ī± > 4 b) Ī± ā‰„ 4 c) Ī± ā‰„ 7 d) Ī± > 7 CaĆ¢u 440CaĆ¢u 440CaĆ¢u 440CaĆ¢u 440:::: Cho chuoĆ£i āˆ‘ āˆž =1n ( 3 2 n An + )n (A laĆø moƤt tham soĆ” ) MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“1 < A < 1 b) NeĆ”u ā€“1 < A < 1 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi A ā‰  0 d) ChuoĆ£i treĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi A āˆˆ R CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441:CaĆ¢u 441: Cho chuoĆ£i ( )āˆ‘ āˆž = ++ 1n n2n2 )q1(p (p, q laĆø caĆ¹c tham soĆ”) hoƤi tuĆÆ khi vaĆø chƦ khi: a) ā€“1 < p < 1 b) ā€“2 < q < 0 c) ā€“1 ā‰¤ p ā‰¤ 1 vaĆø ā€“2 ā‰¤ q ā‰¤ 0 d) ā€“1 < p < 1 vaĆø ā€“2 < q < 0 CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442:CaĆ¢u 442: Cho chuoĆ£i āˆ‘ āˆž = + 1n n 3 2 1An (A laĆø moƤt tham soĆ”) MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u ļ£¦Aļ£¦ > 1 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“1 < A < 1. c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi A. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø vĆ“Ć¹i moĆÆi A. CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443:CaĆ¢u 443: Cho chuoĆ£i āˆ‘ āˆž = āˆ’ 1n n 2 2 )4n(p (p laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u ļ£¦pļ£¦ > 1 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“2 < p < 2. c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi p. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n ky vĆ“Ć¹i moĆÆi p > 1. CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444:CaĆ¢u 444: Cho chuoĆ£i āˆ‘ āˆž = āˆ’ 1n n 22 3 n)3p( (p laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u ļ£¦pļ£¦ > 2 thƬ chuoĆ£i treĆ¢n phaĆ¢n kyĆø. www.VNMATH.com
  • 42. Trang 48 b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“2 < p < 2. c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi p. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kį»³ vĆ“Ć¹i moĆÆi ļ£¦pļ£¦ > 1. CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445:CaĆ¢u 445: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 1n 1n hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 )1n(n 3n hoƤi tuĆÆ. c) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 1n5 1n2 hoƤi tuĆÆ. d) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 )1n(n 1n2 phaĆ¢n kyĆø. CaĆ¢u 446CaĆ¢u 446CaĆ¢u 446CaĆ¢u 446:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 keĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 1n 1n5 hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘ āˆž = + + 1n )1n(n 1n hoƤi tuĆÆ. c) ChuoĆ£i āˆ‘ āˆž = + ++ 1n 4 2 1n 1n3n phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = + ++ 1n 2 2 )1n(n 1n2n10 phaĆ¢n kyĆø. CaĆ¢u 447CaĆ¢u 447CaĆ¢u 447CaĆ¢u 447:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 . KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 nlnn 1n hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 1n5 1n2 hoƤi tuĆÆ. c) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 1nn 1n2 phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = ++ + 1n 3 )1nln(n 3n hoƤi tuĆÆ. CaĆ¢u 448CaĆ¢u 448CaĆ¢u 448CaĆ¢u 448:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 . PhaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 8n 1n2 phaĆ¢n kyĆø. b) ChuoĆ£i āˆ‘ āˆž = + + 1n 32 2 )1n(n 3n3 phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘ āˆž = + + 1n 4 2n5 1n2 phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = + +āˆ’ 1n 3 2 n )1n(n )1n2()1( ĆÆHT tuyeƤt ƱoĆ”i. CaĆ¢u 449CaĆ¢u 449CaĆ¢u 449CaĆ¢u 449:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 8nn 1n2 phaĆ¢n kyĆø.b) ChuoĆ£i āˆ‘ āˆž = + + 1n 32 2 )1n(n 3n3 phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 2 2n5 1n2 phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘ āˆž = + +āˆ’ 1n 3 4 n )1n(n )1n3()1( HTtuyeƤt ƱoĆ”i. CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450:CaĆ¢u 450: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = +++ + 1n 23 2 12nnn2 5n phaĆ¢n kyĆø. b) ChuoĆ£i āˆ‘ āˆž = āˆ’+ + 1n 3 )23n2(n 5n3 phaĆ¢n kyĆø. www.VNMATH.com
  • 43. Trang 49 c) ChuoĆ£i āˆ‘ āˆž = ++ + 1n 4 1n2n3 3n phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = ++ +āˆ’ 1n 3 2 n )32n2(n )1n()1( hoƤi tuĆÆ tuyeƤt ƱoĆ”i. CaĆ¢u 451CaĆ¢u 451CaĆ¢u 451CaĆ¢u 451:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 2 1n 5n phaĆ¢n kyĆø. b) ChuoĆ£i ( )āˆ‘ āˆž = āˆ’+ + 1n 2 23n2n 5n3 phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘ āˆž = ++ + 1n 4 1n2n3 3n phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = ++ + āˆ’ 1n 3 2 n )32n2(n 1n )1( hoƤi tuĆÆ tuyeƤt ƱoĆ”i. CaĆ¢u 452CaĆ¢u 452CaĆ¢u 452CaĆ¢u 452:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 8nn 1n2 phaĆ¢n kyĆø. b) ChuoĆ£i āˆ‘ āˆž = + + 1n 32 2 )1n(n 3n3 phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 2 2n5 1n2 phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = + +āˆ’ 1n 3 4 n )1n(n )1n3()1( hoƤi tuĆÆ nhƶng khoĆ¢ng hoƤi tuĆÆ tuyeƤt ƱoĆ”i. CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453:CaĆ¢u 453: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = ++ + 1n 34 23 1nn4 nn phaĆ¢n kyĆø. b) ChuoĆ£i 2 1 5 12 ( 15 45 1)n n n n āˆž = + + + āˆ‘ hoƤi tuĆÆ. c) ChuoĆ£i āˆ‘ āˆž = ++ + 1n 4 2 2nn 1n8 phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = ++ + āˆ’ 1n 3 2 n )21n(n 3n )1( hoƤi tuĆÆ tuyeƤt ƱoĆ”i. CaĆ¢u 454CaĆ¢u 454CaĆ¢u 454CaĆ¢u 454:::: BaĆØng caĆ¹ch so saĆ¹nh vĆ“Ć¹i chuoĆ£i āˆ‘ āˆž = Ī± 1n n 1 phaĆ¹t bieĆ„u naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i āˆ‘ āˆž = + + 1n 2 n8n 1n3 hoƤi tuĆÆ. b) ChuoĆ£i āˆ‘ āˆž = + āˆ’ 1n 32 2 )1n(n 3n3 phaĆ¢n kyĆø. c) ChuoĆ£i āˆ‘ āˆž = + + 1n 3 2n5 1n2 phaĆ¢n kyĆø. d) ChuoĆ£i āˆ‘ āˆž = + +āˆ’ 1n 3 2 n )1n(n )1n2()1( hoƤi tuĆÆ nhƶng khoĆ¢ng hoƤi tuĆÆ tuyeƤt ƱoĆ”i. www.VNMATH.com
  • 44. Trang 50 CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455:CaĆ¢u 455: Cho 2 chuoĆ£i laĆ n lƶƓĆÆt coĆ¹ soĆ” haĆÆng toĆ„ng quaĆ¹t: un = 1n2n 1n 34 ++ + (1) vaĆø vn = 2n 1n 5 + + (2) KeĆ”t luaƤn naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i (1) phaĆ¢n kyĆø, chuoĆ£i (2) hoƤi tuĆÆ. b) ChuoĆ£i (1) hoƤi tuĆÆ, chuoĆ£i (2) phaĆ¢n kyĆø. c) ChuoĆ£i (1) vaĆø (2) ƱeĆ u hoƤi tuĆÆ. d) ChuoĆ£i (1) vaĆø (2) ƱeĆ u phaĆ¢n kyĆø. CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456:CaĆ¢u 456: Cho chuoĆ£i āˆ‘ āˆž =1n n 2 1 (1 + n Ī± )n (Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi ā€“1 < Ī± < 1. b) ChuoĆ£i treĆ¢n phaĆ¢n kyĆø khi vaĆø chƦ khi ā€“1 ā‰¤ Ī± ā‰¤ 1. c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ. CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457:CaĆ¢u 457: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘ āˆž =1n nu (1) vaĆø vn thoĆ»a un ā‰¤ vn , āˆ€n MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u chuoĆ£i (1) hoƤi tuĆÆ thƬ chuoĆ£i (2) cuƵng hoƤi tuĆÆ. b) NeĆ”u chuoĆ£i (1) phaĆ¢n kyĆø thƬ chuoĆ£i (2) cuƵng phaĆ¢n kyĆø. c) ChuoĆ£i (1) hoƤi tuĆÆ khi vaĆø chƦ khi chuoĆ£i (2) hoƤi tuĆÆ. d) CaĆ¹c meƤnh ƱeĆ  treĆ¢n ƱeĆ u sai. CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458:CaĆ¢u 458: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘ āˆž =1n nu vaĆø āˆ‘ āˆž =1n nv thoĆ»a n n n v u lim āˆžā†’ = k (k āˆˆ R). Trong ƱieĆ u kieƤn naĆøo sau ƱaĆ¢y hai chuoĆ£i naĆøy seƵ ƱoĆ ng thĆ“Ćøi hoƤi tuĆÆ hay phaĆ¢n kyĆø? a) k < 1 c) k > 0 b) k < 2 d) k < 3 CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459:CaĆ¢u 459: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘ āˆž =1n nu (1) vaĆø āˆ‘ āˆž =1n nu (2) thoĆ»a n n n v u lim āˆžā†’ = 0. MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u chuoĆ£i (1) hoƤi tuĆÆ thƬ chuoĆ£i (2) cuƵng hoƤi tuĆÆ. b) NeĆ”u chuoĆ£i (1) phaĆ¢n kyĆø thƬ chuoĆ£i (2) cuƵng phaĆ¢n kyĆø. c) ChuoĆ£i (1) hoƤi tuĆÆ khi vaĆø chƦ khi chuoĆ£i (2) hoƤi tuĆÆ. d) CaĆ¹c meƤnh ƱeĆ  treĆ¢n ƱeĆ u sai. CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460:CaĆ¢u 460: Cho hai chuoĆ£i soĆ” dƶƓng āˆ‘ āˆž =1n nu (1) vaĆø āˆ‘ āˆž =1n nv (2) thoĆ»a n n n v u lim āˆžā†’ = +āˆž MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) NeĆ”u chuoĆ£i (1) hoƤi tuĆÆ thƬ chuoĆ£i (2) cuƵng hoƤi tuĆÆ. b) NeĆ”u chuoĆ£i (1) phaĆ¢n kyĆø thƬ chuoĆ£i (2) cuƵng phaĆ¢n kyĆø. www.VNMATH.com
  • 45. Trang 51 c) ChuoĆ£i (1) hoƤi tuĆÆ khi vaĆø chƦ khi chuoĆ£i (2) hoƤi tuĆÆ. d) CaĆ¹c meƤnh ƱeĆ  treĆ¢n ƱeĆ u sai. CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461:CaĆ¢u 461: ChuoĆ£i āˆ‘ āˆž = +Ī± +1n 3 n)1n2( n4 (Ī± laĆø moƤt tham soĆ”) phaĆ¢n kyĆø khi chƦ khi: a) Ī± ā‰¤ ā€“2 b) Ī± < ā€“2 c) Ī± < 1 d) Ī± ā‰¤ 1 CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462:CaĆ¢u 462: ChuoĆ£i āˆ‘ āˆž = +1n n )q2)(1n( n (q laĆø moƤt tham soĆ” khaĆ¹c 0) hoƤi tuĆÆ khi chƦ khi: a) ā€“1/2 < q < 1/2 c) q < ā€“1/2 b) q > 1/2 d) q < ā€“1/2 hay q > 1/2 CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463:CaĆ¢u 463: Cho chuoĆ£i āˆ‘ āˆž = Ī± ++1n 4 2 1nn n (Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 3. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± < 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ. CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464:CaĆ¢u 464: Cho chuoĆ£i āˆ‘ āˆž = Ī± ++1n 4 3 1nn n (Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 1. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 4. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰„ 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø. CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465:CaĆ¢u 465: Cho chuoĆ£i āˆ‘ āˆž = Ī± ++ 1n 5 4 n 3nn (Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± < 4. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰¤ 4. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø. CaĆ¢u 4CaĆ¢u 4CaĆ¢u 4CaĆ¢u 466:66:66:66: Cho chuoĆ£i āˆ‘ āˆž = Ī± ++ 1n 6 4 n 3n2n (Ī± laĆø moƤt tham soĆ”). MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± < 5. b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰¤ 5. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 4. d) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ. CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467:CaĆ¢u 467: Cho chuoĆ£i āˆ‘ āˆž =1n )1)(1( 33 ++ + Ī± nn n (Ī± laĆø moƤt tham soĆ”) . MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± >1 . b) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± ā‰„2. c) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± > 2. d ) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø. CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468:CaĆ¢u 468: Cho chuoĆ£i āˆ‘ āˆž =1n (-1)n Ī± nn nn )2( 12 26 + ++ (Ī± laĆø moƤt tham soĆ”) . HoƤi tuĆÆ khi vaĆø chƦ khi: a) Ī± > 6 b) Ī± .5 c)Ī± ā‰¤6 d) Ī± ā‰¤5 CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469:CaĆ¢u 469: Cho chuoĆ£i āˆ‘ āˆž =1n )!1( 2. 3 + + n nnĪ± (Ī± laĆø moƤt tham soĆ”) .MeƤnh ƱeĆ  naĆøo sau ƱaĆ¢y ƱuĆ¹ng? a) ChuoĆ£i treĆ¢n hoƤi tuĆÆ khi vaĆø chƦ khi Ī± =0 . b) ChuoĆ£i treĆ¢n phaĆ¢n kyĆø khi vaĆø chƦ khi Ī± =0. c) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n phaĆ¢n kyĆø vĆ“Ć¹i moĆÆi Ī± . d ) ChuoĆ£i treĆ¢n luoĆ¢n luoĆ¢n hoƤi tuĆÆ vĆ“Ć¹i moĆÆi Ī± . www.VNMATH.com